07.08.2013 Views

Report of Investigation 196 - arkisto.gsf.fi - Geologian tutkimuskeskus

Report of Investigation 196 - arkisto.gsf.fi - Geologian tutkimuskeskus

Report of Investigation 196 - arkisto.gsf.fi - Geologian tutkimuskeskus

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

GEOLOGICAL SURVEY OF FINLAND<br />

<strong>Report</strong> <strong>of</strong> <strong>Investigation</strong> <strong>196</strong><br />

2012<br />

High pre-mining metal concentrations and conductivity in peat<br />

around the Talvivaara nickel deposit, eastern Finland<br />

Markku Mäkilä, Kirsti Loukola-Ruskeeniemi and Heikki Säävuori


GEOLOGIAN TUTKIMUSKESKUS GEOLOGICAL SURVEY OF FINLAND<br />

Tutkimusraportti <strong>196</strong> <strong>Report</strong> <strong>of</strong> <strong>Investigation</strong> <strong>196</strong><br />

Markku Mäkilä, Kirsti Loukola-Ruskeeniemi and Heikki Säävuori<br />

HIGH PRE-MINING METAL CONCENTRATIONS AND CONDUCTIVITY IN PEAT<br />

AROUND THE TALVIVAARA NICKEL DEPOSIT, EASTERN FINLAND<br />

Unless otherwise indicated, the <strong>fi</strong>gures have been prepared by the authors <strong>of</strong> the publication.<br />

Front cover: Study site M2 in the Talvivaara mine in 2011. The peat samples for the present study<br />

were selected in 2005 when the site was located in the middle <strong>of</strong> a forest, before the large-scale mining<br />

activities began. Photo: Markku Mäkilä, GTK.<br />

Layout: Elvi Turtiainen Oy<br />

Printing house: Vammalan Kirjapaino Oy<br />

Espoo 2012


Mäkilä, M., Loukola-Ruskeeniemi, K. & Säävuori, H. 2012. High pre-mining<br />

metal concentrations and conductivity in peat around the Talvivaara nickel<br />

deposit, eastern Finland. Geological Survey <strong>of</strong> Finland, <strong>Report</strong> <strong>of</strong> <strong>Investigation</strong><br />

<strong>196</strong>, 36 pages, 31 <strong>fi</strong>gures and 7 tables.<br />

The Talvivaara Ni-Cu-Zn-Co deposit contains more than 1500 Mt <strong>of</strong> lowgrade<br />

ore, and has been mined since 2008 (0.22% Ni, 0.13% Cu, 0.49% Zn,<br />

0.02% Co). Three peat study sites representing different bedrock types and hydrological<br />

conditions were sampled in the Talvivaara area in 2005, before the<br />

large-scale mining activities began. The chemical and physical properties <strong>of</strong><br />

peat were studied from 58 samples. The chemical concentrations <strong>of</strong> peat were<br />

affected by factors such as the capillary transport <strong>of</strong> water through the underlying<br />

sandy till, plant physiology and geochemical processes in peat. The concentrations<br />

<strong>of</strong> Co, Cu, Fe, Mn, Ni, U, Zn and S and conductivity were lower<br />

at the study site on mica schist bedrock than in peat at the two study sites underlain<br />

by so-called black schists (metasedimentary rocks rich in graphite and<br />

sulphides). These metals displayed greater concentrations in the bottom layers<br />

<strong>of</strong> Carex (sedge) peat than in the surface layer <strong>of</strong> Sphagnum (moss) -dominated<br />

peat. It seems likely that hydrological conditions at one sloping peatland site<br />

underlain by black schist have been conducive to production and transport <strong>of</strong><br />

acidic surface waters with metal- rich suspension from adjacent Ni-rich black<br />

schist outcrops and glacial till throughout the entire history <strong>of</strong> peat accumulation.<br />

The peat layer evidently functioned in the same way as peat <strong>fi</strong>lters in<br />

the remediation <strong>of</strong> acid mine drainage in present-day mine environments, i.e.<br />

metals were retained in the peat. Ditches also locally reached the underlying<br />

Ni-rich bedrock and/or Ni-rich glacial till. At this black schist study site, pH<br />

values varied between 2.8–3.8 beneath the surface peat layer. These pH values<br />

are lower than can be tolerated by Carex peat-forming plants. The acidity <strong>of</strong><br />

peat changed in the <strong>196</strong>0s when the peat became drier due to drainage <strong>of</strong> the<br />

the peatland, and sulphur oxidized to SO 4 . We conclude that in sulphide-rich<br />

terrain, sulphur concentrations in peat can be high, and leaching <strong>of</strong> sulphur<br />

from peat to surface waters during and after peatland drainage activities may<br />

lead to environmental problems. The conductivity probe developed at the Geological<br />

Survey <strong>of</strong> Finland provides a cost-effective tool for locating sulphiderich<br />

peat formations.<br />

Keywords (GeoRef Thesaurus, AGI): peat, chemical properties, metals, sulfur,<br />

background level, electrical conductivity, mica schist, black schists, nickel, acid<br />

rock drainage, Talvivaara, Sotkamo, Finland<br />

Markku Mäkilä, Kirsti Loukola-Ruskeeniemi, Heikki Säävuori<br />

Geological Survey <strong>of</strong> Finland, P. O. Box 96, FI-02151 Espoo, Finland<br />

E-mail: markku.makila@gtk.<strong>fi</strong>, kirsti.loukola-ruskeeniemi@gtk.<strong>fi</strong>, heikki.saavuori@gtk.<strong>fi</strong><br />

ISBN 978-952-217-194-8 (PDF)<br />

ISBN 978-952-217-195-5 (paperback)<br />

ISSN 0781-4240


Mäkilä, M., Loukola-Ruskeeniemi, K. & Säävuori, H. 2012. High pre-mining<br />

metal concentrations and conductivity in peat around the Talvivaara nickel<br />

deposit, eastern Finland. <strong>Geologian</strong> <strong>tutkimuskeskus</strong>, Tutkimusraportti <strong>196</strong>, 36<br />

sivua, 31 kuvaa ja 7 taulukkoa.<br />

Talvivaaran Ni-Cu-Zn-Co -esiintymä sisältää yli 1500 Mt metallipitoisuudeltaan<br />

suhteellisen alhaista malmia, jota on louhittu vuodesta 2008 lähtien<br />

(0,22 % Ni, 0,13 % Cu, 0,49 % Zn, 0,02 % Co). Talvivaaran alueelta otettiin<br />

vuonna 2005 turvenäytteitä kolmelta suolta, jotka edustavat erilaisia kallioperäalueita<br />

ja hydrologisia olosuhteita. Turpeen kemiallisia ja fysikaalisia ominaisuuksia<br />

tutkittiin 58 näytteestä. Näytteiden kemialliseen koostumukseen<br />

ovat vaikuttaneet monet eri tekijät kuten veden kapillaarinen nousu suon pohjan<br />

hiekkamoreenissa ja turpeen kasvifysiologiset ja geokemialliset prosessit.<br />

Co, Cu, Fe, Mn, Ni, U, Zn ja S -pitoisuudet ja johtavuus olivat alemmat kiilleliuske-kallioperässä<br />

olevalla suolla kuin mustaliuskeen (gra<strong>fi</strong>ittia ja sul<strong>fi</strong>deja sisältävien<br />

metasedimenttikivien) päällä olevilla soilla. Nämä metallit esiintyivät<br />

suurempina pitoisuuksina soiden pohjalla saraturpeissa kuin suon pinnan rahkaturpeissa.<br />

Mustaliuskealueella olevalla rinnesuolla hydrologiset olosuhteet<br />

edistivät happamien pintavesien muodostumista ja kulkeutumista turpeeseen<br />

viereisiltä runsaasti nikkeliä sisältäviltä mustaliuskekallioilta ja moreenikerroksista<br />

koko turpeen muodostumishistorian ajan. Ilmeisesti turvekerros toimi<br />

samalla tavalla kuin turvesuodattimet happaman kaivosvalunnan korjaamisessa<br />

nykypäivän kaivosympäristöissä, metalleja pidättyi turpeeseen. Mustaliuskealueella<br />

olevalla rinnesuolla pH-arvot vaihtelivat 2.8–3.8 välillä pintaturvekerroksen<br />

alla. Nämä pH-arvot ovat alempia kuin saraturvetta muodostavat<br />

kasvit kestävät. Turpeen happamuus muuttui <strong>196</strong>0-luvulla, kun turvekerrokset<br />

kuivuivat ojituksen vuoksi ja rikkiä hapettui sulfaatiksi. Alueilla, joissa<br />

kallioperä ja/tai maaperä sisältävät paljon sul<strong>fi</strong>deja, turpeen rikkipitoisuudet<br />

voivat olla korkeita. Rikin kulkeutuminen turpeesta pintavesiin turvemaiden<br />

ojituksen aikana ja sen jälkeen saattaa johtaa ympäristöongelmiin. <strong>Geologian</strong><br />

tutkimuskeskuksessa kehitetty johtavuusluotain tarjoaa kustannustehokkaan<br />

menetelmän sul<strong>fi</strong>dirikkaiden turvekerrosten paikantamiseen.<br />

Asiasanat (Geosanasto, GTK): turve, kemialliset ominaisuudet, metallit, rikki,<br />

taustapitoisuus, sähkönjohtokyky, kiilleliuske, mustaliuskeet, nikkeli, hapan<br />

valuma, Talvivaara, Sotkamo, Suomi<br />

Markku Mäkilä, Kirsti Loukola-Ruskeeniemi, Heikki Säävuori<br />

<strong>Geologian</strong> <strong>tutkimuskeskus</strong>, PL 96, 02151 Espoo<br />

S-posti: markku.makila@gtk.<strong>fi</strong>, kirsti.loukola-ruskeeniemi@gtk.<strong>fi</strong>, heikki.saavuori@gtk.<strong>fi</strong>


4<br />

CONTENTS<br />

1 INTRODUCTION ......................................................................................................................... 5<br />

2 STUDY AREA ............................................................................................................................... 6<br />

2.1 Bedrock ................................................................................................................................... 6<br />

2.2 Soil .......................................................................................................................................... 7<br />

2.3 Peatlands ................................................................................................................................. 7<br />

2.4 Airborne geophysics ................................................................................................................ 9<br />

3 MATERIALS AND METHODS .................................................................................................... 9<br />

3.1 Sampling .................................................................................................................................. 9<br />

3.2 Laboratory analyses ................................................................................................................10<br />

3.3 Electrical conductivity ............................................................................................................10<br />

4 RESULTS .......................................................................................................................................11<br />

4.1 Chemical concentrations and peat properties <strong>of</strong> study sites ...................................................11<br />

4.2 Correlation between peat properties .......................................................................................24<br />

5 APPLICATION OF ELECTRIC CONDUCTIVITY MEASUREMENTS IN<br />

ENVIRONMENTAL STUDIES ..................................................................................................32<br />

6 DISCUSSION ...............................................................................................................................32<br />

7 CONCLUSIONS ...........................................................................................................................34<br />

ACKNOWLEDGEMENTS ..............................................................................................................35<br />

REFERENCES .................................................................................................................................35


<strong>Geologian</strong> <strong>tutkimuskeskus</strong>, Tutkimusraportti <strong>196</strong> – Geological Survey <strong>of</strong> Finland, <strong>Report</strong> <strong>of</strong> <strong>Investigation</strong> <strong>196</strong>, 2012<br />

High pre-mining metal concentrations and conductivity in peat around the Talvivaara nickel deposit, eastern Finland<br />

Sulphide ores and certain other rock types can influence<br />

elemental abundances in peat (e.g. Salmi<br />

1955, Kokkola & Penttilä 1976, Virtanen 1978,<br />

1990, 1993, 2004, 2005, Virtanen et al. 1997, Virtanen<br />

& Lerssi 2008). Black schists contain sulphides,<br />

weather more easily than other rock types<br />

and cause acid rock drainage and acidi<strong>fi</strong>cation <strong>of</strong><br />

surface waters (Loukola-Ruskeeniemi et al. 1998,<br />

Gustavsson et al. 2012). The chemical composition<br />

<strong>of</strong> peat is affected by numerous factors including<br />

plant physiology, geochemical and microbiological<br />

processes and capillary flow <strong>of</strong> water<br />

through underlying soil. The concentrations <strong>of</strong><br />

soluble ions in peat are dependent, for example,<br />

on the acidity, oxidation conditions, the ion exchange<br />

capacity and the number <strong>of</strong> complex compounds<br />

(Rose et al. 1979).<br />

The mobility <strong>of</strong> potential or actual contaminants<br />

derived from bedrock and soil depends on<br />

(1) their distribution and mode <strong>of</strong> occurrence, (2)<br />

their abundance, i.e. whether minerals are present<br />

in suf<strong>fi</strong>cient quantities to have a measurable effect,<br />

(3) their reactivity, i.e. the energetics, rates and<br />

mechanisms <strong>of</strong> sorption and mineral dissolution<br />

and precipitation relative to the flow rate <strong>of</strong> the<br />

water, and (4) hydrology, i.e. the main flow paths<br />

for contaminated water. Post-dissolution sorption<br />

and precipitation (attenuation) reactions depend<br />

on the chemical behaviour <strong>of</strong> each element,<br />

the composition and pH <strong>of</strong> the solution, aqueous<br />

speciation, temperature, and contact times with<br />

mineral surfaces. For example, little metal attenuation<br />

occurs in waters <strong>of</strong> low pH (


<strong>Geologian</strong> <strong>tutkimuskeskus</strong>, Tutkimusraportti <strong>196</strong> – Geological Survey <strong>of</strong> Finland, <strong>Report</strong> <strong>of</strong> <strong>Investigation</strong> <strong>196</strong>, 2012<br />

Markku Mäkilä, Kirsti Loukola-Ruskeeniemi and Heikki Säävuori<br />

heavy metals in peat. Jones and Hao (1993) also<br />

demonstrated elevated concentrations <strong>of</strong> Cd, Cu,<br />

Fe, Pb, and Zn in peat due to industrial activities<br />

in Shef<strong>fi</strong>eld and Manchester. Historical mining<br />

and smelting has been recorded in peat pr<strong>of</strong>iles<br />

in many parts in the world, for example, in the<br />

Basque Country in Spain (Monna et al. 2004) and<br />

South West England (West et al. 1997).<br />

In the present study, results from the analysis <strong>of</strong><br />

three peat pr<strong>of</strong>iles sampled in 2005 around the Tal-<br />

The bedrock in the Talvivaara area consists <strong>of</strong><br />

both Archaean and Palaeoproterozoic rocks<br />

(Figs. 1 and 2). The Talvivaara deposit comprises<br />

two polymetallic ore bodies, Kuusilampi and Kolmisoppi.<br />

The mineral resource is 1 550 million<br />

tonnes at 0.22% <strong>of</strong> nickel, 0.13% <strong>of</strong> copper, 0.02%<br />

<strong>of</strong> cobalt and 0.49% <strong>of</strong> zinc (Talvivaara Mining<br />

Company 2010). Loukola-Ruskeeniemi and Heino<br />

(1996) classi<strong>fi</strong>ed the Talvivaara C-rich rocks<br />

into two main groups: black schists (Ni-rich, Nipoor,<br />

and Mn-rich subtypes) and graphite-rich<br />

calc-silicate rocks. The black schists at Talvivaara<br />

contain quartz, mica, graphite and sulphides as<br />

the main minerals, with rutile, apatite, zircon,<br />

feldspar and garnet as common accessory minerals.<br />

Quartz occurs in both the matrix and veins,<br />

together with sulphides, mica and feldspar. Pyrite<br />

and pyrrhotite are the dominant sulphide minerals<br />

in the Talvivaara deposit. Pyrite, pyrrhotite<br />

and sphalerite occur both as <strong>fi</strong>ne-grained disseminations<br />

(


7097 7100 7103<br />

N<br />

<strong>Geologian</strong> <strong>tutkimuskeskus</strong>, Tutkimusraportti <strong>196</strong> – Geological Survey <strong>of</strong> Finland, <strong>Report</strong> <strong>of</strong> <strong>Investigation</strong> <strong>196</strong>, 2012<br />

High pre-mining metal concentrations and conductivity in peat around the Talvivaara nickel deposit, eastern Finland<br />

3551 3555<br />

1 km<br />

KOLMISOPPI<br />

M2<br />

M1<br />

KUUSILAMPI<br />

M3<br />

3551 3555<br />

Grey and compact sandy basal glacial till is the<br />

prevailing soil type at Talvivaara and is present<br />

as a thin layer covering the entire area (Murtoniemi<br />

1984). Till fabric alignments vary from<br />

290º to 310º, corresponding to bedrock striation<br />

directions and the general orientation <strong>of</strong> drumlins<br />

and bedrock topography. The upper part <strong>of</strong> the<br />

basal till horizon has locally been reworked with<br />

removal <strong>of</strong> <strong>fi</strong>ne material, during the <strong>fi</strong>nal stages <strong>of</strong><br />

the last deglaciation. Ablation moraines, characterized<br />

by sand and gravel, form discrete mounds<br />

Because <strong>of</strong> the highly undulating topography in<br />

the Talvivaara area, as in much <strong>of</strong> the Sotkamo<br />

region, peatlands are relatively small. Together<br />

with several lakes, occupying low-lying areas<br />

throughout the region, commonly occurring in<br />

depressions between elevated moraine ridges (Fig.<br />

7097 7100 7103<br />

2.2 Soil<br />

2.3 Peatlands<br />

Upper Kaleva (


<strong>Geologian</strong> <strong>tutkimuskeskus</strong>, Tutkimusraportti <strong>196</strong> – Geological Survey <strong>of</strong> Finland, <strong>Report</strong> <strong>of</strong> <strong>Investigation</strong> <strong>196</strong>, 2012<br />

Markku Mäkilä, Kirsti Loukola-Ruskeeniemi and Heikki Säävuori<br />

Fig. 3. Soil stratigraphy exposed at study site M2 in 2011. Photo: Ale Grundström, GTK.<br />

Fig. 4. Shaded topographic map <strong>of</strong> the Talvivaara area showing study sites and drainage watershed (broken red line). Old<br />

quarries are also marked on the map in violet. Detailed maps from study site M2 (inset enlargement at lower right) indicate<br />

that the old quarries did not influence the quality <strong>of</strong> surface and ground water affecting peat in M2. Outcrops <strong>of</strong> black schist<br />

containing abundant sulphides (inset enlargement at upper right) induce acid run<strong>of</strong>f and acidi<strong>fi</strong>cation <strong>of</strong> surface waters, after<br />

exposure to the atmosphere and surface waters (Loukola-Ruskeeniemi et al. 1998). Basemap@National Land Survey <strong>of</strong> Finland,<br />

licence no 13/MML/12.<br />

8<br />

7095 7096 7097 7098<br />

Watershed area<br />

Rock outcrop<br />

!( Study sites<br />

Old quarry<br />

m.a.s.l.<br />

High : 250 m<br />

Low : 200 m<br />

3553<br />

M2<br />

3553<br />

M2<br />

3554<br />

M1<br />

M3<br />

0 250 500 1 000 000Metriä<br />

m<br />

3554<br />

7097000 7098000 7099000<br />

7098000<br />

7097000<br />

7096000<br />

7098<br />

7097<br />

7096<br />

7095<br />

m a.s.l<br />

High : 218 m<br />

Low : 210 m<br />

M2<br />

M2<br />

!<br />

0 100 200 300 m


7097 7100 7103<br />

<strong>Geologian</strong> <strong>tutkimuskeskus</strong>, Tutkimusraportti <strong>196</strong> – Geological Survey <strong>of</strong> Finland, <strong>Report</strong> <strong>of</strong> <strong>Investigation</strong> <strong>196</strong>, 2012<br />

High pre-mining metal concentrations and conductivity in peat around the Talvivaara nickel deposit, eastern Finland<br />

3551 3555<br />

3551<br />

!( !(<br />

M2<br />

!( !(<br />

M1<br />

!(<br />

M3<br />

3555<br />

7103<br />

7100<br />

7097<br />

Fig 5. Magnetic map <strong>of</strong> the study area. Fig. 6. Electromagnetic in-phase component map <strong>of</strong> the<br />

study area.<br />

when the sandy till in depressions between moraine<br />

ridges became emergent. Peatland formation<br />

began on mineral soils on the sloping study<br />

site M2 at 7980 years ago (C14-age; Poz-4323).<br />

The rate <strong>of</strong> peat formation has averaged 0.31 mm<br />

Low altitude airborne geophysical surveys <strong>of</strong> the<br />

Talvivaara area were carried out along east-west<br />

flightlines in 1977. The black schist area is clearly<br />

delineated in both magnetic and electromagnetic<br />

maps. The magnetic map in Figure 5 illustrates the<br />

distribution <strong>of</strong> ferrimagnetic minerals in the bedrock.<br />

Magnetic anomalies in the black schists are<br />

due to the presence <strong>of</strong> monoclinic pyrrhotite and<br />

Sampling <strong>of</strong> the peat layers from study sites M1,<br />

M2 and M3 at Talvivaara was carried out in<br />

2.4 Airborne geophysics<br />

3 MATERIALS AND METHODS<br />

3.1 Sampling<br />

per year. The peat at study site M3 was formed<br />

by progressive paludication <strong>of</strong> forest, the evidence<br />

for which can be seen in wood residues at the bottom<br />

<strong>of</strong> the peat layer.<br />

are indicated by red colors in Figure 5. The electromagnetic<br />

in-phase component map in Figure 6<br />

corresponds generally to the mineral composition<br />

<strong>of</strong> the bedrock, but thick overburden and water<br />

bodies can obscure their distribution. The electrical<br />

anomalies in the black schist area are caused<br />

by both graphite and sulphides.<br />

2005, before the commencement <strong>of</strong> mining at Talvivaara<br />

(Fig. 7).<br />

9


<strong>Geologian</strong> <strong>tutkimuskeskus</strong>, Tutkimusraportti <strong>196</strong> – Geological Survey <strong>of</strong> Finland, <strong>Report</strong> <strong>of</strong> <strong>Investigation</strong> <strong>196</strong>, 2012<br />

Markku Mäkilä, Kirsti Loukola-Ruskeeniemi and Heikki Säävuori<br />

Fig. 7. Study site M2 in 2011. The mining area is visible in the<br />

background approximately 100 m from the study site. Photo:<br />

Markku Mäkilä, GTK.<br />

Sampling was carried out using a Russian<br />

core sampler with a diameter <strong>of</strong> 5 cm and length<br />

<strong>of</strong> 50 cm. Peat samples were taken at the in situ<br />

peat deposit study sites as 10 cm sections from<br />

the surface downwards (Fig. 8). Altogether, 58<br />

peat samples were taken. The main peat type and<br />

In the laboratory, peat samples were homogenized<br />

before analysis. The samples were chemically analysed<br />

by ICP-MS and ICP-AES methods. Analyses<br />

were carried out in the laboratory <strong>of</strong> the<br />

Geological Survey <strong>of</strong> Finland. The samples were<br />

analysed for organic carbon and ash content % <strong>of</strong><br />

Conductivity was measured at the three study<br />

sites from the surface to the bottom <strong>of</strong> the cored<br />

section at intervals <strong>of</strong> 25 cm. During sampling,<br />

conductivity and temperature were measured<br />

with an electric conductivity and temperature<br />

probe (Puranen et al. 1997 and 1999) (Fig. 9). The<br />

sensor was pressed into the peat using the shaft<br />

<strong>of</strong> the core sampler. The temperature sensor consisted<br />

<strong>of</strong> an integrated circuit (AD590), and the<br />

four Wenner electrodes (with a spacing <strong>of</strong> 1.5 cm)<br />

comprising the conductivity sensor operated at<br />

a high frequency (500 Hz) to avoid electrode polarization.<br />

Electrical conductivity correlates with<br />

the nutrient content, temperature and acidity (pH<br />

value) <strong>of</strong> peatland waters.<br />

10<br />

3.2 Laboratory analyses<br />

3.3 Electrical conductivity<br />

Fig. 8. Peat sampling. Photo: Markku Mäkilä, GTK.<br />

the proportions <strong>of</strong> any minor constituents were<br />

determined by visual inspection <strong>of</strong> the peat cores<br />

(Lappalainen et al. 1984). Humi<strong>fi</strong>cation was estimated<br />

according to the 10-degree scale <strong>of</strong> von<br />

Post (1922). In addition, the type <strong>of</strong> subsoil was<br />

recorded.<br />

dry weight, water content % <strong>of</strong> wet weight, pH,<br />

elemental sulphur and major and trace elements<br />

(mg/kg). Dry bulk density per cubic metre <strong>of</strong> peat<br />

(g/m 3 ) was calculated on the basis <strong>of</strong> the water<br />

content (Mäkilä 1994).<br />

Fig. 9. Probe for electrical conductivity and temperature logging<br />

<strong>of</strong> s<strong>of</strong>t sediments. P: probe; E: electronics unit; C: Kevlar<br />

cable; S: sampler shaft; L: lifting tool.


<strong>Geologian</strong> <strong>tutkimuskeskus</strong>, Tutkimusraportti <strong>196</strong> – Geological Survey <strong>of</strong> Finland, <strong>Report</strong> <strong>of</strong> <strong>Investigation</strong> <strong>196</strong>, 2012<br />

High pre-mining metal concentrations and conductivity in peat around the Talvivaara nickel deposit, eastern Finland<br />

4 RESULTS<br />

4.1 Chemical concentrations and peat properties <strong>of</strong> study sites<br />

Study site M1 was situated in a schist area outside<br />

the watershed (Figs. 2 and 4). The mire type at<br />

study site M1 represents a transformed pine bog.<br />

The peat layer was 1.8 m thick and mainly consisted<br />

<strong>of</strong> moderately decomposed woody-Sphagnum<br />

(moss) peat with a Carex (sedge) layer at the<br />

bottom. Beneath the peat was a 10 cm layer <strong>of</strong><br />

sandy till with peat (Table 1). The mean humi<strong>fi</strong>cation<br />

degree (H) <strong>of</strong> the peat was 5.5 according on<br />

the 10-degree scale <strong>of</strong> von Post (1922). The average<br />

ash content was 2.4% <strong>of</strong> dry weight, the water<br />

content 87.1% <strong>of</strong> wet weight, and the dry bulk<br />

density 125.3 kg per m 3 in situ (Table 1).<br />

Study site M2 represents peat development on<br />

sloping terrain, which occurs where ground water<br />

is discharges at the surface on a rather steep<br />

slope (Fig. 4). This type <strong>of</strong> peatland usually forms<br />

at the foot <strong>of</strong> a hill. Good drainage and aeration<br />

<strong>of</strong> the peat-generating layer ensures a high degree<br />

<strong>of</strong> peat decomposition, although some remaining<br />

wood residues are well preserved (Fig. 10). Study<br />

site M2 is located within the watershed, subject<br />

Fig. 10. Well-preserved woody residue at study site M2. Photo: Markku Mäkilä, GTK.<br />

to discharge from the Kuusilampi ore deposit,<br />

where the bedrock consists <strong>of</strong> black schists that<br />

are highly fractured and rich in sulphides (Fig. 2).<br />

The mire type at the study site consisted <strong>of</strong><br />

transformed spruce peatland. The peat layer was<br />

2.5 m thick and mainly consisted <strong>of</strong> well decomposed<br />

woody Carex peat. The subsoil was sandy<br />

till (Fig. 3). The mean humi<strong>fi</strong>cation degree (H)<br />

<strong>of</strong> the peat was 6.6. The average ash content was<br />

31.3% <strong>of</strong> dry weight, the water content 85.3% <strong>of</strong><br />

wet weight, and the dry bulk density 135.3 kg per<br />

m 3 in situ (Table 1).<br />

Study site M3 was situated in a black schist area<br />

outside the watershed (Figs. 2 and 4). This site<br />

represented a transformed spruce peatland. The<br />

peat layer was 1.2 m thick and mainly comprised<br />

moderately decomposed woody Sphagnum and<br />

Carex peat. The subsoil was sandy till. The mean<br />

humi<strong>fi</strong>cation degree (H) <strong>of</strong> the peat was 5.2. The<br />

average ash content was 5.6% <strong>of</strong> dry weight, the<br />

water concentration 85.9% <strong>of</strong> wet weight, and the<br />

dry bulk density 132.0 kg per m 3 in situ (Table 1).<br />

11


<strong>Geologian</strong> <strong>tutkimuskeskus</strong>, Tutkimusraportti <strong>196</strong> – Geological Survey <strong>of</strong> Finland, <strong>Report</strong> <strong>of</strong> <strong>Investigation</strong> <strong>196</strong>, 2012<br />

Markku Mäkilä, Kirsti Loukola-Ruskeeniemi and Heikki Säävuori<br />

Tables 1, 2 and 3. Concentrations <strong>of</strong> selected trace elements and sulphur, pH, carbon, water, and ash content and dry density. Conductivity is corrected at a temperature <strong>of</strong> 18 o C in peat<br />

at study sites M1, M2 and M3. Metal and sulphur concentrations are presented as mg/kg dry matter. The peat type is described using the following symbols: C Carex (sedge), S Sphagnum<br />

(moss), B Bryales (brown moss), ER Eriophorum (cotton grass), L wood residues, EQ Equisetum (horsetail), N Nanolignidi (dwarf shrub remains). Degree <strong>of</strong> humi<strong>fi</strong>cation 1-10 in von Post’s<br />

scale. Sphagnum-predominant peat is highlighted with light grey and Carex-predominant peat is highlighted with dark grey.<br />

12<br />

Depth Humi<strong>fi</strong>- Peat Co Cu Fe Mn Ni Pb U Zn S C pH Water Dry Ash Conduccm<br />

cation type mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg % cont. % density % tivity<br />

<strong>of</strong> dry <strong>of</strong> wet in situ <strong>of</strong> dry mS/m<br />

weight weight kg/m3 Table 1.<br />

weight 18 °C<br />

10 2 LS 1.10 10.3 8060 35.7 5.48 18.9 0.21 41.0 2400 43.6 3.4 87.2 100.6 3.5 12.8<br />

20 7 LS 0.87 5.09 4300 6.00 5.33 9.14 0.37 10.1 3200 51.2 3.2 88.3 114.2 3.1 12.8<br />

30 7 LS 0.84 5.41 1410 7.85 4.65 3.32 0.26 11.2 3730 48.3 3.1 86.2 135.4 2.1 12.8<br />

40 5 ERS 0.98 8.25 1210 9.52 5.79 1.87 0.34 7.08 3830 48.7 3.1 85.5 142.5 1.7 8.0<br />

50 5 ERS 0.75 4.79 1190 8.69 4.65 0.95 0.41 5.43 3510 49.8 3.2 84.4 153.6 1.4 8.0<br />

60 5 ERLS 0.72 10.1 1320 10.1 6.26 1.31 0.96 7.63 4110 51.1 3.3 84.4 153.5 1.9 8.0<br />

70 5 ERLS 0.68 10.9 1290 8.65 5.48 0.99 0.97 4.98 4800 51.0 3.3 84.6 151.5 1.8 6.7<br />

80 5 ERLS 1.00 15.5 1260 8.59 6.58 1.07 1.16 5.59 6620 50.9 3.4 86.3 134.5 1.7 6.7<br />

90 5 ERLS 0.88 16.2 1220 7.72 5.74 0.90 1.38 5.24 6250 51.5 3.6 88.2 115.5 1.8 4.3<br />

100 5 CS 1.12 19.2 1220 7.78 6.34 1.35 1.30 4.56 8450 51.6 3.6 90.2 95.5 1.7 4.3<br />

110 7 SC 0.94 18.5 1510 9.18 6.37 2.26 1.25 4.99 6730 51.0 3.5 89.0 107.3 1.9 4.3<br />

120 7 SC 0.87 28.6 1620 8.23 7.19 2.99 2.03 4.48 6850 51.2 3.6 88.7 110.2 2.5 5.1<br />

130 7 SC 0.73 30.8 1600 7.77 6.99 2.74 2.42 4.04 7380 51.8 3.6 87.3 123.8 3.2 5.1<br />

140 6 SC 0.62 26.1 1670 7.92 7.33 3.13 2.33 5.17 7930 52.7 3.7 84.6 150.6 3.0 4.5<br />

150 6 SC 0.69 30.7 1890 8.39 9.04 4.02 2.30 3.95 9970 51.1 3.7 84.3 153.5 3.2 4.5<br />

160 5 SC 1.05 31.5 2010 8.78 12.4 3.59 1.37 6.46 11600 51.5 3.7 87.6 121.0 2.7 4.5<br />

170 5 SC 1.11 18.9 2200 8.87 9.68 1.92 0.77 7.29 11000 51.6 3.9 89.9 98.4 2.2 3.7<br />

180 5 SC 1.43 15.5 2660 10.2 11.4 1.64 0.55 21.3 9030 49.8 3.9 90.4 93.2 3.4 3.7<br />

190 Sandy peat 1.91 47.1 3140 26.5 23.6 3.29 2.07 93.4 8530 35.9 4.1 32.3 3.3<br />

200 Peaty till 6.40 31.8 5900 86.6 29.1 6.98 2.41 38.0 2450 11.5 4.4 81.9 3.3<br />

Average 5.5 0.91 17 2091 10.00 7.04 3.5 1.13 8.92 6522 50.5 3.5 87.1 125.3 2.4 6.7


Table 2.<br />

<strong>Geologian</strong> <strong>tutkimuskeskus</strong>, Tutkimusraportti <strong>196</strong> – Geological Survey <strong>of</strong> Finland, <strong>Report</strong> <strong>of</strong> <strong>Investigation</strong> <strong>196</strong>, 2012<br />

High pre-mining metal concentrations and conductivity in peat around the Talvivaara nickel deposit, eastern Finland<br />

Depth Humi<strong>fi</strong>- Peat Co Cu Fe Mn Ni Pb U Zn S C pH Water Dry Ash Conduccm<br />

cation type mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg % cont. % density % tivity<br />

<strong>of</strong> dry <strong>of</strong> wet in situ <strong>of</strong> dry mS/m<br />

weight weight kg/m 3 weight 18 °C<br />

10 2 NS 2.72 29 26200 89.9 22.9 23.9 0.61 104 2230 43.8 3.5 85.3 100.6 6.6 3.5<br />

20 5 LCS 1.53 73 17000 7.09 17.6 12.7 2.36 36.4 4680 48.2 3.6 84.1 155.5 6.4 3.5<br />

30 6 LCS 1.35 180 13700 6.80 21.4 12.2 3.66 48.2 6740 46.9 3.7 85.1 144.8 10.1 3.5<br />

40 7 SC 2.00 276 25600 21.6 25.9 3.55 3.27 220 9540 40.3 4.2 85.7 135.5 20.8 4.5<br />

50 7 SC 4.06 93 9670 71.0 35.4 1.40 1.56 266 10300 29.7 4.4 86.3 124.7 41.7 4.5<br />

60 8 SC 9.88 94 20100 77.3 77.6 3.84 1.88 317 15700 34.9 4.3 87.1 119.6 29.8 4.5<br />

70 7 LSC 20.4 95 32200 76.9 162 1.33 1.69 568 27100 30.5 3.1 88.0 110.2 31.7 8.5<br />

80 6 SC 20.0 97 33500 85.0 156 1.28 2.00 676 26300 35.1 3.2 89.0 102.7 21.9 8.5<br />

90 7 SC 21.7 120 32300 68.1 148 0.65 2.08 795 26700 30.7 3.3 87.7 113.5 30.3 10.1<br />

100 7 SC 33.9 146 40000 56.0 220 0.53 2.64 1010 35300 26.1 3.3 87.5 114.0 36.7 10.1<br />

110 8 LSC 32.4 184 42400 57.9 230 0.62 3.47 1050 35000 28.0 3.3 87.8 112.0 32.5 10.1<br />

120 8 LSC 39.0 231 47600 54.3 303 0.64 4.47 1490 41100 26.5 3.3 87.7 112.7 34.1 9.5<br />

130 7 LSC 37.8 249 53300 48.7 305 0.69 5.67 1580 46500 25.0 3.2 87.2 117.3 35.2 9.5<br />

140 7 LSC 31.3 316 63700 40.4 286 0.83 6.94 1580 57900 23.8 3.4 86.1 127.9 36.4 11.7<br />

150 7 SC 16.9 292 80600 33.3 237 1.31 7.82 1830 75500 23.2 3.3 83.8 150.6 36.9 11.7<br />

160 7 SC 19.5 300 75100 32.8 244 1.32 7.71 1990 69600 23.5 3.7 84.9 139.6 37.3 11.7<br />

170 8 SC 20.3 324 78900 28.4 272 1.41 8.20 2380 74900 23.5 3.6 84.6 142.9 35.6 12.5<br />

180 7 SC 18.6 285 90700 22.0 260 1.36 6.92 2170 86500 23.2 3.8 84.6 143.1 34.9 12.5<br />

190 6 BC 18.7 234 97700 15.4 265 1.14 5.57 1990 93000 21.1 3.2 85.2 136.5 37.6 16.5<br />

200 6 BC 18.4 227 109000 11.6 293 0.76 5.07 2420 107000 20.6 3.1 84.4 144.9 35.7 16.5<br />

210 6 BC 27.0 194 120000 14.0 451 1.28 3.88 5270 121000 22.2 3.7 85.1 138.1 35.3 16.5<br />

220 6 SC 16.5 114 85600 22.5 292 0.43 3.48 2740 123000 18.8 3.5 83.5 153.5 36.9 21.5<br />

230 7 LSC 12.1 93 74600 23.5 277 0.66 2.64 1050 136000 14.9 3.6 80.3 183.7 43.3 21.5<br />

240 7 LSC 20.8 101 89800 16.6 612 3.44 4.84 1580 136000 16.1 3.2 79.5 192.1 40.9 27.8<br />

250 7 EQLSC 28.1 137 87700 23.4 758 7.06 10.5 4360 126000 24.8 2.8 82.4 165.1 33.7 27.8<br />

260 Peaty till 35.9 334 269000 29.9 1120 15.4 8.77 5400 33700 9.65 68.3 36.7<br />

Average 6.6 19.0 179 57879 40.2 239 3.4 4.4 1501 59744 28.1 3.5 85.3 135.3 31.3 11.9<br />

13


<strong>Geologian</strong> <strong>tutkimuskeskus</strong>, Tutkimusraportti <strong>196</strong> – Geological Survey <strong>of</strong> Finland, <strong>Report</strong> <strong>of</strong> <strong>Investigation</strong> <strong>196</strong>, 2012<br />

Markku Mäkilä, Kirsti Loukola-Ruskeeniemi and Heikki Säävuori<br />

14<br />

Table 3.<br />

Depth Humi<strong>fi</strong>- Peat Co Cu Fe Mn Ni Pb U Zn S C pH Water Dry Ash Conduccm<br />

cation type mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg % cont. % density % tivity<br />

<strong>of</strong> dry <strong>of</strong> wet in situ <strong>of</strong> dry mS/m<br />

weight weight kg/m3 weight 18 °C<br />

10 2 NS 1.41 17.5 4110 46.3 20.9 16.9 1.2 39.1 5090 45.1 3.4 83.3 100.6 6.4 7.3<br />

20 7 LS 1.33 27.4 3880 11.3 27.1 10.1 1.53 29.2 8700 47.9 3.5 83.5 161.9 4.7 7.3<br />

30 7 LS 1.72 20.6 3800 27.4 31.8 3.33 0.91 54.5 9470 48.2 3.6 85.2 144.8 5.2 7.3<br />

40 6 LCS 1.76 15.6 3500 22.9 34.7 1.71 0.96 64.5 9610 48.6 3.7 85.3 143.8 5.3 5.4<br />

50 6 LCS 1.88 12.9 3800 33.4 35.5 1.8 0.98 79.5 9910 47.9 3.8 84.8 148.7 5.9 5.4<br />

60 4 LCS 2.09 16.6 4500 55.3 35.4 1.89 0.58 73.6 10100 47.8 4.2 88.2 114.5 5.1 5.4<br />

70 5 LSC 2.28 15.3 5750 86.3 37.4 0.81 0.53 83.2 12300 47.5 4.1 86.7 129.2 5.6 8.9<br />

80 5 LSC 2.00 20.7 7100 105 40.6 0.86 0.91 93.3 13400 48.0 4.2 87.5 121.2 6.1 10.4<br />

90 5 LSC 1.64 24.2 7780 128 40.4 0.87 1.17 84.8 14500 47.5 4.3 86.6 130.0 6.6 13.6<br />

100 5 LSC 1.43 24.0 7610 120 34.0 0.89 1.03 100 13600 48.3 4.3 86.9 127.3 5.2 13.6<br />

110 5 LSC 1.33 18.8 6950 108 30.1 0.96 0.79 49.8 14900 49.5 4.6 87.8 118.6 4.6 13.6<br />

120 5 LSC 1.20 26.7 8260 124 37.4 1.15 1.42 118 14400 48.8 4.5 85.2 143.8 6.5 15.1<br />

Average 5.2 1.67 20.0 5587 72.3 33.8 3.4 1.0 72.5 11332 47.9 4.0 85.9 132.0 5.6 9.4


Tables 4, 5 and 6. Concentrations <strong>of</strong> selected trace elements, sulphur, pH value, carbon, water, and ash content, dry density and conductivity corrected at a temperature <strong>of</strong> 18 o C at study<br />

sites M1, M2 and M3. Metal and sulphur concentrations are presented as g/m3 <strong>of</strong> peat. The peat type is described with use <strong>of</strong> the following symbols: C Carex (sedge), S Sphagnum (moss),<br />

B Bryales (brown moss), ER Eriophorum (cotton grass), L wood residues, EQ Equisetum (horsetail), N Nanolignidi (dwarf shrub remains). Degree <strong>of</strong> humi<strong>fi</strong>cation 1-10 in von Post’s scale.<br />

Sphagnum-predominant peat is highlighted with light grey and Carex-predominant peat is highlighted with dark grey. Average values don´t include results <strong>of</strong> the sandy peat and peaty till<br />

samples.<br />

<strong>Geologian</strong> <strong>tutkimuskeskus</strong>, Tutkimusraportti <strong>196</strong> – Geological Survey <strong>of</strong> Finland, <strong>Report</strong> <strong>of</strong> <strong>Investigation</strong> <strong>196</strong>, 2012<br />

High pre-mining metal concentrations and conductivity in peat around the Talvivaara nickel deposit, eastern Finland<br />

Depth Humi<strong>fi</strong>- Peat Co Cu Fe Mn Ni Pb U Zn S C pH Water Dry Ash Conduccm<br />

cation type g/m3 g/m3 g/m3 g/m3 g/m3 g/m3 g/m3 g/m3 g/m3 % cont. % density % tivity<br />

<strong>of</strong> dry <strong>of</strong> wet in situ <strong>of</strong> dry mS/m<br />

weight weight kg/m3 Table 4.<br />

weight 18 °C<br />

10 2 LS 0.22 1.04 811 3.59 5.48 18.9 0.21 4.12 241 43.6 3.4 87.2 100.6 3.5 12.8<br />

20 7 LS 0.10 0.58 491 0.69 5.33 9.14 0.37 1.15 366 51.2 3.2 88.3 114.2 3.1 12.8<br />

30 7 LS 0.11 0.73 191 1.06 4.65 3.32 0.26 1.52 505 48.3 3.1 86.2 135.4 2.1 12.8<br />

40 5 ERS 0.14 1.18 172 1.36 5.79 1.87 0.34 1.01 546 48.7 3.1 85.5 142.5 1.7 8.0<br />

50 5 ERS 0.12 0.74 183 1.33 4.65 0.95 0.41 0.83 539 49.8 3.2 84.4 153.6 1.4 8.0<br />

60 5 ERLS 0.11 1.55 203 1.55 6.26 1.31 0.96 1.17 631 51.1 3.3 84.4 153.5 1.9 8.0<br />

70 5 ERLS 0.10 1.65 195 1.31 5.48 0.99 0.97 0.75 727 51.0 3.3 84.6 151.5 1.8 6.7<br />

80 5 ERLS 0.13 2.09 170 1.16 6.58 1.07 1.16 0.75 891 50.9 3.4 86.3 134.5 1.7 6.7<br />

90 5 ERLS 0.10 1.87 141 0.89 5.74 0.90 1.38 0.61 722 51.5 3.6 88.2 115.5 1.8 4.3<br />

100 5 CS 0.11 1.83 116 0.74 6.34 1.35 1.30 0.44 807 51.6 3.6 90.2 95.5 1.7 4.3<br />

110 7 SC 0.10 1.99 162 0.99 6.37 2.26 1.25 0.54 722 51.0 3.5 89.0 107.3 1.9 4.3<br />

120 7 SC 0.10 3.15 178 0.91 7.19 2.99 2.03 0.49 755 51.2 3.6 88.7 110.2 2.5 5.1<br />

130 7 SC 0.09 3.81 198 0.96 6.99 2.74 2.42 0.50 914 51.8 3.6 87.3 123.8 3.2 5.1<br />

140 6 SC 0.09 3.93 251 1.19 7.33 3.13 2.33 0.78 1194 52.7 3.7 84.6 150.6 3.0 4.5<br />

150 6 SC 0.11 4.71 290 1.29 9.04 4.02 2.30 0.61 1530 51.1 3.7 84.3 153.5 3.2 4.5<br />

160 5 SC 0.13 3.81 243 1.06 12.4 3.59 1.37 0.78 1403 51.5 3.7 87.6 121.0 2.7 4.5<br />

170 5 SC 0.11 1.86 216 0.87 9.68 1.92 0.77 0.72 1082 51.6 3.9 89.9 98.4 2.2 3.7<br />

180 5 SC 0.13 1.44 248 0.95 11.4 1.64 0.55 1.98 841 49.8 3.9 90.4 93.2 3.4 3.7<br />

190 Sandy peat 35.9 4.1 32.3 3.3<br />

200 Peaty till 11.5 4.4 81.9 3.3<br />

Average 5.5 0.12 2.1 248 1.2 7.04 3.45 1.13 1.0 801 50.5 3.5 87.1 125.3 2.4 6.7<br />

15


<strong>Geologian</strong> <strong>tutkimuskeskus</strong>, Tutkimusraportti <strong>196</strong> – Geological Survey <strong>of</strong> Finland, <strong>Report</strong> <strong>of</strong> <strong>Investigation</strong> <strong>196</strong>, 2012<br />

Markku Mäkilä, Kirsti Loukola-Ruskeeniemi and Heikki Säävuori<br />

16<br />

Table 5.<br />

Depth Humi<strong>fi</strong>- Peat Co Cu Fe Mn Ni Pb U Zn S C pH Water Dry Ash Conduccm<br />

cation type g/m 3 g/m 3 g/m 3 g/m 3 g/m 3 g/m 3 g/m 3 g/m 3 g/m 3 % cont. % density % tivity<br />

<strong>of</strong> dry <strong>of</strong> wet in situ <strong>of</strong> dry mS/m<br />

weight weight kg/m 3 weight 18 °C<br />

10 2 NS 0.27 2.90 2636 9.04 2.30 2.40 0.06 10.5 224 43.8 3.5 85.3 100.6 6.6 3.5<br />

20 5 LCS 0.24 11.3 2644 1.10 2.74 1.98 0.37 5.7 728 48.2 3.6 84.1 155.5 6.4 3.5<br />

30 6 LCS 0.20 26.1 1983 0.98 3.10 1.77 0.53 7.0 976 46.9 3.7 85.1 144.8 10.1 3.5<br />

40 7 SC 0.27 37.4 3470 2.93 3.51 0.48 0.44 29.8 1293 40.3 4.2 85.7 135.5 20.8 4.5<br />

50 7 SC 0.51 11.5 1206 8.85 4.41 0.17 0.19 33.2 1285 29.7 4.4 86.3 124.7 41.7 4.5<br />

60 8 SC 1.18 11.2 2404 9.24 9.3 0.46 0.22 37.9 1878 34.9 4.3 87.1 119.6 29.8 4.5<br />

70 7 LSC 2.25 10.5 3550 8.48 17.9 0.15 0.19 62.6 2988 30.5 3.1 88.0 110.2 31.7 8.5<br />

80 6 SC 2.05 10.0 3439 8.73 16.0 0.13 0.21 69.4 2700 35.1 3.2 89.0 102.7 21.9 8.5<br />

90 7 SC 2.46 13.6 3667 7.73 16.8 0.07 0.24 90.3 3032 30.7 3.3 87.7 113.5 30.3 10.1<br />

100 7 SC 3.87 16.6 4561 6.39 25.1 0.06 0.30 115 4025 26.1 3.3 87.5 114.0 36.7 10.1<br />

110 8 LSC 3.63 20.6 4750 6.49 25.8 0.07 0.39 118 3921 28.0 3.3 87.8 112.0 32.5 10.1<br />

120 8 LSC 4.39 26.0 5362 6.12 34.1 0.07 0.50 168 4630 26.5 3.3 87.7 112.7 34.1 9.5<br />

130 7 LSC 4.44 29.2 6254 5.71 35.8 0.08 0.67 185 5456 25.0 3.2 87.2 117.3 35.2 9.5<br />

140 7 LSC 4.00 40.4 8149 5.17 36.6 0.11 0.89 202 7407 23.8 3.4 86.1 127.9 36.4 11.7<br />

150 7 SC 2.54 44.0 12134 5.01 35.7 0.20 1.18 276 11367 23.2 3.3 83.8 150.6 36.9 11.7<br />

160 7 SC 2.72 41.9 10483 4.58 34.1 0.18 1.08 278 9715 23.5 3.7 84.9 139.6 37.3 11.7<br />

170 8 SC 2.90 46.3 11279 4.06 38.9 0.20 1.17 340 10707 23.5 3.6 84.6 142.9 35.6 12.5<br />

180 7 SC 2.66 40.8 12980 3.15 37.2 0.19 0.99 311 12379 23.2 3.8 84.6 143.1 34.9 12.5<br />

190 6 BC 2.55 32.0 13341 2.10 36.2 0.16 0.76 272 12699 21.1 3.2 85.2 136.5 37.6 16.5<br />

200 6 BC 2.67 32.9 15794 1.68 42.5 0.11 0.73 351 15504 20.6 3.1 84.4 144.9 35.7 16.5<br />

210 6 BC 3.73 26.8 16569 1.93 62.3 0.18 0.54 728 16707 22.2 3.7 85.1 138.1 35.3 16.5<br />

220 6 SC 2.53 17.5 13141 3.45 44.8 0.07 0.53 421 18883 18.8 3.5 83.5 153.5 36.9 21.5<br />

230 7 LSC 2.22 17.1 13701 4.32 50.9 0.12 0.48 193 24977 14.9 3.6 80.3 183.7 43.3 21.5<br />

240 7 LSC 4.00 19.4 17253 3.19 117.6 0.66 0.93 304 26129 16.1 3.2 79.5 192.1 40.9 27.8<br />

250 7 EQLSC 4.64 22.6 14483 3.86 125.2 1.17 1.73 720 20808 24.8 2.8 82.4 165.1 33.7 27.8<br />

260 Peaty till 9.65 68.3 36.7<br />

Average 6.6 2.5 24.3 8209 5.0 34.3 0.4 0.6 213 8817 28.1 3.5 85.3 135.3 31.3 11.9


<strong>Geologian</strong> <strong>tutkimuskeskus</strong>, Tutkimusraportti <strong>196</strong> – Geological Survey <strong>of</strong> Finland, <strong>Report</strong> <strong>of</strong> <strong>Investigation</strong> <strong>196</strong>, 2012<br />

High pre-mining metal concentrations and conductivity in peat around the Talvivaara nickel deposit, eastern Finland<br />

Table 6.<br />

Depth Humi<strong>fi</strong>- Peat Co Cu Fe Mn Ni Pb U Zn S C pH Water Dry Ash Conduccm<br />

cation type g/m 3 g/m 3 g/m 3 g/m 3 g/m 3 g/m 3 g/m 3 g/m 3 g/m 3 % cont. % density % tivity<br />

<strong>of</strong> dry <strong>of</strong> wet in situ <strong>of</strong> dry mS/m<br />

weight weight kg/m 3 weight 18 °C<br />

10 2 NS 0.14 1.76 413 4.66 2.10 1.70 0.12 3.93 512 45.1 3.4 83.3 100.6 6.4 7.3<br />

20 7 LS 0.22 4.44 628 1.83 4.39 1.64 0.25 4.73 1409 47.9 3.5 83.5 161.9 4.7 7.3<br />

30 7 LS 0.25 2.98 550 3.97 4.60 0.48 0.13 7.89 1371 48.2 3.6 85.2 144.8 5.2 7.3<br />

40 6 LCS 0.25 2.24 503 3.29 4.99 0.25 0.14 9.27 1382 48.6 3.7 85.3 143.8 5.3 5.4<br />

50 6 LCS 0.28 1.92 565 4.97 5.28 0.27 0.15 11.82 1473 47.9 3.8 84.8 148.7 5.9 5.4<br />

60 4 LCS 0.24 1.90 515 6.33 4.05 0.22 0.07 8.43 1156 47.8 4.2 88.2 114.5 5.1 5.4<br />

70 5 LSC 0.29 1.98 743 11.15 4.83 0.10 0.07 10.75 1589 47.5 4.1 86.7 129.2 5.6 8.9<br />

80 5 LSC 0.24 2.51 860 12.72 4.92 0.10 0.11 11.31 1624 48.0 4.2 87.5 121.2 6.1 10.4<br />

90 5 LSC 0.21 3.14 1011 16.63 5.25 0.11 0.15 11.02 1884 47.5 4.3 86.6 130.0 6.6 13.6<br />

100 5 LSC 0.18 3.06 969 15.28 4.33 0.11 0.13 12.73 1732 48.3 4.3 86.9 127.3 5.2 13.6<br />

110 5 LSC 0.16 2.23 824 12.81 3.57 0.11 0.09 5.90 1767 49.5 4.6 87.8 118.6 4.6 13.6<br />

120 5 LSC 0.17 3.84 1188 17.84 5.38 0.17 0.20 16.97 2071 48.8 4.5 85.2 143.8 6.5 15.1<br />

Average 5.2 0.22 2.67 731 9.29 4.47 0.44 0.13 9.56 1497 47.9 4.0 85.9 132.0 5.6 9.4<br />

17


<strong>Geologian</strong> <strong>tutkimuskeskus</strong>, Tutkimusraportti <strong>196</strong> – Geological Survey <strong>of</strong> Finland, <strong>Report</strong> <strong>of</strong> <strong>Investigation</strong> <strong>196</strong>, 2012<br />

Markku Mäkilä, Kirsti Loukola-Ruskeeniemi and Heikki Säävuori<br />

At study site M2 in the black schist area, the<br />

average concentrations <strong>of</strong> copper, nickel, zinc<br />

and sulphur in the peat were many times higher<br />

than average values reported by Virtanen (2005)<br />

from Ostrobothnia in western Finland (Table 7).<br />

These differences were particularly signi<strong>fi</strong>cant<br />

for zinc, nickel, cobolt and sulphur. At the black<br />

schist study site M3, Zn, Ni and S concentrations<br />

showed the greatest differences when compared<br />

with average values from Ostrobothia. At study<br />

site M1, located in an area <strong>of</strong> mica schists with<br />

black schist intercalations, element concentrations<br />

were closer to the average values <strong>of</strong> Ostrobothnia<br />

(Table 7).<br />

The concentrations <strong>of</strong> Co, Cu, Fe, Mn, Ni, Zn<br />

and S were greater in peat at black schist study site<br />

M3 than at mica schist study site M1. However,<br />

the above-mentioned concentrations, apart from<br />

those for Mn, were signi<strong>fi</strong>cantly greater at study<br />

18<br />

site M2 in an area where hydrologically modi<strong>fi</strong>ed<br />

peat overlies black schist than at study sites M1 or<br />

M3, (Tables 1−6).<br />

At study sites M1 and M3 the concentrations<br />

<strong>of</strong> cobalt remained relatively constant with increasing<br />

depth (Fig. 11). At M2 the cobalt concentration<br />

increased more than tenfold from the<br />

surface down to a depth <strong>of</strong> 0.3 m, after which the<br />

concentration remained relatively constant.<br />

The copper concentration also increased as a<br />

function <strong>of</strong> depth (Fig. 12). At the black schist<br />

study sites M2 and M3 the peak copper concentration<br />

was recorded at a depth <strong>of</strong> less than half<br />

a metre, while at the mica schist study site M1 the<br />

peak was close to the bottom <strong>of</strong> the peat layer.<br />

The iron concentration increased at all study<br />

sites as a function <strong>of</strong> depth below 50 cm, the largest<br />

increase being recorded at study site M2 (Fig.<br />

13).<br />

Table 7. The average concentrations <strong>of</strong> selected trace elements and sulphur at study sites M1, M2 and M3 at Talvivaara. Results<br />

from peatlands <strong>of</strong> northern Ostrobothnia were used as reference values for comparison (Virtanen 2005). Red background<br />

colour indicates higher concentrations and blue background lower concentrations compared to average values provided by<br />

Virtanen (2005). The Talvivaara ore has rather low Pb concentrations, which is evident in the comparative data: the Pb content<br />

<strong>of</strong> peat at Talvivaara is lower than in Ostrobothnia.<br />

Co Cu Fe Mn Ni Pb Zn S<br />

Study site mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg<br />

M1 0.9 17.0 2091 10.0 7.0 3.5 8.9 6522<br />

M2 19.0 179.4 57 879 40.2 238.9 3.4 1501 59 744<br />

M3 1.7 20.0 5587 72.3 33.8 3.4 72.5 11 332<br />

Virtanen (2005) 1.3 7.8 7710 83.9 3.9 4.2 8.9 1611<br />

norm. concent.)<br />

Depth [cm]<br />

Co concentration [mg/kg]<br />

0.1 1 10 100<br />

0<br />

50<br />

100<br />

150<br />

200<br />

250<br />

Fig. 11. Cobalt concentrations in peat at study sites M1, M2 and M3. The scale is logarithmic for Co.<br />

M1<br />

M2<br />

M3


<strong>Geologian</strong> <strong>tutkimuskeskus</strong>, Tutkimusraportti <strong>196</strong> – Geological Survey <strong>of</strong> Finland, <strong>Report</strong> <strong>of</strong> <strong>Investigation</strong> <strong>196</strong>, 2012<br />

High pre-mining metal concentrations and conductivity in peat around the Talvivaara nickel deposit, eastern Finland<br />

Depth [cm]<br />

1<br />

0<br />

10 100 1000<br />

M1<br />

50<br />

100<br />

150<br />

200<br />

250<br />

Fig. 12. Copper concentrations in peat at study sites M1, M2 and M3. The scale is logarithmic for Cu.<br />

Depth [cm]<br />

0<br />

50<br />

100<br />

150<br />

200<br />

250<br />

Cu concentration [mg/kg]<br />

1000 10000 100000<br />

Fig. 13. Iron concentrations at study sites M1, M2 and M3. The scale is logarithmic for Fe.<br />

Depth [cm]<br />

Fe concentration [mg/kg]<br />

Mn concentration [mg/kg]<br />

1<br />

0<br />

10 100 1000<br />

50<br />

M1<br />

M2<br />

M3<br />

100<br />

150<br />

200<br />

250<br />

Fig. 14. Manganese concentrations at study sites M1, M2 and M3. The scale is logarithmic for Mn.<br />

M2<br />

M3<br />

M1<br />

M2<br />

M3<br />

19


<strong>Geologian</strong> <strong>tutkimuskeskus</strong>, Tutkimusraportti <strong>196</strong> – Geological Survey <strong>of</strong> Finland, <strong>Report</strong> <strong>of</strong> <strong>Investigation</strong> <strong>196</strong>, 2012<br />

Markku Mäkilä, Kirsti Loukola-Ruskeeniemi and Heikki Säävuori<br />

Manganese concentrations were high in the uppermost<br />

sur<strong>fi</strong>cial peat at all study sites (Fig. 14).<br />

Manganese was enriched at the peatland surface.<br />

However, the minimum manganese concentration<br />

at all study sites was recorded at a depth <strong>of</strong> 20 cm.<br />

Below the surface, the manganese concentration<br />

remained relatively constant with depth at study<br />

site M1, while at M3 it increased towards the bottom<br />

<strong>of</strong> the peat layer. At study site M2, the manganese<br />

concentration increased from the surface<br />

to a depth <strong>of</strong> 80 cm, below which the concentration<br />

steadily decreased towards the bottom.<br />

The nickel concentration increased towards the<br />

bottom at all study sites, the largest increase being<br />

recorded at study site M2 (Fig. 15). Nickel was<br />

enriched in the bottom peatland layers.<br />

The lead concentration was greatest near the<br />

surface <strong>of</strong> the peat layer at all study sites (Fig. 16).<br />

20<br />

Depth [cm]<br />

0<br />

50<br />

100<br />

150<br />

200<br />

250<br />

Lead was enriched at the peatland surface. Lead<br />

concentrations decreased downwards to a depth<br />

<strong>of</strong> less than a metre, after which they increased<br />

again. The average lead concentration was the<br />

same at each study site, which reflects the concentrations<br />

<strong>of</strong> bedrock and soil (Tables 1–3). The Talvivaara<br />

black schists tend not be enriched in Pb<br />

when compared to the average mica schists, which<br />

could also indicate that lead effectively binds to<br />

humic substances and is not easily transported<br />

through the soil.<br />

Uranium concentrations in the peat increased<br />

towards the bottom, with the exception <strong>of</strong> study<br />

site M3 (Fig. 17). At study site M3 the uranium<br />

concentration began to increase below a depth<br />

<strong>of</strong> 70 cm. The maximum uranium concentrations<br />

were recorded close to the soil.<br />

Except near the peat surface, the concentra-<br />

Ni concentration [mg/kg]<br />

1 10 100 1000<br />

Fig. 15. Nickel concentrations at study sites M1, M2 and M3. The scale is logarithmic for Ni.<br />

Depth [cm]<br />

0.1<br />

0<br />

1 10 100<br />

M1<br />

50<br />

100<br />

150<br />

200<br />

250<br />

Pb concentration [mg/kg]<br />

Fig. 16. Lead concentrations at study sites M1, M2 and M3. The scale is logarithmic for Pb.<br />

M1<br />

M2<br />

M3<br />

M2<br />

M3


<strong>Geologian</strong> <strong>tutkimuskeskus</strong>, Tutkimusraportti <strong>196</strong> – Geological Survey <strong>of</strong> Finland, <strong>Report</strong> <strong>of</strong> <strong>Investigation</strong> <strong>196</strong>, 2012<br />

High pre-mining metal concentrations and conductivity in peat around the Talvivaara nickel deposit, eastern Finland<br />

Depth [cm]<br />

0.1 1 10<br />

0<br />

50<br />

100<br />

150<br />

200<br />

250<br />

U concentration [mg/kg]<br />

Fig. 17. Uranium concentrations at study sites M1, M2 and M3. The scale is logarithmic for U.<br />

Depth [cm]<br />

0<br />

50<br />

100<br />

150<br />

200<br />

250<br />

tion <strong>of</strong> zinc increased as a function <strong>of</strong> depth at<br />

the black schist study sites M2 and M3 (Fig. 18).<br />

The zinc concentration decreased with depth at<br />

the mica schist study site M1, at least to a depth<br />

<strong>of</strong> one and a half metres, after which the concentration<br />

increased again. The average zinc content<br />

at study site M2 was 168 times greater than at M1<br />

(Table 7).<br />

The acidity <strong>of</strong> the peat layers decreased downwards,<br />

as seen at M1 and M3 (Fig. 18). At study<br />

site M2, acidity decreased down to a depth <strong>of</strong><br />

about 50 cm, after which there was a sharp reversal<br />

in trend. Because the surrounding bedrock was<br />

sulphide-rich, pH values were also anomalous at<br />

M2. The pH <strong>of</strong> peat is usually lowest in the surface<br />

layer (regional average 3.1–3.7) (Virtanen et<br />

al. 2003). The pH <strong>of</strong> the surface peat is dependent<br />

Zn concentration [mg/kg]<br />

1 10 100 1000 10000<br />

Fig. 18. Zinc concentrations at study sites M1, M2 and M3. The scale is logarithmic for Zn.<br />

M1<br />

M2<br />

M3<br />

M1<br />

M2<br />

M3<br />

upon the availability <strong>of</strong> hydrogen ions in Sphagnum<br />

peat, in that free hydrogen ions are produced<br />

by the cation exchange in the Sphagnum peat and<br />

organic acids are released by the aerobic decomposition<br />

<strong>of</strong> Sphagnum (Shotyk 1988).<br />

The pH value increases with depth in the peat<br />

layer. A high sulphur concentration causes a lowering<br />

<strong>of</strong> pH and an increase in conductivity (see<br />

Figs. 19–20). The average pH values for bottom<br />

peat layer in Finland range from 4.5 to 4.9 (Virtanen<br />

et al. 2003). At study site M1, pH levels<br />

were closest to the Finnish average, whereas the<br />

largest differences were found at the black schist<br />

study site M2; at this site the pH <strong>of</strong> the bottom<br />

peat layer (2.8–3.7) was the same or lower than<br />

the Finnish average values for surface peat.<br />

The sulphide concentration <strong>of</strong> study site M1<br />

21


<strong>Geologian</strong> <strong>tutkimuskeskus</strong>, Tutkimusraportti <strong>196</strong> – Geological Survey <strong>of</strong> Finland, <strong>Report</strong> <strong>of</strong> <strong>Investigation</strong> <strong>196</strong>, 2012<br />

Markku Mäkilä, Kirsti Loukola-Ruskeeniemi and Heikki Säävuori<br />

22<br />

Depth [cm]<br />

2.5<br />

0<br />

3 3.5 4 4.5 5<br />

M1<br />

50<br />

100<br />

150<br />

200<br />

250<br />

Fig. 19. Acidity (pH value) at study sites M1, M2 and M3.<br />

Depth [cm]<br />

pH value<br />

1000<br />

0<br />

10000 100000 1000000<br />

M1<br />

50<br />

100<br />

150<br />

200<br />

250<br />

S concentration [mg/kg]<br />

Fig. 20. Sulphur concentrations at study sites M1, M2 and M3. The scale is logarithmic for S.<br />

was lower than at M3 and markedly less than at<br />

M2 (Fig. 20). Sulphur concentrations increased as<br />

a function <strong>of</strong> depth at all the study sites, most notably<br />

at M2 (Fig. 20). The increasing effect <strong>of</strong> the<br />

underlying soil was seen at the bottom <strong>of</strong> study<br />

sites M1 and M2. Essentially, sulphur in peat is<br />

transported from the underlying soil via plant<br />

roots. Sulphur is also likely to have risen into the<br />

peat layer by capillary flow, and then to have become<br />

bound to the peat. The high sulphur concentrations<br />

appear to be influenced most strongly<br />

by the bedrock in the black schist areas, while at<br />

study site M2, acidic drainage has also contributed<br />

signi<strong>fi</strong>cantly to the elevated S concentrations.<br />

The highest average sulphur concentrations reported<br />

for Finnish peatlands are from the black<br />

schist areas <strong>of</strong> North Karelia (Herranen 2010),<br />

M2<br />

M3<br />

M2<br />

M3<br />

which together account for approximately a third<br />

<strong>of</strong> the peatlands with the highest average sulphur<br />

concentrations in Finland. Virtanen and Lerssi<br />

(2006) observed that some element concentrations<br />

in peat are typically elevated in areas underlain<br />

by black schists; sulphur concentrations for<br />

example, may be up to 50–100 times greater than<br />

background levels.<br />

At study sites M1 and M3 the carbon content<br />

remained relatively constant with increasing<br />

depth. However, at study site M2, the carbon content<br />

decreased with depth, along with a coincident<br />

increase in ash content (Fig. 21).<br />

At the black schist study sites M2 and M3,<br />

the water content in peat increased from the surface<br />

down to a depth <strong>of</strong> about 0.6 m, mainly due<br />

to peatland drainage activities which had been


<strong>Geologian</strong> <strong>tutkimuskeskus</strong>, Tutkimusraportti <strong>196</strong> – Geological Survey <strong>of</strong> Finland, <strong>Report</strong> <strong>of</strong> <strong>Investigation</strong> <strong>196</strong>, 2012<br />

High pre-mining metal concentrations and conductivity in peat around the Talvivaara nickel deposit, eastern Finland<br />

Depth [cm]<br />

0<br />

50<br />

100<br />

150<br />

200<br />

250<br />

Fig. 21. Carbon content at study sites M1, M2 and M3.<br />

Depth [cm]<br />

particularly intensive in the Talvivaara area in<br />

the <strong>196</strong>0s (Fig. 22). The water table in the peat<br />

shows slight seasonal variations but was located<br />

at a depth <strong>of</strong> about half a metre at each <strong>of</strong> the<br />

study sites. Below this depth, the water content<br />

decreased most markedly at study site M2. Acidic<br />

waters had also displaced the peat pore waters;<br />

this was particulary evident at study site M2,<br />

where the ash content was high and the water content<br />

low (Table 2). There was a distinct correlation<br />

between the water content and the concentrations<br />

<strong>of</strong> analysed metals.<br />

At study site M1, the ash content <strong>of</strong> the peat<br />

layer was representative <strong>of</strong> the average ash content<br />

<strong>of</strong> peatlands in Finland, but the ash content<br />

was anomalously high at study site M2 (Fig. 23).<br />

According to Mäkilä (1994), the average ash con-<br />

C content [%]<br />

0 10 20 30 40 50 60 70<br />

79 81<br />

0<br />

50<br />

100<br />

150<br />

200<br />

250<br />

Fig. 22. Water content at study sites M1, M2 and M3.<br />

Water content [%]<br />

M1<br />

M2<br />

M3<br />

83 85 87 89 91 93<br />

M1<br />

M2<br />

M3<br />

tents <strong>of</strong> different peat types are 4.0% in Sphagnum-<br />

Carex peat, 3.8% in Carex peat, 3.4% in Carex-<br />

Sphagnum peat and 1.6% in Sphagnum peat. The<br />

degree <strong>of</strong> humi<strong>fi</strong>cation <strong>of</strong> peat also affects the ash<br />

content, although its effect is smaller than that<br />

due to the peat type. The elements contained in<br />

ash and their various resultant compounds constitute<br />

the inorganic component <strong>of</strong> the chemical<br />

composition <strong>of</strong> peat. Peat ash is derived from<br />

peatland vegetation (primary ash) and surrounding<br />

mineral matter (secondary ash). Material is<br />

classi<strong>fi</strong>ed as peat when the proportion <strong>of</strong> organic<br />

dry mass is at least 75%. At study site M2 in particular,<br />

the ash content was very high, so that with<br />

the exception <strong>of</strong> the peat surface the ash content<br />

exceeded the 25% threshold.<br />

Electrical conductivity increased from top to<br />

23


<strong>Geologian</strong> <strong>tutkimuskeskus</strong>, Tutkimusraportti <strong>196</strong> – Geological Survey <strong>of</strong> Finland, <strong>Report</strong> <strong>of</strong> <strong>Investigation</strong> <strong>196</strong>, 2012<br />

Markku Mäkilä, Kirsti Loukola-Ruskeeniemi and Heikki Säävuori<br />

bottom at the black schist study sites M2 and<br />

M3 (Fig. 24). At study site M1, conductivity de-<br />

24<br />

Depth [cm]<br />

0<br />

50<br />

100<br />

150<br />

200<br />

250<br />

0 5 10 15<br />

Fig. 23. Ash content at study sites M1, M2 and M3.<br />

Depth [cm]<br />

0<br />

50<br />

100<br />

150<br />

200<br />

250<br />

Figure 25 presents statistically signi<strong>fi</strong>cant correlations<br />

between each <strong>of</strong> the parameters analysed<br />

at study sites M1, M2 and M3, computed using<br />

the Spearman method. Dark blue and light blue<br />

colours indicate a negative correlations with signi<strong>fi</strong>cance<br />

levels <strong>of</strong>


M1<br />

Co<br />

Cu<br />

Ni<br />

Pb<br />

U<br />

Fe<br />

Mn<br />

S<br />

Zn<br />

pH<br />

WaterCont.<br />

DryDensity<br />

Ash<br />

C<br />

Conductivity<br />

Depth<br />

Humi<strong>fi</strong>cation<br />

M3 Co<br />

Co<br />

Cu<br />

Ni<br />

Pb<br />

U<br />

Fe<br />

Mn<br />

S<br />

Zn<br />

pH<br />

WaterCont.<br />

DryDensity<br />

Ash<br />

C<br />

Conductivity<br />

Depth<br />

Humi<strong>fi</strong>cation<br />

Co<br />

Cu<br />

Ni<br />

Pb<br />

<strong>Geologian</strong> <strong>tutkimuskeskus</strong>, Tutkimusraportti <strong>196</strong> – Geological Survey <strong>of</strong> Finland, <strong>Report</strong> <strong>of</strong> <strong>Investigation</strong> <strong>196</strong>, 2012<br />

High pre-mining metal concentrations and conductivity in peat around the Talvivaara nickel deposit, eastern Finland<br />

U<br />

Fe<br />

Cu<br />

Ni<br />

Pb<br />

U<br />

Fe<br />

Mn<br />

Mn<br />

S<br />

S<br />

Zn<br />

Zn<br />

pH<br />

WaterCont.<br />

pH<br />

WaterCont.<br />

DryDensity<br />

Ash<br />

DryDensity<br />

Ash<br />

C<br />

Conductivity<br />

C<br />

Conductivity<br />

Depth<br />

Humi<strong>fi</strong>cation<br />

tivity correlate with other analysed elements and<br />

peat properties.<br />

At study site M1, iron correlated most strongly<br />

with ash content, lead and zinc (Fig. 26). Iron<br />

showed a strong positive correlation with Ni, S,<br />

Zn, U, Co and conductivity at study site M2. At<br />

study site M3, iron had a strongly positive correlation<br />

with conductivity, manganese and sulphur,<br />

and a strongly negative correlation with cobalt<br />

and lead.<br />

At study site M1, uranium showed a strongly<br />

positive correlation with copper, sulphur, nickel<br />

and pH and a negative correlation with conductivity<br />

(Fig. 27). Uranium had a strongly positive<br />

correlation with Cu, Zn, Fe, Ni, conductivity, S<br />

and Co at study site M2 and a negative correlation<br />

with Mn. At study site M3, uranium was<br />

strongly correlated with Co.<br />

At study site M1, a positive correlation was ob-<br />

M2 Co<br />

Co<br />

Cu<br />

Ni<br />

Pb<br />

U<br />

Fe<br />

Mn<br />

S<br />

Zn<br />

pH<br />

WaterCont.<br />

DryDensity<br />

Ash<br />

C<br />

Conductivity<br />

Depth<br />

Humi<strong>fi</strong>cation<br />

Cu<br />

Ni<br />

Pb<br />

U<br />

Fe<br />

Mn<br />

S<br />

Zn<br />

pH<br />

WaterCont.<br />

DryDensity<br />

Ash<br />

C<br />

Conductivity<br />

Depth<br />

Humi<strong>fi</strong>cation<br />

Pos. correlation is signi<strong>fi</strong>cant at the 0.01 level (2-tailed).<br />

Pos. correlation is signi<strong>fi</strong>cant at the 0.05 level (2-tailed).<br />

Neg. correlation is signi<strong>fi</strong>cant at the 0.01 level (2-tailed).<br />

Neg. correlation is signi<strong>fi</strong>cant at the 0.05 level (2-tailed).<br />

Fig. 25. Statistically signi<strong>fi</strong>cant correlations between the studied properties at study sites M1, M2 and M3.<br />

Depth<br />

Humi<strong>fi</strong>cation<br />

served between sulphur and copper, pH, uranium<br />

and nickel, but a signi<strong>fi</strong>cant negative correlation<br />

was found between sulphur and conductivity (Fig.<br />

28). Signi<strong>fi</strong>cant positive correlations between sulphur<br />

and conductivity, nickel, iron and zinc were<br />

recorded at the black schist study site M2 (Figs.<br />

24 and 28). It is probable that the iron and the<br />

sulphur have combined to form an iron-sulphur<br />

compound in the peat (Virtanen & Lerssi 2006).<br />

Iron-sulphur compounds in peat appear to reduce<br />

the pH <strong>of</strong> peat when present at high concentrations.<br />

This effect becomes apparent when the<br />

contents <strong>of</strong> both iron and sulphur exceed 1% <strong>of</strong><br />

dry mass (Virtanen & Lerssi 2006). In the present<br />

data, an effect on pH levels is discernible at study<br />

site M2 when the contents <strong>of</strong> both iron and sulphur<br />

were approximately 20 000 mg/kg or 2 000 g/<br />

peatland-m 3 (Tables 2 and 5). At the black schist<br />

study site M3, a signi<strong>fi</strong>cant positive correlation<br />

25


<strong>Geologian</strong> <strong>tutkimuskeskus</strong>, Tutkimusraportti <strong>196</strong> – Geological Survey <strong>of</strong> Finland, <strong>Report</strong> <strong>of</strong> <strong>Investigation</strong> <strong>196</strong>, 2012<br />

Markku Mäkilä, Kirsti Loukola-Ruskeeniemi and Heikki Säävuori<br />

26<br />

Fe<br />

Spearman’s correlation coef<strong>fi</strong>cient<br />

Spearman’s correlation coef<strong>fi</strong>cient<br />

Spearman’s correlation coef<strong>fi</strong>cient<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

-0.2<br />

-0.4<br />

-0.6<br />

-0.8<br />

-1.0<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

-0.2<br />

-0.4<br />

-0.6<br />

-0.8<br />

-1.0<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

-0.2<br />

-0.4<br />

-0.6<br />

-0.8<br />

-1.0<br />

WaterCont.<br />

C<br />

Conductivity<br />

Humi<strong>fi</strong>cation<br />

U<br />

Cu<br />

S<br />

Co<br />

C<br />

M1<br />

M2<br />

M3<br />

Co<br />

Pb<br />

WaterCont.<br />

pH<br />

Mn<br />

Pb<br />

Humi<strong>fi</strong>cation<br />

Humi<strong>fi</strong>cation<br />

DryDensity<br />

C<br />

WaterCont.<br />

Cu<br />

DryDensity<br />

U<br />

Ni<br />

Ash<br />

Zn<br />

Cu<br />

pH<br />

Pos. correlation is signi<strong>fi</strong>cant at the 0.01 level (2-tailed).<br />

Pos. correlation is signi<strong>fi</strong>cant at the 0.05 level (2-tailed).<br />

Neg. correlation is signi<strong>fi</strong>cant at the 0.01 level (2-tailed).<br />

Neg. correlation is signi<strong>fi</strong>cant at the 0.05 level (2-tailed).<br />

Depth<br />

DryDensity<br />

Mn<br />

pH<br />

Ni<br />

Zn<br />

Pb<br />

Ash<br />

Fe<br />

Ash<br />

Co<br />

U<br />

Zn<br />

S<br />

Conductivity<br />

Ni<br />

Depth<br />

Fe<br />

S<br />

Depth<br />

Mn<br />

Conductivity<br />

Fe<br />

Fig. 26. The statistically most signi<strong>fi</strong>cant correlations between iron and other measured variables at study sites M1, M2 and<br />

M3.


<strong>Geologian</strong> <strong>tutkimuskeskus</strong>, Tutkimusraportti <strong>196</strong> – Geological Survey <strong>of</strong> Finland, <strong>Report</strong> <strong>of</strong> <strong>Investigation</strong> <strong>196</strong>, 2012<br />

High pre-mining metal concentrations and conductivity in peat around the Talvivaara nickel deposit, eastern Finland<br />

U<br />

Spearman’s correlation coef<strong>fi</strong>cient<br />

Spearman’s correlation coef<strong>fi</strong>cient<br />

Spearman’s correlation coef<strong>fi</strong>cient<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

-0.2<br />

-0.4<br />

-0.6<br />

-0.8<br />

-1.0<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

-0.2<br />

-0.4<br />

-0.6<br />

-0.8<br />

-1.0<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

-0.2<br />

-0.4<br />

-0.6<br />

-0.8<br />

-1.0<br />

M1<br />

M2<br />

C<br />

Conductivity<br />

WaterCont.<br />

Zn<br />

Co<br />

WaterCont.<br />

Mn<br />

pH<br />

WaterCont.<br />

pH<br />

S<br />

Depth<br />

Co<br />

Mn<br />

C<br />

Zn<br />

Conductivity<br />

Fe<br />

M3<br />

Fe<br />

Mn<br />

Pb<br />

C<br />

Humi<strong>fi</strong>cation<br />

Ash<br />

DryDensity<br />

pH<br />

Ni<br />

Depth<br />

Pb<br />

Humi<strong>fi</strong>cation<br />

Ash<br />

DryDensity<br />

Co<br />

S<br />

Conductivity<br />

Ni<br />

Fe<br />

Depth<br />

Zn<br />

Cu<br />

Humi<strong>fi</strong>cation<br />

Ni<br />

Pos. correlation is signi<strong>fi</strong>cant at the 0.01 level (2-tailed).<br />

Pos. correlation is signi<strong>fi</strong>cant at the 0.05 level (2-tailed).<br />

Neg. correlation is signi<strong>fi</strong>cant at the 0.01 level (2-tailed).<br />

Neg. correlation is signi<strong>fi</strong>cant at the 0.05 level (2-tailed).<br />

S<br />

Cu<br />

Ash<br />

Pb<br />

Cu<br />

DryDensity<br />

Fig. 27. The statistically most signi<strong>fi</strong>cant correlations between uranium and other investigated parameters at study sites M1,<br />

M2 and M3.<br />

U<br />

U<br />

U<br />

27


<strong>Geologian</strong> <strong>tutkimuskeskus</strong>, Tutkimusraportti <strong>196</strong> – Geological Survey <strong>of</strong> Finland, <strong>Report</strong> <strong>of</strong> <strong>Investigation</strong> <strong>196</strong>, 2012<br />

Markku Mäkilä, Kirsti Loukola-Ruskeeniemi and Heikki Säävuori<br />

28<br />

S<br />

Spearman’s correlation coef<strong>fi</strong>cient<br />

Spearman’s correlation coef<strong>fi</strong>cient<br />

Spearman’s correlation coef<strong>fi</strong>cient<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

-0.2<br />

-0.4<br />

-0.6<br />

-0.8<br />

-1.0<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

-0.2<br />

-0.4<br />

-0.6<br />

-0.8<br />

-1.0<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

-0.2<br />

-0.4<br />

-0.6<br />

-0.8<br />

-1.0<br />

Conductivity<br />

Zn<br />

WaterCont.<br />

Mn<br />

Co<br />

DryDensity<br />

Humi<strong>fi</strong>cation<br />

Pb<br />

Fe<br />

C<br />

C<br />

Pb<br />

M1<br />

M2<br />

M3<br />

WaterCont.<br />

Mn<br />

pH<br />

Pb<br />

DryDensity<br />

Co<br />

U<br />

Humi<strong>fi</strong>cation<br />

Cu<br />

Ash<br />

Ni<br />

C<br />

Humi<strong>fi</strong>cation<br />

Cu<br />

DryDensity<br />

Co<br />

Ash<br />

U<br />

Ash<br />

Ni<br />

Pos. correlation is signi<strong>fi</strong>cant at the 0.01 level (2-tailed).<br />

Pos. correlation is signi<strong>fi</strong>cant at the 0.05 level (2-tailed).<br />

Neg. correlation is signi<strong>fi</strong>cant at the 0.01 level (2-tailed).<br />

Neg. correlation is signi<strong>fi</strong>cant at the 0.05 level (2-tailed).<br />

U<br />

pH<br />

Cu<br />

Depth<br />

Zn<br />

Fe<br />

Ni<br />

Conductivity<br />

Depth<br />

Zn<br />

WaterCont.<br />

Fe<br />

Conductivity<br />

Mn<br />

Depth<br />

pH<br />

Fig. 28. The statistically most signi<strong>fi</strong>cant correlations between sulphur and other investigated variables at study sites M1, M2<br />

and M3.<br />

S<br />

S<br />

S


<strong>Geologian</strong> <strong>tutkimuskeskus</strong>, Tutkimusraportti <strong>196</strong> – Geological Survey <strong>of</strong> Finland, <strong>Report</strong> <strong>of</strong> <strong>Investigation</strong> <strong>196</strong>, 2012<br />

High pre-mining metal concentrations and conductivity in peat around the Talvivaara nickel deposit, eastern Finland<br />

pH<br />

Spearman’s correlation coef<strong>fi</strong>cient<br />

Spearman’s correlation coef<strong>fi</strong>cient<br />

Spearman’s correlation coef<strong>fi</strong>cient<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

-0.2<br />

-0.4<br />

-0.6<br />

-0.8<br />

-1.0<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

-0.2<br />

-0.4<br />

-0.6<br />

-0.8<br />

-1.0<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

-0.2<br />

-0.4<br />

-0.6<br />

-0.8<br />

-1.0<br />

M1<br />

Conductivity<br />

DryDensity<br />

Humi<strong>fi</strong>cation<br />

Mn<br />

Zn<br />

WaterCont.<br />

Co<br />

C<br />

Pb<br />

M2<br />

M3<br />

Co<br />

Fe<br />

Ni<br />

DryDensity<br />

Co<br />

U<br />

Humi<strong>fi</strong>cation<br />

Cu<br />

Ash<br />

Ni<br />

Zn<br />

C<br />

Conductivity<br />

S<br />

Depth<br />

Zn<br />

U<br />

Pb<br />

Fe<br />

Ash<br />

U<br />

WaterCont.<br />

Mn<br />

Ash<br />

Ni<br />

Cu<br />

S<br />

Depth<br />

pH<br />

DryDensity<br />

Cu<br />

C<br />

Humi<strong>fi</strong>cation<br />

Pb<br />

pH<br />

Fe<br />

WaterCont.<br />

Conductivity<br />

Mn<br />

Pos. correlation is signi<strong>fi</strong>cant at the 0.01 level (2-tailed).<br />

Pos. correlation is signi<strong>fi</strong>cant at the 0.05 level (2-tailed).<br />

Neg. correlation is signi<strong>fi</strong>cant at the 0.01 level (2-tailed).<br />

Neg. correlation is signi<strong>fi</strong>cant at the 0.05 level (2-tailed).<br />

S<br />

Depth<br />

pH<br />

Fig. 29. The statistically most signi<strong>fi</strong>cant correlations between pH and the other measured parameters at study sites M1, M2<br />

and M3.<br />

29


<strong>Geologian</strong> <strong>tutkimuskeskus</strong>, Tutkimusraportti <strong>196</strong> – Geological Survey <strong>of</strong> Finland, <strong>Report</strong> <strong>of</strong> <strong>Investigation</strong> <strong>196</strong>, 2012<br />

Markku Mäkilä, Kirsti Loukola-Ruskeeniemi and Heikki Säävuori<br />

30<br />

Ash<br />

Spearman’s correlation coef<strong>fi</strong>cient<br />

Spearman’s correlation coef<strong>fi</strong>cient<br />

Spearman’s correlation coef<strong>fi</strong>cient<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

-0.2<br />

-0.4<br />

-0.6<br />

-0.8<br />

-1.0<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

-0.2<br />

-0.4<br />

-0.6<br />

-0.8<br />

-1.0<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

-0.2<br />

-0.4<br />

-0.6<br />

-0.8<br />

-1.0<br />

M1<br />

Conductivity<br />

C<br />

WaterCont.<br />

DryDensity<br />

Co<br />

Mn<br />

Humi<strong>fi</strong>cation<br />

U<br />

S<br />

M2<br />

C<br />

M3<br />

C<br />

WaterCont.<br />

Pb<br />

pH<br />

Mn<br />

Humi<strong>fi</strong>cation<br />

WaterCont.<br />

Pb<br />

DryDensity<br />

Humi<strong>fi</strong>cation<br />

pH<br />

Co<br />

S<br />

Cu<br />

Co<br />

U<br />

Depth<br />

Cu<br />

DryDensity<br />

Conductivity<br />

Pos. correlation is signi<strong>fi</strong>cant at the 0.01 level (2-tailed).<br />

Pos. correlation is signi<strong>fi</strong>cant at the 0.05 level (2-tailed).<br />

Neg. correlation is signi<strong>fi</strong>cant at the 0.01 level (2-tailed).<br />

Neg. correlation is signi<strong>fi</strong>cant at the 0.05 level (2-tailed).<br />

U<br />

Zn<br />

Cu<br />

Ni<br />

Depth<br />

pH<br />

Pb<br />

Fe<br />

Ash<br />

Zn<br />

Fe<br />

Ni<br />

S<br />

Depth<br />

Conductivity<br />

Ash<br />

Mn<br />

Fe<br />

Ni<br />

Zn<br />

Ash<br />

Fig. 30. The statistically most signi<strong>fi</strong>cant correlations between ash content and the parameters investigated at study sites M1,<br />

M2 and M3.


<strong>Geologian</strong> <strong>tutkimuskeskus</strong>, Tutkimusraportti <strong>196</strong> – Geological Survey <strong>of</strong> Finland, <strong>Report</strong> <strong>of</strong> <strong>Investigation</strong> <strong>196</strong>, 2012<br />

High pre-mining metal concentrations and conductivity in peat around the Talvivaara nickel deposit, eastern Finland<br />

Conductivity<br />

Spearman’s correlation coef<strong>fi</strong>cient<br />

Spearman’s correlation coef<strong>fi</strong>cient<br />

Spearman’s correlation coef<strong>fi</strong>cient<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

-0.2<br />

-0.4<br />

-0.6<br />

-0.8<br />

-1.0<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

-0.2<br />

-0.4<br />

-0.6<br />

-0.8<br />

-1.0<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

-0.2<br />

-0.4<br />

-0.6<br />

-0.8<br />

-1.0<br />

C<br />

Co<br />

M1<br />

M2<br />

M3<br />

Depth<br />

pH<br />

Pb<br />

S<br />

Cu<br />

U<br />

WaterCont.<br />

pH<br />

Mn<br />

Pb<br />

Ni<br />

DryDensity<br />

Humi<strong>fi</strong>cation<br />

Humi<strong>fi</strong>cation<br />

Cu<br />

DryDensity<br />

U<br />

Ni<br />

WaterCont.<br />

Ash<br />

Fig. 31. The statistically most signi<strong>fi</strong>cant correlations between conductivity and the other measured parameters at study sites<br />

M1, M2 and M3.<br />

C<br />

Ash<br />

WaterCont.<br />

C<br />

Co<br />

Fe<br />

Co<br />

Ash<br />

U<br />

Zn<br />

Cu<br />

pH<br />

Humi<strong>fi</strong>cation<br />

Pb<br />

Zn<br />

Mn<br />

DryDensity<br />

Conductivity<br />

Zn<br />

Fe<br />

Pos. correlation is signi<strong>fi</strong>cant at the 0.01 level (2-tailed).<br />

Pos. correlation is signi<strong>fi</strong>cant at the 0.05 level (2-tailed).<br />

Neg. correlation is signi<strong>fi</strong>cant at the 0.01 level (2-tailed).<br />

Neg. correlation is signi<strong>fi</strong>cant at the 0.05 level (2-tailed).<br />

S<br />

S<br />

Depth<br />

Mn<br />

Ni<br />

Depth<br />

Conductivity<br />

Fe<br />

Conductivity<br />

31


<strong>Geologian</strong> <strong>tutkimuskeskus</strong>, Tutkimusraportti <strong>196</strong> – Geological Survey <strong>of</strong> Finland, <strong>Report</strong> <strong>of</strong> <strong>Investigation</strong> <strong>196</strong>, 2012<br />

Markku Mäkilä, Kirsti Loukola-Ruskeeniemi and Heikki Säävuori<br />

was observed between sulphur and pH, manganese,<br />

conductivity and iron, but a signi<strong>fi</strong>cant negative<br />

correlation between sulphur and lead.<br />

At the mica schist study site M1, pH values<br />

displayed a positive correlation with sulphur, copper,<br />

nickel and uranium and a negative correlation<br />

with conductivity (Fig. 29). At study site M2 there<br />

was no marked association between pH and any<br />

<strong>of</strong> the analysed elements, although a negative correlation<br />

with cobalt was observed. At study site<br />

M3, pH was positively correlated with S, Mn and<br />

conductivity and negatively with Pb and Co.<br />

At study site M1 there was a marked correla-<br />

32<br />

tion between the ash content and iron, lead and<br />

pH (Fig. 30). At study site M2, a marked positive<br />

correlation was observed between the ash content<br />

and conductivity, sulphur, nickel, iron, zinc and<br />

uranium.<br />

There was a strong negative correlation between<br />

electrical conductivity and depth, pH, S<br />

and Cu at study site M1 (Fig. 31), and a clearly<br />

positive correlation <strong>of</strong> conductivity with depth,<br />

nickel, sulphur, iron and zinc at M2. Conductivity<br />

was positively correlated with iron, depth, manganese,<br />

sulphur and pH at study site M3.<br />

5 APPLICATION OF ELECTRIC CONDUCTIVITY MEASUREMENTS IN<br />

ENVIRONMENTAL STUDIES<br />

The logging probe (Fig. 9, p. 10) can be used for<br />

mapping the electrical conductivity and temperature<br />

<strong>of</strong> peatlands and underlying unconsolidated<br />

sediments. Conductivity data have been applied<br />

in the interpretation <strong>of</strong> electromagnetic (AEM)<br />

maps, and for tracing pollutants within peatlands.<br />

Electric conductivity also reflects the nutrient conditions<br />

(salinity, acidity), which, together with<br />

temperature, control the growth and decay processes<br />

within peatlands (Puranen et al. 1997, Puranen<br />

et al. 1999). Electrical conductivity correlates<br />

with the temperature and acidity (pH value)<br />

<strong>of</strong> peatland waters. A rise in temperature <strong>of</strong> one<br />

degree Celcius increases the electrical conductivity<br />

<strong>of</strong> the solution by approximately 2% (Hem 1985).<br />

Electrical conductivity measurements provide a<br />

reliable indication <strong>of</strong> anomalies in peat, and can<br />

be used as a preliminary indicator <strong>of</strong> peat conductivity<br />

(Puranen et al. 1996). The method is also<br />

more cost-effective than other geophysical techniques.<br />

The high sulphur content <strong>of</strong> peatlands in<br />

the black schist area had an effect on the high conductivity,<br />

especially in the sedge-dominated bottom<br />

and middle layers (Lerssi & Virtanen 2006).<br />

The peat layers investigated in the Talvivaara<br />

area contain high Zn, Cu and Ni concentrations<br />

but low Pb concentration compared with the values<br />

from western Finland reported by Virtanen<br />

(2005). This is because at Talvivaara the black<br />

schist has high Ni, Cu, and Zn concentrations but<br />

does not contain more Pb in average than the ad-<br />

6 DISCUSSION<br />

Higher acidity <strong>of</strong> peat layers and increasing metal<br />

contents enhances the conductivity <strong>of</strong> peat. Highly<br />

conductive run<strong>of</strong>f and groundwaters in poorly<br />

conducting peat is an optimal research target for<br />

conductivity probing (Puranen et al. 1996, Mäkilä<br />

& Toivonen 1998).<br />

A high sulphur concentration lowers the pH<br />

and increases the conductivity in Carex peat. In<br />

the acidic surface layers at the study sites the hydrogen<br />

ions signi<strong>fi</strong>cantly increase or even dominate<br />

the electric conductivity <strong>of</strong> peat. For pH<br />

values lower than 3.5 the conductivity effect due<br />

to hydrogen ions is at least 10 mS/m (e.g. Kivinen<br />

1935). At the black schist study sites M2 and M3,<br />

the effect <strong>of</strong> bedrock composition on the metal<br />

(Fe, Ni, Zn) and sulphur concentration <strong>of</strong> the<br />

peat as well as the conductivity can be seen in<br />

the basalmost peat layers (Figs. 13, 15 and 18).<br />

At the mica schist study site M1 the metal concentrations<br />

were lower and the change in acidity<br />

from the about 3.1. in the surface layer to 4.4 in<br />

the bottom layer is the principal cause <strong>of</strong> the observed<br />

reduction in conductivity from 13 mS/m to<br />

3 mS/m.<br />

jacent granitic rocks. According to Virtanen et al.<br />

(1997), the basal peat layer overlying the Pampalo<br />

gold-arsenic ore deposit at Ilomantsi, in easternmost<br />

Finland, contains 100 times more arsenic<br />

than than the average background value for peat<br />

in the area. Such high values arise from upwards<br />

migration <strong>of</strong> metals in groundwater or gaseous


<strong>Geologian</strong> <strong>tutkimuskeskus</strong>, Tutkimusraportti <strong>196</strong> – Geological Survey <strong>of</strong> Finland, <strong>Report</strong> <strong>of</strong> <strong>Investigation</strong> <strong>196</strong>, 2012<br />

High pre-mining metal concentrations and conductivity in peat around the Talvivaara nickel deposit, eastern Finland<br />

phases from the underlying till. Transport <strong>of</strong> metals<br />

in groundwater is influenced by a number <strong>of</strong><br />

factors including capillary flow. At the peatland<br />

surface, Sphagnum moss absorbs water and nutrients,<br />

the latter being retained in the moss while the<br />

water evaporates to the air (Salmi 1955), causing<br />

slow but continuous upwards migration <strong>of</strong> water<br />

from soil to the upper layers <strong>of</strong> the peat. It has<br />

also been shown that metal species can be transported<br />

upwards through bedrock and soils within<br />

gas bubbles (Kristiansson & Malmqvist 1982).<br />

Uranium and lead concentrations in peat at<br />

study sites M1-M3 resemble each other in showing<br />

higher concentrations <strong>of</strong> Pb and lower concentrations<br />

<strong>of</strong> U in surface layers compared with<br />

the bottom layers. Uranium concentrations were<br />

also lower in surface sediments than deeper in the<br />

pr<strong>of</strong>ile in organic lake sediments from Lake Kolmisoppi<br />

at Talvivaara, while lead concentrations<br />

were higher in surface sediments than deeper in<br />

the pr<strong>of</strong>ile (Loukola-Ruskeeniemi et al. 1998).<br />

The same tendency in peat pr<strong>of</strong>iles is probably<br />

due to the inherent differences between Pb and U<br />

with respect to redox behaviour and microbiological<br />

processes.<br />

At the mica schist study site M1, the concentrations<br />

<strong>of</strong> analysed metals and sulphur were lower<br />

than at the black schist study site M3, with the exception<br />

<strong>of</strong> uranium and lead which were present<br />

at roughly similar concentrations. At the mica<br />

schist study site, the influence <strong>of</strong> the bedrock on<br />

the metal concentrations and conductivity <strong>of</strong> the<br />

peat was low, while at the black schist study sites<br />

the effect <strong>of</strong> bedrock composition on peat conductivity<br />

was reflected in elevated concentrations<br />

<strong>of</strong> sulphur. A high sulphur concentration lowers<br />

the pH and increases the conductivity in Carex<br />

peat. It is notable that the most signi<strong>fi</strong>cant positive<br />

correlations between metals were recorded<br />

at study site M2 and the least signi<strong>fi</strong>cant at study<br />

site M3. At study site M2 there was a highly signi<strong>fi</strong>cant<br />

positive correlation between all metals<br />

except for lead and manganese. At study site M3,<br />

manganese displayed a highly positive correlation<br />

with iron and sulphur. Copper and uranium were<br />

also strongly correlated.<br />

Of the three study sites, the greatest metal and<br />

ash concentrations were recorded at the black<br />

schist study site M2, which is situated on the sloping<br />

peatland, with Ni-rich black schists outcropping<br />

on the nearby hillside. The average concentrations<br />

<strong>of</strong> copper, nickel, zinc and sulphur in the<br />

peat were many times higher than average values<br />

reported by Virtanen (2005) from Ostrobothnia,<br />

western Finland. It seems likely that the outcrops<br />

<strong>of</strong> black schist were a source <strong>of</strong> acid rock drain-<br />

age during peat formation. A ten-fold ash content<br />

compared to average values in Finnish peatlands<br />

provides distinct evidence <strong>of</strong> acid run<strong>of</strong>f. The distance<br />

from the black schist outcrops to study site<br />

M2 is about 100 m and at the onset <strong>of</strong> paludi<strong>fi</strong>cation<br />

there was a difference in elevation <strong>of</strong><br />

more than ten metres. The acidity <strong>of</strong> peat did not<br />

change until the <strong>196</strong>0s when the peat became drier<br />

due to drainage <strong>of</strong> the the peatland, such that sulphur<br />

(S-ion) became oxidized to SO 4 . The buffering<br />

capacity <strong>of</strong> peat was low because <strong>of</strong> the high<br />

H 2 SO 4 concentration.<br />

In addition, peat is always affected by the<br />

movement <strong>of</strong> ground water, as the waters carry<br />

soluble metal ions in the direction <strong>of</strong> flow. During<br />

and after transport, the metal concentrations in<br />

peat pore water may continue to change through<br />

a variety <strong>of</strong> chemical reactions. Metal ions have<br />

remained in the peat because <strong>of</strong> changes in pH<br />

or oxidation-reduction state or because they have<br />

become bound in complexes with peat organic<br />

compounds, such as humic and fulvic acids (Kapata-Pendias<br />

1994). Statistically signi<strong>fi</strong>cant correlations<br />

between Fe, S, Ni, Co, Zn and U were<br />

observed for peat at study site M2. The pH values<br />

were lower than the tolerance threshold for peatforming<br />

plants. Carex peat forms under conditions<br />

where the pH <strong>of</strong> the peat layers is typically<br />

between 4 and 5. Accordingly, the pH <strong>of</strong> peat at<br />

study site M2 must also have been <strong>of</strong> the same<br />

order <strong>of</strong> magnitude, as Carex peat had formed in<br />

the area. Beneath the surface layer <strong>of</strong> the peat deposits,<br />

pH values varied between 2.8–3.8.<br />

Peat acidity at site M2 changed during and after<br />

pre-mining peatland drainage activity in the<br />

<strong>196</strong>0s. Excavations extended in the margins <strong>of</strong><br />

mire down to the bedrock or at least to the basalmost<br />

layers <strong>of</strong> glacial till. A variety <strong>of</strong> chemical<br />

and microbiological reactions affect the metal<br />

concentrations in the pore waters in peat. Since<br />

both the bedrock and till at Talvivaara contain<br />

abundant sulphides, the surface waters flowing<br />

in peatland drainage channels reacted with<br />

sulphide-rich material resulting in acid run<strong>of</strong>f in<br />

the nearby streams. A dense network <strong>of</strong> drainage<br />

channels also promotes vegetation growth and<br />

root systems, which in turn enhances the movement<br />

<strong>of</strong> water in peatlands because the permeability<br />

<strong>of</strong> peat is dependent primarily on the structure<br />

<strong>of</strong> the peat and the presence <strong>of</strong> tree roots and<br />

debris. Drainage directly improves water run<strong>of</strong>f<br />

and movement possibilities. In general, permeability<br />

is greater in woody peat than in Carex or<br />

Sphagnum peat, when compared at the same degree<br />

<strong>of</strong> humi<strong>fi</strong>cation (Päivänen 1982).<br />

33


<strong>Geologian</strong> <strong>tutkimuskeskus</strong>, Tutkimusraportti <strong>196</strong> – Geological Survey <strong>of</strong> Finland, <strong>Report</strong> <strong>of</strong> <strong>Investigation</strong> <strong>196</strong>, 2012<br />

Markku Mäkilä, Kirsti Loukola-Ruskeeniemi and Heikki Säävuori<br />

Element concentrations in peat layers result from<br />

complex interactions between a number <strong>of</strong> processes.<br />

Elements and more complex compounds<br />

are transported from the underlying mineral substrate<br />

into peat via plant roots in the form <strong>of</strong> soluble<br />

ions. The concentrations <strong>of</strong> soluble ions in peat<br />

are controlled by several factors, including acidity,<br />

oxidation conditions, ion exchange capacity,<br />

and the number <strong>of</strong> complex compounds. In areas<br />

such as Talvivaara, characterized by high natural<br />

sulphur and metal concentrations in bedrock soil,<br />

capillary water, surface water and ground water<br />

all contain above average abundances <strong>of</strong> sulphur<br />

and metals. Since peat accumulation in the Talvivaara<br />

area commenced about 10 000 years ago,<br />

there has been a considerable amount <strong>of</strong> time for<br />

metals to precipitate from groundwaters within<br />

peat. The analysed metals displayed greater concentrations<br />

in the basalmost peat deposits <strong>of</strong><br />

Carex peat than in the surface layers <strong>of</strong> Sphagnum-dominated<br />

peat. Iron-sulphur compounds<br />

in peat evidently cause a lowering <strong>of</strong> pH at high<br />

concentrations and thereby lead to an increase in<br />

conductivity. The effect on pH levels becomes apparent<br />

when the concentrations <strong>of</strong> both iron and<br />

sulphur are approximately 20 000 mg/kg or 2 000<br />

g/peatland-m 3 .<br />

At the black schist study sites M2 and M3, the<br />

elements showing the greatest increase in concentration<br />

with depth were nickel, iron, sulphur and<br />

zinc. At the mica schist study site M1, the concentrations<br />

<strong>of</strong> copper, nickel and sulphur increased<br />

as a function <strong>of</strong> depth. Variations in concentrations<br />

were caused by fluctuations in ground water<br />

level as well as changes in the movement and accumulation<br />

<strong>of</strong> the elements. The concentrations<br />

<strong>of</strong> zinc, manganese and lead were greatest at the<br />

peatland surface, immediately below the surface<br />

layer <strong>of</strong> peat.<br />

Of the three Talvivaara study sites, the highest<br />

metal and ash concentrations were recorded at the<br />

black schist study site M2. Instead <strong>of</strong> attributing<br />

We thank Ale Grundström for assistance during<br />

<strong>fi</strong>eldwork and for many inspiring discussions<br />

and valuable comments on the manuscript, and<br />

numerous colleagues at the Geological Survey <strong>of</strong><br />

34<br />

7 CONCLUSIONS<br />

ACKNOwLEDGEMENTS<br />

this to the influence <strong>of</strong> Ni-rich ground waters, it<br />

seems more likely that there has been acid rock<br />

drainage from Ni-rich black schists on the adjacent<br />

hillside throughout the entire history <strong>of</strong> peat<br />

formation. In addition, peatland drainage activities<br />

in the <strong>196</strong>0s resulted in acid run<strong>of</strong>f wherever<br />

excavation penetrated to the underlying Ni-rich<br />

bedrock or Ni-rich glacial till. At this study site<br />

metals were precipitated in the peat deposits.<br />

Therefore, we can see a natural analogue for the<br />

method <strong>of</strong> remediation <strong>of</strong> mining environments<br />

with peat at Talvivaara.<br />

Under anaerobic conditions, such as those<br />

prevailing in peat, sulphur mainly occurs as sulphides.<br />

Sulphides are oxidized to soluble and<br />

mobile sulphates when conditions change from<br />

anaerobic to aerobic. Peatland drainage leads to<br />

aerobic conditions and consequently oxidation <strong>of</strong><br />

sulphides to sulphates. Leaching <strong>of</strong> sulphur from<br />

peat may in turn cause environmental problems<br />

such as acid run<strong>of</strong>f. The high sulphur content in<br />

peatlands in black schist areas and the consequent<br />

low pH values lead to high electrical conductivity<br />

levels, especially in the sedge-dominated bottom<br />

layer.<br />

Except for the topmost Sphagnum-dominated<br />

layer, the sulphur concentrations in the layer underlying<br />

the sur<strong>fi</strong>cial peat at each <strong>of</strong> the study sites<br />

exceeded the upper limit <strong>of</strong> 0.50% <strong>of</strong> dry mass,<br />

which is the highest value class for energy peat<br />

in northern Europe (Nordtest Innovation Center<br />

2006). The sulphur content <strong>of</strong> peat has a signi<strong>fi</strong>cant<br />

impact on the suitability <strong>of</strong> peatland for<br />

commercial peat production. This is mainly due<br />

to the corrosive effects on power plant equipment,<br />

but the evaluation and minimization <strong>of</strong> sulphur<br />

emissions resulting from peat incineration is also<br />

important (Virtanen 2005, Herranen 2010). When<br />

planning peat production near sulphide-rich bedrock<br />

and/or soil, the quality <strong>of</strong> peat should be<br />

studied and sulphur-rich peat should be excluded<br />

from production.<br />

Finland for their co-operation. We are particularly<br />

grateful to Kimmo Virtanen for his comments<br />

and Peter Sorjonen-Ward for checking the English<br />

<strong>of</strong> the manuscript.


<strong>Geologian</strong> <strong>tutkimuskeskus</strong>, Tutkimusraportti <strong>196</strong> – Geological Survey <strong>of</strong> Finland, <strong>Report</strong> <strong>of</strong> <strong>Investigation</strong> <strong>196</strong>, 2012<br />

High pre-mining metal concentrations and conductivity in peat around the Talvivaara nickel deposit, eastern Finland<br />

Ervamaa, P. & Heino, T. 1980. A progress report on ore<br />

prospecting in the Kainuu−Nort Savo black schist − serpentinite<br />

formations in 1977−1979. Geological Survey<br />

<strong>of</strong> Finland, archive report M19/3344/-80/1/10. 73 p. (in<br />

Finnish)<br />

Govett, G. J. 1976. Detection <strong>of</strong> deeply buried and blind sulphide<br />

deposits by measurement <strong>of</strong> H+ and conductivity<br />

<strong>of</strong> closely spaced surface soil samples. Journal <strong>of</strong> Geochemical<br />

Exploration 6, 359−382.<br />

Gustavsson, N., Loukola-Ruskeeniemi, K. & Tenhola, M.<br />

2011.Evaluation <strong>of</strong> geochemical background levels<br />

around sul<strong>fi</strong>de mines – A new statistical procedure with<br />

beanplots. Applied Geochemistry 27, 240−249.<br />

Häikiö, J., Luukkanen, A. & Porkka, H. 1997. Sotkamossa<br />

tutkitut suot, niiden trurvevarat ja turpeiden käyttökelpoisuus.<br />

Osa II. Abstract: the peatlands and peat reserves<br />

and their potential use in Sotkamo, Part II. Geological<br />

Survey <strong>of</strong> Finland, <strong>Report</strong> <strong>of</strong> Peat <strong>Investigation</strong> 310. 48<br />

p. + 2 app.<br />

Hem, J. D. 1985. Study and interpretation <strong>of</strong> the chemical<br />

characteristics <strong>of</strong> natural water. U.S. Geological Survey,<br />

Water Supply-Paper 2254. 264 p.<br />

Herranen, T. 2010. Turpeen rikkipitoisuus Suomen soissa<br />

− tuloksia laajasta turveinventoinnista. (Summary: Sulphur<br />

concentration <strong>of</strong> peat in Finland − results <strong>of</strong> wide<br />

scale peat inventories). Suo − Mires and Peat, 49–56.<br />

Jones, J. M. & Hao, J. 1993. Ombrotrophic peat as a medium<br />

for historical monitoring <strong>of</strong> heavy metal pollution. Environmental<br />

Geochemistry and Health 15(2–3), 67–74.<br />

Kabata-Pendias, A. 2004. Soil-plant transfer <strong>of</strong> trace elements-an<br />

environmental issue. Geoderma, Vol. 122<br />

(2−4), 143−149.<br />

Kivinen, E. 1935. Über Elektrolytgehalt und Reaktion der<br />

Moorwässer. Agrogeol. Julk., n:o 38, 1−71.<br />

Kokkola, M. & Penttilä, V.-J. 1976. Aittojärvi: molybdenum<br />

in humus, drift and bedrock. Journal <strong>of</strong> Geochemical Exploration<br />

5 (3), 198−208.<br />

Kontinen, A. 2012. Talvivaara Ni-Zn-Cu. In: Eilu, P. (ed.)<br />

Mineral deposits and metallogeny <strong>of</strong> Fennoscandia. Geological<br />

Survey <strong>of</strong> Finland, Special Paper 53, 276−280.<br />

Kristiansson, K. & Malmqvist, L. 1982. Evidence for nondiffuse<br />

transport <strong>of</strong> 222 Rn in the ground and new physical<br />

model for the transport. Geophysics, Vol. 45 (10),<br />

1444−1452.<br />

Lappalainen, E., Sten, C.-G. & Häikiö, J. 1984. Field guide<br />

for peat research. Geological Survey <strong>of</strong> Finland, Guide<br />

12. 62 p. (in Finnish)<br />

Lerssi, J. & Virtanen, K. 2006. Influence <strong>of</strong> black shist to<br />

metal and sulphur content <strong>of</strong> peat. The 12th European<br />

Meeting <strong>of</strong> Environmental and Engineering Geophysics<br />

Finland, Espoo 2006. 4 p.<br />

Loukola-Ruskeeniemi, K. 1999. Origin <strong>of</strong> Black Schists and<br />

the Serpentinite−Associated Cu-Zn-Co Ores at Outokumpu,<br />

Finland. Economic Geology 94, 1007−1028.<br />

Loukola-Ruskeeniemi K. & Heino T. 1996. Geochemistry and<br />

genesis <strong>of</strong> the black schist-hosted Ni-Cu-Zn Deposit at<br />

Talvivaara, Finland. Economic Geology, 91, 80−110.<br />

Loukola-Ruskeeniemi, K., Uutela, A., Tenhola, M. & Paukola,<br />

T. 1998. Environmental impact <strong>of</strong> metalliferous black<br />

schists at Talvivaara in Finland, with indication <strong>of</strong> lake<br />

acidi<strong>fi</strong>cation 9000 years ago. Journal <strong>of</strong> Geochemical Exploration<br />

64, 395−407.<br />

Mäkilä, M. 1994. Suon energiasisällön laskeminen turpeen<br />

ominaisuuksien avulla. Summary: Calculation <strong>of</strong> the en-<br />

REFERENCES<br />

ergy content <strong>of</strong> peatlands on the basis <strong>of</strong> peat properties.<br />

Geological Survey <strong>of</strong> Finland, <strong>Report</strong> <strong>of</strong> <strong>Investigation</strong><br />

121. 73 p. + 11 app.<br />

Mäkilä, M. & Toivonen, T. 1998. Turvetutkimusten ja johtavuusluotausten<br />

käyttömahdollisuudet suoalueen ympäristötutkimuksussa:<br />

esimerkkinä Lapuan Löyhinkinevan<br />

jätevesialue. Summary: Utilization <strong>of</strong> peat investigations<br />

and conductivity probing in environmental research <strong>of</strong><br />

peatlands, with the waste water area <strong>of</strong> Löyhinkineva<br />

peatland in Lapua municipality as an example. Geological<br />

Survey <strong>of</strong> Finland, <strong>Report</strong> <strong>of</strong> Peat <strong>Investigation</strong> 313,<br />

1−25.<br />

Monna, F., Galopc, D., Carozzad, L., Tuala, M., Beyrie, A.,<br />

Marembertf, F., Chateau C., Dominikh, J. & Grousset, F.<br />

E. 2004. Environmental impact <strong>of</strong> early Basque mining<br />

and smelting recorded in a high ash minerogenic peat<br />

deposit Science <strong>of</strong> the Total Environment 327, 197–214.<br />

Murtoniemi, S. 1984. Mustaliuskeiden Cu-Ni-Zn – mineralisaatioiden<br />

kuvastuminen eri tyyppisissä purosedimenteissä<br />

sekä humus- ja kaarnanäytteissä Sotkamon Talvivaaran<br />

alueella MSc thesis, Oulu University, Oulu. 64 p.<br />

(in Finnish)<br />

Nordic Innovation Centre 2006. Quality Guidelines for fuel<br />

Peat. Fuel classi<strong>fi</strong>cation and quality assurance, sampling<br />

and analysis <strong>of</strong> properties. Nordtest, NT ENVIR 009.<br />

Method.<br />

Nordstrom, K. 2011. Hydrogeochemical processes governing<br />

the origin, transport and fate <strong>of</strong> major and trace elements<br />

from mine wastes and mineralized rock to surface waters<br />

Applied Geochemistry 26, 1777−1791.<br />

Päivänen, J. 1982. Turvemaan fysikaaliset ominaisuudet.<br />

Abstract: Physical properties <strong>of</strong> peat soil. Publications<br />

from the department <strong>of</strong> peatland forestry. University <strong>of</strong><br />

Helsinki. 69 p.<br />

von Post, L. 1922. Sveriges Geologiska Undersöknings<br />

torvinventering och några av dess hittils vunna resultat.<br />

Svenska Mosskulturföreningens tidsskrift 1, 1−27. (in<br />

Swedish)<br />

Puranen, R., Mäkilä, M., Sulkanen, K. & Grundström, A.<br />

1997. A new apparatus for electric conductivity and<br />

temperature logging <strong>of</strong> s<strong>of</strong>t sediments. In: Autio, S.<br />

(ed.) Geological Survey <strong>of</strong> Finland, Current Research<br />

1995−1996. Geological Survey <strong>of</strong> Finland, Special Paper<br />

23, 149−155.<br />

Puranen, R., Mäkilä, M. & Säävuori, H. 1999. Electric conductivity<br />

and temperature variations within a raised bog<br />

in Finland: implications for bog development. The Holocene,<br />

9, 13−24.<br />

Putkinen, S. 2002. Turpeen geokemiaa neljällä suolla Pohjois-Kiuruveden<br />

mustaliuskealueilla. Pro gradu tutkielma,<br />

Oulun yliopisto, geotieteiden laitos. 115 p. (in Finnish)<br />

Räisänen, M.-L. & Nikkarinen, M. 2000. Happamoitumisen<br />

seurausvaikutukset peltojen ravinnetilaan ja vesien<br />

laatuun mustaliuskekallioperäalueilla. Vesitalous 41 (6),<br />

9−15. (in Finnish)<br />

Rausch, N., Nieminen, T., Ukonmaanaho, L., Le Roux, G.,<br />

Krachler, M., Cheburkin, K., Bonani, G. & Shotyk, w.<br />

2005. Comparison <strong>of</strong> atmospheric deposition <strong>of</strong> copper,<br />

nickel, cobalt, zinc and cadmium recorded by Finnish<br />

peat cores with monitoring data and emission records.<br />

Environmental Science and Technology 39(16), 5989–<br />

5998.<br />

Rose, A. w., Hawkes, H. E. & webb, J. S. 1979. Geochemis-<br />

35


<strong>Geologian</strong> <strong>tutkimuskeskus</strong>, Tutkimusraportti <strong>196</strong> – Geological Survey <strong>of</strong> Finland, <strong>Report</strong> <strong>of</strong> <strong>Investigation</strong> <strong>196</strong>, 2012<br />

Markku Mäkilä, Kirsti Loukola-Ruskeeniemi and Heikki Säävuori<br />

try in mineral exploration. Academic Press. 657 p.<br />

Salmi, M. 1955. Prospecting for Bog covered ore by means<br />

<strong>of</strong> peat investigations. Bull. Comm. Geol. Finlande 169.<br />

34 p.<br />

Salmi, M. <strong>196</strong>7. Peat in prospecting: Applications in Finland.<br />

In: Kvalheim, A. (ed.) Geochemical prospecting in Fennoscandia.<br />

London: Interscience Publishers, 113−126.<br />

Shotyk, W. 1988. Review <strong>of</strong> the Inorganic Geochemistry <strong>of</strong><br />

Peats and Peatland Waters. Earth-Science Reviews 25,<br />

95−76.<br />

Talvivaara Mining Company 2010. Talvivaara Mining Company<br />

Plc home page. Available at: http://www.talvivaara.<br />

com/operations/Talvivaara_operations/Geology.<br />

Turveteollisuusliitto, Metsäteollisuus ry & Energiateollisuus<br />

2006. Peat energy quality guide 2006. 24 p.<br />

Ukonmaanaho, L., Nieminen, T.M., Rausch, N., Cheburkin,<br />

A., Le Roux, G. & Shotyk, W. 2006. Recent organic matter<br />

accumulation in relation to some climatic factors<br />

in ombrotrophic peat bogs near heavy metal emission<br />

sources in Finland. Global and Planetary Change 53,<br />

259−268.<br />

Verplanck, P. L., Nordstrom, D. K., Bove, D. J., Plumlee, G.<br />

S. & Runkel, R. L. 2009. Naturally acidic surface and<br />

ground waters draining porphyry-related mineralized<br />

areas <strong>of</strong> the Southern Rocky Mountains. Colorado and<br />

New Mexico Applied Geochemistry 24, 255–267.<br />

Virtanen, K. 1978. Mineralisaation kuvastuminen turpeessa<br />

kolmella Keski-Pohjanmaan suolla. Pro gradu-tutkielma,<br />

Turun yliopisto, Maaperägeologian osasto. 152 p. (in<br />

Finnish)<br />

Virtanen, K. 1990. The Influence <strong>of</strong> Bedrock Belts on the<br />

Trace Elements <strong>of</strong> Peatlands in Haapavesi, Central Finland.<br />

Peat 90. Int. Conf. On Peat Production and Use<br />

11−15.6 1990 Jyväskylä, Finland, 462−474.<br />

Virtanen, K. 1993. The impact <strong>of</strong> the weathering products<br />

<strong>of</strong> calcareous schist on the vegetation and peat chemistry<br />

<strong>of</strong> the peatlands at Kuivaniemi Northern Finland.<br />

In: Autio, S. (ed.) Geological Survey <strong>of</strong> Finland, Cur-<br />

36<br />

rent Research 1991−1992. Geological Survey <strong>of</strong> Finland,<br />

Special Paper 18. 186 p.<br />

Virtanen, K. 1995. Turpeen geokemialliset tutkimukset<br />

Ylivieskan Sydännevalla (2431 07). Geological Survey <strong>of</strong><br />

Finland, archive report P 45.002. 12 p. + 5 app.<br />

Virtanen, K. 2004. Arseeni Pohjois-Pohjanmaan soiden turvekerrostumissa.<br />

Arseeni Suomen luonnossa (in Finnish).<br />

In: Loukola-Ruskeeniemi, K. & Lahermo, P. (eds.)<br />

Ympäristövaikutukset ja riskit. Geological Survey <strong>of</strong><br />

Finland, 51−58.<br />

Virtanen, K. 2005. Geochemistry <strong>of</strong> peat (Turpeen geokemiasta)<br />

Seitsemännet geokemian päivät 24−25.2.2005. In:<br />

Salminen, R. (ed.) Tiivistelmät. Vuorimiesyhdistys sarja<br />

B No 83, 2005, 35−41. (in Finnish)<br />

Virtanen, K., Kokkola, M. & Sandberg, E. 1997. Turpeen<br />

geokemialliset tutkimukset Ilomantsin Pampalossa. Neljännet<br />

geokemian päivät 12.−13.11.1997. In: Lestinen, P.<br />

(ed.) Laajat tiivistelmät. Vuorimiesyhdistys sarja B no 64,<br />

103−109. (in Finnish)<br />

Virtanen, K., Hänninen, P., Kallinen, R-L., Vartiainen, S.,<br />

Herranen, T. & Jokisaari, R. 2003. Suomen turvevarat<br />

2000. Summary: The peat reserves <strong>of</strong> Finland in 2000.<br />

Geological Survey <strong>of</strong> Finland, <strong>Report</strong> <strong>of</strong> <strong>Investigation</strong><br />

156. 101 p. + 7 app.<br />

Virtanen, K. & Lerssi, J. 2006. Influence <strong>of</strong> black schists on<br />

element concentration <strong>of</strong> peat. Geological Survey <strong>of</strong> Finland,<br />

archive report S 42/0000/2006/1. 33 p. + 29 app. (in<br />

Finnish, abstract in English)<br />

Virtanen, K. & Lerssi, J. 2008. The influence <strong>of</strong> metal bearing<br />

black schist bedrock to metal and sulphur concentrations<br />

<strong>of</strong> peat deposits. In: Farrell, C. & Feehan, J. (eds.) After<br />

Wise Use − The Future <strong>of</strong> Peatlands: Proceedings <strong>of</strong><br />

the 13th International Peat Congress − Volume 2. Poster<br />

Presentations. Int. Peat. Soc, 55–59.<br />

West, S., Charman D. J., Grattan J. P. & Cherburkin, A. K.<br />

1997. Heavy metals on Holocene peats from South-West<br />

England: detecting mining impacts and atmospheric pollution.<br />

Water Air Soil Poll 100, 343–353.


www.gtk.<strong>fi</strong><br />

info@gtk.<strong>fi</strong><br />

Three peat study sites representing different bedrock types<br />

and hydrological conditions were sampled in the Talvivaara<br />

area in 2005, before the large-scale mining activities began in<br />

2008. The concentrations <strong>of</strong> Co, Cu, Fe, Mn, Ni, U, Zn and S<br />

and conductivity were lower in peat at a study site on mica<br />

schist bedrock than at two study sites underlain by black<br />

schists hosting the Talvivaara Ni-Cu-Zn-Co deposit. Black<br />

schist refers to a graphite and sulphide rich metasedimentary<br />

rock. It seems likely that hydrological conditions at one sloping<br />

peatland site underlain by black schist have been conducive<br />

to acid rock drainage, production and transport <strong>of</strong> acidic<br />

surface waters with Ni-Cu-Zn-Co- rich suspension from<br />

adjacent black schist outcrops and glacial till throughout the<br />

entire history <strong>of</strong> peat accumulation. The peat layer evidently<br />

functioned in the same way as peat <strong>fi</strong>lters in the remediation<br />

<strong>of</strong> acid mine drainage in present-day mine environments, i.e.<br />

metals were retained in the peat. The acidity <strong>of</strong> peat changed<br />

beneath the surface peat layer in the <strong>196</strong>0s when the peat<br />

became drier due to drainage <strong>of</strong> the peatland, and sulphur<br />

oxidized to SO 4 . We conclude that in sulphide-rich terrain,<br />

sulphur concentrations in peat can be high, and leaching <strong>of</strong><br />

sulphur from peat to surface waters during and after peatland<br />

drainage activities may lead to environmental problems.<br />

ISBN 978-952-217-194-8 (PDF)<br />

ISBN 978-952-217-195-5 (paperback)<br />

ISSN 0781-4240

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!