25.07.2013 Views

in Jurassic and Cretaceous Stratigraphy

in Jurassic and Cretaceous Stratigraphy

in Jurassic and Cretaceous Stratigraphy

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Earth Science Frontiers, Vol. 17, Special Issue, Aug. 2010 ISSN 1005-2321<br />

Causes <strong>and</strong> Tim<strong>in</strong>g of the Triassic-<strong>Jurassic</strong> Mass Ext<strong>in</strong>ction <strong>and</strong><br />

Subsequent Early <strong>Jurassic</strong> Recovery<br />

380<br />

M. Ruhl 1 , M.H.L. Deenen 2 , N.R. Bonis 1 , H.A. Abels 3 , W. Krijgsman 2 ,<br />

W.M. Kürschner 1<br />

1. Laboratory of Palaeobotany <strong>and</strong> Palynology, Utrecht University, Budapestlaan 4, NL-3584, CD, Utrecht, The Netherl<strong>and</strong>s<br />

(E-mail: m.ruhl@uu.nl)<br />

2. Paleomagnetic Laboratory, Utrecht University, Budapestlaan 17, NL-3584 CD Utrecht, The Netherl<strong>and</strong>s<br />

3. Department of Earth Sciences, Utrecht University, Budapestlaan 4, NL-3584 CD Utrecht, The Netherl<strong>and</strong>s<br />

The Triassic-<strong>Jurassic</strong> transition (~201.5 Ma) is<br />

regarded as one of the five major mass ext<strong>in</strong>ction events<br />

of the Phanerozoic, with a terrestrial ecosystem turn-<br />

over <strong>and</strong> 50% loss <strong>in</strong> mar<strong>in</strong>e biodiversity. This event is<br />

further marked by a negative excursion <strong>in</strong> δ 13 CTOC<br />

records. It closely co<strong>in</strong>cides with a period of extensive<br />

volcanism <strong>in</strong> the Central Atlantic Magmatic Prov<strong>in</strong>ce<br />

(CAMP), associated with the <strong>in</strong>itial break-up of Pan-<br />

gaea. A causal relationship is however still debated.<br />

Here we present a concise chronostratigraphic frame-<br />

work for the T–J boundary <strong>in</strong>terval <strong>and</strong> establish<br />

detailed trans-Atlantic <strong>and</strong> mar<strong>in</strong>e–cont<strong>in</strong>ental correla-<br />

tions, by <strong>in</strong>tegrat<strong>in</strong>g astrochronology, paleomagnetism,<br />

basalt geochemistry <strong>and</strong> geobiology, <strong>in</strong> which the<br />

end-Triassic mass ext<strong>in</strong>ction <strong>in</strong> the mar<strong>in</strong>e realm is<br />

directly related to the onset of CAMP basalt deposition<br />

<strong>in</strong> cont<strong>in</strong>ental bas<strong>in</strong>s (Fig.1). Our results support the<br />

hypotheses of Phanerozoic mass ext<strong>in</strong>ctions result<strong>in</strong>g<br />

from emplacement of Large Igneous Prov<strong>in</strong>ces (LIPs)<br />

<strong>and</strong> provide crucial time constra<strong>in</strong>ts for numerical<br />

modell<strong>in</strong>g of Triassic–<strong>Jurassic</strong> climate change <strong>and</strong><br />

global carbon-cycle perturbations.<br />

We show that the negative carbon isotope ex-<br />

cursion (CIE) <strong>in</strong> mar<strong>in</strong>e δ 13 CTOC records represents a<br />

global carbon perturbation. This <strong>in</strong>terpretation is based<br />

on compound specific C-isotope data of long-cha<strong>in</strong><br />

n-alkanes derived from waxes of l<strong>and</strong> plants. It shows a<br />

~8.5‰ negative excursion co<strong>in</strong>cident with the ext<strong>in</strong>c-<br />

tion <strong>in</strong>terval, <strong>in</strong>dicat<strong>in</strong>g a strong 13 C depletion of the<br />

end-Triassic atmosphere, with<strong>in</strong> 5-10 kyr. Magnitude<br />

<strong>and</strong> rate of this C-cycle disruption can only be<br />

expla<strong>in</strong>ed by the <strong>in</strong>jection of ~12x10 3 Gt of isotopically<br />

depleted carbon from the methane-hydrate reservoir.<br />

Concurrent vegetation changes reflect strong warm<strong>in</strong>g<br />

<strong>and</strong> an enhanced hydrological cycle. Hence the mass<br />

ext<strong>in</strong>ction event at the T-J transition is, for the first time,<br />

mechanistically l<strong>in</strong>ked to massive carbon release <strong>and</strong><br />

associated climate change.<br />

Strongly reduced biodiversity dur<strong>in</strong>g the end-<br />

Triassic mass ext<strong>in</strong>ction <strong>in</strong> the mar<strong>in</strong>e realm is<br />

succeeded by early <strong>Jurassic</strong> recovery, with orig<strong>in</strong>ation<br />

of ammonite species throughout the Hettangian, the<br />

first stage of the <strong>Jurassic</strong>. Accurate tim<strong>in</strong>g of events is<br />

however still poorly constra<strong>in</strong>ed. We present comb<strong>in</strong>ed<br />

field observations <strong>and</strong> physical <strong>and</strong> chemical proxy<br />

records, cover<strong>in</strong>g the uppermost Triassic <strong>and</strong> lower<br />

<strong>Jurassic</strong> mar<strong>in</strong>e successions of St Audrie’s Bay <strong>and</strong><br />

East Quantoxhead (UK). These data have been used to<br />

construct a float<strong>in</strong>g astronomical time-scale of ~2.5<br />

Myr <strong>in</strong> length. This time-scale is based on the<br />

recognition of meters thick cycles <strong>in</strong> limestone <strong>and</strong><br />

(black) shale predom<strong>in</strong>ance <strong>and</strong> concurrent variability<br />

<strong>in</strong> physical <strong>and</strong> chemical proxy records. Three to five<br />

<strong>in</strong>dividual black-shale beds occur with<strong>in</strong> these meters-<br />

scale sedimentary bundles <strong>and</strong> are <strong>in</strong>terpreted to reflect<br />

precession-controlled changes <strong>in</strong> monsoon <strong>in</strong>tensity,<br />

while the bundles are <strong>in</strong>terpreted as ~100-kyr<br />

eccentricity cycles. On the basis of these f<strong>in</strong>d<strong>in</strong>gs, we<br />

propose an astronomically constra<strong>in</strong>ed duration of the<br />

Hettangian stage of 1.8 Myr <strong>in</strong> the UK <strong>and</strong> unequal<br />

duration of Hettangian ammonite zones (P. planorbis<br />

zone: ~250 kyr; A. liasicus zone: ~750 kyr; S. angulata<br />

zone: ~800 kyr). With<strong>in</strong> this astronomical framework,<br />

the ext<strong>in</strong>ction <strong>in</strong>terval <strong>and</strong> co<strong>in</strong>cid<strong>in</strong>g negative CIE<br />

represent 1 to 2 precession cycles (~20-40 kyr). The<br />

amount of time succeed<strong>in</strong>g the end-Triassic negative<br />

Carbon Isotope Excursion (CIE) <strong>and</strong> preced<strong>in</strong>g the first<br />

<strong>Jurassic</strong> ammonite occurrence (<strong>in</strong> the UK) is con-<br />

stra<strong>in</strong>ed to 6 climatic precession cycles (~120 kyr).<br />

Cyclostratigraphic correlation to the astronomically-<br />

tuned sedimentary record of the cont<strong>in</strong>ental Newark<br />

bas<strong>in</strong> (USA) allows to locate the stratigraphic position<br />

of the mar<strong>in</strong>e def<strong>in</strong>ed Triassic-<strong>Jurassic</strong> <strong>and</strong> Hettangian-<br />

S<strong>in</strong>emurian boundary <strong>in</strong> the cont<strong>in</strong>ental realm.<br />

Key words: Triassic-<strong>Jurassic</strong> mass ext<strong>in</strong>ction;<br />

Early <strong>Jurassic</strong> recovery; Causes <strong>and</strong> tim<strong>in</strong>g<br />

References:<br />

Deenen, et al. A new chronology for the end-<br />

Triassic mass ext<strong>in</strong>ction. Earth <strong>and</strong> Planetary Science<br />

Letters, 2010, 291 (1-4): 113-125.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!