05.08.2013 Views

Modelling the Transient Response of the Dines Anemometer in ...

Modelling the Transient Response of the Dines Anemometer in ...

Modelling the Transient Response of the Dines Anemometer in ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

P2.67<br />

<strong>Modell<strong>in</strong>g</strong> <strong>the</strong> <strong>Transient</strong> <strong>Response</strong> <strong>of</strong> <strong>the</strong> <strong>D<strong>in</strong>es</strong> <strong>Anemometer</strong> <strong>in</strong> Tropical<br />

Cyclone W<strong>in</strong>ds<br />

Jeffrey D. Kepert<br />

Centre for Australian Wea<strong>the</strong>r and Climate Research,<br />

Bureau <strong>of</strong> Meteorology, 700 Coll<strong>in</strong>s St, Melbourne Vic 3000.<br />

Email: J.Kepert@bom.gov.au<br />

29th AMS Conference on Hurricanes and Tropical Meteorology, Tucson, Arizona, May 10 – 14, 2010.<br />

1. Introduction<br />

The <strong>D<strong>in</strong>es</strong>, or pressure-tube, anemometer, consists <strong>of</strong> a large-diameter pitot tube mounted on a vane,<br />

connected to a unique manometer. This manometer consists <strong>of</strong> an open-bottomed tapered float <strong>in</strong> a water<br />

tank, with <strong>the</strong> pressure tube from <strong>the</strong> pitot head feed<strong>in</strong>g <strong>in</strong>to <strong>the</strong> air space <strong>in</strong> <strong>the</strong> float. As <strong>the</strong> w<strong>in</strong>d<br />

speed rises, <strong>the</strong> pressure <strong>in</strong>side <strong>the</strong> float <strong>in</strong>creases and <strong>the</strong> float rises, mov<strong>in</strong>g <strong>the</strong> record<strong>in</strong>g pen. Fur<strong>the</strong>r<br />

<strong>in</strong>formation on <strong>the</strong> <strong>in</strong>strument may be found <strong>in</strong> <strong>D<strong>in</strong>es</strong> (1892) and Gold (1936). The <strong>D<strong>in</strong>es</strong> anemometer<br />

is now obsolete <strong>in</strong> Australia, hav<strong>in</strong>g been largely replaced by cup anemometers. Never<strong>the</strong>less, historical<br />

records from <strong>the</strong> <strong>in</strong>strument are important to understand<strong>in</strong>g <strong>the</strong> w<strong>in</strong>d risk climate, not least s<strong>in</strong>ce <strong>the</strong> two<br />

strongest gusts ever recorded on <strong>the</strong> Australian ma<strong>in</strong>land, <strong>in</strong> Tropical Cyclones Tracy <strong>of</strong> 1974 and Vance<br />

<strong>of</strong> 1999, were on <strong>D<strong>in</strong>es</strong> <strong>in</strong>struments.<br />

The behaviour <strong>of</strong> cup anemometers <strong>in</strong> turbulence has been extensively studied, but comparatively<br />

little similar work has been done on <strong>the</strong> <strong>D<strong>in</strong>es</strong>, and none recently. Some studies have compared cup to<br />

<strong>D<strong>in</strong>es</strong> anemometers (e.g. Mattice 1938; Dyck 1941; Handcock 1963; Logue 1986; Smith 1981) or looked<br />

at <strong>the</strong> <strong>D<strong>in</strong>es</strong> anemometer <strong>in</strong> isolation (e.g. Wier<strong>in</strong>ga 1980; Bureau <strong>of</strong> Meteorology 1987) but <strong>the</strong>se have<br />

mostly focussed on <strong>the</strong> mean, ra<strong>the</strong>r than <strong>the</strong> transient, response. Here, we present and analyse a newly<br />

developed physical model <strong>of</strong> <strong>the</strong> transient response <strong>of</strong> <strong>the</strong> <strong>D<strong>in</strong>es</strong> anemometer. Two previously observed<br />

resonances are confirmed, and <strong>the</strong>ir physical mechanism described. A third low-frequency oscillation,<br />

not previously known, is found <strong>in</strong> <strong>the</strong> model. Observations that may <strong>in</strong>dicate this oscillation are briefly<br />

discussed. In addition, it is shown that <strong>the</strong> <strong>in</strong>strument may overspeed, albeit for different reasons to cup<br />

anemometers.<br />

Fur<strong>the</strong>r work, <strong>in</strong> collaboration with <strong>the</strong> Cyclone Test<strong>in</strong>g Stations at James Cook University and Geosciences<br />

Australia, will <strong>in</strong>volve verification and calibration <strong>of</strong> <strong>the</strong> physical model by experiments on a<br />

remnant function<strong>in</strong>g <strong>D<strong>in</strong>es</strong> <strong>in</strong>strument, and re<strong>in</strong>terpretation <strong>of</strong> <strong>the</strong> historic gust record.<br />

2. <strong>Modell<strong>in</strong>g</strong> <strong>the</strong> Float Chamber<br />

The manometer <strong>of</strong> <strong>the</strong> <strong>D<strong>in</strong>es</strong> anemometer is illustrated <strong>in</strong> Fig. 1 has a complicated geometry, designed<br />

to produce a steady-state float displacement that is l<strong>in</strong>ear <strong>in</strong> <strong>the</strong> applied w<strong>in</strong>d speed. This geometry complicates<br />

<strong>the</strong> analysis, so for convenience a simpler geometry will be temporarily assumed. In particular,<br />

<strong>the</strong> follow<strong>in</strong>g simplify<strong>in</strong>g assumptions are made:<br />

1. The cross-sectional areas <strong>of</strong> <strong>the</strong> water <strong>in</strong>side and outside <strong>of</strong> <strong>the</strong> float are equal.<br />

2. The float and conta<strong>in</strong><strong>in</strong>g vessel have parallel sides.<br />

1


3. The pressure <strong>in</strong> <strong>the</strong> suction chamber is constant, or equivalently, <strong>the</strong> suction chamber is open to<br />

<strong>the</strong> atmosphere.<br />

4. The movement <strong>of</strong> <strong>the</strong> float and liquid experience Newtonian damp<strong>in</strong>g with time-scales τ1 and τ2<br />

respectively.<br />

5. The relative motion <strong>of</strong> <strong>the</strong> float and liquid is Newtonian damped with time-scale τ3, to represent<br />

<strong>the</strong> choke at <strong>the</strong> bottom <strong>of</strong> <strong>the</strong> float (see section 2.4.<br />

With <strong>the</strong>se assumptions, <strong>the</strong> float chamber is nearly equivalent to a U-tube manometer with a frictionless<br />

piston supported by some trapped air <strong>in</strong> one arm, and forced by vary<strong>in</strong>g <strong>the</strong> amount <strong>of</strong> trapped air. Figure<br />

1 sketches <strong>the</strong> successive approximations, from tapered float, to parallel-sided float, to U-tube. In <strong>the</strong> Utube,<br />

<strong>the</strong> piston represents <strong>the</strong> <strong>D<strong>in</strong>es</strong> float and <strong>the</strong> manometer liquid <strong>the</strong> water <strong>in</strong> <strong>the</strong> <strong>D<strong>in</strong>es</strong> float chamber.<br />

The trapped air between <strong>the</strong> piston and <strong>the</strong> manometer liquid corresponds to that <strong>in</strong>side <strong>the</strong> <strong>D<strong>in</strong>es</strong> float.<br />

It is assumed to compress iso<strong>the</strong>rmally, and acts as a spr<strong>in</strong>g between <strong>the</strong> two masses.<br />

An important difference with <strong>the</strong> <strong>D<strong>in</strong>es</strong> manometer is that <strong>the</strong> simplified system does not measure<br />

pressure. In a <strong>D<strong>in</strong>es</strong> manometer, <strong>the</strong> net upwards force on <strong>the</strong> float decreases as <strong>the</strong> float rises, because<br />

<strong>the</strong> area <strong>of</strong> <strong>the</strong> water surface <strong>in</strong> <strong>the</strong> bottom <strong>of</strong> <strong>the</strong> tapered float dim<strong>in</strong>ishes. In contrast, a parallel-sided<br />

float will rise <strong>in</strong>def<strong>in</strong>itely given an <strong>in</strong>f<strong>in</strong>ite supply <strong>of</strong> <strong>in</strong>ternal air at a fixed pressure, provided that <strong>the</strong><br />

pressure is sufficient to lift <strong>the</strong> float. Hence <strong>the</strong> forc<strong>in</strong>g <strong>in</strong> this system is better regarded as be<strong>in</strong>g <strong>the</strong><br />

mass <strong>of</strong> trapped air, ra<strong>the</strong>r than its pressure. This simplification is helpful for understand<strong>in</strong>g <strong>the</strong> transient<br />

response, but will later be removed. The mass <strong>of</strong> air <strong>in</strong> <strong>the</strong> chamber will cont<strong>in</strong>ue to be a key variable<br />

<strong>in</strong> <strong>the</strong> system, but this mass will be eventually governed by equations which describe <strong>the</strong> flow <strong>of</strong> air<br />

between <strong>the</strong> anemometer head and <strong>the</strong> chamber via <strong>the</strong> tub<strong>in</strong>g.<br />

A second difference is that <strong>the</strong> flow <strong>of</strong> <strong>the</strong> liquid around <strong>the</strong> bottom <strong>of</strong> <strong>the</strong> <strong>D<strong>in</strong>es</strong> float is probably<br />

ra<strong>the</strong>r complex, while <strong>the</strong> analogous flow around <strong>the</strong> bend <strong>in</strong> <strong>the</strong> U-tube is much more simply modelled.<br />

In particular, <strong>the</strong> liquid will be assumed to move as a s<strong>in</strong>gle mass.<br />

The variables <strong>in</strong> <strong>the</strong> system are <strong>the</strong> positions and velocities <strong>of</strong> <strong>the</strong> piston and manometer liquid,<br />

(x1,v1) and (x2,v2) respectively, and <strong>the</strong> pressure p <strong>of</strong> <strong>the</strong> trapped air. The <strong>in</strong>dependent variables are<br />

<strong>the</strong> piston mass m1, <strong>the</strong> tube area A, <strong>the</strong> amount <strong>of</strong> trapped air c(t), <strong>the</strong> pressure <strong>of</strong> air <strong>in</strong> <strong>the</strong> suction<br />

chamber penv, and <strong>the</strong> mass <strong>of</strong> <strong>the</strong> liquid m2 = 2xeAρ where xe is <strong>the</strong> rest<strong>in</strong>g position <strong>of</strong> <strong>the</strong> liquid if<br />

<strong>the</strong> piston was removed and ρ is its density. All distances are measured along <strong>the</strong> tube from <strong>the</strong> bottom<br />

<strong>of</strong> <strong>the</strong> U; distances towards <strong>the</strong> piston side are positive.<br />

The trapped air has mass ma, pressure penv + p and density ρa. Comb<strong>in</strong><strong>in</strong>g <strong>the</strong> def<strong>in</strong>ition <strong>of</strong> density<br />

ma = (x1 − x2)Aρa with <strong>the</strong> gas law penv + p = ρaRdT yields<br />

c(t) ≡ RdTma(t) = (penv + p)A(x1 − x2)<br />

where Rd is <strong>the</strong> gas constant for dry air and T is <strong>the</strong> air temperature. We will use c(t) as <strong>the</strong> pr<strong>in</strong>cipal<br />

forc<strong>in</strong>g <strong>of</strong> <strong>the</strong> system.<br />

The forces on <strong>the</strong> float are its weight gm1, <strong>the</strong> net upwards pressure due to <strong>the</strong> trapped air pA, and<br />

friction which we model as a l<strong>in</strong>ear damp<strong>in</strong>g to zero with time scale τ1, and a l<strong>in</strong>ear damp<strong>in</strong>g to <strong>the</strong> liquid<br />

motion with time scale τ3. Newton’s second law gives<br />

τ3<br />

m1 ˙v1 = pA − gm1 − m1τ1v1 − m1<br />

2 (v1 − v2).<br />

The liquid motion is forced by <strong>the</strong> air pressure difference p between <strong>the</strong> chamber and outside, and<br />

by <strong>the</strong> hydrostatic pressure difference 2(xe − x2)ρg due to <strong>the</strong> different liquid levels <strong>in</strong>side and outside<br />

<strong>of</strong> <strong>the</strong> float. A l<strong>in</strong>ear damp<strong>in</strong>g is aga<strong>in</strong> <strong>in</strong>cluded. It is assumed that <strong>the</strong> water moves essentially as a solid<br />

mass, hence<br />

2xeAρ˙v2 = −pA + 2(xe − x2)Aρg − 2xeAρτ2v2 − 2xeAρ τ3<br />

2 (v2 − v1).<br />

2


Figure 1: The <strong>D<strong>in</strong>es</strong> anemometer float chamber and successive approximations. The left panel shows <strong>the</strong> classic<br />

<strong>D<strong>in</strong>es</strong> manometer, with <strong>the</strong> float <strong>of</strong> tapered cross-section designed to produce a displacement that is l<strong>in</strong>ear <strong>in</strong> w<strong>in</strong>d<br />

speed. The central tube feeds <strong>the</strong> pressure at <strong>the</strong> pitot tube entry <strong>in</strong>to <strong>the</strong> <strong>in</strong>terior <strong>of</strong> <strong>the</strong> float. Blue shad<strong>in</strong>g<br />

represents water. The middle panel approximates <strong>the</strong> float as hav<strong>in</strong>g parallel sides. The right panel has similar<br />

topology to <strong>the</strong> o<strong>the</strong>r panels, but approximates <strong>the</strong> liquid as mov<strong>in</strong>g as a s<strong>in</strong>gle mass <strong>in</strong> a U-tube. The float is<br />

represented as a piston <strong>in</strong> one arm <strong>of</strong> <strong>the</strong> tube, supported above <strong>the</strong> liquid by <strong>the</strong> trapped air. The notation is that<br />

x1 represents <strong>the</strong> position <strong>of</strong> <strong>the</strong> piston, x2 <strong>the</strong> position <strong>of</strong> <strong>the</strong> liquid top <strong>in</strong> <strong>the</strong> piston arm, and xe <strong>the</strong> equilibrium<br />

position that <strong>the</strong> liquid would take if <strong>the</strong> piston was removed. Distances are measured from <strong>the</strong> bottom <strong>of</strong> <strong>the</strong><br />

U-tube, with <strong>the</strong> piston arm be<strong>in</strong>g positive. The left and centre draw<strong>in</strong>gs are from Gold (1936).<br />

where 2xeAρ is <strong>the</strong> mass <strong>of</strong> <strong>the</strong> liquid. This last assumption is not unduly restrictive – if <strong>the</strong> channel<br />

through which <strong>the</strong> water moves is not <strong>of</strong> constant cross-section, <strong>the</strong>n <strong>the</strong> greater mass per unit length <strong>in</strong><br />

<strong>the</strong> wider sections will be exactly compensated by <strong>the</strong> lower acceleration experienced by water <strong>the</strong>re<strong>in</strong> –<br />

it is <strong>the</strong> <strong>in</strong>ertia that matters.<br />

In summary, <strong>the</strong> equations govern<strong>in</strong>g <strong>the</strong> system are<br />

x1 − x2 =<br />

c(t)<br />

A(p + penv)<br />

˙x1 = v1<br />

(2)<br />

˙v1 = pA<br />

− g − τ1v1 −<br />

m1<br />

τ3<br />

2 (v1 − v2) (3)<br />

˙x2 = v2<br />

(4)<br />

˙v2 = −pA + 2(xe − x2)Aρg<br />

2xeAρ<br />

(1)<br />

− τ2v2 − τ3<br />

2 (v2 − v1) (5)<br />

Equation (1) is Boyle’s law and (3) and (5) are Newton’s second law. Equation (1) is used to elim<strong>in</strong>ate<br />

pA from <strong>the</strong> rema<strong>in</strong><strong>in</strong>g equations, leav<strong>in</strong>g a set <strong>of</strong> four nonl<strong>in</strong>ear coupled differential equations. L<strong>in</strong>ear<br />

analytic solutions and numerical solutions (by fourth-order Runge-Kutta <strong>in</strong>tegration) will be obta<strong>in</strong>ed.<br />

The equilibrium state <strong>of</strong> <strong>the</strong> system is found by solv<strong>in</strong>g ˙v1 = ˙v2 = 0 with c = c0 constant, giv<strong>in</strong>g<br />

x2e = xe − m1<br />

2Aρ<br />

x1e = x2e + c0<br />

gm1<br />

Note that <strong>the</strong> equilibrium water level (6) is <strong>in</strong>dependent <strong>of</strong> c0, as <strong>in</strong> a real <strong>D<strong>in</strong>es</strong> anemometer (Gold 1936).<br />

3<br />

(6)<br />

(7)


The calibration <strong>of</strong> <strong>the</strong> system, practically speak<strong>in</strong>g, is <strong>the</strong> read<strong>in</strong>gs x1 and x2 that it would produce<br />

<strong>in</strong> response to steady forc<strong>in</strong>g c0, provided that sufficient time had elapsed for it to reach equilibrium<br />

v1 = v2 = 0. In <strong>the</strong> absence <strong>of</strong> damp<strong>in</strong>g, total energy is conserved and so this state will never be met,<br />

but <strong>in</strong> reality, <strong>the</strong> anemometer will tend to this state. It is convenient to be able to discuss <strong>the</strong> calibration<br />

with respect to nonsteady forc<strong>in</strong>g. Hence (6) and (7), <strong>the</strong> calibration equations <strong>of</strong> <strong>the</strong> system, will also be<br />

applied to nonsteady forc<strong>in</strong>g c(t), so as to compare <strong>the</strong> <strong>in</strong>stantaneous read<strong>in</strong>gs <strong>of</strong> <strong>the</strong> <strong>in</strong>strument to that it<br />

would give <strong>in</strong> a steady state with that <strong>in</strong>stantaneous forc<strong>in</strong>g held constant. In particular, this <strong>in</strong>terpretation<br />

is necessary for <strong>the</strong> analysis <strong>of</strong> “overshoot<strong>in</strong>g” and “undershoot<strong>in</strong>g” <strong>of</strong> gust measurements <strong>in</strong> unsteady<br />

flow.<br />

The energy with<strong>in</strong> <strong>the</strong> system for steady c = c0 is given by<br />

EK = 1<br />

2 m1v 2 1 + xeAρv 2 2<br />

EP,1 = m1(x1 − x1e)g (9)<br />

EP,2 = Aρg (x2 − xe) 2 − (x2e − xe) 2<br />

(10)<br />

<br />

x1 − x2<br />

EP,p = c0 log + penvA[(x1 − x2) − (x1e − x2e)] (11)<br />

x1e − x2e<br />

represent<strong>in</strong>g respectively <strong>the</strong> k<strong>in</strong>etic energy EK, <strong>the</strong> potential energies due to <strong>the</strong> positions <strong>of</strong> <strong>the</strong> piston<br />

EP,1 and liquid EP,2, and <strong>the</strong> potential energy due to <strong>the</strong> pressure <strong>of</strong> <strong>the</strong> trapped air EP,p. These potential<br />

energies are relative to <strong>the</strong> equilibrium states. The accuracy <strong>of</strong> <strong>the</strong> numerical solutions was checked by<br />

requir<strong>in</strong>g <strong>the</strong>m to conserve total energy to high accuracy <strong>in</strong> simulations with damp<strong>in</strong>g τ1 = τ2 = τ3 = 0.<br />

2.1 Undamped behaviour<br />

Some limit<strong>in</strong>g, small-amplitude undamped cases for steady forc<strong>in</strong>g, c = c0, are <strong>of</strong> <strong>in</strong>terest. The first<br />

three are not very useful <strong>in</strong> understand<strong>in</strong>g <strong>the</strong> numerical solutions, but <strong>the</strong> fourth will be seen to be <strong>of</strong><br />

significant importance. For simplicity we take penv = 0 here; this simplification is relaxed <strong>in</strong> section 2.3.<br />

1. Liquid stationary. Then write x1 = x2 +c0/(gm1)+ɛ, where <strong>the</strong> constant c0/(gm1) is motivated<br />

by (7). Equations (2) and (3) with τ1 = τ2 = τ3 = 0 give<br />

<br />

¨ɛ = g 1 + gm1<br />

−1 ɛ − g (12)<br />

c0<br />

which describes a simple harmonic oscillator with frequency<br />

≈ − g2m1 ɛ (13)<br />

c0<br />

f1 = g<br />

m1<br />

c0<br />

(8)<br />

. (14)<br />

This limit will also describe <strong>the</strong> motion <strong>of</strong> <strong>the</strong> piston relative to <strong>the</strong> liquid when <strong>the</strong> liquid is mov<strong>in</strong>g<br />

relatively slowly, or when <strong>the</strong> liquid is much more massive than <strong>the</strong> float. Physically, it is a mode<br />

<strong>in</strong> which <strong>the</strong> piston “bounces” on <strong>the</strong> trapped air.<br />

2. Piston mass negligible. Equations (4) and (5) become<br />

¨x2 = − g<br />

x2 + g (15)<br />

which <strong>in</strong> which <strong>the</strong> liquid oscillates with frequency<br />

<br />

g<br />

f2 =<br />

4<br />

xe<br />

xe<br />

(16)


about mean position xe. This is a gravitational mode.<br />

3. Piston and liquid move toge<strong>the</strong>r That is, v1 = v2, which is <strong>the</strong> same as <strong>the</strong> previous case, except<br />

that <strong>the</strong> oscillat<strong>in</strong>g mass has <strong>in</strong>creased by m1. The frequency is<br />

This is also a gravitational mode.<br />

f3 =<br />

<br />

2Aρg<br />

2xeAρ + m1<br />

4. Coupled oscillations. Consider oscillations <strong>of</strong> <strong>the</strong> form<br />

x1(t) = x1e + δbe iωt<br />

x2(t) = x2e + δe iωt<br />

1/2<br />

. (17)<br />

where i 2 = −1. That is, <strong>the</strong> piston and liquid are oscillat<strong>in</strong>g with <strong>the</strong> same frequency ω, and b<br />

describes <strong>the</strong> relative amplitude and phase <strong>of</strong> <strong>the</strong> oscillations. Substitut<strong>in</strong>g <strong>the</strong>se equations <strong>in</strong>to <strong>the</strong><br />

govern<strong>in</strong>g equations (1) to (5), expand<strong>in</strong>g as a Taylor series <strong>in</strong> δ and tak<strong>in</strong>g <strong>the</strong> first-order terms<br />

yields<br />

with solutions<br />

ω 2 g<br />

1 =<br />

2<br />

and<br />

b1 =<br />

ω 2 2 =<br />

b2 =<br />

<br />

m 2 1 + 2Am1ρxe + 2Ac0ρ/g −<br />

(18)<br />

(19)<br />

bc0m1ω 2 + (1 − b)(gm1) 2 = 0 (20)<br />

2Ac0ρ(xeω 2 − g) − (1 − b)(gm1) 2 = 0 (21)<br />

<br />

8Aρxem3 1 + m2 1 − 2Aρxem1 + 2Ac0ρ/g <br />

2<br />

4Ac0ρxe<br />

<br />

m2 1 − 2Aρxem1<br />

<br />

+ 2Ac0ρ/g + 8Aρxem3 1 + m2 1 − 2Aρxem1 + 2Ac0ρ/g <br />

2<br />

2m 2 1<br />

g2 <br />

m2 1 + 2Am1ρxe<br />

<br />

+ 2Ac0ρ/g + 8Aρxem3 1 + m2 1 − 2Aρxem1 + 2Ac0ρ/g <br />

2<br />

4Ac0ρxe<br />

(24)<br />

<br />

m2 1 − 2Aρxem1<br />

<br />

+ 2Ac0ρ/g − 8Aρxem3 1 + m2 1 − 2Aρxem1 + 2Ac0ρ/g <br />

2<br />

. (25)<br />

2m 2 1<br />

The argument to <strong>the</strong> square root is always positive, so b1 and b2 are always real. Clearly b1 > 0 ><br />

b2, so solution (b1,ω1) has <strong>the</strong> <strong>the</strong> piston and liquid <strong>in</strong> phase, and (b2,ω2) has <strong>the</strong>m <strong>in</strong> opposite<br />

phase. The argument to <strong>the</strong> square root can also be written<br />

m 2 1 + 2Am1ρxe + 2Ac0ρ/g 2 − (16A 2 c0m1ρ 2 xe)/g<br />

from which it follows that ω1 and ω2 are always real, with 0 < ω1 < ω2. The low frequency<br />

oscillation has <strong>the</strong> liquid and piston <strong>in</strong> phase, and <strong>the</strong> high frequency one <strong>in</strong> opposite phase.<br />

5<br />

(22)<br />

(23)


v 1 , v 2<br />

Power<br />

x 1 , x 2<br />

4<br />

3<br />

2<br />

A=1.0 c 0 =0.9 p e =0 τ 1 =0.00 τ 2 =0.00 g=1.0 m 1 =1.0 ρ w =1.0 x e =2.0<br />

1<br />

600 650 700<br />

time<br />

750 800<br />

1<br />

0.5<br />

0<br />

−0.5<br />

−1<br />

600 650 700<br />

time<br />

750 800<br />

10 8<br />

10 6<br />

10 4<br />

10 2<br />

10 0<br />

10 −2<br />

10 −4<br />

A=1.0 c 0 =0.9 p e =0 τ 1 =0.00 τ 2 =0.00 τ 3 =0.00 g=1.0 m 1 =1.0 ρ w =1.0 x e =2.0<br />

10<br />

0 0.5 1 1.5 2 2.5 3<br />

−6<br />

Frequency<br />

Figure 2: Time series <strong>of</strong> simulated <strong>D<strong>in</strong>es</strong><br />

manometer. The upper panel shows <strong>the</strong><br />

float (blue) and liquid (green) position, and<br />

<strong>the</strong> lower panel shows <strong>the</strong> respective velocities.<br />

The lighter l<strong>in</strong>es <strong>in</strong> <strong>the</strong> upper panel<br />

show <strong>the</strong> equilibrium positions <strong>of</strong> <strong>the</strong> float<br />

and liquid x1e and x2e, and <strong>the</strong> black l<strong>in</strong>e<br />

shows <strong>the</strong> mean position <strong>of</strong> <strong>the</strong> float (calculated<br />

over a much longer period than that<br />

shown here). Parameters are A = 1, c0 =<br />

0.9, g = 1, m1 = 1, ρ = 1, τ1 = τ2 =<br />

τ3 = 0, xe = 2. The <strong>in</strong>itial condition<br />

was x1 = x1e + c0/(gm1), x2 = x2e and<br />

v1 = v2 = 0.<br />

Figure 3: Power spectra <strong>of</strong> x1 (blue curve)<br />

and x2 (green curve) from <strong>the</strong> simulation <strong>in</strong><br />

Fig. 2. The diamonds <strong>in</strong>dicate <strong>the</strong> frequencies<br />

for <strong>the</strong> coupled oscillation, ω1 (magenta)<br />

and ω2 (red).<br />

A time-series plot <strong>of</strong> simulated motion for <strong>the</strong> full equations is shown <strong>in</strong> Fig. 2. This example<br />

clearly shows periods where <strong>the</strong> liquid and piston oscillate <strong>in</strong> phase (e.g. 690 – 770), and periods where<br />

<strong>the</strong>y are out-<strong>of</strong>-phase. Apparently both oscillations are present and beat<strong>in</strong>g is occurr<strong>in</strong>g, but see fur<strong>the</strong>r<br />

discussion <strong>of</strong> this case later. The mean position <strong>of</strong> <strong>the</strong> float (black l<strong>in</strong>e) is significantly displaced from<br />

its equilibrium position x1e (lighter blue l<strong>in</strong>e). In <strong>the</strong> usual anemometer parlance, <strong>the</strong> <strong>in</strong>strument is<br />

overspeed<strong>in</strong>g; that is, <strong>the</strong> measured mean w<strong>in</strong>d speed has a positive bias. In contrast, <strong>the</strong> mean liquid<br />

position is <strong>in</strong>dist<strong>in</strong>guishable from x2e (light green l<strong>in</strong>e).<br />

The power spectra <strong>of</strong> x1 and x2 for this simulation are shown <strong>in</strong> Fig. 3, with <strong>the</strong> coupled frequencies<br />

ω1,ω2 <strong>in</strong>dicated by <strong>the</strong> filled diamonds. The spectrum is dom<strong>in</strong>ated by a broad peaks around<br />

ω1 ≈ 0.6037, ω2 ≈ 1.2347, and <strong>the</strong> harmonics <strong>the</strong>re<strong>of</strong>. The nonl<strong>in</strong>earity is evident from <strong>the</strong> relatively<br />

large amplitudes <strong>of</strong> <strong>the</strong> harmonics, and from <strong>the</strong> broadness <strong>of</strong> <strong>the</strong> peaks. The broad peaks are<br />

also notably spiky; <strong>in</strong> this example <strong>the</strong> spikes are spaced at about 0.04, but when run at lower amplitude<br />

<strong>the</strong>y become fewer and are spaced at 0.027 ≈ ω2 − 2ω1, suggest<strong>in</strong>g that <strong>the</strong> spikes are <strong>the</strong> result <strong>of</strong><br />

nonl<strong>in</strong>ear <strong>in</strong>teractions between <strong>the</strong> frequencies ω1 and ω2. Reduc<strong>in</strong>g <strong>the</strong> amplitude <strong>of</strong> <strong>the</strong> oscillations<br />

by chang<strong>in</strong>g <strong>the</strong> <strong>in</strong>itial condition leads to narrower spectral peaks and fewer spikes, confirm<strong>in</strong>g <strong>the</strong> role<br />

<strong>of</strong> nonl<strong>in</strong>earity. There is significant power <strong>in</strong> <strong>the</strong> motion <strong>of</strong> <strong>the</strong> piston, but not <strong>the</strong> liquid, at frequencies<br />

6


x 1 , x 2<br />

v 1 , v 2<br />

Power<br />

6<br />

4<br />

2<br />

A=1.0 c 0 =2.0 p e =0 τ 1 =0.00 τ 2 =0.00 g=1.0 m 1 =1.0 ρ w =1.0 x e =2.0<br />

0<br />

700 750 800<br />

time<br />

850 900<br />

2<br />

1<br />

0<br />

−1<br />

−2<br />

700 750 800<br />

time<br />

850 900<br />

10 8<br />

10 6<br />

10 4<br />

10 2<br />

10 0<br />

10 −2<br />

10 −4<br />

A=1.0 c 0 =2.0 p e =0 τ 1 =0.00 τ 2 =0.00 τ 3 =0.00 g=1.0 m 1 =1.0 ρ w =1.0 x e =2.0<br />

10<br />

0 0.5 1 1.5 2 2.5 3<br />

−6<br />

Frequency<br />

Figure 4: As for Fig. 2, but with c0 = 2.<br />

Figure 5: As for Fig. 3, but with c0 = 2.<br />

below 0.3, while <strong>the</strong> power is more similar for o<strong>the</strong>r peaks <strong>in</strong> <strong>the</strong> spectrum. The high piston energy and<br />

partial decoupl<strong>in</strong>g <strong>of</strong> float and liquid at low frequencies are less apparent when <strong>the</strong> overall amplitudes<br />

are reduced, aga<strong>in</strong> imply<strong>in</strong>g that nonl<strong>in</strong>earity may be <strong>the</strong> cause. This behaviour will be fur<strong>the</strong>r discussed<br />

below.<br />

Limit<strong>in</strong>g behaviour at very high w<strong>in</strong>d speeds, (i.e. <strong>the</strong> limit c0 → ∞), is that ω 2 1 → 0, b1/c0 →<br />

2Aρ/(gm 2 1 ), ω2 2 → g/xe and b2/c0 → 0. The <strong>in</strong>-phase oscillation becomes slow and predom<strong>in</strong>antly <strong>in</strong><br />

<strong>the</strong> piston, while <strong>the</strong> opposite-phase essentially becomes <strong>in</strong>dependent <strong>of</strong> <strong>the</strong> piston and similar to <strong>the</strong> f2<br />

case above.<br />

If c0 is <strong>in</strong>creased from that shown <strong>in</strong> Fig. 2, <strong>the</strong>n <strong>the</strong> character <strong>of</strong> <strong>the</strong> motion changes. Time-series<br />

and spectra for c0 = 2 are shown <strong>in</strong> Figs 4 and 5. The motion is approximately periodic with <strong>the</strong> section<br />

shown apparently beg<strong>in</strong>n<strong>in</strong>g to repeat at about t = 830. The spectrum has many more peaks, but <strong>the</strong><br />

l<strong>in</strong>ear analysis describes <strong>the</strong> strongest two. The <strong>of</strong>fset <strong>of</strong> <strong>the</strong> mean float position from x1e persists.<br />

Fur<strong>the</strong>r <strong>in</strong>dication <strong>of</strong> <strong>the</strong> complexity is provided by Fig. 6, which shows <strong>the</strong> power spectra for a<br />

range <strong>of</strong> c0. It is clear that <strong>the</strong> l<strong>in</strong>ear analysis successfully picks out <strong>the</strong> dom<strong>in</strong>ant peaks ω1 and ω2 (white<br />

dotted curves), with <strong>the</strong>ir difference be<strong>in</strong>g <strong>the</strong> third prom<strong>in</strong>ent peak (black dotted curve). A rich range<br />

<strong>of</strong> harmonics and <strong>in</strong>terharmonics are also apparent. The high power at low frequencies seen <strong>in</strong> Fig. 3<br />

7


freq<br />

freq<br />

Overspeed<br />

Power at f = 0<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.5 1 1.5 2<br />

c0<br />

2.5 3 3.5 4<br />

0.5 1 1.5 2<br />

c0<br />

2.5 3 3.5 4<br />

−0.2<br />

0 0.5 1 1.5 2<br />

c<br />

2.5 3 3.5 4<br />

10 5<br />

10 0<br />

0<br />

0 0.5 1 1.5 2<br />

c<br />

2.5 3 3.5 4<br />

8<br />

8<br />

6<br />

4<br />

2<br />

0<br />

−2<br />

−4<br />

−6<br />

−8<br />

8<br />

6<br />

4<br />

2<br />

0<br />

−2<br />

−4<br />

−6<br />

−8<br />

Figure 6: Logarithm base 10 <strong>of</strong> <strong>the</strong> power<br />

spectral density for x1 (top) and x2 (bottom)<br />

for values <strong>of</strong> c from 0.02 to 4 by<br />

0.02. O<strong>the</strong>r parameters are A = 1, g = 1,<br />

m1 = 1, ρ = 1 and xe = 2. The dotted<br />

white curves are ω1 (lower) and ω2 (upper),<br />

and <strong>the</strong> dotted black curve is ω2 − ω1.<br />

Figure 7: Upper panel: The extent to<br />

which <strong>the</strong> time-mean <strong>of</strong> x1 (blue) and<br />

x2 exceed <strong>the</strong>ir equilibrium values, <strong>in</strong> <strong>the</strong><br />

same simulations as for Fig. 6. That is,<br />

x1−x1e (blue) and x2−x2e (green). Lower<br />

panel: The power at DC (i.e. f = 0) <strong>in</strong><br />

<strong>the</strong>se simulations.


v 1 , v 2<br />

λ<br />

λ<br />

x 1 , x 2<br />

4<br />

3<br />

2<br />

A=1.0 c 0 =0.9 p e =0 τ 1 =0.00 τ 2 =0.00 τ 3 =0.00 g=1.0 m 1 =1.0 ρ w =1.0 x e =2.0<br />

1<br />

200 300 400 500<br />

time<br />

600 700 800<br />

1<br />

0.5<br />

0<br />

−0.5<br />

−1<br />

200 300 400 500<br />

time<br />

600 700 800<br />

0.25<br />

0.5 1248<br />

A=1.0 c 0 =0.9 p e =0 τ 1 =0.00 τ 2 =0.00 τ 3 =0.00 g=1.0 m 1 =1.0 ρ w =1.0 x e =2.0<br />

16<br />

32<br />

64<br />

128<br />

256<br />

512<br />

1024<br />

0 100 200 300 400<br />

time<br />

500 600 700 800<br />

0.25<br />

0.5 1248<br />

16<br />

32<br />

64<br />

128<br />

256<br />

512<br />

1024<br />

0 100 200 300 400<br />

time<br />

500 600 700 800<br />

Figure 8: As <strong>in</strong> Fig. 2, except for a longer<br />

period. The thick lighter blue curve shows<br />

<strong>the</strong> low-pass filtered piston positions. The<br />

similar green curve is <strong>in</strong>dist<strong>in</strong>guishable<br />

from <strong>the</strong> water mean position.<br />

Figure 9: Wavelet power spectrum <strong>of</strong> <strong>the</strong><br />

simulation shown <strong>in</strong> Fig. 2. The upper<br />

panel shows <strong>the</strong> piston motion, and <strong>the</strong><br />

lower that <strong>of</strong> <strong>the</strong> water. The horizontal<br />

white l<strong>in</strong>es <strong>in</strong>dicate λ = 2π/ω1 and λ =<br />

2π/ω2. Note also <strong>the</strong> much lower frequency<br />

oscillation present near λ = 150.<br />

is apparent <strong>in</strong> <strong>the</strong> upper panel near c0 = 0.9,f = 0, from which it seems that its orig<strong>in</strong> is a prom<strong>in</strong>ent<br />

<strong>in</strong>terharmonic that happened to <strong>in</strong>tersect f = 0 at that c0. This <strong>in</strong>tersection occurred because ω2 ≈ 2ω1<br />

around that c0 (as already noted), a relationship that will presumably tend to favour relatively strong<br />

coupl<strong>in</strong>g between <strong>the</strong> two oscillations. The closely-spaced spikes <strong>in</strong> <strong>the</strong> spectrum seen <strong>in</strong> Fig. 3 are also<br />

apparent. O<strong>the</strong>r <strong>in</strong>terest<strong>in</strong>g features <strong>in</strong>clude <strong>the</strong> regular variation <strong>in</strong> <strong>the</strong> width <strong>of</strong> <strong>the</strong> peak about ω1 and<br />

to a lesser extent ω2 and <strong>the</strong> rema<strong>in</strong><strong>in</strong>g l<strong>in</strong>es. Similar variation is also apparent at zero frequency, and is<br />

shown more clearly <strong>in</strong> <strong>the</strong> lower panel <strong>of</strong> Fig. 7. The upper panel <strong>of</strong> that figure shows <strong>the</strong> overspeed<strong>in</strong>g<br />

previously noted <strong>in</strong> Figs. 2 and 4. Relationships between <strong>the</strong> two panels are obvious, as is <strong>the</strong> systematic<br />

nature <strong>of</strong> <strong>the</strong> overspeed<strong>in</strong>g. Reduc<strong>in</strong>g <strong>the</strong> amplitude <strong>of</strong> <strong>the</strong> <strong>in</strong>itial departure from equilibrium by a factor<br />

<strong>of</strong> 10 reduces <strong>the</strong> overspeed<strong>in</strong>g by about a factor <strong>of</strong> 60, suggest<strong>in</strong>g that determ<strong>in</strong><strong>in</strong>g <strong>the</strong> cause <strong>of</strong> <strong>the</strong><br />

overspeed will require an analysis <strong>of</strong> <strong>the</strong> nonl<strong>in</strong>earity <strong>in</strong> <strong>the</strong> system.<br />

We return now to <strong>the</strong> case with c0 = 0.9 and consider <strong>the</strong> cause <strong>of</strong> <strong>the</strong> overspeed<strong>in</strong>g. Figure 8 shows<br />

a longer version <strong>of</strong> Fig. 2, which <strong>in</strong>cludes also a low-pass filtered float position. This curve is a maximum<br />

when <strong>the</strong> water and piston are most obviously out-<strong>of</strong>-phase, and a m<strong>in</strong>imum when <strong>the</strong>y are <strong>in</strong>-phase. The<br />

trapped air acts as a nonl<strong>in</strong>ear spr<strong>in</strong>g – <strong>the</strong> force required for a given <strong>in</strong>cremental displacement is larger<br />

when <strong>the</strong> air is already compressed from its equilibrium position, than when it is rarefied. Thus, as <strong>the</strong><br />

9


v 1 , v 2<br />

x 1 , x 2<br />

A=1.0 c 0 =2.0 τ 1 =1.00 g=1.0 m 1 =1.0 ρ w =1.0 x e =1.0 f=1.18 gfac=0.1 ω 1 =1.18 ω 2 =0.60<br />

2<br />

1<br />

0<br />

700 720 740 760 780 800<br />

time<br />

1<br />

0.5<br />

0<br />

−0.5<br />

−1<br />

700 720 740 760 780 800<br />

time<br />

Figure 10: Time series <strong>of</strong> manometer response<br />

for s<strong>in</strong>usoidally-vary<strong>in</strong>g oscillation<br />

at frequency f = ω2. Upper panel, piston<br />

(blue) and water (green) positions. Dark<br />

curves show <strong>the</strong> <strong>in</strong>stantaneous positions,<br />

and <strong>the</strong> lighter curves <strong>the</strong> calibrated values<br />

x1e and x2e calculated from c(t). Lower<br />

panel, piston and water velocity. Parameters<br />

are A = 1, c0 = 2, τ1 = 1, τ2 = τ3 =<br />

0, g = 1, m1 = 1, ρ = 1, xe = 1, giv<strong>in</strong>g<br />

ω1 = 1.18, ω2 = 0.60, b1 = −0.56<br />

and b2 = 3.56. The forc<strong>in</strong>g amplitude is<br />

G = 0.1.<br />

amplitude <strong>of</strong> <strong>the</strong> out-<strong>of</strong>-phase oscillation <strong>in</strong>creases, <strong>the</strong> piston will experience a nonl<strong>in</strong>ear <strong>in</strong>crease <strong>in</strong> <strong>the</strong><br />

upwards force it experiences at <strong>the</strong> bottom <strong>of</strong> its cycle, when <strong>the</strong> water rises to meet it. It appears that<br />

this is sufficient to <strong>in</strong>crease its mean position over that that would occur with a smaller-amplitude, more<br />

l<strong>in</strong>ear, oscillation.<br />

Figure 9 shows <strong>the</strong> wavelet power spectrum for <strong>the</strong> piston and water from this simulation. The<br />

amplitudes <strong>of</strong> <strong>the</strong> two coupled modes are not constant, but cycle slowly with time. Evidently energy<br />

is be<strong>in</strong>g transferred back and forwards between <strong>the</strong>m. This transfer is accompanied by a much slower<br />

oscillation <strong>in</strong> <strong>the</strong> piston, but not <strong>in</strong> <strong>the</strong> water. The amplitude <strong>of</strong> this latter oscillation depends on <strong>the</strong><br />

overall amplitudes <strong>in</strong> <strong>the</strong> system, so it is clearly nonl<strong>in</strong>ear <strong>in</strong> nature. I can recall see<strong>in</strong>g <strong>in</strong> <strong>the</strong> past <strong>D<strong>in</strong>es</strong><br />

anemometer traces with an oscillation with a period <strong>of</strong> several m<strong>in</strong>utes, attributed to gravity waves. Is it<br />

possible that this phenomenon is <strong>in</strong>stead a manifestation <strong>of</strong> this nonl<strong>in</strong>ear effect with<strong>in</strong> <strong>the</strong> <strong>in</strong>strument?<br />

2.2 The effects <strong>of</strong> damp<strong>in</strong>g <strong>the</strong> float<br />

A real <strong>D<strong>in</strong>es</strong> float has damp<strong>in</strong>g due to <strong>the</strong> viscosity <strong>of</strong> <strong>the</strong> water, <strong>the</strong> shaft from <strong>the</strong> float protrud<strong>in</strong>g<br />

through <strong>the</strong> bush<strong>in</strong>g at <strong>the</strong> top <strong>of</strong> <strong>the</strong> float chamber, from <strong>the</strong> pen mechanism, and from remote read-outs.<br />

Thus such motions will be likely to be damped. On <strong>the</strong> o<strong>the</strong>r hand, <strong>the</strong> forc<strong>in</strong>g c(t) will vary due to<br />

turbulence, not be constant as <strong>in</strong> section 2.1. The behaviour when <strong>the</strong> damp<strong>in</strong>g τ1 = 0 and c varies <strong>in</strong><br />

time is now explored. To beg<strong>in</strong> with, c will oscillate s<strong>in</strong>usoidally,<br />

c(t) = c0[1 + Gs<strong>in</strong>(ft)] (26)<br />

where c0 is related to <strong>the</strong> mean w<strong>in</strong>d speed, G is essentially a gust factor, and f is <strong>the</strong> forc<strong>in</strong>g frequency.<br />

The ma<strong>in</strong> diagnostic will be to compare <strong>the</strong> actual oscillation <strong>of</strong> <strong>the</strong> piston and water with that expected<br />

from <strong>the</strong> calibration equations, namely <strong>the</strong> equilibrium values expected for steady forc<strong>in</strong>g. In <strong>the</strong>se<br />

simulations, quite heavy damp<strong>in</strong>g τ1 = 1 is applied.<br />

Interest<strong>in</strong>g cases are likely to <strong>in</strong>clude those where f is close to one <strong>of</strong> <strong>the</strong> dom<strong>in</strong>ant frequencies<br />

apparent <strong>in</strong> Fig. 6, perhaps most strongly <strong>the</strong> opposite-phase oscillation f = ω2 but note that both<br />

coupled l<strong>in</strong>ear modes will be directly forced by oscillations <strong>in</strong> c. A sample time-series for this case is<br />

shown <strong>in</strong> Fig. 10. The water and piston are oscillat<strong>in</strong>g roughly <strong>in</strong> opposite phase, with relative amplitude<br />

0.47, not too far from |b2| = 0.56 for <strong>the</strong>se sett<strong>in</strong>gs. The amplitude <strong>of</strong> <strong>the</strong> piston oscillation is about<br />

7% greater than that expected from <strong>the</strong> calibration, even with this relatively heavy damp<strong>in</strong>g. Evidently<br />

resonance is present at this frequency, as expected. More <strong>in</strong>terest<strong>in</strong>gly, <strong>the</strong> mean piston position is<br />

clearly <strong>of</strong>fset slightly above its calibrated value, as also found <strong>in</strong> some undamped cases. As before,<br />

10


A=1.0 c 0 =2.0 τ 1 =1.00 τ 2 =0.00 τ 3 =0.00 g=1.0 m 1 =1.0 ρ w =1.0 x e =1.0 f=1.18 G=0.1 ω 1 =1.18 ω 2 =0.60<br />

v 1 , v 2<br />

Power<br />

10 8<br />

10 6<br />

10 4<br />

10 2<br />

10 0<br />

10 −2<br />

10 −4<br />

10<br />

0 0.5 1 1.5 2 2.5 3<br />

−6<br />

Frequency<br />

3<br />

2<br />

1<br />

x 1 , x 2 A=1.0 c<br />

0<br />

0 =1.0 τ 1 =1.00 g=1.0 m 1 =1.0 ρ w =1.0 x e =1.0 f=2.60 gfac=0.5 ω 1 =1.41 ω 2 =0.71<br />

−1<br />

750 760 770 780 790 800<br />

time<br />

1<br />

0.5<br />

0<br />

−0.5<br />

−1<br />

750 760 770 780 790 800<br />

time<br />

Figure 11: Power spectrum for <strong>the</strong> simulation<br />

<strong>in</strong> Fig. 10. Symbols as <strong>in</strong> Fig. 3,<br />

with <strong>the</strong> addition <strong>of</strong> a magenta pentagram<br />

(largely obscured) show<strong>in</strong>g <strong>the</strong> forc<strong>in</strong>g frequency.<br />

The lengths <strong>of</strong> <strong>the</strong> dumb-bells at<br />

ω1 and ω2 <strong>in</strong>dicate <strong>the</strong> ratios b1 and b2.<br />

Figure 12: As for Fig. 10, except with<br />

c0 = 1, giv<strong>in</strong>g ω1 = 1.41, ω2 = 0.71,<br />

b1 = −1 and b2 = 2. The forc<strong>in</strong>g frequency<br />

is f = 2.6, roughly twice ω2 and<br />

<strong>the</strong> amplitude is <strong>in</strong>creased to G = 0.5.<br />

<strong>the</strong> <strong>in</strong>strument is overspeed<strong>in</strong>g. Exam<strong>in</strong>ation <strong>of</strong> <strong>the</strong> spectrum (Fig. 11) shows <strong>the</strong> now familiar peak at<br />

low frequency. An appeal<strong>in</strong>g explanation for <strong>the</strong> overspeed<strong>in</strong>g is that nonl<strong>in</strong>earities are generat<strong>in</strong>g this<br />

peak (and many o<strong>the</strong>rs), but that <strong>the</strong> Newtonian damp<strong>in</strong>g is unable to remove very low frequency (and<br />

<strong>in</strong> particular, DC) motions. However, this explanation cannot be complete because overspeed<strong>in</strong>g occurs<br />

also <strong>in</strong> <strong>the</strong> undamped simulations.<br />

More exotic behaviour is possible, <strong>in</strong> particular <strong>in</strong> <strong>the</strong> <strong>in</strong>terest<strong>in</strong>g case where c0 satisfies ω2 ≈ 2ω1.<br />

Figure 12 shows such a case forced at a little less than twice ω2. The amplitude was <strong>in</strong>creased to G =<br />

0.5 to really let <strong>the</strong> nonl<strong>in</strong>earities rip. The system resonates at f/2, half <strong>the</strong> forc<strong>in</strong>g frequency, and<br />

overspeeds by about 35%.<br />

The behaviour is summarised <strong>in</strong> Fig. 13. The energy (panel a) clearly depicts <strong>the</strong> resonant peak,<br />

with <strong>the</strong> overspeed<strong>in</strong>g <strong>of</strong> <strong>the</strong> mean shown <strong>in</strong> panel (b). Note from panel (c) that <strong>the</strong> gusts are measured<br />

accurately at low frequencies, <strong>the</strong>n tail <strong>of</strong>f rapidly before be<strong>in</strong>g overestimated at resonance, <strong>the</strong>n tail<strong>in</strong>g<br />

<strong>of</strong>f aga<strong>in</strong>. From panel (d), <strong>the</strong> piston and water oscillations differ <strong>in</strong> phase by ∼ π/3 at low frequency,<br />

and about π at high, with <strong>the</strong> divid<strong>in</strong>g frequency be<strong>in</strong>g that at which <strong>the</strong> piston ignores <strong>the</strong> forc<strong>in</strong>g.<br />

Increas<strong>in</strong>g <strong>the</strong> amplitude <strong>of</strong> <strong>the</strong> forc<strong>in</strong>g (Fig. 14) <strong>in</strong>creases <strong>the</strong> amplitude <strong>of</strong> <strong>the</strong> response and <strong>in</strong>troduces<br />

<strong>the</strong> second resonant peak already seen <strong>in</strong> Fig. 12, but does not produce much else <strong>in</strong> <strong>the</strong> way <strong>of</strong> change.<br />

11


x1bar−x1e, x2bar−x2e<br />

x1phase/pi, x2phase/pi<br />

x1bar−x1e, x2bar−x2e<br />

x1phase/pi, x2phase/pi<br />

0.05<br />

0<br />

−0.05<br />

A=1.0 c 0 =1.0 g=1.0<br />

(b)<br />

0.1<br />

G=0.1 m 1 =1.0 ρ w =1.0 x e =1.0<br />

τ 1 =1.00 τ 2 =0.00 τ 3 =0.00<br />

ω 1 =1.41 ω 2 =0.71<br />

−0.1<br />

0 1 2 3<br />

freq<br />

(d)<br />

1<br />

0.5<br />

0<br />

−0.5<br />

−1<br />

0 1 2 3<br />

freq<br />

A=1.0 c 0 =1.0 g=1.0<br />

G=0.5 m 1 =1.0 ρ w =1.0 x e =1.0<br />

τ 1 =1.00 τ 2 =0.00<br />

ω 1 =1.41 ω 2 =0.71<br />

(b)<br />

1<br />

0.5<br />

0<br />

−0.5<br />

0 1 2 3<br />

freq<br />

(d)<br />

1<br />

0.5<br />

0<br />

−0.5<br />

−1<br />

0 1 2 3<br />

freq<br />

Ebar<br />

x1phas2/pi, x2phas2/pi<br />

Ebar<br />

x1amp, x2amp<br />

x1phas2/pi, x2phas2/pi<br />

(a)<br />

0.2<br />

0.1<br />

0<br />

−0.1<br />

−0.2<br />

0 1 2 3<br />

freq<br />

(c)<br />

4<br />

x1amp, x2amp<br />

3<br />

2<br />

1<br />

0<br />

0 1 2 3<br />

freq<br />

(e)<br />

1<br />

0.5<br />

0<br />

−0.5<br />

−1<br />

0 1 2 3<br />

freq<br />

(a)<br />

2<br />

1<br />

0<br />

−1<br />

0 1 2 3<br />

freq<br />

(c)<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

0 1 2 3<br />

freq<br />

(e)<br />

1<br />

0.5<br />

0<br />

−0.5<br />

−1<br />

0 1 2 3<br />

freq<br />

12<br />

Figure 13: A summary <strong>of</strong> <strong>the</strong> behaviour<br />

for <strong>the</strong> forced damped system. Each panel<br />

shows <strong>the</strong> system behaviour as a function<br />

<strong>of</strong> forc<strong>in</strong>g frequencyf, with <strong>the</strong> natural frequencies<br />

ω1 and ω2 <strong>in</strong>dicated by magenta<br />

diamonds. Paremeters are shown at top left.<br />

(a): <strong>the</strong> time-mean total energy <strong>in</strong> <strong>the</strong> system,<br />

EK + EP,1 + EP,2 + EP,p. (b): <strong>the</strong><br />

mean piston and water position, relative to<br />

that expected for steady forc<strong>in</strong>g c0. (c):<br />

<strong>the</strong> amplitude <strong>of</strong> <strong>the</strong> piston and water oscillations,<br />

normalised by <strong>the</strong> expected piston<br />

amplitude from <strong>the</strong> calibration equations.<br />

(d): <strong>the</strong> phase difference between <strong>the</strong> forc<strong>in</strong>g<br />

and <strong>the</strong> response. (e): <strong>the</strong> phase <strong>of</strong> <strong>the</strong><br />

first harmonic <strong>of</strong> <strong>the</strong> response.<br />

Figure 14: As for Fig. 13, except with G =<br />

0.5.


2.3 Account<strong>in</strong>g for pressure <strong>in</strong> <strong>the</strong> outer chamber<br />

Includ<strong>in</strong>g a constant nonzero pressure penv <strong>in</strong> <strong>the</strong> outer chamber <strong>in</strong>creases <strong>the</strong> complexity <strong>of</strong> <strong>the</strong><br />

algebra but does not require any change <strong>in</strong> <strong>the</strong> method <strong>of</strong> solution. The equilibrium water position is<br />

unchanged, while <strong>the</strong> float position becomes<br />

For comparison with <strong>the</strong> earlier simulations, we def<strong>in</strong>e<br />

c0<br />

x1e = x2e + . (27)<br />

gm1 + Apenv<br />

∆0 = c0<br />

<br />

1 + Apenv<br />

−1 gm1<br />

which is <strong>the</strong> length that <strong>the</strong> trapped air would assume if penv = 0. That is, we work <strong>in</strong> terms <strong>of</strong> <strong>the</strong> length<br />

or volume <strong>of</strong> trapped air, ra<strong>the</strong>r than its mass. Search<strong>in</strong>g for coupled oscillations follow<strong>in</strong>g <strong>the</strong> procedure<br />

<strong>in</strong> section 2.1 reveals that<br />

and<br />

with solutions<br />

and<br />

where<br />

It follows from<br />

(28)<br />

bc0ω 2 m1 + (1 − b)(gm1 + Apenv) 2 = 0 (29)<br />

2Ac0ρ(xeω 2 − g) − (1 − b)(gm1 + Apenv) 2 = 0 (30)<br />

ω 2 1 = S + 4Aρxe(gm1 + Apenv) 2 − S 2 + 8Am1ρxe(gm1 + Apenv) 4<br />

4Ac0m1ρxe<br />

b1 = S + S 2 + 8Am1ρxe(gm1 + Apenv) 4<br />

2m1(gm1 + Apenv) 2<br />

ω 2 2 = S + 4Aρxe(gm1 + Apenv) 2 + S 2 + 8Am1ρxe(gm1 + Apenv) 4<br />

4Ac0m1ρxe<br />

b2 = S − S 2 + 8Am1ρxe(gm1 + Apenv) 4<br />

2m1(gm1 + Apenv) 2<br />

S = (gm1 + Apenv) 2 (m1 − 2Aρxe) + 2Agm1ρc0<br />

[S + 4Aρxe(gm1 + Apenv) 2 ] 2 − [S 2 + 8Am1ρxe(gm1 + Apenv) 4 ]<br />

= 16A 2 c0gm1(gm1 + Apenv) 2 ρ 2 xe<br />

> 0<br />

that ω 2 1 > 0, so ω1 is real.<br />

Physically, <strong>the</strong> effect <strong>of</strong> <strong>in</strong>clud<strong>in</strong>g penv is to <strong>in</strong>crease <strong>the</strong> stiffness <strong>of</strong> <strong>the</strong> spr<strong>in</strong>g. Previously, if <strong>the</strong><br />

volume <strong>of</strong> <strong>the</strong> trapped air halved, <strong>the</strong>n p doubled. Now, p becomes 2(penv + p) − penv = penv + 2p. For<br />

penv ≫ p, as will usually be <strong>the</strong> case, this makes a big difference to <strong>the</strong> restor<strong>in</strong>g force. The ma<strong>in</strong> effect<br />

will be to shift <strong>the</strong> oscillations to higher frequency.<br />

13<br />

(31)<br />

(32)<br />

(33)<br />

(34)<br />

(35)<br />

(36)


x1bar−x1e, x2bar−x2e<br />

x1phase/pi, x2phase/pi<br />

(b)<br />

0.1<br />

0.05<br />

0<br />

−0.05<br />

A=1.0 c 0 =1.5 g=1.0<br />

G=0.1 m 1 =1.0 ρ w =1.0 x e =1.0<br />

τ 1 =0.05 τ 2 =0.10 τ 3 =0.20<br />

ω 1 =1.26 ω 2 =0.65<br />

−0.1<br />

0 1 2 3<br />

freq<br />

(d)<br />

1<br />

0.5<br />

0<br />

−0.5<br />

−1<br />

0 1 2 3<br />

freq<br />

Ebar<br />

x1phas2/pi, x2phas2/pi<br />

(a)<br />

0.2<br />

0.1<br />

0<br />

−0.1<br />

−0.2<br />

0 1 2 3<br />

freq<br />

(c)<br />

5<br />

x1amp, x2amp<br />

4<br />

3<br />

2<br />

1<br />

0<br />

0 1 2 3<br />

freq<br />

(e)<br />

1<br />

0.5<br />

0<br />

−0.5<br />

−1<br />

0 1 2 3<br />

freq<br />

14<br />

Figure 15: Photograph <strong>of</strong> <strong>the</strong> lower end<br />

<strong>of</strong> a <strong>D<strong>in</strong>es</strong> anemometer float, show<strong>in</strong>g <strong>the</strong><br />

choke. The pressure tube enters up <strong>the</strong> hole<br />

<strong>in</strong> <strong>the</strong> middle, almost fill<strong>in</strong>g it.<br />

Figure 16: As for Fig. 13, except with sett<strong>in</strong>gs<br />

as shown <strong>in</strong> <strong>the</strong> upper left. In particular,<br />

<strong>the</strong> absolute motions <strong>of</strong> <strong>the</strong> piston and<br />

water are weakly damped, while <strong>the</strong> relative<br />

motion is more strongly damped.


15<br />

Figure 17: The relative amplitude (top)<br />

and phase (bottom) <strong>of</strong> <strong>the</strong> float movement,<br />

as a function <strong>of</strong> forc<strong>in</strong>g frequency, for a variety<br />

<strong>of</strong> tub<strong>in</strong>g lengths. Reproduced from<br />

Borges (1968, Fig. 5).


2.4 Damp<strong>in</strong>g <strong>the</strong> relative motion<br />

In a real <strong>D<strong>in</strong>es</strong> anemometer, <strong>the</strong> bottom <strong>of</strong> <strong>the</strong> float is not open, but conta<strong>in</strong>s a constriction, shown <strong>in</strong><br />

Fig. 15. For convenience, we call this constriction <strong>the</strong> <strong>D<strong>in</strong>es</strong> choke. We have not been able to discover<br />

any literature on this feature, and so <strong>the</strong> reasons for its <strong>in</strong>clusion <strong>in</strong> <strong>the</strong> design are unclear. However,<br />

it will clearly have a damp<strong>in</strong>g effect on <strong>the</strong> relative motions <strong>of</strong> <strong>the</strong> float and <strong>the</strong> liquid, and was <strong>the</strong><br />

motivation for <strong>the</strong> <strong>in</strong>clusion <strong>of</strong> <strong>the</strong> damp<strong>in</strong>g with time-scale τ3 <strong>in</strong> Eqs. (3) and (5).<br />

Figure 16 presents plots summaris<strong>in</strong>g <strong>the</strong> response <strong>of</strong> <strong>the</strong> model to s<strong>in</strong>usoidal forc<strong>in</strong>g <strong>of</strong> various frequencies,<br />

with τ3 = 0. It is clear that <strong>the</strong> out-<strong>of</strong>-phase resonance is weaker than <strong>the</strong> <strong>in</strong>-phase, with <strong>the</strong>se<br />

sett<strong>in</strong>gs, as is physically reasonable. Borges (1968) conducted laboratory experiments with a pressuretube<br />

anemometer float chamber, <strong>in</strong> which s<strong>in</strong>usoidal pressure forc<strong>in</strong>g was applied. He presented a graph<br />

show<strong>in</strong>g <strong>the</strong> amplitude and phase <strong>of</strong> <strong>the</strong> float response, reproduced here as Fig. 17. Clearly, this figure is<br />

<strong>in</strong> good agreement with panels b and d <strong>of</strong> Fig. 16. Note that Borges (1968) presented results for several<br />

different mean w<strong>in</strong>d speeds. Variation <strong>in</strong> <strong>the</strong> mean w<strong>in</strong>d speed changes <strong>the</strong> mean mass <strong>of</strong> trapped air<br />

c0, and hence <strong>the</strong> resonant frequencies ω1 and ω2. The results <strong>of</strong> Borges suggest that <strong>the</strong> magnitude<br />

<strong>of</strong> <strong>the</strong> out-<strong>of</strong>-phase resonance is w<strong>in</strong>d-speed dependent, consistent with this sensitivity to c0, but full<br />

<strong>in</strong>vestigation <strong>of</strong> this phenomenon <strong>in</strong> <strong>the</strong> model awaits fur<strong>the</strong>r <strong>in</strong>vestigation.<br />

3. Discussion<br />

A simplified model <strong>of</strong> <strong>the</strong> <strong>D<strong>in</strong>es</strong> anemometer has been developed. Solution <strong>of</strong> <strong>the</strong> l<strong>in</strong>earised equations<br />

reveal two fundamental frequencies, correspond<strong>in</strong>g to oscillations <strong>in</strong> which <strong>the</strong> water and float are ei<strong>the</strong>r<br />

exactly <strong>in</strong> or exactly out <strong>of</strong> phase. The former oscillation has <strong>the</strong> lower frequency. Numerical solutions<br />

reveal that <strong>the</strong> l<strong>in</strong>ear solution well captures <strong>the</strong> dom<strong>in</strong>ant frequencies, and that <strong>the</strong> numerical solutions<br />

conta<strong>in</strong> additionally a rich array <strong>of</strong> harmonics and <strong>in</strong>terharmonics <strong>of</strong> <strong>the</strong> l<strong>in</strong>ear frequencies. Nonl<strong>in</strong>earity<br />

<strong>in</strong> <strong>the</strong> out-<strong>of</strong>-phase oscillation leads to a positive bias <strong>in</strong> <strong>the</strong> mean measurement (overspeed<strong>in</strong>g), <strong>the</strong><br />

magnitude <strong>of</strong> which depends on <strong>the</strong> amplitude <strong>of</strong> <strong>the</strong> oscillation. Under certa<strong>in</strong> circumstances, a third<br />

oscillation, <strong>of</strong> much lower frequency, can occur and is related to a regular transfer <strong>of</strong> energy between <strong>the</strong><br />

<strong>in</strong>-phase and out-<strong>of</strong>-phase oscillations.<br />

Numerical solutions <strong>of</strong> <strong>the</strong> forced damped equations reveal that resonances can occur at one or both<br />

<strong>of</strong> <strong>the</strong> l<strong>in</strong>ear frequencies, depend<strong>in</strong>g on <strong>the</strong> precise circumstances. The amplitude <strong>of</strong> <strong>the</strong>se resonances<br />

can be greater than that suggested through <strong>the</strong> calibration equations by <strong>the</strong> amplitude <strong>of</strong> <strong>the</strong> forc<strong>in</strong>g. That<br />

is, <strong>the</strong> magnitude <strong>of</strong> gusts at <strong>the</strong>se resonant frequencies may be overestimated. The model is capable,<br />

with some tun<strong>in</strong>g <strong>of</strong> <strong>the</strong> unknown parameters, <strong>of</strong> at least qualitatively reproduc<strong>in</strong>g <strong>the</strong> results <strong>of</strong> previous<br />

laboratory <strong>in</strong>vestigations that reported <strong>the</strong>se resonances.<br />

In this context, it is <strong>in</strong>terest<strong>in</strong>g to note <strong>the</strong> analysis <strong>of</strong> gust frequency at Australian observ<strong>in</strong>g sites by<br />

Cechet and Sanabria (2010). They studied sites with long records both pre- and post- <strong>the</strong> period dur<strong>in</strong>g<br />

which <strong>the</strong> Australian Bureau <strong>of</strong> Meteorology was replac<strong>in</strong>g <strong>D<strong>in</strong>es</strong> anemographs with cup anemometers<br />

at such sites. Cechet and Sanabria (2010) show that strong gusts were much more prevalent <strong>in</strong> <strong>the</strong> <strong>D<strong>in</strong>es</strong><br />

anemometer era than <strong>in</strong> <strong>the</strong> cup anemometer era. The resonances <strong>in</strong> <strong>the</strong> <strong>D<strong>in</strong>es</strong> float chamber, identified<br />

here, seems to be a likely explanation for <strong>the</strong> greater measured gust<strong>in</strong>ess <strong>in</strong> <strong>the</strong> <strong>D<strong>in</strong>es</strong> era.<br />

This is a prelim<strong>in</strong>ary report <strong>of</strong> work <strong>in</strong> progress. Colleagues at <strong>the</strong> Cyclone Test<strong>in</strong>g Station at James<br />

Cook University are currently undertak<strong>in</strong>g laboratory and field measurements on some rema<strong>in</strong><strong>in</strong>g <strong>D<strong>in</strong>es</strong><br />

anemometers owned by <strong>the</strong> Bureau <strong>of</strong> Meteorology. These measurements will be used to calibrate an<br />

improved version <strong>of</strong> <strong>the</strong> model described here<strong>in</strong>. The ma<strong>in</strong> improvement planned is to remove <strong>the</strong> simplifications<br />

to <strong>the</strong> float geometry. The f<strong>in</strong>al, calibrated, anemometer model will be coupled to a model<br />

that produces syn<strong>the</strong>tic turbulent w<strong>in</strong>d time series, to allow fur<strong>the</strong>r <strong>in</strong>vestigation <strong>of</strong> <strong>the</strong> record gusts <strong>in</strong><br />

Tropical Cyclones Tracy, Vance, and possibly o<strong>the</strong>rs.<br />

Several earlier studies (e.g. Sanuki 1952) have noted resonance <strong>in</strong> <strong>the</strong> system, without analys<strong>in</strong>g <strong>the</strong><br />

16


float dynamics as here. Some <strong>of</strong> <strong>the</strong>se studies note that <strong>the</strong> resonant frequency depends on <strong>the</strong> length<br />

and diameter <strong>of</strong> <strong>the</strong> tub<strong>in</strong>g from <strong>the</strong> pitot-tube head (e.g. Goldie 1935; Borges 1968). The explanation<br />

for this phenomenon has been though to be some form <strong>of</strong> resonance <strong>in</strong> <strong>the</strong> tub<strong>in</strong>g, but ano<strong>the</strong>r possibility<br />

is that variations <strong>in</strong> <strong>the</strong> tub<strong>in</strong>g correspond to variations <strong>in</strong> <strong>the</strong> mass <strong>of</strong> <strong>the</strong> trapped air, which would<br />

change <strong>the</strong> resonant frequencies by chang<strong>in</strong>g <strong>the</strong> effective spr<strong>in</strong>g constant. It is hoped that <strong>the</strong> laboratory<br />

measurements, <strong>in</strong> conjunction with <strong>the</strong> improved model, will answer this question.<br />

F<strong>in</strong>ally, it is hoped that <strong>the</strong> model will reach a degree <strong>of</strong> verisimilitude such that it can be used to<br />

determ<strong>in</strong>e whe<strong>the</strong>r or not <strong>the</strong> record gust measurements <strong>in</strong> Severe Tropical Cyclones Tracy and Vance<br />

were affected by resonances <strong>in</strong> <strong>the</strong> float system. Answer<strong>in</strong>g this question is critical to mak<strong>in</strong>g <strong>in</strong>formed<br />

use <strong>of</strong> <strong>the</strong>se measurements for purposes <strong>in</strong>clud<strong>in</strong>g risk assessment and eng<strong>in</strong>eer<strong>in</strong>g design.<br />

Acknowledgements<br />

This work is partly supported by <strong>the</strong> Australian Department <strong>of</strong> Climate Change. I am grateful to Jeff<br />

Callaghan, John G<strong>in</strong>ger, Bruce Harper, David Henderson, John Holmes and Ian Muirhead for helpful and<br />

<strong>in</strong>terest<strong>in</strong>g discussions about <strong>the</strong> <strong>D<strong>in</strong>es</strong> anemometer. I particularly thank Craig Miller for a mak<strong>in</strong>g available<br />

a very useful unpublished bibliographic review <strong>of</strong> <strong>the</strong> <strong>D<strong>in</strong>es</strong> anemometer and for provid<strong>in</strong>g copies<br />

<strong>of</strong> some obscure references, which greatly helped to focus <strong>the</strong> research presented here<strong>in</strong>. I especially<br />

thank David Edwards for an <strong>in</strong>formative and frank hands-on demonstration <strong>of</strong> a <strong>D<strong>in</strong>es</strong> anemometer, and<br />

him and Paul Leigh for <strong>the</strong>ir help with borrow<strong>in</strong>g an <strong>in</strong>strument for fur<strong>the</strong>r <strong>in</strong>vestigation.<br />

References<br />

Borges, A. R. J., 1968: On <strong>the</strong> frequency response <strong>of</strong> floater-type anemographs (velocity fluctuations <strong>in</strong> <strong>the</strong> direction<br />

<strong>of</strong> mean speed). Technica, 379, 505–511.<br />

Bureau <strong>of</strong> Meteorology, 1987: Effects on <strong>the</strong> Performance <strong>of</strong> a 150 knot <strong>D<strong>in</strong>es</strong> anemograph. Instrument Test<br />

Report No. 600, Commonwealth <strong>of</strong> Australia.<br />

Cechet, R. P. and L. A. Sanabria, 2010: Extreme-value time-series analysis <strong>of</strong> Australian Region A gust w<strong>in</strong>d<br />

speeds to exam<strong>in</strong>e <strong>in</strong>strument bias. Proceed<strong>in</strong>gs <strong>of</strong> <strong>the</strong> AMOS Annual Conference, Canberra, Australia, Australian<br />

Meteorological and Oceanographic Society.<br />

<strong>D<strong>in</strong>es</strong>, W. H., 1892: <strong>Anemometer</strong> comparisons. Quart. J. Roy. Meteor. Soc., 18, 165–185.<br />

Dyck, H. D., 1941: Comparison <strong>of</strong> extreme gust velocities as recorded by <strong>the</strong> <strong>D<strong>in</strong>es</strong> anemometer and 5-m<strong>in</strong>ute<br />

velocities as recorded by <strong>the</strong> Rob<strong>in</strong>son anemometer. Mon. Wea. Rev., 69, 301–302.<br />

Gold, L.-C. E., 1936: W<strong>in</strong>d <strong>in</strong> Brita<strong>in</strong> – The <strong>D<strong>in</strong>es</strong> anemometer and some notable records dur<strong>in</strong>g <strong>the</strong> last 40 years.<br />

Quart. J. Roy. Meteor. Soc., 62, 167–206.<br />

Goldie, A. H. R., 1935: W<strong>in</strong>d records from <strong>the</strong> Bell Rock Lighthouse. Geophysical Memoirs, 63.<br />

Handcock, D. E., 1963: Comparison <strong>of</strong> speeds <strong>of</strong> response <strong>of</strong> <strong>D<strong>in</strong>es</strong> anemograph and electrical record<strong>in</strong>g cup<br />

generator anemometer. Instrument test report no 511, Commonwealth Bureau <strong>of</strong> Meteorology.<br />

Logue, J. J., 1986: Comparison <strong>of</strong> w<strong>in</strong>d speeds recorded simultaneously by a pressure-tube anemograph and a<br />

cup-generator anemograph. Met. Mag., 115, 178–185.<br />

Mattice, W. A., 1938: A comparison between w<strong>in</strong>d velocities as recorded by <strong>the</strong> <strong>D<strong>in</strong>es</strong> and Rob<strong>in</strong>son anemometers.<br />

Mon. Wea. Rev., 66, 238–240.<br />

Sanuki, M., 1952: A new development <strong>of</strong> <strong>the</strong> <strong>the</strong>oretical and experimental lag <strong>of</strong> <strong>D<strong>in</strong>es</strong> pressure tube exposed <strong>in</strong><br />

fluctuat<strong>in</strong>g w<strong>in</strong>ds. Papers <strong>in</strong> Meteorology and Geophysics, 3, 115–124.<br />

Smith, S. G., 1981: Comparison <strong>of</strong> w<strong>in</strong>d speeds recorded by pressure-tube and Meteorological Office electrical<br />

cup generator anemographs. Met. Mag., 110, 288–300.<br />

Wier<strong>in</strong>ga, J., 1980: The mystery <strong>of</strong> <strong>the</strong> hicupp<strong>in</strong>g <strong>D<strong>in</strong>es</strong> anemometer. Report v-356, KNMI, De Bilt.<br />

17

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!