14.07.2013 Views

iter structural design criteria for in-vessel components (sdc-ic)

iter structural design criteria for in-vessel components (sdc-ic)

iter structural design criteria for in-vessel components (sdc-ic)

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

ITER G 74 MA 8 01-05-28 W0.2<br />

relaxation, the sum of the <strong>in</strong>cremental elast<strong>ic</strong> stra<strong>in</strong> and <strong>in</strong>cremental irradiation-<strong>in</strong>duced creep<br />

stra<strong>in</strong> is zero, i.e.,<br />

e<br />

ij<br />

c<br />

ij<br />

eÇ + eÇ<br />

= 0 (1)<br />

If the material obeys the creep law given by Eq. 1 of B 3024.1.1.1, then denot<strong>in</strong>g the <strong>in</strong>itial<br />

and relaxed thermal stresses by so and s respectively, Eq. (1) can be solved as follows:<br />

<strong>for</strong> the uniaxial case,<br />

( )<br />

s = soexp -EB(<br />

T, f) ft<br />

(2)<br />

and <strong>for</strong> the equi-biaxial case,<br />

æ 3 EB( T, f) ftö<br />

sij = sodij expç<br />

-<br />

÷<br />

è 2 ( 1 - n)<br />

ø<br />

where i , j = 1,2<br />

and E and n are the Young's modulus and Poisson's ratio.<br />

If the material obeys a creep law different from Eq. (1) of B 3024.1.1.1 or if the <strong>in</strong>itial<br />

start<strong>in</strong>g stress is more general than equi-biaxial, Eq(1) can be solved numer<strong>ic</strong>ally if a closed<br />

<strong>for</strong>m solution cannot be obta<strong>in</strong>ed.<br />

B 3024.1.2 Neuber's rule<br />

Neuber's rule can be applied to estimate the maximum elasto-plast<strong>ic</strong> stresses and stra<strong>in</strong>s at<br />

notch roots. Consider a notch with an elast<strong>ic</strong> stress concentration factor KT subjected to a<br />

nom<strong>in</strong>al (remote) uniaxial stress So and, <strong>for</strong> a l<strong>in</strong>ear elast<strong>ic</strong> material, correspond<strong>in</strong>g remote<br />

uniaxial stra<strong>in</strong> eo (eo = So/E). The elast<strong>ic</strong>ally calculated peak stress (S) and stra<strong>in</strong> (e) at the<br />

notch root are given by<br />

S = KTSo<br />

e = KTeo<br />

NeuberÕs rule states that, if we replace the l<strong>in</strong>ear elast<strong>ic</strong> material with a material obey<strong>in</strong>g a<br />

uniaxial power-law constitutive equation,<br />

s = Ae n ,<br />

then, denot<strong>in</strong>g the notch root maximum stress and stra<strong>in</strong> by s and e,<br />

s · e = S · e (1)<br />

The above equations can be solved <strong>for</strong> the maximum stress and stra<strong>in</strong> at the notch roots as<br />

s = SK<br />

e = eK<br />

2n/( 1+<br />

n)<br />

o T<br />

2/( 1+<br />

n)<br />

o T<br />

SDC-IC, Appendix B. Guidel<strong>in</strong>es <strong>for</strong> Analysis page 26<br />

(3)<br />

(2a)<br />

(2b)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!