28.12.2013 Views

Gold deposits in northern Finland - Arkisto.gsf.fi

Gold deposits in northern Finland - Arkisto.gsf.fi

Gold deposits in northern Finland - Arkisto.gsf.fi

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

12th Biennial SGA Meet<strong>in</strong>g<br />

12–15 August 2013, Uppsala, Sweden<br />

M<strong>in</strong>eral deposit research<br />

for a high-tech world<br />

Excursion Guidebook FIN1<br />

<strong>Gold</strong> <strong>deposits</strong> <strong>in</strong> <strong>northern</strong> F<strong>in</strong>land


Geological Survey of Sweden<br />

Box 670<br />

SE-751 28 Uppsala<br />

Sweden<br />

Phone: +46 18 17 90 00<br />

E-mail: kundservice@sgu.se<br />

www.sgu.se<br />

Cover photograph: Pahtavaara m<strong>in</strong>e <strong>in</strong> 2012.<br />

Photo: Courtesy of Lappland <strong>Gold</strong>m<strong>in</strong>ers.<br />

© Sveriges geologiska undersökn<strong>in</strong>g, 2013<br />

Layout: Jeanette Bergman Weihed, SGU


Excursion Guidebook FIN1<br />

<strong>Gold</strong> <strong>deposits</strong> <strong>in</strong> <strong>northern</strong> F<strong>in</strong>land<br />

Pasi Eilu and Tero Niiranen, Geological Survey of F<strong>in</strong>land (GTK)<br />

Excursion held 16–18 August 2013


Dear <strong>fi</strong>eld trip participant<br />

You are hold<strong>in</strong>g <strong>in</strong> your hand a guidebook for<br />

one of several <strong>fi</strong>eld trips offered <strong>in</strong> conjunction<br />

with the 12th SGA biennial meet<strong>in</strong>g held <strong>in</strong><br />

Uppsala, Sweden 12–15 August 2013. As president<br />

of The Society for Geology Applied to M<strong>in</strong>eral<br />

Deposits (SGA) I welcome you to the <strong>fi</strong>eld<br />

trip and hope that it will be reward<strong>in</strong>g with <strong>in</strong>terest<strong>in</strong>g<br />

geology and stimulat<strong>in</strong>g discussions.<br />

The <strong>fi</strong>eld trips organised <strong>in</strong> conjunction with<br />

the SGA biennial meet<strong>in</strong>gs have, so far, been a<br />

success and are regarded as an important part of<br />

the science SGA offers to its members and other<br />

<strong>in</strong>terested geoscientists.<br />

As a scienti<strong>fi</strong>c society, we are proud to be able<br />

to offer the <strong>fi</strong>eld trips this time <strong>in</strong> <strong>northern</strong> Europe<br />

<strong>in</strong> the Fennoscandian Shield and Greenland.<br />

The trips offered deal with ore <strong>deposits</strong> <strong>in</strong><br />

Precambrian shield areas and thus reflect the<br />

metallogeny of the Precambrian. In the Fennoscandian<br />

shield, the ma<strong>in</strong> economic <strong>deposits</strong> are<br />

hosted <strong>in</strong> Palaeoproterozoic rocks, not <strong>in</strong> Archaean.<br />

This will be further expla<strong>in</strong>ed dur<strong>in</strong>g<br />

the <strong>in</strong>dividual trips.<br />

The <strong>fi</strong>eld trips organised will visit many different<br />

deposit types, e.g. ma<strong>fi</strong>c-ultrama<strong>fi</strong>c hosted<br />

Ni-Cu-PGE, IOCG, orogenic gold and VMS,<br />

<strong>in</strong> the ma<strong>in</strong> metallogenetic belts.<br />

SGA would like to acknowledge the hard work<br />

done by the local organis<strong>in</strong>g committee <strong>in</strong> general<br />

and especially the Geological Survey of Sweden<br />

which is the ma<strong>in</strong> organiser of the 12th Biennial<br />

meet<strong>in</strong>g and which has compiled all the <strong>fi</strong>eld trip<br />

guidebooks. Dr Magnus Ripa and the technical<br />

editors from the Geological Survey of Sweden<br />

are especially acknowledged as responsible for<br />

the <strong>fi</strong>eld trip programme. Their colleagues from<br />

the Geological Survey of Denmark, Prof. Jochen<br />

Kolb, the Geological Survey of F<strong>in</strong>land, Prof.<br />

Raimo Laht<strong>in</strong>en, and the Geological Survey of<br />

Norway, Dr Rognvald Boyd, are all thanked for<br />

work<strong>in</strong>g hard to realise the <strong>fi</strong>eld trip programme.<br />

I would also like to express SGA’s s<strong>in</strong>cere<br />

gratitude to all the <strong>in</strong>dividual <strong>fi</strong>eld trip leaders<br />

and contributors: Tobias Bauer (Luleå University<br />

of Technology), Holger Paulick (Boliden<br />

AB), Benno Kathol (Geological Survey of Sweden),<br />

Ia<strong>in</strong> Pitcairn (Stockholm University), Erik<br />

Jonsson (Geological Survey of Sweden), Rodney<br />

Allen (Boliden AB), Nils Jansson (Boliden AB),<br />

Magnus Ripa (Geological Survey of Sweden),<br />

Michael Stephens (Geological Survey of Sweden),<br />

Christ<strong>in</strong>a Wanha<strong>in</strong>en (Luleå University<br />

of Technology), Olof Mart<strong>in</strong>sson (Luleå University<br />

of Technology), Ingmar Lundström (formerly<br />

Geological Survey of Sweden), Per Nysten<br />

(Geological Survey of Sweden), Kar<strong>in</strong> Högdahl<br />

(Uppsala University), Sten Anders Smeds (formerly<br />

Geological Survey of Sweden), Eero Hanski<br />

(Oulu University), Wolfgang Maier (Oulu<br />

University), Yury Voytekhovsky (Kola Science<br />

Centre), Pasi Eilu (Geological Survey of F<strong>in</strong>land),<br />

Tero Niiranen (Geological Survey of<br />

F<strong>in</strong>land), Asko Kont<strong>in</strong>en (Geological Survey<br />

of F<strong>in</strong>land), Jukka Kousa (Geological Survey<br />

of F<strong>in</strong>land), Peter Sorjonen-Ward (Geological<br />

Survey of F<strong>in</strong>land), Hannu Makkonen (Geological<br />

Survey of F<strong>in</strong>land), Terje Bjerkgård<br />

(Geological Survey of Norway), Sven Dahlgren<br />

(Buskerud, Telemark and Vestfold counties),<br />

Henrik Schiellerup (Geological Survey of<br />

Norway), Are Korneliussen (Geological Survey<br />

of Norway), Pål Thjøemøe (Magma Geo park),<br />

Jan Sverre Sandstad (Geological Survey of Norway)<br />

and Espen Torgersen (Geological Survey<br />

of Norway).<br />

With these words, I welcome you to <strong>northern</strong><br />

Europe and the fantastic geology both <strong>in</strong> the<br />

Fennoscandian Shield and on Greenland. Enjoy!<br />

Pär Weihed<br />

President SGA<br />

Excursion Guidebook FIN1 3


Contents<br />

Programme ............................................................................................................................................................................. 6<br />

Contact details of your guides .................................................................................................................................. 6<br />

Introduction ........................................................................................................................................................................... 8<br />

Geological and tectonic evolution of the <strong>northern</strong> part of the Fennoscandian shield ...... 8<br />

Palaeoproterozoic 2.45–1.88 Ga supracrustal sequences ..................................................................................... 12<br />

Palaeoproterozoic <strong>in</strong>trusive magmatism ..................................................................................................................... 18<br />

Early rift<strong>in</strong>g and layered <strong>in</strong>trusions ....................................................................................................................... 18<br />

Ma<strong>fi</strong>c dykes ....................................................................................................................................................................... 18<br />

Granitoids .......................................................................................................................................................................... 18<br />

Palaeoproterozoic deformation and metamorphism ............................................................................................. 20<br />

Epigenetic gold <strong>deposits</strong> <strong>in</strong> <strong>northern</strong> F<strong>in</strong>land ................................................................................................. 21<br />

Pahtavaara gold m<strong>in</strong>e ........................................................................................................................................................... 24<br />

Geology and hydrothermal alteration .................................................................................................................. 24<br />

M<strong>in</strong><strong>in</strong>g ................................................................................................................................................................................ 27<br />

Saattopora gold m<strong>in</strong>e ............................................................................................................................................................ 28<br />

Kittilä gold m<strong>in</strong>e (Suurikuusikko deposit) ................................................................................................................ 31<br />

Exploration history ........................................................................................................................................................ 31<br />

Geology ............................................................................................................................................................................... 33<br />

Acknowledgements ....................................................................................................................................................... 42<br />

Rompas-Rajapalot gold-uranium project, Peräpohja Schist Belt .................................................................... 42<br />

Regional geology ............................................................................................................................................................ 44<br />

Rompas area geology .................................................................................................................................................... 44<br />

M<strong>in</strong>eralisation ................................................................................................................................................................. 46<br />

Mawson exploration team .......................................................................................................................................... 49<br />

References ............................................................................................................................................................................... 49<br />

Excursion Guidebook FIN1 5


Programme<br />

Day 1. Friday 16 August<br />

8.30 Leave GTK North F<strong>in</strong>land Of<strong>fi</strong>ce.<br />

9.00 Leave from hotel Pohjanhovi (downtown<br />

Rovaniemi).<br />

9.30 Leave from Rovaniemi airport.<br />

Stop 1. Lunch at Sodankylä town. About 130 km<br />

drive (2 h) north from Rovaniemi.<br />

Stop 2. Pahtavaara gold m<strong>in</strong>e (Lappland <strong>Gold</strong>m<strong>in</strong>ers)<br />

at Sodankylä. About 35 km drive northwest<br />

from Sodankylä town. We will visit the<br />

active Pahtavaara gold m<strong>in</strong>e. Possibility to see<br />

the ore and the host<strong>in</strong>g sequence, as well as the<br />

process<strong>in</strong>g plant.<br />

Stop 3. Levi, Kittilä. 80 km west from Pahtavaara,<br />

but 135 km along road. Accommodation<br />

at Hotel K5, d<strong>in</strong>ner <strong>in</strong> the even<strong>in</strong>g at the hotel.<br />

Day 2. Saturday 17 August<br />

8.00 Leave hotel. We will return to the same<br />

hotel <strong>in</strong> the even<strong>in</strong>g.<br />

Stop 1. Saattopora gold-copper m<strong>in</strong>e (closed<br />

m<strong>in</strong>e). About 45 km drive (45 m<strong>in</strong>) to the westnorth-west<br />

from Kittilä town. Visit open pit<br />

and waste rock piles, see the ore and the host<strong>in</strong>g<br />

sequence.<br />

Stop 2. Lunch at Kittilä town.<br />

Stop 3. Kittilä M<strong>in</strong>e. Agnico Eagle geologists’<br />

presentation on the geology and m<strong>in</strong><strong>in</strong>g operations.<br />

The exact localities to be visited depend on<br />

the accessibility to different parts of the m<strong>in</strong>e.<br />

Possibly visit to the core yard near Kittilä town<br />

after the m<strong>in</strong>e visit.<br />

Stop 4. Levi, Kittilä. About 40 km drive from<br />

Kittilä m<strong>in</strong>e. Accommodation at Hotel K5, d<strong>in</strong>ner<br />

<strong>in</strong> the even<strong>in</strong>g at the hotel.<br />

Day 3. Sunday 18 August<br />

9.00 Checkout and leave hotel. Drive 210 km<br />

(3 h) south to the Rompas area.<br />

Stop 1. Rompas Au-U prospect. Mawson Resources<br />

geologists’ presentation on the project.<br />

Visit to exploration trenches, outcrops with visible<br />

gold, see the project terra<strong>in</strong> and geophysical<br />

and geochemical exploration data. Field lunch.<br />

16.00 About 40 km, c. 45 m<strong>in</strong>. drive to Rovaniemi<br />

to the east. The bus will stop at the hotels<br />

downtown and at the Rovaniemi airport.<br />

Contact details of your guides<br />

Pasi Eilu: +358 40 8649 165,<br />

E-mail: pasi.eilu@gtk.<strong>fi</strong><br />

Tero Niiranen: +358 50 3487 621,<br />

E-mail: tero.niiranen@gtk.<strong>fi</strong><br />

6 Pasi Eilu & Tero Niiranen (ed.)


Saattopora<br />

Levi<br />

Suurikuusikko<br />

(Kittilä m<strong>in</strong>e)<br />

68°0'0"N<br />

65°0'0"N<br />

Rovaniemi<br />

KITTILÄ<br />

Pahtavaara<br />

SWEDEN<br />

FINLAND<br />

KOLARI<br />

SODANKYLÄ<br />

60°0'0"N<br />

Uppsala<br />

Stockholm<br />

20°0'0"E<br />

25°0'0"E<br />

Hels<strong>in</strong>ki<br />

30°0'0"E<br />

PELLO<br />

67°0'0"N<br />

Field trip location<br />

Day 1 route<br />

Day 2 route<br />

Day 3 route<br />

0 25 50 km<br />

24°0'0"E<br />

Rompas<br />

ROVANIEMI<br />

26°0'0"E<br />

Arctic circle<br />

Excursion Guidebook FIN1 7


Introduction<br />

Pasi Eilu & Tero Niiranen, Geological Survey of F<strong>in</strong>land<br />

The Fennoscandian shield forms the northwestern<br />

part of the East European craton, and<br />

comprises most of F<strong>in</strong>land, Sweden, Karelia,<br />

the Kola Pen<strong>in</strong>sula and, with the Caledonides,<br />

most of Norway (Fig. 1). The oldest rocks have<br />

been dated at 3.6 Ga (Huhma et al. 2004), but<br />

most of the shield comprises Neoarchaean to<br />

Palaeoproterozoic rocks (Laht<strong>in</strong>en et al. 2008).<br />

Meso- to Neoproterozoic crust dom<strong>in</strong>ates <strong>in</strong> the<br />

south-western part of the shield, and the Caledonides<br />

form a major part of the west of the region.<br />

Economic m<strong>in</strong>eral <strong>deposits</strong> occur <strong>in</strong> rocks of<br />

nearly all ages, with major peaks of formation<br />

dur<strong>in</strong>g the Palaeoproterozoic and Caledonian<br />

orogenies.<br />

Northern F<strong>in</strong>land comprises rocks of c. 3.1<br />

to 1.8 Ga. Metallogenic belts cover large parts<br />

of the area (Fig. 2). Despite extensive Neoarchaean<br />

rocks <strong>in</strong> the area, no economic m<strong>in</strong>eralisation<br />

predat<strong>in</strong>g 2.45 Ga has so far been<br />

discovered. The detected Archaean BIF, epigenetic<br />

Au and komatiitic Ni occurrences are<br />

rather small (FODD 2013). Major m<strong>in</strong>eralisation<br />

stages <strong>in</strong> <strong>northern</strong> F<strong>in</strong>land relate to 2.45 Ga<br />

layered <strong>in</strong>trusions (PGE ± Ni-Cu, Cr, V-Ti-Fe),<br />

2.1–1.9 Ga (?) supracrustal sequences (komatiitic<br />

Ni, stratabound Cu-Zn, BIF, possible Au),<br />

c. 2.06 Ga ma<strong>fi</strong>c to ultrama<strong>fi</strong>c <strong>in</strong>trusions (Ni-<br />

Cu ± PGE), and the 1.94–1.79 Ga Lapland–<br />

Kola and Svecofennian orogenies (Au ± Cu ±<br />

Co, IOCG).<br />

Presently, m<strong>in</strong><strong>in</strong>g takes place <strong>in</strong> the 2.45 Ga<br />

and 2.06 Ga <strong>in</strong>trusions (Cr and Ni-Cu-PGE,<br />

respectively) and the Palaeoproterozoic supracrustal<br />

rocks m<strong>in</strong>eralised dur<strong>in</strong>g the Lapland–<br />

Kola to Svecofennian orogenies (Au). This <strong>fi</strong>eld<br />

trip targets on the latter: orogenic gold and of<br />

possibly other types of epigenetic gold <strong>deposits</strong><br />

(Suurikuusikko, Saattopora, Rompas), but we<br />

will also see a gold deposit that may be of syngenetic<br />

type (Pahtavaara). Despite m<strong>in</strong><strong>in</strong>g, a lot of<br />

genetic uncerta<strong>in</strong>ties still relate to these <strong>deposits</strong>,<br />

matters that we expect to be widely discussed<br />

dur<strong>in</strong>g this <strong>fi</strong>eld trip.<br />

Geological and tectonic evolution of the <strong>northern</strong> part<br />

of the Fennoscandian shield<br />

Pasi Eilu, Tero Niiranen & Laura Lauri, Geological Survey of F<strong>in</strong>land<br />

The bedrock of <strong>northern</strong> F<strong>in</strong>land comprises<br />

Mesoarchaean to Palaeoproterozoic rocks. Their<br />

geological evolution can only be described <strong>in</strong><br />

the context of the entire Fennoscandian shield.<br />

Below, we describe this evolution <strong>in</strong> three parts,<br />

the Archaean, the Proterozoic predat<strong>in</strong>g the<br />

Svecofennian orogeny and the Svecofennian.<br />

This description is essentially based on Laht<strong>in</strong>en<br />

(2012) unless otherwise is <strong>in</strong>dicated.<br />

The Archaean crust, either exposed or concealed<br />

under Palaeoproterozoic cover rocks<br />

and granitoids, occurs <strong>in</strong> the east and north of<br />

Fenno scandia. Four major Archaean prov<strong>in</strong>ces<br />

have been outl<strong>in</strong>ed (Fig. 1, modi<strong>fi</strong>ed after Hölttä<br />

et al. 2008). The western and eastern parts of the<br />

Karelian prov<strong>in</strong>ce comprise Mesoarchaean, 2.8–<br />

3.0 Ga rocks, but rocks older than 3.0 Ga occur<br />

locally. The central part of the Karelian prov<strong>in</strong>ce<br />

is ma<strong>in</strong>ly Neoarchaean, hav<strong>in</strong>g plutonic and volcanic<br />

rocks that are 2.75–2.70 Ga <strong>in</strong> age. The<br />

volcanic belts formed <strong>in</strong> various geo dynamic sett<strong>in</strong>gs,<br />

<strong>in</strong>clud<strong>in</strong>g oceanic plateau, island arc, back<br />

arc, <strong>in</strong>tra-arc and <strong>in</strong>tra-cont<strong>in</strong>ental rift. Neoarchaean<br />

accretion at c. 2.83–2.75 Ga and sub­<br />

8 Pasi Eilu & Tero Niiranen (ed.)


Timanide orogen<br />

500 km<br />

Murmansk<br />

Lapland-Kola<br />

Kola prov<strong>in</strong>ce<br />

Ki<br />

K<br />

Belomorian prov<strong>in</strong>ce<br />

Norrbotten<br />

prov<strong>in</strong>ce<br />

Karelian prov<strong>in</strong>ce<br />

SA<br />

J<br />

SB<br />

WGC<br />

NORWAY<br />

Svecofennian<br />

prov<strong>in</strong>ce<br />

CS<br />

CFGC<br />

FINLAND<br />

O<br />

RUSSIA<br />

SWEDEN<br />

SS<br />

Ladoga<br />

T<br />

DENMARK<br />

Oslo<br />

OR<br />

G<br />

Småland<br />

BA<br />

Stockholm<br />

BALTIC SEA<br />

Hels<strong>in</strong>ki<br />

ESTONIA<br />

LATVIA<br />

St. Petersburg<br />

East European Craton<br />

Atlantic<br />

Baltic Sea<br />

Archaean<br />

FENNOSCANDIAN<br />

SHIELD<br />

Palaeoproterozoic<br />

Fennoscandia<br />

VOLGO-URALIA<br />

R.F.<br />

LITHUANIA<br />

Ukra<strong>in</strong>ian<br />

Shield<br />

SARMATIA<br />

Caledonian orogenic belt (510–400 Ma)<br />

Archaean and cover rocks <strong>in</strong> Lower Allochthon<br />

Phanerozoic to Neoproterozoic rocks<br />

Alkalic plutonic rocks<br />

Sedimentary rocks<br />

Mesoproterozoic rocks<br />

Rapakivi granite association (1650–1470 Ma)<br />

Sedimentary rocks (1500–1270 Ma)<br />

Projected Archaean–Proterozoic boundary<br />

Prov<strong>in</strong>ce and sub-prov<strong>in</strong>ce boundaries<br />

Sveconorwegian orogenic belt (1100–920 Ma)<br />

Sedimentary and volcanic rocks (2500–1960 Ma)<br />

Palaeoproterozoic rocks<br />

Ma<strong>fi</strong>c plutonic rocks (2500–1960 Ma)<br />

Sedimentary and volcanic rocks (1950–1800 Ma)<br />

Plutonic rocks (1960–1840 Ma)<br />

Plutonic rocks (1850–1660 Ma)<br />

Archaean rocks<br />

Plutonic rocks and gneisses (3500–2500 Ma)<br />

Volcanic and sedimentary rocks (3200–2700 Ma)<br />

Rocks >3000 Ma<br />

Figure 1. Fennoscandia and its location with<strong>in</strong> the East European Craton (Laht<strong>in</strong>en 2012). Simpli<strong>fi</strong>ed geological map<br />

based on Koist<strong>in</strong>en et al. (2001) and <strong>in</strong>set map based on Gorbatschev and Bogdanova (1993). Subareas: CS – Central<br />

Svecofennia, SS – Southern Svecofennia. Areas and localities: BA – Bergslagen area, G – Gothian terranes, J – Jormua,<br />

K – Kittilä, Ki – Kiruna, O – Outokumpu, OR – Oslo rift, SA – Skellefte Area, SB – Savo Belt, T – Telemarkian terranes,<br />

WGC – Western Gneiss Complex.<br />

Excursion Guidebook FIN1 9


25°E<br />

30°E<br />

Bjørnevatn<br />

Fe<br />

NORWAY<br />

Bidjovagge<br />

Au-Cu<br />

Pechenga<br />

Ni<br />

69°N<br />

RUSSIA<br />

Saattopora<br />

Au-Cu<br />

Suurikuusikko<br />

Au<br />

Koitela<strong>in</strong>en<br />

Cr-V<br />

Sokli P(Nb)<br />

Hannuka<strong>in</strong>en<br />

Fe<br />

Kittilä<br />

Pahtavaara<br />

Au<br />

Kevitsa<br />

Ni-Cu-PGE<br />

Sakatti Ni-Cu<br />

Tapuli Fe<br />

Sodankylä<br />

Akanvaara<br />

Cr-V<br />

SWEDEN<br />

FINLAND<br />

Rovaniemi<br />

Konttijärvi<br />

PGE<br />

Siika-Kämä<br />

PGE<br />

Juomasuo<br />

Au-Co<br />

66°N<br />

Ahmavaara<br />

PGE<br />

0 50 km<br />

Kemi Cr<br />

Mustavaara<br />

V<br />

Figure 2. Metallogenic belts and major metallic m<strong>in</strong>eral <strong>deposits</strong> of <strong>northern</strong> F<strong>in</strong>land and surround<strong>in</strong>gs<br />

(Eilu et al. 2009, FODD 2013). Legend on the fac<strong>in</strong>g page.<br />

10 Pasi Eilu & Tero Niiranen (ed.)


Metallogenic Areas and M<strong>in</strong>eral Deposits<br />

Base metals: Co, Cu, Pb, Zn<br />

Base metals: Ni<br />

Ferrous metals: Cr, Fe, Mn, Ti, V<br />

Precious metals: Ag, Au<br />

PGE: Pd, Pt, Rh<br />

Special metals: Be, Li, Mo, Nb, REE, Sc, Sn, Ta, W, Zr<br />

Energy metals: U, Th<br />

Deposit size<br />

Small, Show<strong>in</strong>g<br />

Potentially large, Medium<br />

Very large, Large<br />

Neoproterozoic (and possibly Mesoproterozoic) and Phanerozoic rocks<br />

outside the Caledonian orogenic belt<br />

Vendian to Cambrian and Devonian alkal<strong>in</strong>e igneous rocks<br />

Upper Riphean (and possibly older) Vendian and Phanerozoic sedimentary rocks<br />

Caledonian orogenic belt<br />

Neoproterozoic and Palaeozoic (Cambrian to Devonian) rocks<br />

along the shortened Baltoscandian cont<strong>in</strong>ental marg<strong>in</strong><br />

Proterozoic rocks (c. 2.30–0.90 Ga) along the shortened Baltoscandian cont<strong>in</strong>ental marg<strong>in</strong><br />

Palaeoproterozoic rocks (2.50–1.75 Ga)<br />

Volcanic rocks (c. 1.96–1.75 Ga)<br />

Supracrustal rocks, predom<strong>in</strong>antly sedimentary rocks (1.96–1.75 Ga)<br />

Intrusive rocks, predom<strong>in</strong>antly granitoids (1.96–1.75 Ga)<br />

Supracrustal rocks, predom<strong>in</strong>antly ma<strong>fi</strong>c to ultrama<strong>fi</strong>c volcanic rocks<br />

and sedimentary rocks (2.50–1.96 Ga)<br />

Intrusive rocks, predom<strong>in</strong>antly ma<strong>fi</strong>c and ultrama<strong>fi</strong>c (2.50–1.96 Ga)<br />

Archaean rocks<br />

Intrusive rocks, orthogneiss, migmatitic gneiss (c. 3.20–2.50 Ga and possibly older)<br />

Supracrustal rocks (c. 3.20–2.75 Ga and possibly older)<br />

sequent collisional stack<strong>in</strong>g at 2.73–2.68 Ga is<br />

the proposed model for the amalgamation of the<br />

Karelia Prov<strong>in</strong>ce (Hölttä et al. 2012).<br />

The Belomorian prov<strong>in</strong>ce (Fig. 1) is dom<strong>in</strong>ated<br />

by 2.9–2.7 Ga granitoids and <strong>in</strong>cludes volcanic<br />

rocks formed at 2.88–2.82 Ga, 2.8–2.78 Ga<br />

and 2.75–2.66 Ga. The Neoarchaean ophiolitelike<br />

rocks and 2.7 Ga eclogites <strong>in</strong> the Belomorian<br />

prov<strong>in</strong>ce are possible examples of Phanerozoic-style<br />

subduction and collision (Hölttä et al.<br />

2008). The Kola prov<strong>in</strong>ce (comb<strong>in</strong>ed Kola and<br />

Murmansk prov<strong>in</strong>ces of Hölttä et al. 2008) is a<br />

mosaic of Mesoarchaean and Neoarchaean units,<br />

together with some Palaeoproterozoic components.<br />

The Archaean part of the Norrbotten prov<strong>in</strong>ce<br />

is ma<strong>in</strong>ly concealed under cover rocks, and<br />

very limited data are available (Mellqvist et al.<br />

1999, Bergman et al. 2001).<br />

Rift<strong>in</strong>g of the Archaean cont<strong>in</strong>ent or cont<strong>in</strong>ents<br />

began <strong>in</strong> north-eastern Fennoscandia<br />

and became widespread after the emplacement<br />

of 2.50–2.44 Ga, plume-related, layered gabbro-norite<br />

<strong>in</strong>trusions and dyke swarms (Ilj<strong>in</strong>a<br />

& Hanski 2005). Erosion and deep weather<strong>in</strong>g<br />

after 2.44 Ga was followed by glaciation, and<br />

later deep chemical weather<strong>in</strong>g aga<strong>in</strong> covered<br />

large areas <strong>in</strong> the Karelian prov<strong>in</strong>ce at c. 2.35 Ga<br />

(Laajoki 2005, Melezhik 2006). Rift<strong>in</strong>g events<br />

at 2.4–2.1 Ga are associated with mostly tholeiitic<br />

ma<strong>fi</strong>c dykes and sills, sporadic volcanism<br />

and typically fluvial to shallow-water sedimentary<br />

rocks (Laajoki 2005, Vuollo & Huhma<br />

2005). Local shallow mar<strong>in</strong>e environments were<br />

marked by deposition of carbonates, and possibly<br />

evaporites, at 2.2–2.1 Ga, show<strong>in</strong>g a large<br />

positive δ 13 C isotope anomaly dur<strong>in</strong>g the Lomagundi–Jatuli<br />

Event (Karhu 2005, Melezhik<br />

et al. 2007, Kyläkoski et al. 2012a). Along the<br />

present western edge of the Karelian prov<strong>in</strong>ce,<br />

2.05 Ga bimodal felsic-ma<strong>fi</strong>c volcanic rocks of<br />

alkal<strong>in</strong>e aff<strong>in</strong>ity are <strong>in</strong>tercalated with deep-water<br />

turbiditic sedimentary rocks.<br />

Excursion Guidebook FIN1 11


No clear examples of subduction-related<br />

magmatism between 2.70 and 2.05 Ga have<br />

been found <strong>in</strong> Fennoscandia. The 2.02 Ga, felsic<br />

sub-volcanic and possibly volcanic rocks <strong>in</strong><br />

F<strong>in</strong>nish Lapland (Kittilä <strong>in</strong> Fig. 1) occur <strong>in</strong> association<br />

with oceanic island arc-type rocks and<br />

are the oldest candidates for Palaeoproterozoic<br />

subduction-related rocks (Hanski & Huhma<br />

2005). Associated cont<strong>in</strong>ental with<strong>in</strong>-plate volcanic<br />

rocks are possibly related to the cont<strong>in</strong>ued<br />

break-up of the craton. Bimodal alkal<strong>in</strong>e–<br />

tholeiitic magmatism <strong>in</strong> central Lapland (Hanski<br />

et al. 2005) and rift-related magmatism <strong>in</strong><br />

Kola (Pechenga) show that rift magmatism cont<strong>in</strong>ued<br />

until 1.98 Ga. The Jormua–Outokumpu<br />

ophiolites (Fig. 1), tectonically <strong>in</strong>tercalated with<br />

deep-water turbidites, are unique examples of<br />

Archaean subcont<strong>in</strong>ental lithospheric mantle<br />

with a th<strong>in</strong> veneer of oceanic crust formed at<br />

1.95 Ga along the western edge of the present<br />

Karelian prov<strong>in</strong>ce (Peltonen 2005).<br />

The ma<strong>in</strong> Palaeoproterozoic orogenic evolution<br />

of Fennoscandia can be divided <strong>in</strong>to the<br />

Lapland–Kola orogen (1.94–1.86 Ga, Daly<br />

et al. 2006) and the composite Svecofennian<br />

orogen (1.92–1.79 Ga, Laht<strong>in</strong>en et al. 2005,<br />

2008). The latter is divided <strong>in</strong>to the Lapland–<br />

Savo, Fennian, Svecobaltic and Nordic orogens.<br />

Whereas the Lapland–Kola orogen shows only<br />

limited formation of new crust, the composite<br />

Sveco fennian orogen produced a large volume<br />

of Palaeoproterozoic crust <strong>in</strong> the Svecofennian<br />

prov<strong>in</strong>ce. It should be noted that igneous rocks<br />

of 1.9–1.8 Ga age <strong>in</strong> <strong>northern</strong> F<strong>in</strong>land show<br />

a large contribution of older LREE-enriched<br />

litho sphere (Huhma et al. 2011) verify<strong>in</strong>g the<br />

occurrence of Archaean crust below the Palaeoproterozoic<br />

cover <strong>in</strong> the Karelian prov<strong>in</strong>ce.<br />

Palaeoproterozoic 2.45–1.88 Ga<br />

supracrustal sequences<br />

Palaeoproterozoic supracrustal sequences overlie<br />

much of the <strong>northern</strong> part of the Fennoscandia.<br />

In F<strong>in</strong>land, the ma<strong>in</strong> sequences are the Central<br />

Lapland Greenstone Belt, Peräpohja and Kuusamo<br />

schist belts and the Lapland granulite belt<br />

(Figs. 1, 3–6). Figure 4 summarises the stratigraphy<br />

of the Central Lapland Greenstone Belt<br />

(CLGB), which is the dom<strong>in</strong>ant supracrustal sequence<br />

of the region. This stratigraphy has been<br />

applied also to the Peräpohja and Kuusamo belts<br />

with variable success. Figures 5 and 6 show the<br />

major stratigraphic units for the Peräpohja belt.<br />

The lowermost units of the greenstones, the<br />

Vuojärvi and Salla groups, lie unconformably<br />

on the Archaean TTG rocks. The rocks of the<br />

Salla Group are clearly of early Palaeoproterozoic<br />

age. However, the age of the Vuojärvi Group is<br />

uncerta<strong>in</strong> and can even be of the latest Neoarchaean.<br />

The Vuojärvi and Salla groups are followed<br />

by sedimentary and volcanic units which<br />

precede the c. 2.2 Ga igneous event and comprise<br />

the Kuusamo and Sodankylä Groups <strong>in</strong><br />

the CLGB and <strong>in</strong> the Kuusamo schist belt. The<br />

Sodan kylä Group also hosts many, but not all,<br />

of the known Palaeoproterozoic syngenetic sulphide<br />

occurrences <strong>in</strong> the CLGB.<br />

The ma<strong>fi</strong>c to ultra ma<strong>fi</strong>c volcanic and shallow<br />

mar<strong>in</strong>e sedimentary units of the Savukoski<br />

Group were deposited dur<strong>in</strong>g 2.2–2.01 Ga <strong>in</strong><br />

the CLGB, and similar units were also formed<br />

<strong>in</strong> the Kuusamo and Peräpohja belts (Lehtonen<br />

et al. 1998, Rastas et al. 2001). In the latter belt,<br />

rocks aged from the Petäjäskoski Formation to<br />

Väystäjä Formation (Fig. 5) seem to be contemporaneous<br />

with the Savukoski Group (Kyläkoski<br />

et al. 2012a). Age data from the Palaeoproterozoic<br />

greenstones (e.g. Perttunen & Vaasjoki<br />

2001, Rastas et al. 2001, Väänänen & Lehtonen<br />

2001, Kyläkoski et al. 2012a) suggest a major<br />

magmatic and rift<strong>in</strong>g event at c. 2.1 Ga with the<br />

f<strong>in</strong>al break up tak<strong>in</strong>g place at 2.06 Ga. Extensive<br />

occurrences of 2.13 and 2.05 Ga dolerites<br />

also support these dates. Thick piles of mantlederived<br />

volcanic rocks, <strong>in</strong>clud<strong>in</strong>g komatiitic and<br />

picritic high-temperature melts, are restricted to<br />

the Kittilä–Karasjok–Kauto ke<strong>in</strong>o–Kiruna area<br />

and are suggested to represent plume-generated<br />

volcanism (Mart<strong>in</strong>sson 1997). The rift<strong>in</strong>g of the<br />

Archaean craton along a north-west-trend<strong>in</strong>g<br />

12 Pasi Eilu & Tero Niiranen (ed.)


24°0'0"E<br />

26°0'0"E<br />

68°0'0"N<br />

Suurikuusikko<br />

STZ<br />

Saattopora<br />

Sirkka<br />

STZ<br />

KITTILÄ<br />

Hannuka<strong>in</strong>en<br />

VTZ<br />

Kutuvuoma<br />

Pahtavuoma<br />

Rautuvaara<br />

STZ<br />

VTZ<br />

VTZ<br />

SODANKYLÄ<br />

0 10 20 km<br />

Palaeoproterozoic Groups<br />

Kumpu Group<br />

Quartzite, siltstone, conglomerate,<br />

<strong>in</strong>termediate to felsic volcanic rocks<br />

Kittilä Group<br />

Tholeiitic volcanic rocks, graphite- and sulphide-bear<strong>in</strong>g tuf<strong>fi</strong>te,<br />

BIF, phyllite, mica schist, graywacke<br />

Savukoski Group<br />

Tholeiitic and komatiitic volcanic rocks, phyllite, graphite and<br />

sulphide-bear<strong>in</strong>g schist, tuf<strong>fi</strong>te, dolomite<br />

Sodankylä Group<br />

Quartzite, mica schist, mica gneiss, ma<strong>fi</strong>c volcanic rock<br />

Kuusamo Group<br />

Tholeiitic and komatiitic volcanic rocks<br />

Salla Group<br />

Intermediate to felsic volcanic rocks<br />

Vuojärvi Group<br />

Quartzite, mica gneiss, possibly volcanic <strong>in</strong> orig<strong>in</strong><br />

Palaeoproterozoic complexes<br />

Lapland granulite complex<br />

Vuotso complex<br />

Hetta complex<br />

Central Lapland granitoid complex<br />

Archaean complexes<br />

Pomokaira and Muonio complexes<br />

Palaeoproterozoic supracrustal suites<br />

Nuttio suite<br />

Olostunturi suite<br />

Diverse lithodemes<br />

Palaeoproterozoic hypabyssal suites<br />

Haaskalehto gabbro-wehrlite suite<br />

Palaeoproterozoic <strong>in</strong>trusive suites<br />

Nattanen granite suite<br />

Haaparanta suite<br />

Nilipää granite suite<br />

Eastern Lapland layered <strong>in</strong>trusion suite<br />

Keivitsa layered <strong>in</strong>trusion suite<br />

Major structures<br />

Shear or fault zone<br />

Thrust zone<br />

<strong>Gold</strong> <strong>deposits</strong><br />

Active or past-produc<strong>in</strong>g m<strong>in</strong>e<br />

Prospect<br />

Figure 3. Geology of the Central Lapland greenstone belt, with the CLGB gold occurrences listed <strong>in</strong> Tables 1<br />

and 2. Compiled by Tero Niiranen, geology based on the GTK digital bedrock database. STZ – Sirkka Thrust Zone,<br />

VTZ – Venejoki Thrust Zone.<br />

Excursion Guidebook FIN1 13


Central Lapland Greenstone Belt stratigraphy and igneous ages<br />

>1.88 Ga terrestrial sediments,<br />

<strong>in</strong>termediate to felsic volcanic<br />

rocks<br />

1.80<br />

Kumpu Gp<br />

~2.0 Ga tholeiitic volcanic rocks,<br />

shallow to deep mar<strong>in</strong>e sediments<br />

Kittilä Gp<br />

>2.05 Ga komatiitic to ma<strong>fi</strong>c volcanic<br />

rocks, shallow mar<strong>in</strong>e sediments<br />

1.91<br />

Savukoski Gp<br />

1.89–<br />

1.86<br />

>2.2 Ga terrestrial to shallow mar<strong>in</strong>e<br />

sediments, ma<strong>fi</strong>c to <strong>in</strong>termediate<br />

volcanic rocks<br />

Sodankylä Gp<br />

2.05<br />

Tholeiitic and komatiitic<br />

volcanic rocks<br />

2.44 Ga felsic to <strong>in</strong>termediate<br />

volcanic rocks<br />

Undef<strong>in</strong>ed quartzite, mica gneiss<br />

and felsic to <strong>in</strong>termediate volcanic<br />

rocks, possibly Archean <strong>in</strong> age<br />

Felsic <strong>in</strong>trusions<br />

2.1<br />

Kuusamo Gp<br />

Salla Gp<br />

Vuojärvi Gp<br />

2.2–<br />

2.14<br />

Ma<strong>fi</strong>c to felsic <strong>in</strong>trusions<br />

Ma<strong>fi</strong>c layered <strong>in</strong>trusions,<br />

ma<strong>fi</strong>c sills and dykes<br />

Archean Bas<strong>in</strong><br />

Tectonic contact with<br />

ophiolite fragments<br />

2.44<br />

2.1 Igneous age <strong>in</strong> Ga<br />

Figure 4. Stratigraphy of the Central Lapland greenstone belt. Ages given as Ga. ‘Archaean Bas<strong>in</strong>’ means the<br />

Archaean TTG rocks on which part of the Palaeoproterozoic sequence unconformably lies. Compiled by Tero<br />

Niiranen (GTK), after Hanski et al. (2001) and the 2013 version of the GTK digital bedrock database.<br />

Haparanda Suite<br />

CLGC<br />

Pöyliövaara<br />

Korkiavaara<br />

Väystäjä<br />

PAAKKOLA<br />

GROUP<br />

Martimo<br />

Rantamaa/Poikkimaa<br />

Tikanmaa<br />

Kvartsimaa<br />

Jouttiaapa<br />

2.1, 2.05 Ga?<br />

Petäjäskoski<br />

KIVALO<br />

GROUP<br />

Ma<strong>fi</strong>c sills<br />

2.1 Ga<br />

Palokivalo<br />

Runkaus<br />

2.2 Ga<br />

Sompujärvi<br />

Pudasjärvi Basement Complex<br />

2.4 Ga Layered <strong>in</strong>trusions<br />

Figure 5. Stratigraphy of the<br />

Peräpohja schist belt (Kyläkoski<br />

et al. 2012a), largely based on<br />

Perttunen & Hanski (2003).<br />

14 Pasi Eilu & Tero Niiranen (ed.)


24°0'0"E<br />

25°0'0"E<br />

26°0'0"E<br />

N Rompas<br />

Palokas<br />

C Rompas<br />

Joki<br />

S Rompas<br />

Hirvimaa<br />

Rumajärvi<br />

66°20'0"N<br />

V<strong>in</strong>sa<br />

Petäjävaara<br />

Sivakkajoki<br />

Kivimaa<br />

Vähäjoki<br />

66°0'0"N<br />

Laurila<br />

0 10 20 km<br />

Paakkola Group<br />

Pöyliövaara–Martimo fm<br />

Heraselkä fm<br />

Mäntyvaara fm<br />

Väystäjä fm<br />

Korkiavaara fm<br />

Kivalo Group<br />

Rantamaa–Poikkimaa fm<br />

Tikanmaa–Hirsimaa fm<br />

Kvartsimaa fm<br />

Jouttiaapa fm<br />

Palokivalo–Ounasvaara fm<br />

Runkaus fm<br />

Sompujärvi fm<br />

2.2–2.05 Ga ma<strong>fi</strong>c dykes and sills<br />

1.91–1.89 Ga Haaparanta suite <strong>in</strong>trusions<br />

2.44 Ga layered <strong>in</strong>trusions<br />

Central Lapland granitoid complex, Mellanjoki suite<br />

Central Lapland granitoid complex<br />

Neoarchean schist and greenstone belts<br />

Pudasjärvi basement complex<br />

Au deposit<br />

Figure 6. Geology of the Peräpohja schist belt (Kyläkoski et al. 2012a). Geology based on the GTK digital<br />

bedrock database.<br />

Excursion Guidebook FIN1 15


Table 1. <strong>Gold</strong> and gold-base metal <strong>deposits</strong> <strong>in</strong> the Central Lapland greenstone belt and Peräpohja schist belt with<br />

a resource estimate. The data are from the FINGOLD database (Eilu & Pankka 2009) and FODD (2013). M<strong>in</strong><strong>in</strong>g by<br />

the end of 2012, m<strong>in</strong>ed tonnages and grades as reported by the m<strong>in</strong><strong>in</strong>g companies. Size <strong>in</strong>dicates global resource +<br />

m<strong>in</strong>ed <strong>in</strong> millions of tonnes of ore.<br />

Deposit<br />

Size<br />

(Mt)<br />

M<strong>in</strong>ed<br />

(Mt)<br />

Au<br />

(g/t)<br />

Co<br />

(%)<br />

Cu<br />

(%)<br />

Ni<br />

(%)<br />

Host rocks 1<br />

Sit<strong>in</strong>g of gold<br />

Central Lapland greenstone belt<br />

Orogenic gold deposit<br />

Hirvilavanmaa 0.11 2.9 Komatiite Free native with pyrite and<br />

tellurides<br />

Kaaresselkä 0.3 5 0.03 0.2 Ma<strong>fi</strong>c tuf<strong>fi</strong>te Free native assoc. with gangue<br />

and sulphides<br />

Kettukuusikko 0.44 1.8 nr Komatiite Free native assoc.with pyrite<br />

and ve<strong>in</strong> quartz<br />

Kuotko 1.823 2.89 Ma<strong>fi</strong>c volcanic<br />

rocks<br />

Kutuvuoma 0.068 0.02 6.7 Komatiite,<br />

phyllite<br />

Free native assoc. with<br />

arsenopyrite and pyrite<br />

Free native assoc. with<br />

arsenopyrite and pyrite<br />

Louk<strong>in</strong>en 2 0.114 0.5 nr 0.45 Komatiite Free native + <strong>in</strong>clusions <strong>in</strong><br />

sulphides<br />

Saattopora Au 3 2.163 2.163 2.9 0.25 Albitised<br />

phyllite<br />

Sirkka (Sirkka kaivos) 0.25 0.8 0.1 0.38 0.32 Albitised<br />

phyllite<br />

Free native assoc. with gangue<br />

and sulphides<br />

Free native assoc. with gangue<br />

and sulpharsenides<br />

Soretialehto 0.013 3.5 Komatiite Free native assoc. with quartz<br />

and pyrite<br />

Kittilä M<strong>in</strong>e<br />

(Suurikuusikko)<br />

64.09 4.14 4.15 Ma<strong>fi</strong>c volcanic<br />

rocks, phyllite<br />

Refractory <strong>in</strong> arsenopyrite and<br />

pyrite<br />

Syngenetic Cu overpr<strong>in</strong>ted by orogenic gold or orogenic gold with an anomalous metal association<br />

Riikonkoski 9.45 nr 0.45 Intermediate<br />

tuf<strong>fi</strong>te<br />

Saattopora Cu 11.6 0.25 0.01 0.62 0.1 Intermediate<br />

tuf<strong>fi</strong>te<br />

Assoc. with arsenopyrite ±<br />

chalcopyrite<br />

Associated with chalcopyrite?<br />

Orogenic or syngenetic<br />

Pahtavaara Au 7.74 4.98 2.65 Komatiite Free native assoc. with gangue<br />

Peräpohja schist belt<br />

Kivimaa 0.023 0.018 5.3 1.87 Dolerite Assoc. with arsenopyrite ±<br />

free gold.<br />

Vähäjoki 4 10.5 0.2 0.03 0.17 Ma<strong>fi</strong>c tuf<strong>fi</strong>te,<br />

marl<br />

Assoc. with pyrite, cobaltite<br />

and arsenopyrite<br />

nr Not reported <strong>in</strong> resource estimate, but analysed drill <strong>in</strong>tercepts <strong>in</strong>dicate that the deposit conta<strong>in</strong>s, at least <strong>in</strong><br />

parts, several g/t gold (if Cu reported) or 0.1−2% copper (if Au reported).<br />

1 All host rocks are metamorphosed; hence, the pre<strong>fi</strong>x meta is implied but omitted. ‘Intermed tuf<strong>fi</strong>te’ and ‘phyllite’<br />

def<strong>in</strong>e a sequence vary<strong>in</strong>g from volcanic to clastic-dom<strong>in</strong>ated types of f<strong>in</strong>e-gra<strong>in</strong>ed, schistose rock.<br />

2 Four or <strong>fi</strong>ve ore bodies known, some probably with higher gold and lower base metal grades, but only one with<br />

a reported resource estimate.<br />

3 Only the m<strong>in</strong>ed tonnage has been reported; there probably are resources at depth, but their volume is unknown.<br />

4 Also conta<strong>in</strong>s 39.4% Fe.<br />

16 Pasi Eilu & Tero Niiranen (ed.)


Table 2. Selected, potentially signi<strong>fi</strong>cant gold (± base metal) occurrences without a resource estimate <strong>in</strong> the Central<br />

Lapland greenstone belt (CLGB) and Peräpohja schist belt (PSB).<br />

Name Best section Host rocks Sit<strong>in</strong>g of gold Reference<br />

CLGB<br />

Aakenusvaara<br />

Harrilommol<br />

Kellolaki<br />

20 m at 6.0 g/t Au, 0.1% Cu;<br />

6.4 m at 7.3 g/t Au, 0.05% Cu<br />

3 m at 5.0 g/t Au;<br />

12 m at 0.51 g/t Au, 0.16% Cu<br />

5 m at 10.00 g/t Au;<br />

5 m at 7.46 g/t Au<br />

Albitised phyllite Similar to Saattopora? Laht<strong>in</strong>en et al.,<br />

unpublished report<br />

2005)<br />

Albitised phyllite Similar to Saattopora Korvuo (1997)<br />

(Table 1)?<br />

Ma<strong>fi</strong>c volc. rocks Native gold assoc. Talikka & Eilu (2011)<br />

with pyrite?<br />

Kerolaki 1 m at 12.6 g/t Au Chert Native gold <strong>in</strong>clusions<br />

<strong>in</strong> arsenopyrite; also<br />

free gold?<br />

Kiimakuusikko<br />

Kiimalaki<br />

Muusanlammit<br />

Naakenavaara<br />

Palolaki<br />

3.45 m at 3.94 g/t Au;<br />

grab samples up to: 3.82 g/t<br />

Au, 954 g/t Ag, 0.36% Cu,<br />

8.09% Pb, 0.42% Zn, 1.97% Sb<br />

10.6 m at 4.86 g/t Au;<br />

11.7 m at 4.5 g/t Au<br />

4.8 m at 1.0% Cu;<br />

several 1.5 m sections at<br />

2–7 g/t Au and 5–14 g/t Ag.<br />

1 m at 1–10 g/t Au;<br />

15 m at 0.3% Cu<br />

1 m at 1.6 g/t Au;<br />

1 m at 1.1 g/t Au, 1.3 g/t Pd,<br />

0.37 g/t Pt<br />

Albitised qtzfsp-porphyry<br />

Albitised qtzfsp-porphyry<br />

Phyllite,<br />

<strong>in</strong>termed. tuf<strong>fi</strong>te<br />

Native gold assoc.<br />

with pyrite?<br />

Native gold assoc.<br />

with pyrite?<br />

Hulkki et al. (2010)<br />

Talikka & Eilu (2011)<br />

Talikka & Eilu (2011)<br />

Not reported Re<strong>in</strong>o 1976,<br />

unpublished report,<br />

Outokumpu M<strong>in</strong><strong>in</strong>g<br />

Oy<br />

Albitised phylite Free native assoc.<br />

with gangue and<br />

sulphides<br />

Ke<strong>in</strong>änen (2002)<br />

Intermed. tuf<strong>fi</strong>te Not reported Hulkki (2002), Hulkki<br />

et al. (2010)<br />

Pikku-Mustavaara 5 m at 2.8 g/t Au, 0.3% Cu Albitised phylite Free native assoc.<br />

with sulphides<br />

Ruosselkä<br />

Sukseton<br />

Tuongankuusikko<br />

7 m at 13.7 g/t Au;<br />

6 m at 4.8 g/t Au<br />

4.6 m at 2.8 g/t Au; 6.48 m at<br />

0.35 g/t Au, 0.61% Cu<br />

28 m at 0.41 g/t Au, 1.36% Cu,<br />

0.14% Ni;<br />

1 m at 1–4 g/t Au<br />

Phyllite, Ma<strong>fi</strong>c<br />

volc. rocks<br />

Intermed. tuf<strong>fi</strong>te<br />

Free native assoc.<br />

with gangue and<br />

sulphides<br />

Free native assoc.<br />

with gangue and<br />

arsenopyrite<br />

Ke<strong>in</strong>änen (1990)<br />

Pulkk<strong>in</strong>en et al.<br />

(2005)<br />

Korkalo (2006)<br />

Phyllite Not reported Korkalo (2006)<br />

PSB<br />

South Rompas 6 m at 617 g/t Au Ma<strong>fi</strong>c volc. rocks,<br />

Calc-silicate<br />

rocks<br />

North Rompas 1.40 m at 2529 g/t Au, 5.1%<br />

U 3 O 8 (channel sampl<strong>in</strong>g)<br />

Ma<strong>fi</strong>c volc. rocks,<br />

Calc-silicate<br />

rocks<br />

Free native assoc.<br />

with uran<strong>in</strong>ite<br />

Free native assoc.<br />

with uran<strong>in</strong>ite<br />

www.<br />

mawsonresources.<br />

com<br />

www.<br />

mawsonresources.<br />

com<br />

Excursion Guidebook FIN1 17


l<strong>in</strong>e from Ladoga to Lofoten was accompanied<br />

by the formation of north-west- and north-easttrend<strong>in</strong>g<br />

rift bas<strong>in</strong>s (Saverikko 1990) and <strong>in</strong>jection<br />

of 2.1 Ga dyke swarms parallel to these<br />

(Vuollo 1994).<br />

Rift<strong>in</strong>g culm<strong>in</strong>ated <strong>in</strong> ma<strong>fi</strong>c and ultrama<strong>fi</strong>c<br />

volcanism and the formation of oceanic crust<br />

at c. 1.97 Ga. This is <strong>in</strong>dicated by the extensive<br />

komatiitic and basaltic lavas of the Kittilä<br />

Group of the CLGB (Figs. 3 and 4). The 1.97 Ga<br />

stage also <strong>in</strong>cluded deposition of shallow to deep<br />

mar<strong>in</strong>e sediments, the latter <strong>in</strong>dicat<strong>in</strong>g the most<br />

extensive rift<strong>in</strong>g with<strong>in</strong> Fennoscandia. Fragments<br />

of oceanic crust were subsequently emplaced<br />

back onto the Karelian craton <strong>in</strong> F<strong>in</strong>land,<br />

as <strong>in</strong>dicated by the Nuttio ophiolites <strong>in</strong> central<br />

F<strong>in</strong>nish Lapland and the Jormua and Outokumpu<br />

ophiolites farther south (Kont<strong>in</strong>en 1987, Sorjonen-Ward<br />

et al. 1997, Lehtonen et al. 1998).<br />

In <strong>northern</strong> F<strong>in</strong>land, pelitic rocks <strong>in</strong> the Lapland<br />

Granulite Belt were deposited after 1.94 Ga<br />

(Tuisku & Huhma 2006). In central Lapland,<br />

the Kittilä Group greenstones are overla<strong>in</strong> by<br />

<strong>in</strong>termediate to felsic volcanic and terrestial<br />

sedimentary rocks. Regionally, they exhibit<br />

considerable variation <strong>in</strong> lithological composition<br />

due to partly rapid changes from volcanic<br />

to sedimentary dom<strong>in</strong>ated facies. With<strong>in</strong> the<br />

CLGB, these rocks are ma<strong>in</strong>ly represented by<br />

the Kumpu Group (Lehtonen et al. 1998) and<br />

by the Paakkola Group <strong>in</strong> the Peräpohja area<br />

(Perttunen & Vaasjoki 2001). The molasse-like<br />

conglomerates and quartzites compris<strong>in</strong>g the<br />

Kumpu Group were deposited <strong>in</strong> deltaic and<br />

fluvial fan environments after 1913 Ma and before<br />

c. 1880 Ma (Rastas et al. 2001).<br />

Palaeoproterozoic <strong>in</strong>trusive<br />

magmatism<br />

Early rift<strong>in</strong>g and layered <strong>in</strong>trusions<br />

The 2.50–2.44 Ga rift<strong>in</strong>g event, possibly related<br />

to a major mantle plume, is <strong>in</strong>dicated by<br />

the <strong>in</strong>trusion of numerous layered ma<strong>fi</strong>c igneous<br />

complexes and associated silicic <strong>in</strong>trusions<br />

<strong>in</strong> <strong>northern</strong> Fennoscandia (Alapieti et al. 1990,<br />

Lauri et al. 2012a). Most of the <strong>in</strong>trusions are<br />

located along the marg<strong>in</strong> of the Archaean doma<strong>in</strong>s,<br />

either at the boundary aga<strong>in</strong>st the Proterozoic<br />

supracrustal sequence, totally enclosed<br />

by the Archaean granitoids, or enclosed by a<br />

Protero zoic supracrustal sequence. Most of the<br />

<strong>in</strong>trusions def<strong>in</strong>e the west-trend<strong>in</strong>g Tornio–<br />

Näränkävaara belt of layered <strong>in</strong>trusions (Ilj<strong>in</strong>a<br />

& Hanski 2005). The rest of the <strong>in</strong>trusions are <strong>in</strong><br />

north-western Russia, central F<strong>in</strong>nish Lapland<br />

and north-western F<strong>in</strong>land.<br />

Ma<strong>fi</strong>c dykes<br />

Ma<strong>fi</strong>c dykes are locally abundant <strong>in</strong> <strong>northern</strong><br />

F<strong>in</strong>land, and show a variable strike, degree of<br />

alteration and metamorphic recrystallisation<br />

which, with age dat<strong>in</strong>g, <strong>in</strong>dicate multiple igneous<br />

episodes. Albite diabase (a term commonly<br />

used <strong>in</strong> F<strong>in</strong>land and Sweden for any albitised<br />

dolerite) is a characteristic type of <strong>in</strong>trusion that<br />

forms up to 200 m thick sills. They commonly<br />

have a coarse-gra<strong>in</strong>ed central part dom<strong>in</strong>ated<br />

by albitic plagioclase and constitute laterally<br />

extensive, highly magnetic units. In <strong>northern</strong><br />

F<strong>in</strong>land, albite diabases, both sills and dykes,<br />

form age groups of 2.2, 2.13, 2.05 and 2.0 Ga<br />

(Vuollo 1994, Lehtonen et al. 1998, Perttunen &<br />

Vaasjoki 2001, Rastas et al. 2001, Figs. 4 and 5).<br />

These ages also reflect extrusive magmatism <strong>in</strong><br />

the region. The dykes vary <strong>in</strong> width from less<br />

than 1 m to one kilometre. Nearly all show <strong>in</strong>ternal<br />

differentiation and igneous textures but<br />

consist of metamorphic and altered m<strong>in</strong>eral assemblages<br />

(carbonate, sericite, epidote, biotite<br />

and scapolite). In areas with greenschist facies<br />

regional metamorphism they are commonly surrounded<br />

by albitised and carbonated country<br />

rocks (Eilu 1994).<br />

Granitoids<br />

A major part of the bedrock <strong>in</strong> <strong>northern</strong> F<strong>in</strong>land<br />

is composed of various types of granitoid rocks.<br />

A conspicuous feature <strong>in</strong> the bedrock map is the<br />

Central Lapland Granitoid Complex (CLGC),<br />

which lies south of the Central Lapland Green­<br />

18 Pasi Eilu & Tero Niiranen (ed.)


stone Belt (CLGB). The CLGC is geologically<br />

not as well known as the surround<strong>in</strong>g supracrustal<br />

belts, but recent data suggest that the complex<br />

hosts several granitoid suites that range <strong>in</strong> age<br />

from >2.1 Ga to 1.76 Ga (Lauri et al. 2012b).<br />

The classi<strong>fi</strong>cation of granitoid suites used <strong>in</strong><br />

Sweden (see Bergman et al. 2007) thus seems<br />

to be only partly applicable to the CLGC. Isotope<br />

geochemical data (Huhma 1986, Ahtonen<br />

et al. 2007) suggest that the CLGC has a strong<br />

Archaean source component. However, no Archaean<br />

rocks have so far been found with<strong>in</strong> the<br />

complex. The oldest, >2.1 Ga granitoids are situated<br />

at the north-eastern marg<strong>in</strong> of the complex,<br />

adjacent to the CLGB, form<strong>in</strong>g a 150 km long<br />

l<strong>in</strong>e of <strong>in</strong>trusions with approximately similar<br />

ages (Lauri et al. 2012b). The central parts of the<br />

CLGC conta<strong>in</strong> deformed granitoids with ages<br />

of 1.85 Ga (Ahtonen et al. 2007). Even older,<br />

c. 1.99 Ga, heavily deformed porphyritic granites<br />

are found with<strong>in</strong> the supracrustal Peräpohja<br />

belt <strong>in</strong> the south (J.P. Ranta, unpublished). In<br />

the Lapland Granulite Belt, arc-related rocks of<br />

the norite-enderbite series <strong>in</strong>truded the supracrustal<br />

sequence at 1920–1905 Ma (Tuisku &<br />

Huhma 2006).<br />

A major suite of c. 1.88–1.86 Ga calc-alkal<strong>in</strong>e<br />

granitoids is known <strong>in</strong> both Sweden and<br />

western F<strong>in</strong>nish Lapland. The name Haparanda<br />

Suite was orig<strong>in</strong>ally assigned to <strong>in</strong>trusions <strong>in</strong><br />

south-eastern Norrbotten, Sweden (Ödman et<br />

al. 1949). Later, it was extended to comprise petrographically<br />

similar rocks <strong>in</strong> <strong>northern</strong> Norrbotten<br />

and F<strong>in</strong>land (Ödman 1957, Hiltunen 1982).<br />

These <strong>in</strong>trusions are medium- to coarse-gra<strong>in</strong>ed,<br />

even-gra<strong>in</strong>ed, moderately to <strong>in</strong>tensely deformed<br />

grey tonalites and granodiorites, which are associated<br />

with gabbros, diorites and rare true granites<br />

(Ödman 1957). Compositional variations<br />

are not prom<strong>in</strong>ent <strong>in</strong> <strong>in</strong>dividual <strong>in</strong>trusions, and<br />

the variation from <strong>in</strong>termediate to felsic types<br />

can ma<strong>in</strong>ly be seen between separate <strong>in</strong>trusive<br />

bodies. The geochemical signature of the<br />

Haparanda suite is typical for ‘volcanic arc granitoids’<br />

with low Rb, Y and Nb contents (Mellqvist<br />

et al. 2003). They def<strong>in</strong>e a calc­ alkal<strong>in</strong>e trend<br />

and are metalum<strong>in</strong>ous to slightly peralum<strong>in</strong>ous.<br />

An age range of 1.89–1.86 Ga has been def<strong>in</strong>ed<br />

for the suite <strong>in</strong> the western parts of <strong>northern</strong> F<strong>in</strong>land<br />

(Huhma 1986, Perttunen & Vaasjoki 2001,<br />

Rastas et al. 2001, Väänänen & Lehtonen 2001,<br />

Figs. 4 and 5). The compositional range and the<br />

chemical characteristics of the Haparanda Suite<br />

are very similar to that of the arc-related volcanic<br />

rocks <strong>in</strong> <strong>northern</strong> Sweden. Thus, the Haparanda<br />

Suite <strong>in</strong>trusions are regarded as comagmatic<br />

with extrusive phases of the early Svecofennian<br />

arc magmatism. This is supported by their calcalkal<strong>in</strong>e<br />

character (Bergman et al. 2001) and also<br />

by the contemporaneity with subduction <strong>in</strong> the<br />

shield (Laht<strong>in</strong>en et al. 2005).<br />

The north-western and south-eastern corners<br />

of the CLGC host crustally derived, leucocratic<br />

microcl<strong>in</strong>e granites with ages of 1.81 Ga<br />

(Väänänen & Lehtonen 2001, Ahtonen et al.<br />

2007, Lauri et al. 2012b). These are abundant<br />

especially <strong>in</strong> the south-eastern part of the complex,<br />

where they seem to be limited to the extent<br />

of the Archaean Pudasjärvi complex underneath<br />

the Palaeoproterozoic cover. In the central part<br />

of the CLGC a suite of mantle-derived, app<strong>in</strong>itic<br />

rocks, rang<strong>in</strong>g <strong>in</strong> composition from quartz<br />

diorites to syenites, has an age of c. 1796 Ma<br />

(Väänänen 2004, Ahtonen et al. 2007). The ma<strong>in</strong><br />

phase of the CLGC seems to be constra<strong>in</strong>ed between<br />

1.79–1.76 Ga (Ahtonen et al. 2007, Lauri<br />

et al. 2012b). Abundant granites <strong>in</strong>truded the<br />

older rock types at this stage. The granites vary<br />

from deformed, migmatitic varieties to crosscutt<strong>in</strong>g,<br />

undeformed types. The southern marg<strong>in</strong><br />

of the CLGC seems to be ma<strong>in</strong>ly composed<br />

of 1.77 Ga, p<strong>in</strong>k, even-gra<strong>in</strong>ed granite that has<br />

an exceptionally high Th/U ratio (J.P. Ranta,<br />

unpublished). Despite the similar age these granites<br />

are different from the Nattanen-type granites<br />

<strong>in</strong> the <strong>northern</strong> part of the CLGB that occur<br />

as postcollisional, discordant stocks (Heilimo et<br />

al. 2009). It seems that the tectonic regime was<br />

still ma<strong>in</strong>ly compressional <strong>in</strong> the southern part<br />

of the CLGC whereas the post-tectonic stage was<br />

Excursion Guidebook FIN1 19


already reached <strong>in</strong> the <strong>northern</strong> part. The last<br />

phase of granitic magmatism comprises tourmal<strong>in</strong>e-<br />

and beryl-bear<strong>in</strong>g pegmatites that occur<br />

as dykes and small <strong>in</strong>trusions at the southern<br />

parts of the CLGC. The age of the pegmatites is<br />

uncerta<strong>in</strong>. However, they sharply cross-cut the<br />

1.77 Ga, Th-rich granites and are thus younger<br />

(J.P. Ranta, unpublished).<br />

Palaeoproterozoic deformation<br />

and metamorphism<br />

The Palaeoproterozoic rocks <strong>in</strong> the <strong>northern</strong> part<br />

of the Fennoscandian Shield have undergone<br />

several phases of deformation and metamorphism.<br />

Metamorphic grades vary from lowergreenschist<br />

<strong>in</strong> the CLGB to granulite facies <strong>in</strong><br />

the Lapland Granulite Belt.<br />

A sequence of ductile deformation events <strong>in</strong><br />

the CLGB is reported <strong>in</strong> Hölttä et al. (2007)<br />

and Patison (2007) and references there<strong>in</strong>. The<br />

ma<strong>in</strong> deformation features relate to thrust<strong>in</strong>g<br />

events at the marg<strong>in</strong>s of the CLGB. North- to<br />

north-east-directed thrust<strong>in</strong>g <strong>in</strong> the southern<br />

marg<strong>in</strong> was driven by the Svecofennian orogenic<br />

events and south-west-directed thrust<strong>in</strong>g<br />

of the Lapland Granulite Belt <strong>in</strong> the north by<br />

collision of the Kola and Karelian cratons. It is<br />

currently unclear if these events were contemporaneous<br />

or successive. Clear overpr<strong>in</strong>t<strong>in</strong>g deformation<br />

features of these thrust<strong>in</strong>g events are<br />

lack<strong>in</strong>g, therefore they are generally referred to<br />

as the D1–2 stage (e.g. Patison 2007). The earliest<br />

detected foliation (S1) is bedd<strong>in</strong>g-parallel<br />

and can locally be seen <strong>in</strong> F2 fold h<strong>in</strong>ges and as<br />

<strong>in</strong>clusion trails <strong>in</strong> andalusite, garnet and staurolite<br />

porphyroblasts. The ma<strong>in</strong> deformation features<br />

consist of flat-ly<strong>in</strong>g to gently-dipp<strong>in</strong>g S2<br />

foliation and recumbent or recl<strong>in</strong>ed F3 fold<strong>in</strong>g.<br />

The D1–2 structures are overpr<strong>in</strong>ted by sets of<br />

D3 structures consist<strong>in</strong>g of F3 fold<strong>in</strong>g and late<br />

shear zones. The orientation of F3 folds is highly<br />

variable with east and north strik<strong>in</strong>g axial<br />

traces dom<strong>in</strong>at<strong>in</strong>g. The dips vary from horizontal<br />

through moderately dipp<strong>in</strong>g to vertical. The<br />

ductile deformation features are overpr<strong>in</strong>ted by<br />

brittle fault<strong>in</strong>g related to the latest deformation<br />

stage D4.<br />

The north- to north-east-directed thrust<strong>in</strong>g<br />

dur<strong>in</strong>g the D1–2 stage resulted <strong>in</strong> the development<br />

of two major thrust zones: the Sirkka<br />

and Venejoki thrust zones (Fig. 3). The Sirkka<br />

thrust zone is a rheological boundary between<br />

the Savu koski Group volcano-sedimentary sequence<br />

<strong>in</strong> the south and the Kittilä Group <strong>in</strong><br />

the north, and it hosts numerous gold <strong>deposits</strong><br />

and occurrences. It consists of a series of closelyspaced,<br />

south-dipp<strong>in</strong>g thrusts, vertical to subvertical<br />

shear zone segments and, based on seismic<br />

data, it dips at about 40 degrees to the south<br />

reach<strong>in</strong>g a depth of at least 9 km (Patison et al.<br />

2006). The D3 stage resulted <strong>in</strong> the development<br />

of a set of north to north-east strik<strong>in</strong>g strike-slip<br />

shear zones which <strong>in</strong>tersect and, <strong>in</strong> some places,<br />

displace the early thrust zones. A number of<br />

gold occurrences are spatially correlated to these<br />

structures and the largest known gold deposit,<br />

Suurikuusikko, is hosted by one of such structures.<br />

There are also clear <strong>in</strong>dications of reactivation<br />

of the early thrust structures dur<strong>in</strong>g D3.<br />

Abrupt changes <strong>in</strong> metamorphic grade are associated<br />

with D3 shear zones suggest<strong>in</strong>g that they<br />

were active after the peak of the metamorphism.<br />

Direct age data on the deformation and<br />

metamorphism is limited. The south-west directed<br />

thrust<strong>in</strong>g of the Lapland Granulite belt<br />

took place <strong>in</strong> 1.91–1.88 Ga (Tuisku & Huhma<br />

2006) and can be considered as the maximum<br />

age for the D1–2 stage. The Haparanda suite<br />

magmatism dur<strong>in</strong>g 1.89–1.86 Ga is considered<br />

to be contemporaneous with D1–2 suggest<strong>in</strong>g<br />

that the m<strong>in</strong>imum age for the D1–2 is around<br />

1.86 Ga. A m<strong>in</strong>imum age for the D3 deformation<br />

is given by post-collisional 1.77 Ga Nattanen-type<br />

granites. This is also the maximum age<br />

for D4. The maximum age of D3 is unknown,<br />

but is very likely around 1.86 Ga. The regional<br />

metamorphic peak was reached dur<strong>in</strong>g the<br />

D1–2 stage.<br />

The metamorphic grade is ma<strong>in</strong>ly of low to<br />

<strong>in</strong>termediate-pressure type, from lower green­<br />

20 Pasi Eilu & Tero Niiranen (ed.)


schist to upper amphibolite facies. Granulite<br />

facies rocks are only of m<strong>in</strong>or importance, except<br />

<strong>in</strong> <strong>northern</strong>most F<strong>in</strong>land and the Kola Pen<strong>in</strong>sula<br />

with<strong>in</strong> the arcuate Lapland Granulite Belt<br />

(Fig. 1). In central F<strong>in</strong>nish Lapland, the follow<strong>in</strong>g<br />

metamorphic zones have been mapped<br />

(Hölttä et al. 2007):<br />

I) Granulite facies migmatitic amphibolites<br />

south of the Lapland Granulite Belt.<br />

II) High pressure mid-amphibolite facies<br />

rocks south of zone I, characterised by garnet-kyanite-biotite-muscovite<br />

assemblages<br />

with local migmatisation <strong>in</strong> metapelites,<br />

and garnet-hornblende-plagioclase assemblages<br />

<strong>in</strong> ma<strong>fi</strong>c rocks.<br />

III) Low-pressure mid-amphibolite facies rocks<br />

south of zone II, with garnet-andalusitestaurolite-chlorite-muscovite<br />

assemblages<br />

with retrograde chloritoid and kyanite <strong>in</strong><br />

metapelites, and hornblende-plagioclasequartz<br />

± garnet <strong>in</strong> metabasites.<br />

IV) Greenschist facies rocks of the CLGB, with<br />

f<strong>in</strong>e-gra<strong>in</strong>ed white mica-chlorite-biotitealbite-quartz<br />

<strong>in</strong> metapelites, and act<strong>in</strong>olite-albite-chlorite-epidote-carbonate<br />

<strong>in</strong><br />

metabasites.<br />

V) Prograde metamorphism south of zone IV<br />

from lower-amphibolite (andalusite-kyanite-staurolite-muscovite-chlorite<br />

± chloritoid<br />

schists), to mid-amphibolite facies<br />

kyanite-andalusite-staurolite-biotite-muscovite<br />

gneisses, and upper amphibolite facies<br />

garnet-sillimanite-biotite gneisses.<br />

VI) Amphibolite facies pluton-derived metamorphism<br />

related to heat flow from central<br />

and western Lapland granitoids.<br />

The present structural geometry shows an <strong>in</strong>verted<br />

gradient where pressure and temperature<br />

<strong>in</strong>crease upwards <strong>in</strong> the present tectonostratigraphy<br />

from greenschist facies <strong>in</strong> zone IV<br />

through garnet-andalusite-staurolite grade <strong>in</strong><br />

zone III and garnet-kyanite grade amphibolite<br />

facies <strong>in</strong> zone II to granulite facies <strong>in</strong> zone I. The<br />

<strong>in</strong>verted gradient could be expla<strong>in</strong>ed by crustal<br />

thicken<strong>in</strong>g caused by overthrust<strong>in</strong>g of the hot<br />

granulite complex onto the lower grade rocks.<br />

Metamorphism <strong>in</strong> the Lapland Granulite Belt<br />

occurred at 1.91–1.88 Ga (Tuisku & Huhma<br />

2006), but the present metamorphic structure<br />

<strong>in</strong> central F<strong>in</strong>nish Lapland may record later,<br />

postmetamorphic thrust<strong>in</strong>g and fold<strong>in</strong>g events<br />

(Hölttä et al. 2007).<br />

Epigenetic gold <strong>deposits</strong> <strong>in</strong> <strong>northern</strong> F<strong>in</strong>land<br />

Pasi Eilu & Tero Niiranen, Geological Survey of F<strong>in</strong>land<br />

Epigenetic gold <strong>deposits</strong> <strong>in</strong> <strong>northern</strong> F<strong>in</strong>land<br />

have an extensive variation <strong>in</strong> the style of m<strong>in</strong>eralisation,<br />

alteration, metal association and<br />

host rock. Most <strong>deposits</strong> and occurrences so far<br />

discovered are <strong>in</strong> the Palaeoproterozoic Central<br />

Lapland Greenstone Belt and the Kuusamo<br />

and Peräpohja schist belts, whereas only a few<br />

are known from the Neoarchaean greenstones<br />

(Fig. 7). Due to their variable and overlapp<strong>in</strong>g<br />

features (Tables 1 and 2), several genetic types<br />

have been proposed for these occurrences (e.g.<br />

Eilu & Pankka 2009, Eilu et al. 2012a, b, Kyläkoski<br />

et al. 2012b). Here, we only discuss deposit<br />

types detected <strong>in</strong> the area covered by the present<br />

<strong>fi</strong>eld excursion.<br />

Many parameters <strong>in</strong> the north F<strong>in</strong>land gold<br />

occurrences are similar especially to IOCG and<br />

orogenic gold styles of m<strong>in</strong>eralisation. Features<br />

suggest<strong>in</strong>g orogenic gold m<strong>in</strong>eralisation (sensu<br />

Groves 1993) <strong>in</strong>clude: 1) proximal to distal carbonatisation<br />

and proximal sericitisation or biotitisation,<br />

2) PT conditions at 300–500 °C and<br />

1–3 kbar, 3) pyrite, pyrrhotite and arsenopyrite<br />

as the ma<strong>in</strong> sulphides, 4) consistent enrichment<br />

Excursion Guidebook FIN1 21


25°E 30°E<br />

66°N 67°N 68°N<br />

Kittilä<br />

Rovaniemi<br />

Sodankylä<br />

Kuusamo<br />

0 25 50 km<br />

Devonian alkal<strong>in</strong>e igneous rocks<br />

Palaeoproterozoic rocks (2.50-1.75 Ga)<br />

Volcanic rocks (c. 1.96-1.75 Ga)<br />

Supracrustal rocks, predom<strong>in</strong>antly<br />

sedimentary rocks (1.96-1.75 Ga)<br />

Intrusive rocks, predom<strong>in</strong>antly<br />

granitoids (1.96-1.75 Ga)<br />

Supracrustal rocks, predom<strong>in</strong>antly ma<strong>fi</strong>c to ultrama<strong>fi</strong>c<br />

volcanic rocks and sedimentary rocks (2.50-1.96 Ga)<br />

Intrusive rocks, predom<strong>in</strong>antly ma<strong>fi</strong>c<br />

and ultrama<strong>fi</strong>c (2.50-1.96 Ga)<br />

Archaean rocks<br />

Intrusive rocks, orthogneiss, migmatitic<br />

gneiss (c. 3.20-2.50 Ga and possibly older)<br />

Supracrustal rocks (c. 3.20-2.75 Ga<br />

and possibly older)<br />

Au <strong>deposits</strong><br />

Figure 7. <strong>Gold</strong> <strong>deposits</strong> and occurrences shown by drill<strong>in</strong>g <strong>in</strong> <strong>northern</strong> F<strong>in</strong>land (Eilu & Pankka 2009, Hulkki et<br />

al. 2010, Talikka & Eilu 2011, www.mawsonresources.com). In the immediate vic<strong>in</strong>ity of Rompas, only the S and<br />

N Rompas and Rajapalot occurrences have been drilled. Geology based on Geological Survey of F<strong>in</strong>land <strong>in</strong>-house<br />

bedrock data base.<br />

22 Pasi Eilu & Tero Niiranen (ed.)


of Ag, Au, As, CO 2 , K, Rb, S, Sb and Te, 5) Au/<br />

Ag ratios above 1, 6) low-sal<strong>in</strong>ity aqueous fluids,<br />

7) any primary rock type with<strong>in</strong> the greenstone<br />

belts may act as host rock and 8) most occurrences<br />

are <strong>in</strong> greenschist facies rocks (Eilu et al.<br />

2007, Hulkki & Ke<strong>in</strong>änen 2007, Patison 2007).<br />

In several cases, the host rocks have also been<br />

albitised and carbonatised before gold m<strong>in</strong>eralisation<br />

(Hulkki & Ke<strong>in</strong>änen 2007, Patison<br />

2007). This pre-m<strong>in</strong>eralisation alteration has<br />

prepared the ground for m<strong>in</strong>eralisation as described<br />

below.<br />

Similarities to IOCG m<strong>in</strong>eralisation, as the<br />

deposit category was orig<strong>in</strong>ally def<strong>in</strong>ed by Hitzman<br />

et al. (1992), occur <strong>in</strong> a number of gold<br />

occurrences. These features <strong>in</strong>clude: 1) highsal<strong>in</strong>ity<br />

aqueous-carbonic fluids, 2) multi-stage<br />

alteration, 3) <strong>deposits</strong> are enriched <strong>in</strong> Cu, Co,<br />

Ag and/or U <strong>in</strong> addition to Au, and Au is typically<br />

a subord<strong>in</strong>ate commodity with respect to<br />

Cu and 4) there are abundant iron oxides <strong>in</strong> the<br />

ore. Especially the Kolari magne tite-dom<strong>in</strong>ated<br />

<strong>deposits</strong> conta<strong>in</strong> many of these features (Niiranen<br />

et al. 2007). Also many of the gold <strong>deposits</strong><br />

<strong>in</strong> the Kuusamo, Peräpohja and central<br />

Lapland belts have some of these features (but<br />

do not conta<strong>in</strong> iron oxides). However, at least<br />

the CLGB Au-Cu ± Ni <strong>deposits</strong> ful<strong>fi</strong>l practically<br />

all the diagnostic features of the orogenic<br />

gold category, except the high base metal content<br />

and <strong>in</strong>dications of medium-sal<strong>in</strong>ity fluids.<br />

These exceptional features have been expla<strong>in</strong>ed<br />

by attribut<strong>in</strong>g such <strong>deposits</strong> to the subcategory<br />

of ‘anomalous metal association’ as def<strong>in</strong>ed by<br />

<strong>Gold</strong>farb et al. (2001) for similar <strong>deposits</strong> at,<br />

for example, Sabie–Pilgrim’s Rest <strong>in</strong> South Africa<br />

and Tennant Creek, P<strong>in</strong>e Creek and Telfer<br />

<strong>in</strong> Australia.<br />

About 60 epigenetic gold occurrences shown<br />

by drill<strong>in</strong>g are presently known from the Central<br />

Lapland Greenstone Belt, and 13 occurrences<br />

from the Peräpohja schist belt (Fig. 7). Of these,<br />

the Suurikuusikko deposit (Kittilä M<strong>in</strong>e, Table<br />

1) is, by far, the largest deposit, and it is a<br />

classic example of a gold-only orogenic deposit<br />

hosted by a north-strik<strong>in</strong>g shear zone <strong>in</strong> lower<br />

greenschist facies greenstones (Patison 2011).<br />

Nearly all occurrences <strong>in</strong> central Lapland<br />

probably belong to the orogenic category <strong>in</strong><br />

the sense the deposit class is def<strong>in</strong>ed by Groves<br />

(1993) and <strong>Gold</strong>farb et al. (2001). For example,<br />

more than 30 <strong>deposits</strong> and occurrences shown<br />

by drill<strong>in</strong>g occur with<strong>in</strong> the Sirkka Thrust Zone<br />

and subsidiary faults branch<strong>in</strong>g from this crustal-scale,<br />

more than 100 km long structural<br />

break with<strong>in</strong> the Central Lapland Greenstone<br />

Belt <strong>in</strong> F<strong>in</strong>land (Eilu et al. 2007, 2012b). Locally,<br />

the two most signi<strong>fi</strong>cant controls of m<strong>in</strong>eralisation<br />

are structure and rock type; some of the<br />

ore bodies are hosted by local dilatational sites<br />

and by the locally most competent lithological<br />

units, some are at locations with soft and hard<br />

rock units <strong>in</strong> contact. For many lodes, part of the<br />

local control is the <strong>in</strong>tersection of two faults or<br />

a fault along the boundary between lithological<br />

units with contrast<strong>in</strong>g competence (Sorjonen-<br />

Ward et al. 2003, Holma & Ke<strong>in</strong>änen 2007,<br />

Patison 2007, Saalmann & Niiranen 2010). In<br />

addition to structure and the primarily competent<br />

lithological units, a further signi<strong>fi</strong>cant factor<br />

<strong>in</strong> locally controll<strong>in</strong>g gold m<strong>in</strong>eralisation is<br />

the ground preparation by pre-gold alteration:<br />

pervasive albitisation (± carbonatisation) of tuf<strong>fi</strong>te<br />

and phyllite units and carbonatisation of<br />

komatiitic units changed these orig<strong>in</strong>ally soft<br />

rocks <strong>in</strong>to hard and competent units. Dur<strong>in</strong>g<br />

the later orogenic stages, these were the locally<br />

most competent units, and thus provided the<br />

best sites for local dilation, ve<strong>in</strong><strong>in</strong>g and m<strong>in</strong>eralisation<br />

(e.g. Grönholm 1999, Saalmann &<br />

Niiranen 2010). Fluid compositions (Billström<br />

et al. 2010, Niiranen et al. 2012) suggest variable,<br />

mixed orig<strong>in</strong>s for volatiles and metals with<br />

no obvious <strong>in</strong>dications of local sources. These<br />

features are present <strong>in</strong> both the gold-only and the<br />

anomalous metal association (typically Au-Cu)<br />

subtypes. Obvious IOCG-type <strong>deposits</strong> have<br />

been detected only at Kolari, <strong>in</strong> westernmost<br />

F<strong>in</strong>nish Lapland <strong>in</strong> the western marg<strong>in</strong> of the<br />

Central Lapland Greenstone Belt (Niiranen et<br />

Excursion Guidebook FIN1 23


al. 2007). The IOCG <strong>deposits</strong> are covered by<br />

another <strong>fi</strong>eld excursion of the SGA 2013 congress<br />

(SWE5) and are not discussed further here.<br />

Very limited geochronological data are available<br />

from the <strong>deposits</strong>. Close to syn-peak metamorphic<br />

tim<strong>in</strong>g has been suggested for most of<br />

the occurrences <strong>in</strong> F<strong>in</strong>land (Mänttäri 1995, Eilu<br />

et al. 2007). However, based on the structural<br />

relationships a post-peak metamorphic age for<br />

most of the <strong>deposits</strong> <strong>in</strong> CLGB area is also suggested<br />

(Patison 2007, Saalmann & Niiranen<br />

2010, Niiranen et al. 2012).<br />

One of the possible exceptions to the orogenic<br />

type of gold m<strong>in</strong>eralisation with<strong>in</strong> the<br />

Central Lapland Greenstone Belt is represented<br />

by the Pahtavaara gold deposit. Pahtavaara<br />

has an anomalous barite-gold association and a<br />

very high f<strong>in</strong>eness (>99.5% Au) of the gold. Furthermore,<br />

the geometry of high-grade quartzbarite<br />

lenses and amphibole rock bodies relative<br />

to biotite-rich alteration zones is anomalous to<br />

an orogenic or an IOCG deposit. Pahtavaara<br />

is described further and discussed <strong>in</strong> a separate<br />

section below. A few gold and base metal occurrences,<br />

such as Riikonkoski, Saattopora Cu<br />

and Kiimakuusikko (Tables 1 and 2), suggest<br />

an orogenic gold overpr<strong>in</strong>t to syngenetic basemetal<br />

occurrence. In most cases, however, there<br />

are no obvious <strong>in</strong>dications of premetamorphic<br />

m<strong>in</strong>eralisation for gold and base metal occurrences<br />

with<strong>in</strong> Central Lapland.<br />

Pahtavaara gold m<strong>in</strong>e<br />

Nicole Patison, Geological Survey of Western<br />

Australia<br />

Pasi Eilu & Tero Niiranen, Geological Survey of<br />

F<strong>in</strong>land<br />

Juhani Ojala, Store Norske Gull AS, F<strong>in</strong>land<br />

Pahtavaara is an active gold m<strong>in</strong>e with a total<br />

<strong>in</strong> situ size estimate of about 20 tonnes of gold<br />

(production and resource at the end of 2012,<br />

F<strong>in</strong>nish M<strong>in</strong><strong>in</strong>g Registry statistics). Initial production<br />

took place 1996–2000 and the m<strong>in</strong>e was<br />

reopened <strong>in</strong> 2003 (Eilu & Pankka 2009). The<br />

present measured and <strong>in</strong>dicated resources are<br />

1.274 million tonnes at 2.07 g/t Au and <strong>in</strong>ferred<br />

resources are 1.482 million tonnes at 1.77 g/t<br />

Au (www. lapplandgoldm<strong>in</strong>ers.com). In total,<br />

11 400 kg gold from 4.98 million tonnes of ore<br />

has been produced from the m<strong>in</strong>e (F<strong>in</strong>nish M<strong>in</strong><strong>in</strong>g<br />

Registry cumulative data).<br />

The deposit is hosted by an altered komatiitic<br />

sequence at the eastern part of the Central<br />

Lapland Greenstone Belt (Figs. 3, 7 and 8). It<br />

comprises a swarm of subparallel lodes and nearly<br />

all gold is free native. Lodes are apparently<br />

folded and they plunge steeply to the west or<br />

west-south-west. The deposit has many of the<br />

alteration characteristics of amphibolite-facies<br />

orogenic gold <strong>deposits</strong> and an obvious structural<br />

control, but has an anomalous barite-gold association<br />

and a very high f<strong>in</strong>eness (>99.5% Au) of<br />

gold (Kojonen & Johanson 1988, Korkiakoski<br />

1992). The geom etry of high-grade quartz-barite<br />

lenses and amphibole rock bodies relative to<br />

biotite-rich alteration zones is also anomalous,<br />

as is the δ 13 C of alteration carbonate m<strong>in</strong>erals.<br />

Pahtavaara is best <strong>in</strong>terpreted as a metamorphosed<br />

seafloor alteration system with ore lenses<br />

as either carbonate and barite-bear<strong>in</strong>g cherts<br />

or quartz-carbonate-barite ve<strong>in</strong>s (David Groves,<br />

pers. comm. 2006). The gold may have been<br />

<strong>in</strong>troduced later, but its gra<strong>in</strong> size, textural position<br />

(nearly all is free, native and occurs with<br />

silicates <strong>in</strong>stead of sulphides) and high f<strong>in</strong>eness<br />

po<strong>in</strong>t to a pre-peak metamorphic tim<strong>in</strong>g which<br />

is highly anomalous for orogenic gold. In addition,<br />

the <strong>in</strong>terpreted ore zone geom etry is also<br />

compatible with fold<strong>in</strong>g of the syn genetic alteration<br />

zone and remobilisation of gold and<br />

the formation of late ve<strong>in</strong>s <strong>in</strong> F2 fold fractures<br />

(secondary ve<strong>in</strong>s on the geology map <strong>in</strong> Fig. 9)<br />

or remobilisation and ve<strong>in</strong> formation <strong>in</strong> a shear<br />

zone (Fig. 10).<br />

Geology and hydrothermal alteration<br />

The follow<strong>in</strong>g description is extracted from<br />

Korkiakoski (1992) unless otherwise is <strong>in</strong>dicated.<br />

The Pahtavaara gold m<strong>in</strong>e is hosted by the<br />

predom<strong>in</strong>antly pyroclastic Sattasvaara komatiite<br />

24 Pasi Eilu & Tero Niiranen (ed.)


3472000 3476000 3480000 3484000<br />

7500000 7504000 7508000<br />

Pahtavaara m<strong>in</strong><strong>in</strong>g concession<br />

Public road<br />

Fault or shear zone<br />

Savukoski group, Matarakoski formation<br />

Savukoski group, Sattasvaara formation<br />

Sodankylä group, Postojoki formation<br />

Kuusamo group, Möykkelmä formation<br />

0 2.5 5 km<br />

Figure 8. Geology around the Pahtavaara gold m<strong>in</strong>e,<br />

based on the current GTK digital bedrock database.<br />

complex with<strong>in</strong> the Sattasvaara Formation of the<br />

Central Lapland Greenstone Belt. There is no reliable<br />

radiometric age data on the volcanic rocks<br />

of the Sattasvaara Formation <strong>in</strong> F<strong>in</strong>land, but<br />

one of its branches cont<strong>in</strong>ues far <strong>in</strong>to <strong>northern</strong><br />

Norway where Krill et al. (1985) have reported<br />

a Sm-Nd age of 2085±85 Ma from the komatiites.<br />

The present m<strong>in</strong>eral compositions of the<br />

least-altered komatiites are serpent<strong>in</strong>e-chloritetremolite-anto<br />

phyllite and tremolite-antophyllite<br />

result<strong>in</strong>g from regional upper-greenschist facies<br />

metamorphism (Hulkki 1990, Korkiakoski<br />

1992). The <strong>in</strong>tensely altered rocks consist of<br />

two heterogeneous and <strong>in</strong>tercalated lithological<br />

types: (1) biotite schists with talc-carbonate ± pyrite<br />

± magnetite ve<strong>in</strong>s and (2) coarse-gra<strong>in</strong>ed and<br />

non-schistose amphibole rocks with associated<br />

quartz ± barite ve<strong>in</strong>s and pods. The ore and the<br />

<strong>in</strong>tensely altered rocks occur with<strong>in</strong> a discont<strong>in</strong>uous,<br />

about 8 km long, generally east-trend<strong>in</strong>g<br />

“skarn” zone characterised by the m<strong>in</strong>eral assemblage<br />

chlorite-calcite-talc-tremolite ± albite<br />

(Hulkki 1990, K. Niiranen, pers. comm. 1998).<br />

The least altered amphibole-chlorite schists<br />

correspond compositionally to Geluk-type (Korkiakoski<br />

1992) basaltic komatiites. The orig<strong>in</strong>al<br />

komatiitic nature of the altered rocks is <strong>in</strong>dicated<br />

by (1) the similarity <strong>in</strong> homogeneous immobile<br />

element ratios (Al/Ti) compared to those of a less<br />

altered type, (2) m<strong>in</strong>eralogical and geochemi­<br />

Excursion Guidebook FIN1 25


cal gradations between the types and (3) similar<br />

REE patterns to those of the Sattasvaara komatiites.<br />

Mass balance calculations have shown that<br />

biotite schists have been enriched <strong>in</strong> CO 2 , K, Fe,<br />

Au, Ba, S, W, Te, Sr and Mn, and depleted <strong>in</strong><br />

Mg, Ca, Co, Si and Zn, accompanied by a 10–<br />

100 m<br />

Ma<strong>in</strong> ore zone<br />

Secondary ore<br />

(quartz and quartz-baryte ve<strong>in</strong>s)<br />

Proximal alteration zone<br />

(<strong>in</strong>tense biotite ± talc alteration)<br />

Distal alteration (talc-chlorite<br />

altered komatiite)<br />

Outl<strong>in</strong>e of A-pit<br />

Figure 9. Geological map of the Pahtavaara M<strong>in</strong>e open pit (compiled by N. Patison <strong>in</strong> 2000). North up.<br />

F2-related gold lodes<br />

Dykes at Länsi<br />

Rigid (competent) rock<br />

Schistosity<br />

<strong>Gold</strong> m<strong>in</strong>eralization<br />

The Green Fault<br />

Figure 10. Fold model for the Pahtavaara gold<br />

deposit. View to the NW. Image courtesy<br />

Warren Pratt (Geologcal Mapp<strong>in</strong>g Ltd) and<br />

Lappland <strong>Gold</strong>m<strong>in</strong>ers AB.<br />

26 Pasi Eilu & Tero Niiranen (ed.)


30% decrease <strong>in</strong> net volume. Amphibole rocks<br />

record a marked <strong>in</strong>crease <strong>in</strong> volume, with ga<strong>in</strong>s<br />

<strong>in</strong> Ca, Si, Au, Na, Ba, Te, S, W, Sr and P, and<br />

losses <strong>in</strong> CO 2 , Co, Mg, Fe and Zn.<br />

The two major altered rock types reflect<br />

two stages of hydrothermal alteration (Fig. 9)<br />

which, on the basis of textural and geochemical<br />

evidence, <strong>in</strong>clude: (1) earlier biotitisation<br />

(K alteration) and (2) later amphibole overgrowth<br />

(Ca-Si alteration). The former has<br />

been <strong>in</strong>terpreted to have taken place dur<strong>in</strong>g or<br />

immediately after the peak of regional metamorphism,<br />

and dur<strong>in</strong>g ductile deformation. Its<br />

distribution was controlled by a comb<strong>in</strong>ation of<br />

high permeability <strong>in</strong> the orig<strong>in</strong>ally pyroclastic<br />

komatiites, and north-east-trend<strong>in</strong>g deformation<br />

zones. Later amphibole growth was related<br />

to the north-north-east-trend<strong>in</strong>g shear<strong>in</strong>g result<strong>in</strong>g<br />

<strong>in</strong> the formation of zones of dilation<br />

<strong>in</strong>to which hydrothermal fluids were focused<br />

under conditions straddl<strong>in</strong>g the brittle-ductile<br />

transition. Note that this <strong>in</strong>terpretation of tim<strong>in</strong>g<br />

of alteration by Korkiakoski (1992) is <strong>in</strong><br />

contrast to the later suggestions of premetamorphic<br />

alteration described above.<br />

M<strong>in</strong><strong>in</strong>g<br />

The gold ore at Pahtavaara forms narrow lodes<br />

generally 5–10 m wide, that strike almost east–<br />

west and, <strong>in</strong> the upper parts at least, dip westwards<br />

at about 70–80° (Figs. 11 and 12). Presently,<br />

the ore is m<strong>in</strong>ed by sub-level cav<strong>in</strong>g. The<br />

only economically recoverable metal is gold.<br />

Sulphides are relatively rare, with pyrite be<strong>in</strong>g<br />

the most abundant, compris<strong>in</strong>g about 1% of the<br />

ore. Magnetite can constitute up to 5–10% of<br />

the ore grade material, particularly <strong>in</strong> the biotite<br />

schists. <strong>Gold</strong> is free mill<strong>in</strong>g and occurs as discrete<br />

gra<strong>in</strong>s that are highly variable <strong>in</strong> size between<br />

silicate gra<strong>in</strong>s and along fracture surfaces.<br />

Some 50–60% of gold gra<strong>in</strong>s are less than 50 μm<br />

<strong>in</strong> diameter. In addition to pyrite and gold, trace<br />

amounts of chalcopyrite, rutile, chromite, hematite,<br />

pentlandite, pyrrhotite, violarite, miller­<br />

Z<br />

Y<br />

X<br />

Resource classi<strong>fi</strong>cation<br />

Measured resources<br />

Indicated resources<br />

Inferred resources<br />

Figure 11. Open pits (grey) and resource blocks, as of 1 January 2013, <strong>in</strong> the Pahtavaara gold m<strong>in</strong>e. View to the NW.<br />

Image courtesy Lappland <strong>Gold</strong>m<strong>in</strong>ers AB.<br />

Excursion Guidebook FIN1 27


Lansi<br />

Karol<strong>in</strong>a<br />

Z<br />

Mobydick<br />

Y<br />

X<br />

Whaleback<br />

Figure 12. Resource blocks<br />

beyond the past and present<br />

m<strong>in</strong><strong>in</strong>g, as of October<br />

2012, <strong>in</strong> the Pahtavaara<br />

gold m<strong>in</strong>e. View to the NW.<br />

Image courtesy Lappland<br />

<strong>Gold</strong>m<strong>in</strong>ers AB.<br />

ite, cubanite, gold, clausthalite and merenskyite<br />

have been detected <strong>in</strong> the ore (Hulkki 1990,<br />

Korkiakoski 1992, Kojonen & Johanson 1988).<br />

As the gold occurs as free gra<strong>in</strong>s, the ore can<br />

be concentrated us<strong>in</strong>g a gravity and a flotation<br />

circuit, as described on Lappland <strong>Gold</strong>m<strong>in</strong>ers’<br />

web site (www.lapplandgoldm<strong>in</strong>ers.se): “The ore<br />

is <strong>fi</strong>rst crushed and then ground down <strong>in</strong>to a<br />

1.5 mm gra<strong>in</strong> size. This f<strong>in</strong>ely-ground material<br />

goes through a cyclone, where heavier material<br />

cont<strong>in</strong>ues on to a cone separator. Afterwards the<br />

material cont<strong>in</strong>ues through a magnetic separator<br />

and spiral separators before com<strong>in</strong>g out onto the<br />

concentrat<strong>in</strong>g table. The lighter material cont<strong>in</strong>ues<br />

after the cyclone to a flotation circuit.<br />

The f<strong>in</strong>al product is three different concentrates:<br />

gravitation concentrate, middl<strong>in</strong>g concentrate<br />

and flotation concentrate. Concentration has a<br />

capacity of 1 500 tons of raw ore/day.”<br />

Saattopora gold m<strong>in</strong>e<br />

Tero Niiranen, Geological Survey of F<strong>in</strong>land<br />

The Saattopora Au(-Cu) deposit is located <strong>in</strong><br />

the western part of the Central Lapland Greenstone<br />

Belt next to the crustal-scale Sirkka thrust<br />

zone (Fig. 3). The deposit was discovered <strong>in</strong><br />

1985 by Outokumpu Oyj and was subsequently<br />

m<strong>in</strong>ed 1988–1995 from two open pits and<br />

underground work<strong>in</strong>gs. The total amount of<br />

gold produced was 6 279 kg, and 5 177 tonnes<br />

of copper was recovered as a by-product from<br />

2.163 million tonnes of ore. Mill feed grades<br />

were 3.29 g/t Au and 0.28% Cu (Laht<strong>in</strong>en et al.<br />

2005, unpublished report, Outokumpu M<strong>in</strong><strong>in</strong>g<br />

Oy). Saattopora is one of several gold <strong>deposits</strong><br />

discovered along the east–west trend<strong>in</strong>g<br />

Sirkka Thrust Zone. However, it is the only deposit<br />

which has been under full-scale m<strong>in</strong><strong>in</strong>g.<br />

The deposit consist of two, roughly east–west<br />

trend<strong>in</strong>g lodes which are hosted by variably altered<br />

mica schist, phyllite, komatiite, ma<strong>fi</strong>c tuff<br />

and ma<strong>fi</strong>c lava of the >2.2 Ga Savukoski Group<br />

sequence (Fig. 13). The <strong>in</strong>trusions <strong>in</strong> the area<br />

consist of 2.2–2.0 Ga dolerite and c. 2.0 Ga<br />

felsic porphyry dykes. The former occurs <strong>in</strong> the<br />

ore-host<strong>in</strong>g sequence.<br />

The deposit consists of north-strik<strong>in</strong>g, subvertical<br />

to vertical, auriferous quartz-carbonate-sulphide<br />

ve<strong>in</strong>s, ve<strong>in</strong> arrays and hydrothermal<br />

breccias (Fig. 14). <strong>Gold</strong> occurs as free and<br />

native gold <strong>in</strong> association with the sulphides,<br />

quartz and carbonates. Pyrite and pyrrhotite<br />

are the ma<strong>in</strong> opaque phases, and chalcopyrite,<br />

gers dorf<strong>fi</strong>te, rutile, pentlandite, tucholite,<br />

urani nite, bismuthite and niccolite com­<br />

28 Pasi Eilu & Tero Niiranen (ed.)


7525300<br />

A’<br />

3391900<br />

3390500<br />

A<br />

200 m<br />

7524600<br />

A A’<br />

230 m<br />

30 m<br />

Ma<strong>fi</strong>c tuff, phyllite & ma<strong>fi</strong>c lava <strong>in</strong>tercalations<br />

Phyllite, mica schist <strong>in</strong>tercalations<br />

Komatiite<br />

Tholeiitic lava<br />

Shear zone<br />

Au lodes (1 g/t cut off)<br />

Figure 13. Simpli<strong>fi</strong>ed geology of the Saattopora deposit<br />

with 1 g/t Au envelopes.<br />

prise the m<strong>in</strong>or opaque phases together with<br />

the gold. Ferrous dolomite and quartz are the<br />

ma<strong>in</strong> gangue m<strong>in</strong>erals.<br />

The host rock sequence was subject to polyphase<br />

deformation and metamorphism dur<strong>in</strong>g<br />

the Svecofennian orogenic events at 1.91–<br />

1.79 Ga. The earliest ductile deformation stages,<br />

D1–2, relate to thrust<strong>in</strong>g from the south, and<br />

the last, D3, stage <strong>in</strong> the western part of the<br />

CLGB relates to thrust<strong>in</strong>g from west or southwest<br />

(e.g. Hölttä et al. 2007, Patison 2007). The<br />

regional metamorphic grade at Saattopora is of<br />

mid-greenschist facies and the peak conditions<br />

were reached dur<strong>in</strong>g the D1–2 stage (Hölttä et<br />

al. 2007). The Saattopora deposit is structurally<br />

controlled by second or lower-order shear zones<br />

relat<strong>in</strong>g to the Sirkka thrust which was <strong>in</strong>itially<br />

formed dur<strong>in</strong>g the north-directed thrust<strong>in</strong>g<br />

of the D1–2 stage and subsequently reactivated<br />

dur<strong>in</strong>g the D3 as a strike-slip shear (Patison<br />

2007, Saalmann & Niiranen 2010). The auriferous<br />

ve<strong>in</strong>s cut across all the ductile deformation<br />

features. Exclud<strong>in</strong>g late, small-scale brittle<br />

Excursion Guidebook FIN1 29


A<br />

10 cm<br />

B<br />

C<br />

Figure 14. A. Typical Au-bear<strong>in</strong>g quartz-carbonate-sulphide ve<strong>in</strong>s at Saattopora. Completely brittle sub-vertical to<br />

vertical north–south strik<strong>in</strong>g ve<strong>in</strong>s cross cut albitised phyllite. The A pit. B. Different alteration stages at Saattopora.<br />

Intense albitisation <strong>in</strong> phyllite, overpr<strong>in</strong>ted by early carbonate alteration (brown material) which is cross cut by<br />

Au-bear<strong>in</strong>g ve<strong>in</strong>s. Note that albitised phyllite is folded <strong>in</strong> ductile manner, the early carbonatisation is either folded<br />

or follows the pre-exist<strong>in</strong>g folded foliation. The m<strong>in</strong>eralised ve<strong>in</strong>s cut across all the early ductile deformation and<br />

early alteration <strong>in</strong> a completely brittle manner. The small-scale fold<strong>in</strong>g visible <strong>in</strong> photo relate to D3 stage. C. Polymict<br />

hydrothermal breccia <strong>in</strong> the B pit. Quartz, carbonates, sulphides and gold brecciate the host rocks consist<strong>in</strong>g<br />

of albitised phyllite, mica schist and ma<strong>fi</strong>c volcanic rocks.<br />

fault<strong>in</strong>g, the ve<strong>in</strong>s themselves are undeformed<br />

(Fig. 14).<br />

Multi-stage alteration has been detected at<br />

Saattopora. The earliest alteration is regionalscale<br />

albitisation which has been folded dur<strong>in</strong>g<br />

the D3 and possibly already dur<strong>in</strong>g the D1–2<br />

stages (Patison 2007, Saalmann & Niiranen<br />

2010, Niiranen et al. 2012). The albitised rocks<br />

are overpr<strong>in</strong>ted by carbonatisation which is either<br />

folded <strong>in</strong> the D3 stage or follows the F1–2<br />

foliation folded dur<strong>in</strong>g the D3 (Fig. 14B). The<br />

m<strong>in</strong>eralised ve<strong>in</strong>s cut across these early alteration<br />

features as well as all ductile deformation features<br />

<strong>in</strong> the area. Other alteration styles reported<br />

from the Saattopora area are chlorite and talcchlorite<br />

alteration detected <strong>in</strong> ma<strong>fi</strong>c and ultrama<strong>fi</strong>c<br />

rocks. These may, however, be regional<br />

features related to the development of thrust and<br />

shear zones, as they also have been reported from<br />

well outside the m<strong>in</strong>eralised parts of the Sirkka<br />

thrust zone (e.g. Saalmann & Niiranen 2010).<br />

Sericite alteration has also been reported from<br />

the felsic host rocks. It is, however, unclear how<br />

it is related to the m<strong>in</strong>eralisation.<br />

Fluid <strong>in</strong>clusion data from the m<strong>in</strong>eralised<br />

quartz-carbonate ve<strong>in</strong>s <strong>in</strong>dicate that the m<strong>in</strong>eralis<strong>in</strong>g<br />

fluid was moderately sal<strong>in</strong>e (about 9%<br />

NaCl eq.) aqueous-carbonic fluid and the m<strong>in</strong>­<br />

30 Pasi Eilu & Tero Niiranen (ed.)


eralisation took place at 300–350 °C (Niiranen<br />

et al. 2012). Fluid <strong>in</strong>clusion data also suggest<br />

that the m<strong>in</strong>eralisation was most likely due to<br />

phase separation between the aqueous and carbonic<br />

phases of the gold-carry<strong>in</strong>g fluid, a feature<br />

which is further supported by the presence of<br />

hydrothermal breccias (Fig. 14B).<br />

The oxygen and carbon isotope values of the Fe<br />

dolomite <strong>in</strong> the auriferous ve<strong>in</strong>s yield δ 18 O SMOW<br />

values of 12.19–12.44‰ and δ 13 C PDB values of<br />

–6.87 to –7.68‰ (Hölttä & Karhu 2001). Us<strong>in</strong>g<br />

fractionation factors of Golyshev et al. (1981) for<br />

dolomite-H 2 O and a temperature of 300–350 °C<br />

outl<strong>in</strong>ed by the fluid <strong>in</strong>clusion work, the oxygen<br />

isotope composition of the m<strong>in</strong>eralis<strong>in</strong>g fluid<br />

range was δ 18 O SMOW = 6.78–8.56‰.<br />

The age of the m<strong>in</strong>eralisation event <strong>in</strong> Saattopora<br />

is somewhat unclear. Mänttäri (1995) suggested<br />

that the 1907–1885 Ma Pb-Pb age for the<br />

sulphides <strong>in</strong> the m<strong>in</strong>eralised ve<strong>in</strong>s represent the<br />

age of the m<strong>in</strong>eralisation. Based on the structural<br />

relationship between the m<strong>in</strong>eralised ve<strong>in</strong>s<br />

and the regional deformation features, Patison<br />

(2007) and Niiranen et al. (2012) suggested that<br />

the m<strong>in</strong>eralisation took place <strong>in</strong> a late stage of<br />

the regional D3 deformation or post-dates it. If<br />

this is true, the 1781±18 Ma U-Pb age for monazite<br />

and tucholite (Mänttäri 1995) is most likely<br />

close to the m<strong>in</strong>eralisation age.<br />

Kittilä gold m<strong>in</strong>e<br />

(Suurikuusikko deposit)<br />

Nicole Patison, Geological Survey of Western<br />

Australia,<br />

Juhani Ojala, Store Norske Gull AS, F<strong>in</strong>land<br />

Pasi Eilu & Tero Niiranen, Geological Survey of<br />

F<strong>in</strong>land<br />

The orogenic Suurikuusikko gold deposit is<br />

situated with<strong>in</strong> the Palaeoproterozoic Central<br />

Lapland Greenstone Belt, approximately 35 km<br />

north-east of the town of Kittilä <strong>in</strong> F<strong>in</strong>nish Lapland<br />

(Figs. 3, 7 and 15). The host rocks, tim<strong>in</strong>g<br />

of ore formation relative to regional deformation,<br />

metamorphic grade, alteration assemblages<br />

present and structurally controlled nature of the<br />

deposit make it analogous to better known <strong>deposits</strong><br />

<strong>in</strong> greenstone belts throughout the world<br />

(e.g. Yilgarn of Australia and Superior Prov<strong>in</strong>ce<br />

of Canada). At Suurikuusikko, the gold is refractory<br />

and occurs with<strong>in</strong> arsenopyrite (>70%)<br />

and arsenian pyrite as lattice-bound gold or submicroscopic<br />

<strong>in</strong>clusions.<br />

A m<strong>in</strong><strong>in</strong>g operation at Suurikuusikko, the<br />

Kittilä M<strong>in</strong>e, started <strong>in</strong> 2008, then target<strong>in</strong>g<br />

a gold resource of 16 million tonnes (2.6 million<br />

ounces) averag<strong>in</strong>g 5.1 g/t gold (www.agnicoeagle.com).<br />

Until the end of 2012, 4.1 million<br />

tonnes of ore was m<strong>in</strong>ed and more than<br />

16 tonnes of gold produced. The present proven<br />

and probable reserves total approximately 4.8<br />

million ounces gold from 33 million tonnes<br />

grad<strong>in</strong>g 4.5 g/t Au (Agnico Eagle 2013). Ore<br />

<strong>in</strong>tersections have very even grade distribution<br />

due to the ‘dissem<strong>in</strong>ated sulphide-like’ nature of<br />

the ore. Table 3 shows examples of typical ore<br />

<strong>in</strong>tercepts <strong>in</strong> drill core. The deposit still is open<br />

along strike at both ends and at depth. Presently,<br />

one of the deepest ore-grade <strong>in</strong>tersections (8.5 m<br />

true width at 4.2 g/t Au) is about 1 370 m below<br />

the surface (www.agnicoeagle.com).<br />

Exploration history<br />

Visible gold was discovered south-south-west of<br />

Suurikuusikko <strong>in</strong> a road cut by the Geological<br />

Survey of F<strong>in</strong>land (GTK) <strong>in</strong> 1986 (Härkönen<br />

& Ke<strong>in</strong>änen 1989, Valkama 2006). Subsequent<br />

ground-geophysical surveys and geochemical<br />

survey on till and the bedrock surface lead to<br />

the identi<strong>fi</strong>cation of the Kiistala Shear Zone<br />

(KiSZ or ‘Suurikuusikko Trend’), the deposit’s<br />

host structure. Suurikuusikko was discovered <strong>in</strong><br />

1986 dur<strong>in</strong>g diamond drill<strong>in</strong>g by GTK. A total<br />

of 77 diamond drill holes (9 320 m) were completed<br />

by GTK, outl<strong>in</strong><strong>in</strong>g a resource of 1.5 million<br />

tonnes with an average grade of 5.9 g/t Au<br />

(285 000 ounces of gold) by 1997 (Parkk<strong>in</strong>en<br />

1997). In April 1998, the deposit was acquired<br />

by Riddarhyttan Resources AB and the company’s<br />

exploration activities <strong>in</strong>creased the resource<br />

to over 2 million ounces of gold (Bartlett, pers.<br />

Excursion Guidebook FIN1 31


255 000 mE 256 000 mE 257 000 mE<br />

7 550 000 N 7 560 000 N<br />

Lake<br />

Sarkojärvi<br />

Kuotko<br />

Riv. Kapsajoki<br />

7 540 000 N<br />

Lake<br />

Hanhimaa<br />

Lake<br />

Munajärvi<br />

79<br />

Rimpi<br />

North Roura<br />

Central Roura<br />

Suuri<br />

Etela<br />

Ketola<br />

Riv. Rourajoki<br />

7 530 000 N<br />

To Sirka<br />

(Levi)<br />

7 520 000 N<br />

Riv. Ser ujoki<br />

To Kittilä<br />

Lake<br />

Rastijärvi<br />

Lake<br />

Vesmajärvi<br />

Kittila<br />

Rovaniemi<br />

Granitoid<br />

Sedimentary rock<br />

Volcanic rocks<br />

Iron-bear<strong>in</strong>g tholeiite<br />

Magnesium-bear<strong>in</strong>g tholeiite<br />

Other volcanic rock<br />

Kittila M<strong>in</strong>e Licence<br />

Agnico-Eagle Kittila Property<br />

Open Pit Outl<strong>in</strong>e<br />

5 km<br />

F<strong>in</strong>nish Coord<strong>in</strong>ate System<br />

KKJ Zone 3<br />

Hels<strong>in</strong>ki<br />

Figure 15. Geology and <strong>in</strong>frastructure <strong>in</strong> the vic<strong>in</strong>ity of the Kittilä M<strong>in</strong>e, as of January 2012 (image available from<br />

www.agnicoeagle.com).<br />

32 Pasi Eilu & Tero Niiranen (ed.)


comm. 2002). Ore-grade rock was found over a<br />

<strong>fi</strong>ve-kilometre strike length of the KiSZ <strong>in</strong> similar<br />

structural and stratigraphic positions. Feasibility<br />

studies began <strong>in</strong> the w<strong>in</strong>ter of 2000. In<br />

2004, Agnico Eagle M<strong>in</strong>es Limited acquired a<br />

14% ownership <strong>in</strong>terest <strong>in</strong> Riddarhyttan, and<br />

<strong>in</strong> 2005 acquired the rema<strong>in</strong><strong>in</strong>g Riddarhyttan<br />

shares. In June 2006, a decision was made<br />

to beg<strong>in</strong> m<strong>in</strong>e development. The Kittilä M<strong>in</strong>e<br />

started commercial production <strong>in</strong> May 2009<br />

(Figs. 16–18).<br />

Geology<br />

Suurikuusikko occurs with<strong>in</strong> greenschist-facies<br />

metavolcanic rocks of the c. 2.0 Ga Kittilä<br />

Group (Fig. 15). Geochemical heterogeneity<br />

among the Kittilä Group rocks has been <strong>in</strong>terpreted<br />

to <strong>in</strong>dicate that the group is a composite<br />

of arc terranes and oceanic plateau amalgamated<br />

dur<strong>in</strong>g oceanic convergence (Hanski & Huhma<br />

2005). Signi<strong>fi</strong>cant variations <strong>in</strong> metamorphic<br />

grade with<strong>in</strong> the group also suggest that a<br />

number of dist<strong>in</strong>ct lithological elements could<br />

be present with<strong>in</strong> the area currently mapped as<br />

the Kittilä Group, and seismic surveys across<br />

central Lapland <strong>in</strong>dicate a number of dist<strong>in</strong>ct<br />

crustal blocks (Patison et al. 2006). The maximum<br />

current thickness of the Kittilä Group is<br />

between six and seven kilometres (Luosto et al.<br />

1989) <strong>in</strong> the Kittilä M<strong>in</strong>e area.<br />

The ore is mostly hosted by a transitional<br />

formation between two thick (several hundred<br />

metres) ma<strong>fi</strong>c lava sequences (Figs. 19–22). The<br />

north- to north-north-east-trend<strong>in</strong>g host structure<br />

(KiSZ) for the deposit co<strong>in</strong>cides with this<br />

contact between the western and eastern lava<br />

packages. In the area of the ‘Ma<strong>in</strong>’ ore zone,<br />

host rocks change from ma<strong>fi</strong>c pillow and massive<br />

lavas west of the m<strong>in</strong>eralised zones to ma<strong>fi</strong>c<br />

transitional to <strong>in</strong>termediate lavas (andesite flows<br />

of Powell, pers. comm. 2001) and m<strong>in</strong>or pyroclastic<br />

material with<strong>in</strong> the m<strong>in</strong>eralised zones.<br />

Graphitic sedimentary <strong>in</strong>tercalations conta<strong>in</strong><strong>in</strong>g<br />

chert, argillitic material and BIF occur with<strong>in</strong><br />

the ma<strong>fi</strong>c volcanic sequence at the eastern marg<strong>in</strong><br />

of the m<strong>in</strong>eralised zones, followed farther<br />

east by ma<strong>fi</strong>c lava packages and ultrama<strong>fi</strong>c volcanic<br />

rocks. The extent of <strong>in</strong>termediate and felsic<br />

rock compositions <strong>in</strong> the deposit is still under<br />

<strong>in</strong>vestigation. The variation <strong>in</strong> appearance (and<br />

hence the logg<strong>in</strong>g and mapp<strong>in</strong>g term<strong>in</strong>ology for<br />

rock compositions used here) may also result<br />

Table 3. Kittilä M<strong>in</strong>e. Examples of gold <strong>in</strong>tercepts from drill core.<br />

Zone Drill hole number M<strong>in</strong>eralised section length (m) Averaged grade of section (g/t Au)<br />

Ketola 02114 6.40 4.20<br />

Ketola 02107 7.00 11.10<br />

Ketola 02107 3.20 7.10<br />

Ketola 02104 10.70 4.00<br />

Etelä R407 7.00 7.50<br />

Etelä 01802 5.60 8.60<br />

Etelä 02039 8.10 9.50<br />

Ma<strong>in</strong> R473 14.00 10.40<br />

Ma<strong>in</strong> R504 10.80 9.10<br />

Ma<strong>in</strong> 00717 14.30 10.60<br />

Ma<strong>in</strong> R478 18.20 5.10<br />

Ma<strong>in</strong> 99002 18.20 16.50<br />

Ma<strong>in</strong> R479 26.80 17.30<br />

Ma<strong>in</strong> 00730 18.90 9.10<br />

Ma<strong>in</strong> 98004 29.60 11.90<br />

Ma<strong>in</strong> 00903 46.20 8.90<br />

Excursion Guidebook FIN1 33


Figure 16. Wallrock transport from the open pit Kittilä M<strong>in</strong>e. Photo courtesy Agnico Eagle M<strong>in</strong>es.<br />

Figure 17. From the bottom of the open pit at the Kittilä M<strong>in</strong>e. Photo courtesy Agnico Eagle M<strong>in</strong>es.<br />

34 Pasi Eilu & Tero Niiranen (ed.)


Figure 18. Load<strong>in</strong>g ore. Underground operations at the Kittilä M<strong>in</strong>e. Photo courtesy of Agnico Eagle M<strong>in</strong>es.<br />

7534600N<br />

7535000N 7535400N 7535800N 7536200N 7536600N<br />

2558200E<br />

2558600E<br />

2559000E<br />

2558200E<br />

2558600E<br />

2559000E<br />

Figure 19. Total magnetic <strong>fi</strong>eld (left) and electromagnetic (sl<strong>in</strong>gram out-of-phase, right) images for the southern<br />

part of the Suurikuusikko area, <strong>in</strong> 200 m grid. The blue colour represents magnetic lows and conductivity highs <strong>in</strong><br />

<strong>fi</strong>gures on left and right, respectively. Names refer to <strong>in</strong>dividual ore zones. Coord<strong>in</strong>ates accord<strong>in</strong>g to the F<strong>in</strong>nish<br />

national KKJ grid. Image by Riddarhyttan Resources AB.<br />

Excursion Guidebook FIN1 35


2 558 450 mE<br />

2 558 500 mE 2 558 550 mE<br />

7 535 550 mN<br />

Overburden<br />

Ma<strong>fi</strong>c volcanic rock<br />

Ma<strong>fi</strong>c pyroclastic rock<br />

Black chert/silici<strong>fi</strong>ed sediments<br />

Volcanoclastic and sedimentary rock<br />

Ma<strong>fi</strong>c dyke<br />

Graphitic fault zone<br />

Ma<strong>in</strong> shear<br />

M<strong>in</strong>or shear<br />

7 535 400 mN<br />

7 535 450 mN<br />

7 535 500 mN<br />

0<br />

5<br />

10<br />

20<br />

metres<br />

Figure 20. Geological map of the recently stripped Etelä Pit area at the Kittilä M<strong>in</strong>e. This area is expected to be visited<br />

dur<strong>in</strong>g the <strong>fi</strong>eld trip. Grid 50 m. Coord<strong>in</strong>ates accord<strong>in</strong>g to F<strong>in</strong>nish national KKJ grid. Image courtesy of Agnico<br />

Eagle M<strong>in</strong>es.<br />

36 Pasi Eilu & Tero Niiranen (ed.)


from progressive alteration of ma<strong>fi</strong>c rocks. Most<br />

ore is hosted by ma<strong>fi</strong>c rocks and rocks mapped<br />

as <strong>in</strong>termediate or felsic volcanic rocks. Metasedimentary<br />

units <strong>in</strong>clud<strong>in</strong>g BIF typically have<br />

low to no gold grade, and the ultrama<strong>fi</strong>c rocks<br />

are unm<strong>in</strong>eralised.<br />

Orogenic events relat<strong>in</strong>g to CLGB development<br />

generated several phases of deformation.<br />

The earliest deformation phases preserved<br />

(D1– D2) <strong>in</strong>volved roughly synchronous northto<br />

north-north-east- and south- to south-westdirected<br />

thrust<strong>in</strong>g at the southern and northeastern<br />

marg<strong>in</strong>s of the CLGB (Ward et al. 1989).<br />

North-west-, north-, and north-east-trend<strong>in</strong>g<br />

D3 strike-slip shear zones, <strong>in</strong>clud<strong>in</strong>g the KiSZ<br />

host<strong>in</strong>g the Suurikuusikko deposit, cut early<br />

fold<strong>in</strong>g and thrust<strong>in</strong>g, but may also reflect reactivation<br />

of older structures. Post-D3 events are<br />

limited to brittle, low-displacement faults.<br />

Representative structural data for the deposit<br />

are shown <strong>in</strong> Figure 23. The Kiistala Shear Zone<br />

(Suurikuusikko Trend) has a strike length of at<br />

W<br />

E<br />

Schematic vertical section<br />

of pre-deformation stratigraphy<br />

50 m<br />

Ultrama<strong>fi</strong>c volcanic rocks<br />

Ma<strong>fi</strong>c lava (massive and pyroclastic)<br />

Ma<strong>fi</strong>c lava (pillow)<br />

Ma<strong>fi</strong>c pyroclastic rock<br />

Ma<strong>fi</strong>c <strong>in</strong>trusion<br />

Ma<strong>fi</strong>c–<strong>in</strong>termediate (transitional<br />

composition) lavas and pyroclastic rocks<br />

Felsic volcanic rock<br />

Volcano-sedimentary (reworked) rock<br />

BIF<br />

Chert<br />

Argillite<br />

Lapilli<br />

Stratigraphic fac<strong>in</strong>g<br />

Hole trace<br />

Figure 21. Simpli<strong>fi</strong>ed vertical section<br />

across the Suurikuusikko<br />

deposit (Kittilä M<strong>in</strong>e), by Nicole<br />

Patison (2004), orig<strong>in</strong>ally published<br />

<strong>in</strong> Eilu & Weihed (2005).<br />

Excursion Guidebook FIN1 37


Figure 22. Dark graphitic shear<br />

zone host<strong>in</strong>g the ore on right, pale<br />

grey ma<strong>fi</strong>c volcanic rock on left.<br />

Ma<strong>in</strong> open pit at the Kittilä M<strong>in</strong>e.<br />

View to the north. Photo courtesy<br />

Agnico Eagle M<strong>in</strong>es.<br />

A<br />

N<br />

B<br />

N<br />

C<br />

N<br />

N=8<br />

N=78<br />

N<br />

D<br />

N=52 N=14<br />

Figure 23. These stereoplots<br />

show the orientations of deformation<br />

features observed<br />

for Suurikuusikko (ordered<br />

from oldest to youngest).<br />

A. Bedd<strong>in</strong>g (dots), the trend of<br />

the typical regional foliation<br />

(l<strong>in</strong>es) formed prior to movements<br />

of the KiSZ related to<br />

m<strong>in</strong>eralisation, and fold axes<br />

measured <strong>in</strong> the deposit area<br />

(stars). B. C. Orientation of<br />

the ‘graphitic’ shear zones associated<br />

with the KFZ and ore<br />

zones. D. Common orientation<br />

of post-m<strong>in</strong>eralisation faults.<br />

Lower hemisphere projections<br />

on equal area nets. Plots after<br />

Patison (2001) and Patison et<br />

al. (2006).<br />

38 Pasi Eilu & Tero Niiranen (ed.)


least 25 km (Fig. 15). The dip of this shear zone<br />

<strong>in</strong> the Suurikuusikko area is steeply east to subvertical<br />

(Figs. 23B and 23C). Known m<strong>in</strong>eralisation<br />

occurs with<strong>in</strong> north-trend<strong>in</strong>g and less<br />

frequently north-east-trend<strong>in</strong>g shear zone segments<br />

(e.g. Ketola ore bodies, Fig. 19) . The KiSZ<br />

is a complex structure, record<strong>in</strong>g several phases<br />

of movement. Most deformation has occurred<br />

by flatten<strong>in</strong>g accompanied by some strike-slip<br />

movement. Aeromagnetic images of the KiSZ<br />

<strong>in</strong>dicate early s<strong>in</strong>istral strike-slip movement<br />

along the zone. Immediately above the widest<br />

m<strong>in</strong>eralised zones, late dextral strike-slip movements<br />

are recorded on shear planes bound<strong>in</strong>g<br />

m<strong>in</strong>eralised zones. It is not yet clear if the tim<strong>in</strong>g<br />

of m<strong>in</strong>eralisation co<strong>in</strong>cides with a comb<strong>in</strong>ation<br />

of early and late shear<strong>in</strong>g or only to the later<br />

dextral shear<strong>in</strong>g event which now del<strong>in</strong>eates the<br />

limits of gold m<strong>in</strong>eralisation <strong>in</strong> most ore zones.<br />

An apparent correlation exists between po<strong>in</strong>ts of<br />

more <strong>in</strong>tense shear<strong>in</strong>g with<strong>in</strong> the KiSZ and the<br />

amount of gold present <strong>in</strong> host rocks.<br />

The envelopes of ore bodies strike north and<br />

have a moderate northerly plunge (Fig. 24). The<br />

control on the northerly plunge is not completely<br />

resolved: factors to be explored <strong>in</strong>clude the role<br />

of <strong>in</strong>tersections between multiple shear planes,<br />

and of <strong>in</strong>tersections of depositional surfaces and<br />

shear planes. The orientation of regional fold<br />

axes (similar to axes <strong>in</strong> Fig. 23A) may also have<br />

a role <strong>in</strong> determ<strong>in</strong><strong>in</strong>g favourable sites for m<strong>in</strong>eralisation<br />

dur<strong>in</strong>g shear<strong>in</strong>g. Sulphides and host<br />

rocks show some evidence for deformation relat<strong>in</strong>g<br />

to post-m<strong>in</strong>eralisation movements on host<br />

shear planes. Post-m<strong>in</strong>eralisation brittle faults<br />

cross-cut m<strong>in</strong>eralised zones but are not known<br />

to cause signi<strong>fi</strong>cant displacement of ore lenses.<br />

Much of the geometry of shear structures, formation<br />

of many shear zones and their complex<br />

k<strong>in</strong>ematic history could be expla<strong>in</strong>ed by flatten<strong>in</strong>g<br />

of a layered stratigraphy. Dur<strong>in</strong>g the same<br />

deformation, several types of layer-normal compression<br />

structures can form <strong>in</strong> layered systems.<br />

Accord<strong>in</strong>g to Cosgrove (2007, Fig. 11), the <strong>fi</strong>rst<br />

structures to form are boud<strong>in</strong>s which fail by the<br />

formation of extensional fractures, and with progressive<br />

deformation the deflection of the layered<br />

matrix <strong>in</strong>to the neck region between separat<strong>in</strong>g<br />

boud<strong>in</strong>s generate a series of <strong>in</strong>terlock<strong>in</strong>g p<strong>in</strong>ch<br />

and swell structures (Figs. 25 and 26).<br />

(m)<br />

0<br />

S<br />

Ketola Etela Suuri Roura Rimpi<br />

N<br />

–250<br />

–500<br />

OPEN<br />

–750<br />

OPEN<br />

Rimpi Trend<br />

–1000<br />

–1250<br />

–1500<br />

OPEN<br />

OPEN<br />

Suuri Trend<br />

Roura Trend<br />

OPEN<br />

OPE<br />

N<br />

7535000 N 7536000 N 7537000 N 7538000 N 7539000 N<br />

2012 M<strong>in</strong>eral Reserve<br />

2012 M<strong>in</strong>eral Resource<br />

M<strong>in</strong>ed out areas<br />

Underground m<strong>in</strong>e work<strong>in</strong>gs<br />

Planned Rimpi production ramp<br />

2013 Drill<strong>in</strong>g target areas<br />

Open pit outl<strong>in</strong>e<br />

1000 m<br />

F<strong>in</strong>nish Coord<strong>in</strong>ate System<br />

KKJ Zone 3<br />

Figure 24. Kittilä M<strong>in</strong>e long section as of December<br />

2012. View towards west. Image available at www.<br />

agnicoeagle.com.<br />

Excursion Guidebook FIN1 39


A<br />

B<br />

Figure 25. A. Colour photo from Etelä pit at Kittilä M<strong>in</strong>e, August 27th 2011. B. Structural <strong>in</strong>terpretation of the same<br />

area. Photograph shows chert boud<strong>in</strong>s, and both s<strong>in</strong>istral and dextral shear zones. Marker pen for scale. North to<br />

right. Photo and <strong>in</strong>terpretation Juhani Ojala.<br />

Figure 26. An underground 3D image across ore. Distance between <strong>in</strong>ner green mark<strong>in</strong>gs is 5.5 metres. Image courtesy<br />

Agnico Eagle M<strong>in</strong>es.<br />

Alteration <strong>in</strong> and around the deposit appears<br />

typical for <strong>deposits</strong> of this type. Visually, <strong>in</strong>tense<br />

carbonate and albite alteration are associated with<br />

gold-rich arsenopyrite and pyrite. Albite occurs<br />

as a matrix overpr<strong>in</strong>t that typically extends from<br />

a few tens of metres to up to 100 m <strong>in</strong>to barren<br />

rock, and as brecciat<strong>in</strong>g micro ve<strong>in</strong>lets. Barren<br />

carbonate alteration <strong>in</strong>cludes distal calcite ve<strong>in</strong>s,<br />

and dolomite-ankerite ve<strong>in</strong>s and <strong>in</strong><strong>fi</strong>ll<strong>in</strong>g tectonic<br />

or hydrothermal breccia with<strong>in</strong> proximal alteration<br />

zones and ore lodes, respectively. Table 4<br />

presents a summary of progressive alteration of<br />

ma<strong>fi</strong>c pillow lavas; miss<strong>in</strong>g <strong>in</strong> this table is amorphous<br />

carbon. The abundance of this ‘graphitic’<br />

carbon correlates with the <strong>in</strong>tense shear<strong>in</strong>g that<br />

bounds most m<strong>in</strong>eralised zones. The presence of<br />

such carbon suggests extremely reduc<strong>in</strong>g fluid<br />

conditions dur<strong>in</strong>g shear<strong>in</strong>g and possibly m<strong>in</strong>eralisation.<br />

<strong>Gold</strong>-bear<strong>in</strong>g sulphides commonly nucleated<br />

on shear planes, stylolitic cleavage, and<br />

on fractures bear<strong>in</strong>g amorphous carbon (Fig. 27).<br />

Carbon isotope data <strong>in</strong>dicate that this material is<br />

sourced from carbon-rich sediments with<strong>in</strong> the<br />

host sequence (Patison, unpublished data). Ar­<br />

40 Pasi Eilu & Tero Niiranen (ed.)


Table 4. Alteration m<strong>in</strong>erals present <strong>in</strong> progressively altered ma<strong>fi</strong>c pillow lava. The data used are modal weight percentages<br />

of m<strong>in</strong>eral phases calculated us<strong>in</strong>g M<strong>in</strong>eral Liberation Analysis data collected at GTK. The thickness of l<strong>in</strong>e<br />

is proportional to the relative volume of each m<strong>in</strong>eral present <strong>in</strong> the sample. A ma<strong>fi</strong>c pillow lava sequence was used<br />

for this example to ensure a constant rock type, although pillow lavas do not host signi<strong>fi</strong>cant volumes of ore. The<br />

‘felsic’ m<strong>in</strong>eralised sample is <strong>in</strong>cluded for comparison and may, <strong>in</strong> fact, be the most altered end-member of a ma<strong>fi</strong>c<br />

rock alteration sequence.<br />

Alteration Zone Distal Intermediate Proximal / Ore Ore Ore<br />

Rock type Ma<strong>fi</strong>c pillow lava Ma<strong>fi</strong>c pillow lava Ma<strong>fi</strong>c pillow lava Ma<strong>fi</strong>c pillow lava ‘Felsic’<br />

Sample F5-001 F5-007 00404 189.90 F5-003 F5-002<br />

Silicates<br />

Act<strong>in</strong>olite<br />

▬▬▬<br />

Epidote<br />

▬▬▬▬▬<br />

Titanite ---------------- --------------- -------------<br />

Chlorite ▬▬ ▬▬▬ ---------------- ▬▬▬<br />

Muscovite ------------------ ------------- ------------<br />

Albite ▬▬▬ ▬▬ ▬▬ ▬<br />

Microcl<strong>in</strong>e --------------- ---------------- ------------<br />

Plagioclase<br />

Cl<strong>in</strong>opyroxene<br />

(matrix)<br />

▬▬▬<br />

=========<br />

Quartz ------------------ −−−−−−−−− ---------------- ------------- ------------<br />

Carbonates<br />

Calcite ======== −−−−−−−−− ▬▬▬▬<br />

Dolomite ▬▬▬ - - - - - - - - ▬▬▬▬<br />

Phosphates<br />

Apatite - - - - - - - - - - - - - - - - - - -<br />

Oxides<br />

Rutile --------------- ------------------ ------------- ------------<br />

Sulphides<br />

Arsenopyrite ========== ======== =======<br />

Pyrite −−−−−−−−−− −−−−−−−− =======<br />

Pyrrhotite ------------------ ------------- ------------<br />

<strong>Gold</strong> grade (g/t) 0 0 5.16 3.3 8.71<br />

gillite-rich units <strong>in</strong>tercalated with volcaniclastic<br />

material have high primary carbon contents, and<br />

may have been chemically important for localis<strong>in</strong>g<br />

gold-rich phases given the association between<br />

amorphous carbon and m<strong>in</strong>eralisation. Other alteration<br />

and ore m<strong>in</strong>eral phases <strong>in</strong>clude rutile and<br />

less abundant sericite, tetrahedrite, chalcopyrite,<br />

gersdorf<strong>fi</strong>te, chalcocite, sphalerite, bornite, chromite,<br />

galena, talnakhite and Fe-hydroxides (the<br />

latter produced by weather<strong>in</strong>g) <strong>in</strong> vary<strong>in</strong>g abundances<br />

(Chernet et al. 2000).<br />

The gold-rich sulphides appear to have a late<br />

tim<strong>in</strong>g with<strong>in</strong> the paragenetic sequence. The<br />

majority (71%) of gold occurs with<strong>in</strong> arsenopyrite,<br />

and visible arsenopyrite is a reliable <strong>in</strong>dication<br />

of the presence of gold with<strong>in</strong> samples.<br />

The rema<strong>in</strong><strong>in</strong>g gold occurs <strong>in</strong> arsenian pyrite<br />

(22% of the gold) and <strong>in</strong>frequently as free gold<br />

(Kojonen & Johanson 1999). Sub-microscopic<br />

gold is found as <strong>in</strong>clusions or solid-solution lattice<br />

substitutions with<strong>in</strong> arsenopyrite and pyrite<br />

(Chernet et al. 2000). <strong>Gold</strong> as <strong>in</strong>clusions is common<br />

<strong>in</strong> pyrite but rare <strong>in</strong> arsenopyrite (typical<br />

gra<strong>in</strong> size from


A<br />

B<br />

C<br />

Figure 27. Two back-scattered electron microprobe<br />

images and one reflected light image of ore samples<br />

<strong>in</strong> ma<strong>fi</strong>c host rocks. A. Nucleation (or recrystallisation)<br />

of arsenopyrite <strong>in</strong> graphitic (black phase) milled zones<br />

relat<strong>in</strong>g to shear<strong>in</strong>g. B. A fractured competent rock<br />

fragment with arsenopyrite associated with fracture<br />

<strong>in</strong><strong>fi</strong>ll. A penetrative shear boundary is seen at the edge<br />

of this m<strong>in</strong>eralised fragment (center of photograph).<br />

C. The host with abundant f<strong>in</strong>e-gra<strong>in</strong>ed auriferous<br />

arsenopyrite-pyrite dissem<strong>in</strong>ation and a late, crosscutt<strong>in</strong>g<br />

quartz-carbonate ve<strong>in</strong>. Field of view <strong>in</strong> A and B<br />

is 1.5 mm, but 4 cm <strong>in</strong> C.<br />

alloys with Ag and Hg (Chernet et al. 2000).<br />

Rare stibnite ve<strong>in</strong>s and amorphous gra<strong>in</strong>s conta<strong>in</strong><br />

extremely high gold grades and overpr<strong>in</strong>t<br />

the ma<strong>in</strong> ore-bear<strong>in</strong>g sulphides.<br />

Acknowledgements<br />

Agnico Eagle is gratefully acknowledged for the<br />

permission to publish the data and all the images.<br />

The <strong>in</strong>formation <strong>in</strong> this summary reflects<br />

the op<strong>in</strong>ions of the authors only, unless otherwise<br />

referenced. The majority of <strong>in</strong>formation is<br />

based on data collected prior to 2005 (dur<strong>in</strong>g<br />

the exploration phase of the deposit preced<strong>in</strong>g<br />

m<strong>in</strong>e development).<br />

Rompas-Rajapalot gold-uranium<br />

project, Peräpohja Schist Belt<br />

Mawson Exploration Team and co-workers<br />

The Rompas-Rajapalot gold-uranium project is<br />

located <strong>in</strong> the Ylitornio municipality of <strong>northern</strong><br />

F<strong>in</strong>land at 66.45 °N and 24.75 °E, approximately<br />

50 km west of the Rovaniemi town. The<br />

<strong>in</strong>itial discovery area, Rompas, was discovered<br />

by AREVA Resources F<strong>in</strong>land Oy <strong>in</strong> September<br />

2008 as part of regional uranium exploration.<br />

Limited exploration was undertaken until<br />

Mawson Resources purchased the exploration<br />

assets of Areva <strong>in</strong> 2010. Mawson subsequently<br />

def<strong>in</strong>ed more than 300 bonanza grade gold<br />

occurrences of ve<strong>in</strong> style m<strong>in</strong>eralisation over a<br />

6 km strike length. Diamond drill<strong>in</strong>g <strong>in</strong> 2012<br />

and early 2013 produced numerous Au-U <strong>in</strong>tersections,<br />

of which 6 metres at 617 g/t Au rema<strong>in</strong>s<br />

the highlight. Rajapalot is a new grassroots discovery<br />

made by Mawson, 8 km east of Rompas,<br />

where a total of 52 outcrop grab samples to date<br />

average 152.8 g/t gold and range from 0.001 g/t<br />

to 2 817 g/t gold.<br />

Mawson holds 833 claims and claim applications<br />

for 75 340 hectares at the Rompas Project.<br />

A total of 110 exploration claims that cover a<br />

surface area of 10 580 hectares and form the core<br />

claims at Rompas came <strong>in</strong>to legal force on Oc­<br />

42 Pasi Eilu & Tero Niiranen (ed.)


tober 15, 2012 (Fig. 28). The presence of European<br />

Union-def<strong>in</strong>ed biodiversity areas (Natura<br />

2000) means that there is limited drill<strong>in</strong>g access<br />

<strong>in</strong> certa<strong>in</strong> parts of the project area. Further applications<br />

have been made to the relevant F<strong>in</strong>nish<br />

grant<strong>in</strong>g authorities to allow diamond-drill<br />

test<strong>in</strong>g of targets with<strong>in</strong> these areas. Approximately<br />

80% of Mawson’s best gold targets lie<br />

with<strong>in</strong> Natura 2000 areas.<br />

We would like to acknowledge the assistance<br />

of numerous people <strong>in</strong> this project, <strong>in</strong>clud<strong>in</strong>g<br />

present and former staff and consultants<br />

of Mawson Resources, students and researchers<br />

from various universities throughout F<strong>in</strong>land<br />

and Europe and the GTK <strong>in</strong> F<strong>in</strong>land. In addition,<br />

numerous discussions with visitors to the<br />

site have aided <strong>in</strong> reach<strong>in</strong>g the current level of<br />

understand<strong>in</strong>g of the project.<br />

To ensure personal safety, please note that<br />

samples may not be collected without permission<br />

of Mawson staff as they may conta<strong>in</strong> signi<strong>fi</strong>cant<br />

uran<strong>in</strong>ite.<br />

3 370 000 mE 3 380 000 mE 3 390 000 mE 3 400 000 mE 3 410 000 mE 3 420 000 mE 3 430 000 mE<br />

North Rompas<br />

7 380 000 mN<br />

Onkirova<br />

Central Rompas<br />

South Rompas<br />

7 370 000 mN<br />

Rajapalot area<br />

Rumavuoma<br />

7 350 000 mN<br />

7 360 000 mN<br />

Mustamaa<br />

Valtaus hakemus (Mawson Claim Applications)<br />

Valtaus (Mawson Granted Claims)<br />

Valtaus (Others Granted Claims)<br />

10 km<br />

F<strong>in</strong>nish Coord<strong>in</strong>ate System<br />

KKJ Zone 3<br />

ROMPAS<br />

Barents<br />

Sea<br />

Kola<br />

Pen.<br />

F<strong>in</strong>land<br />

Figure 28. Location of Rompas-Rajapalot project and<br />

Mawson granted claims and claim applications (as at<br />

April 2013).<br />

North<br />

Sea<br />

Baltic<br />

Sea<br />

Excursion Guidebook FIN1 43


Regional geology<br />

The Rompas project lies with<strong>in</strong> the Peräpohja<br />

Schist Belt (PSB, Figs. 5 and 6), a Palaeoproterozoic<br />

supracrustal sequence of quartzites, ma<strong>fi</strong>c<br />

volcanic and volcaniclastic rocks, carbonate<br />

rocks, black shales, mica schists and greywackes<br />

(Fig. 29). It is generally <strong>in</strong>terpreted as a cont<strong>in</strong>ental<br />

rift <strong>fi</strong>ll sequence that failed to progress to oceanic<br />

crust. The metamorphism ranges from mid<br />

or upper greenschist <strong>in</strong> the south to amphibolite<br />

facies with some of the highest grade rocks exposed<br />

at the Rompas prospect area. The amount<br />

of stra<strong>in</strong> varies greatly <strong>in</strong> the PSB. Low stra<strong>in</strong><br />

rocks are described well to the south of Rompas<br />

where vesicles and pillow lavas <strong>in</strong> ma<strong>fi</strong>c rocks<br />

are preserved. At South Rompas, <strong>in</strong> contrast,<br />

the total stra<strong>in</strong> is very high and relic <strong>in</strong>ternal<br />

structure is dif<strong>fi</strong>cult to identify. Transposition<br />

of lithologic contacts is observed at both outcrop<br />

and regional scales (from the <strong>in</strong>terpretation of<br />

aeromagnetic data).<br />

Rompas area geology<br />

The Rompas prospect area (Fig. 29) is dom<strong>in</strong>ated<br />

by a north-trend<strong>in</strong>g ridge compris<strong>in</strong>g metabasalt,<br />

<strong>in</strong>ferred volcaniclastic rocks, carbonate-rich<br />

rocks and black graphitic metapelites. On the<br />

ridge crest, these rocks either crop out or are<br />

covered by th<strong>in</strong> glacial till (generally less than<br />

1 m). On either side of the ridge, small lakes,<br />

peat bogs and thicker till are abundant with isolated<br />

bedrock outcrops. However, m<strong>in</strong>eralisation<br />

is known to cont<strong>in</strong>ue under the deeper till<br />

cover. The calc-silicate ve<strong>in</strong>-style m<strong>in</strong>eralisation<br />

at Rompas is nearly all hosted by a metabasalt<br />

that will be exam<strong>in</strong>ed on the <strong>fi</strong>eld trip <strong>in</strong> various<br />

locations and <strong>in</strong> drill core.<br />

Regional folds, <strong>in</strong>ferred to be related to the<br />

D2 and D3 deformational events, dom<strong>in</strong>ate the<br />

Rompas area geology. The D1 event is dif<strong>fi</strong>cult<br />

to identify, but regional work suggests it is now<br />

present as transposed isocl<strong>in</strong>al folds with a high<br />

temperature foliation parallel or sub-parallel to<br />

the D2 foliation. The D2 produced upright<br />

north-strik<strong>in</strong>g tight to isocl<strong>in</strong>al folds at Rompas<br />

that are <strong>in</strong> turn folded about upright, open<br />

to tight east-trend<strong>in</strong>g D3 folds. Of signi<strong>fi</strong>cance<br />

at Rompas is that the D2 foliation is quite variable<br />

<strong>in</strong> <strong>in</strong>tensity, and it <strong>in</strong>creases towards South<br />

Rompas to such an extent that any orig<strong>in</strong>al basaltic<br />

rock textures have been destroyed.<br />

Amphibolite facies metamorphism has accompanied<br />

the development of the S2 foliation<br />

with biotite and amphibole (largely hornblende)<br />

def<strong>in</strong><strong>in</strong>g the fabric. Biotite is an important part<br />

of the most foliated metabasalts, provid<strong>in</strong>g evidence<br />

of early potassic alteration.<br />

With<strong>in</strong> the metabasalts, variably oriented<br />

large amphibole gra<strong>in</strong>s, which are up to 8 mm<br />

long, grow across the S2 foliation throughout the<br />

North and South Rompas prospect areas. These<br />

may belong to the cumm<strong>in</strong>gtonite or anthophyllite<br />

amphibole groups, <strong>in</strong> addition to ‘more normal’<br />

hornblende compositions. Indeed, some<br />

samples are found to conta<strong>in</strong> hornblende, cumm<strong>in</strong>gtonite<br />

and anthophyllite.<br />

A comparison of the geochemical composition<br />

of the Rompas metabasalts with other ma<strong>fi</strong>c<br />

rocks with<strong>in</strong> the PSB by Mustonen (2012) reveals<br />

a similarity with the Runkaus Formation,<br />

the oldest basalt with<strong>in</strong> the Peräpohja stratigraphy<br />

(Figs. 5 and 6). U-Pb dat<strong>in</strong>g of secondary<br />

titanite from the Runkaus Formation has given<br />

a m<strong>in</strong>imum age of approximately 2.25 Ga (Huhma<br />

et al. 1990) imply<strong>in</strong>g a similar m<strong>in</strong>imum age<br />

of the Rompas basalts. Near Rompas, zircons<br />

have been separated from rocks mapped as the<br />

Martimo Formation, a graphitic schist <strong>in</strong>ferred<br />

to occur with<strong>in</strong> the Paakkola Group.<br />

The dilemma at Rompas is that no unconformity<br />

has yet been recognised <strong>in</strong> the sequence<br />

and that the metamorphic age based on uran<strong>in</strong>ite<br />

textures apparently synchronous with metamorphism<br />

(see below) is less than the maximum<br />

age of the Martimo Formation. The Martimo<br />

Formation appears to have enjoyed the same<br />

metamorphic history as the metabasalts. At the<br />

time of writ<strong>in</strong>g, this dilemma rema<strong>in</strong>s unsolved.<br />

44 Pasi Eilu & Tero Niiranen (ed.)


3 395 000 mE<br />

3 400 000 mE<br />

3 405 000 mE<br />

3 410 000 mE<br />

7 370 000 mN 7 375 000 mN<br />

7 380 000 mN<br />

Rompas<br />

trend<br />

Mica Schist<br />

(magnetic and non-magnetic)<br />

Amphibolite<br />

Magnetic metasediment (mixed Pobear<strong>in</strong>g<br />

BSH, calc-silicate, quartz)<br />

Ma<strong>fi</strong>c meta-volcanic rock<br />

(<strong>in</strong>trudes A + B of Rompas)<br />

Calc-silicate (<strong>in</strong>clud<strong>in</strong>g<br />

mapped skarn rocks)<br />

Quartzite ± calc-silicate + mica schist<br />

(<strong>in</strong>clud<strong>in</strong>g altered quartzite)<br />

Ma<strong>fi</strong>c dykes (magnetic and<br />

non-magnetic)<br />

F1 folds<br />

F2 folds<br />

F3 folds<br />

Non- to weakly magnetic granitoid<br />

Pyroxenite to meta-komatite<br />

Garnet-mica schist<br />

Strongly magnetic granitoid<br />

Tremolite-quartz ± mica schist<br />

Albite Breccia bodies (structurally hosted)<br />

Felsic meta-volcanic rock<br />

Magnetic highs<br />

Granted Claims<br />

2 km<br />

F<strong>in</strong>nish Coord<strong>in</strong>ate System<br />

KKJ Zone 3<br />

Figure 29. Regional geology near the Rompas prospect. The Rompas trend is <strong>in</strong>dicated <strong>in</strong> the red ellipse. Note the<br />

isocl<strong>in</strong>al fold<strong>in</strong>g of the F1 h<strong>in</strong>ges about the northerly-trend<strong>in</strong>g F2 folds.<br />

Excursion Guidebook FIN1 45


the metabasalt, but to date lack any signi<strong>fi</strong>cant<br />

Au or U <strong>in</strong>tersections. Thus, wallrock <strong>in</strong>teraction<br />

with the basalt is <strong>in</strong>ferred to be the key control<br />

on gold and uran<strong>in</strong>ite formation, although the<br />

actual mechanisms rema<strong>in</strong> the subject of much<br />

debate at the time of writ<strong>in</strong>g (April 2013).<br />

The gold itself is of high f<strong>in</strong>eness (>95% Au),<br />

with m<strong>in</strong>or Te, Ag and Cu recorded (CNRS-<br />

CREGU, University of Nancy, unpublished research).<br />

Drill<strong>in</strong>g to 100 m depth has not revealed<br />

any variation <strong>in</strong> f<strong>in</strong>eness. Petrographic exam<strong>in</strong>ation<br />

by a number of workers agree that the gold<br />

is paragenetically later than the uran<strong>in</strong>ite, commonly<br />

occupy<strong>in</strong>g cracks with<strong>in</strong> uran<strong>in</strong>ite. Sulphide<br />

m<strong>in</strong>erals are not commonly directly assobasalt<br />

basalt<br />

M<strong>in</strong>eralisation<br />

<strong>Gold</strong> and uranium distribution with<strong>in</strong> the <strong>in</strong>itial<br />

discovery area at Rompas is nuggety. Th<strong>in</strong><br />

and very high-grade drill <strong>in</strong>tercepts are common<br />

(Figs. 30 and 31), match<strong>in</strong>g the many hundred<br />

surface trench exposures of bonanza grades<br />

found over the 6 km trend. A summary of the<br />

best <strong>in</strong>tersections is presented <strong>in</strong> Tables 5 and 6.<br />

What is clear from the drill<strong>in</strong>g and trench<strong>in</strong>g at<br />

North and South Rompas is the strong host rock<br />

control on m<strong>in</strong>eralisation – a dist<strong>in</strong>ctive metabasalt.<br />

Uran<strong>in</strong>ite and gold are found with<strong>in</strong> or<br />

marg<strong>in</strong>al to carbonate-calcsilicate-quartz ve<strong>in</strong>s<br />

<strong>in</strong> metabasaltic host rocks. Ve<strong>in</strong> densities <strong>in</strong> the<br />

adjacent metasedimentary rocks are similar to<br />

7 373 850 mN<br />

3 401 250 mE 3 401 300 mE<br />

basalt<br />

3 401 350 mE 3 401 400 mE 3 401 450 mE<br />

basalt<br />

ROM0025<br />

ROM0082<br />

7 373 800 mN<br />

7 373 750 mN<br />

basalt<br />

TR108535<br />

ROM0012 ROM0070<br />

ROM0079<br />

ROM0069 TR104739<br />

ROM0080<br />

ROM0028<br />

TR107580<br />

ROM0073+ROM0074<br />

ROM0071+<br />

TR107581<br />

ROM0072<br />

ROM0014<br />

ROM0011 ROM0077<br />

TR107575<br />

ROM0037<br />

TR107577<br />

TR104738<br />

TR108534<br />

TR107574<br />

ROM0075<br />

ROM0013<br />

ROM0017<br />

ROM0009<br />

ROM0010<br />

TR104737<br />

ROM0015<br />

107578<br />

TR104730<br />

TR107582<br />

ROM0022<br />

basalt<br />

TR104731<br />

ROM0018<br />

7 373 700 mN<br />

ROM0020<br />

basalt<br />

ROM0036<br />

ROM0035<br />

TR107752<br />

Trench trace<br />

Quoted assay <strong>in</strong>terval above cut off<br />

Drill collar and trace<br />

Quoted assay <strong>in</strong>terval above cut off<br />

Rock chip sample<br />

>100<br />

10 to 100<br />

1 to 10<br />


ciated with the gold and uran<strong>in</strong>ite. F<strong>in</strong>e-gra<strong>in</strong>ed<br />

pyrrhotite is a ubiquitous trace component of the<br />

metabasalt, result<strong>in</strong>g <strong>in</strong> a stronger IP chargeability<br />

response than <strong>in</strong> the adjacent rocks. Traces of<br />

gold together with f<strong>in</strong>e-gra<strong>in</strong>ed molybdenite has<br />

also been observed with<strong>in</strong> the ROM0011 <strong>in</strong>tersection<br />

(pers. comm. Molnàr and others, GTK).<br />

Uran<strong>in</strong>ite is the predom<strong>in</strong>ant uranium-bear<strong>in</strong>g<br />

m<strong>in</strong>eral, with two varieties observed <strong>in</strong> petrographic<br />

work by CREGU/Nancy researchers.<br />

Paragenetically late gummite is locally present<br />

<strong>in</strong> surface samples occurr<strong>in</strong>g between uran<strong>in</strong>ite<br />

gra<strong>in</strong>s. Radiogenic galena is also associated with<br />

the uran<strong>in</strong>ite.<br />

Due to the recent discovery history at Rajapalot,<br />

much less <strong>in</strong>formation has been collected on<br />

this deposit. However, the m<strong>in</strong>eralisation differs<br />

<strong>in</strong> that is more sulphidic with strong potassic alteration<br />

and is predom<strong>in</strong>antly of a dissem<strong>in</strong>ated,<br />

replacement style. Four prospect areas have been<br />

def<strong>in</strong>ed with<strong>in</strong> topographic highs <strong>in</strong> a predom<strong>in</strong>antly<br />

swampy area. These areas are the Hirvimaa,<br />

Palokas, Joki and Rumajärvi prospects<br />

and located <strong>in</strong> a 2 × 2 km area with<strong>in</strong> the h<strong>in</strong>ge<br />

of a complex fold structure <strong>in</strong> quartzitic and<br />

basaltic rocks which are geochemically dist<strong>in</strong>ct<br />

from the Rompas area. The style of m<strong>in</strong>eralisation<br />

<strong>in</strong> the Hirvimaa and Joki areas is similar<br />

to Rompas and consists of calc-silicate ve<strong>in</strong>s <strong>in</strong><br />

albitised quartzites and basalts, with more pyrite<br />

and magnetite than observed at Rompas. M<strong>in</strong>eralisation<br />

at Palokas and Rumajärvi appears<br />

3 399 350 mE 3 399 400 mE 3 399 450 mE 3 399 500 mE 3 399 550 mE<br />

TR108569<br />

7 378 450 mN<br />

7 378 400 mN<br />

7 378 350 mN<br />

ROM0064<br />

ROM0067<br />

TR108570 ROM0046<br />

ROM0056<br />

ROM0047<br />

TR108566<br />

TR108571<br />

ROM0048<br />

TR104742 TR104743b<br />

ROM0045<br />

ROM0055<br />

ROM0043<br />

TR104742C<br />

TR107451<br />

TR10744C<br />

TR104744<br />

TR10744B<br />

TR104745<br />

TR108564<br />

ROM0040<br />

ROM0054<br />

TR108565<br />

TR104749<br />

ROM0042<br />

TR104746<br />

TR108563<br />

ROM0041<br />

TR107446<br />

TR107438<br />

TR108572<br />

ROM0053<br />

TR107447<br />

TR107440<br />

ROM0049<br />

TR108562<br />

ROM0044<br />

ROM0050<br />

TR108560<br />

ROM0052<br />

TR104754<br />

TR108924<br />

ROM0051<br />

TR108559<br />

Trench trace<br />

Quoted assay <strong>in</strong>terval above cut off<br />

Drill collar and trace<br />

Quoted assay <strong>in</strong>terval above cut off<br />

Rock chip sample<br />

>100<br />

10 to 100<br />

1 to 10<br />


to be of a new style and consists of highly altered<br />

quartzites with albite, carbonate, amphibole,<br />

sericite and biotite with dissem<strong>in</strong>ations<br />

and stockworks of pyrite. <strong>Gold</strong> m<strong>in</strong>eralisation<br />

appears to be dissem<strong>in</strong>ated, replacement style,<br />

with<strong>in</strong> the host rock, with no obvious associated<br />

calc-silicate ve<strong>in</strong><strong>in</strong>g.<br />

Table 5. South Rompas drill<strong>in</strong>g <strong>in</strong>tersections.<br />

HoleID Depth from (m) Depth to (m) Interval (m) Au (g/t) U 3 O 8 (g/t)<br />

ROM0007 36 37 1 1.6 204<br />

ROM0008 100 101 1 0.547 16.2<br />

ROM0009 46 47 1 1.725 43.1<br />

ROM0010 29 30 1 10.75 367<br />

ROM0010 49 50 1 0.58 5.6<br />

ROM0011 7 8 1 22.8 1130<br />

ROM0011 11 12 1 3540 1770<br />

ROM0011 12 13 1 137 650<br />

ROM0011 20.1 21 0.9 0.665 25<br />

ROM0011 87 88 1 9.69 338<br />

ROM0011 114.5 115.5 1 0.776 24.4<br />

ROM0012 17.7 18.8 1.1 6.3 409<br />

ROM0013 36.3 37.6 1.4 0.556 18.2<br />

ROM0015 14 15 1 2.51 3.7<br />

ROM0015 44 45 1 114.5 2830<br />

ROM0017 15 16 1 0.905 19.6<br />

ROM0017 23 24 1 6.58 95.4<br />

ROM0018 9 10 1 0.648 27.3<br />

ROM0022 10 11 1 0.71 2<br />

ROM0022 22 23 1 0.55 2.1<br />

ROM0022 145 146 1 1.01 29.3<br />

ROM0034 98 99 1 2.95 7370<br />

ROM0037 17 18 1 4.33 38.3<br />

ROM0037 68 69 1 3.18 1.7<br />

ROM0070 17.7 18.2 0.5 1.9 104<br />

ROM0071 16 17.4 1.4 0.86 27<br />

ROM0071 25.8 27.2 1.4 1.23 2<br />

ROM0072 18.7 20.1 1.4 0.8 19<br />

ROM0072 41.8 42.5 0.7 2.29 118<br />

ROM0073 0.55 1.4 0.85 0.79 33<br />

ROM0073 4.2 5.6 1.4 1.3 14<br />

ROM0074 16.45 16.95 0.5 148 4162<br />

ROM0076 41.35 41.85 0.5 0.39 120<br />

ROM0077 10.3 10.8 0.5 0.14 672<br />

ROM0077 31.9 32.4 0.5 0.15 219<br />

ROM0078 55.4 56.1 0.7 3.07 215<br />

ROM0079 5.8 7.2 1.4 17.64 270<br />

ROM0080 32 33.4 1.4 9.19 20<br />

ROM0081 41.3 42.5 1.2 7.74 267<br />

48 Pasi Eilu & Tero Niiranen (ed.)


Table 6. North Rompas drill<strong>in</strong>g <strong>in</strong>tersections.<br />

HoleID Depth from (m) Depth to (m) Interval (m) Au (g/t) U 3 0 8 (g/t)<br />

ROM0042 2.4 3.1 0.7 1 50<br />

ROM0044 19.7 20.4 0.7 0.1 161<br />

ROM0044 21.8 22.5 0.7 0.5 3<br />

ROM0044 23.9 24.6 0.7 0.8 71<br />

ROM0047 35.4 36.8 1.4 0 395<br />

ROM0047 44.6 46 1.4 0 181<br />

ROM0047 51.9 56.1 4.2 0 306<br />

ROM0048 26 26.7 0.7 1.2 40<br />

ROM0049 25.9 26.6 0.7 0.3 166<br />

ROM0050 7.1 7.8 0.7 3.5 67<br />

ROM0050 19.6 20.3 0.7 0.6 91<br />

ROM0052 41 41.4 0.4 395 4118<br />

ROM0052 61.5 62.2 0.7 0 179<br />

ROM0053 13.7 14.4 0.7 1.1 24<br />

ROM0053 34.7 35.4 0.7 0.7 15<br />

ROM0053 78.5 79.6 1.1 9.8 1519<br />

ROM0057 43.2 43.4 0.2 0 212<br />

ROM0065 77.8 78.4 0.6 0.11 310<br />

ROM0067 20.2 20.7 0.5 0.01 136<br />

ROM0067 52.9 53.6 0.7 0 171<br />

ROM0068 30.3 31 0.7 2.46 1403<br />

Mawson exploration team<br />

The Mawson exploration team presently comprises<br />

eight geologists directly work<strong>in</strong>g on the<br />

project (Erkki Vanhanen, Nick Cook, Mike<br />

Hudson, Tuomas Havela, Janne K<strong>in</strong>nunen,<br />

Jukka-Pekka Ranta, Lars Dahlenborg and<br />

Jan-Anders Perdahl). Former staff on the project,<br />

consultants and summer students who<br />

have added signi<strong>fi</strong>cantly to the understand<strong>in</strong>g<br />

of the Rompas-Rajapalot project <strong>in</strong>clude, but<br />

are not limited to, Terry Lees, Claude Caillat,<br />

Leigh Rank<strong>in</strong>, Gerald Purvis, Nicolas Gaillard,<br />

Pertti Sarala, Eelis Pulkk<strong>in</strong>en, David McInnes<br />

and Marcus Tomk<strong>in</strong>son. In addition, research<br />

groups based at the GTK (Ferenc Molnàr, Esa<br />

Pohjala<strong>in</strong>en, Anton<strong>in</strong> Richard, Laura Lauri) and<br />

at Nancy (Michel Cathel<strong>in</strong>eau, Marc Brouand)<br />

have been <strong>in</strong>strumental <strong>in</strong> allow<strong>in</strong>g Mawson to<br />

develop our understand<strong>in</strong>g of the m<strong>in</strong>eralisation<br />

at Rompas.<br />

References<br />

Agnico Eagle, 2013: Reserves and Resources.<br />

[www.agnicoeagle.com/en/Operations/Reserves-and-Resources/Pages/default.aspx].<br />

Ahtonen, N., Hölttä, P. & Huhma, H., 2007:<br />

Intracratonic Palaeoproterozoic granitoids<br />

<strong>in</strong> <strong>northern</strong> F<strong>in</strong>land: prolonged and episodic<br />

crustal melt<strong>in</strong>g events revealed by Nd isotopes<br />

and U-Pb ages on zircon. Bullet<strong>in</strong> of the Geological<br />

Society of F<strong>in</strong>land 79, 143–174.<br />

Alapieti, T., Filen, B., Laht<strong>in</strong>en, J., Lavrov, M.,<br />

Smolk<strong>in</strong>, V. & Voitsekhovsky, S., 1990: Early<br />

Proterozoic layered <strong>in</strong>trusions <strong>in</strong> the northeastern<br />

part of the Fennoscandian Shield.<br />

M<strong>in</strong>eralogy and Petrology 42, 1–22.<br />

Excursion Guidebook FIN1 49


Bergman, S., Kübler, L. & Mart<strong>in</strong>sson, O.,<br />

2001: Description of regional geological and<br />

geophysical maps of <strong>northern</strong> Norrbotten<br />

County (east of the Caledonian orogen). Sveriges<br />

geologiska undersökn<strong>in</strong>g, Ba 56, 1–110.<br />

Bergman, S., Weihed, P., Mart<strong>in</strong>sson, O., Eilu,<br />

P. & Ilj<strong>in</strong>a, M., 2007: Geological and tectonic<br />

evolution of the <strong>northern</strong> part of the Fennoscandian<br />

Shield. Geological Survey of F<strong>in</strong>land,<br />

Guide 54, 6–14.<br />

Billström, K., Eilu, P., Mart<strong>in</strong>sson, O., Niiranen,<br />

T., Broman, C., Weihed, P., Wanha<strong>in</strong>en, C. &<br />

Ojala, J., 2010: IOCG and related m<strong>in</strong>eral <strong>deposits</strong><br />

of the <strong>northern</strong> Fennoscandian Shield.<br />

In T. Porter (ed.): Hydrothermal iron oxide-copper-gold<br />

& related <strong>deposits</strong>: A global perspective,<br />

vol. 4. Advances <strong>in</strong> the understand<strong>in</strong>g of IOCG<br />

<strong>deposits</strong>. PGC Publish<strong>in</strong>g, Adelaide. 367–400.<br />

Chernet, T., Kojonen, K. & Pakkanen, L., 2000:<br />

Applied m<strong>in</strong>eralogical study on the nearsurface<br />

Suurikuusikko refractory gold ore,<br />

Kittilä, western F<strong>in</strong>nish Lapland (Phase I).<br />

Geological Survey of F<strong>in</strong>land, Report M<br />

19/2743/2000/1/10, 22 pp.<br />

Cosgrowe, J.W., 2007: The use of shear zones<br />

and related structures as k<strong>in</strong>ematic <strong>in</strong>dicators:<br />

a review. Geological Society, London, Special<br />

Publications 272, 59–74.<br />

Daly, J.S., Balagansky, V.V., Timmerman, M.J.<br />

& Whitehouse, M.J., 2006: The Lapland–<br />

Kola orogen: Palaeoproterozoic collision and<br />

accretion of the <strong>northern</strong> Fennoscandian lithosphere.<br />

In D.G. Gee & R.A. Stephenson<br />

(eds.): European lithosphere dynamics. Geological<br />

Society, London, Memoirs 32, 561–578.<br />

Eilu, P., 1994: Hydrothermal alteration <strong>in</strong> volcano-sedimentary<br />

associations <strong>in</strong> Central<br />

Lapland greenstone belt. Geological Survey of<br />

F<strong>in</strong>land, Bullet<strong>in</strong> 374, 145 pp.<br />

Eilu, P. & Pankka, H., 2009: FINGOLD – A<br />

public database on gold <strong>deposits</strong> <strong>in</strong> F<strong>in</strong>land.<br />

Version 1.0. Geological Survey of F<strong>in</strong>land. Digital<br />

data product 4. Optical disc (CDROM).<br />

Eilu, P., Pankka, H., Ke<strong>in</strong>änen, V., Kortela<strong>in</strong>en,<br />

V., Niiranen, T. & Pulkk<strong>in</strong>en, E., 2007:<br />

Characteristics of gold m<strong>in</strong>eralisation <strong>in</strong> the<br />

greenstone belts of <strong>northern</strong> F<strong>in</strong>land. Geological<br />

Survey of F<strong>in</strong>land, Special Paper 44,<br />

57–106.<br />

Eilu, P. & Weihed, P., 2005: Fennoscandian<br />

Shield – orogenic gold <strong>deposits</strong>. Ore Geology<br />

Reviews 27, 326–327.<br />

Eilu, P., Bergman, T., Bjerkgård, T., Feoktistov,<br />

V., Hallberg, A., Ihlen, P.M., Korneliussen, A.,<br />

Korsakova, M., Krasotk<strong>in</strong>, S., Muradymov,<br />

G., Nurmi, P.A., Often, M., Perdahl, J.-A.,<br />

Philippov, N., Sandstad, J.S., Stromov, V. &<br />

Tontti, M. (comps.), 2009: Metallogenic Map<br />

of the Fennoscandian Shield, 1:2 000 000. Espoo:<br />

Geological Survey of F<strong>in</strong>land, Trondheim:<br />

Geological Survey of Norway, Uppsala:<br />

Geological Survey of Sweden, St. Petersburg:<br />

The Federal Agency of Use of M<strong>in</strong>eral Resources<br />

of the M<strong>in</strong>istry of Natural Resources<br />

and Ecology of the Russian Federation.<br />

Eilu, P., Korsakova, M. & Äikäs, O., 2012a:<br />

F040 Kuusamo–Kuolajärvi Co-Au. Geological<br />

Survey of F<strong>in</strong>land, Special Paper 53,<br />

304–310.<br />

Eilu, P., Niiranen, T., Hulkki, H. & Nykänen,<br />

V., 2012b: F043 Kittilä Au, Cu. Geological<br />

Survey of F<strong>in</strong>land, Special Paper 53, 314–317.<br />

FODD, 2013: Fennoscandian Ore Deposit Database.<br />

Geological Survey of F<strong>in</strong>land (GTK),<br />

Geological Survey of Norway (NGU), Geological<br />

Survey of Russia (VSEGEI), Geological<br />

Survey of Sweden (SGU), SC M<strong>in</strong>eral.<br />

Onl<strong>in</strong>e database, the latest update available<br />

at: http://en.gtk.<strong>fi</strong>/<strong>in</strong>formationservices/databases/fodd/<strong>in</strong>dex.html<br />

<strong>Gold</strong>farb, R.J., Groves, D.I. & Gardoll, S., 2001:<br />

Orogenic gold and geologic time: a global<br />

synthesis. Ore Geology Reviews 18, 1–75.<br />

Golyshev, S.I., Padalko, N.L. & Pechenk<strong>in</strong>,<br />

S.A., 1981: Fractionation of stable oxygen<br />

and carbon isotopes <strong>in</strong> carbonate systems.<br />

Geochemistry International 18, 85–99.<br />

Gorbatschev, R. & Bogdanova, S., 1993: Frontiers<br />

<strong>in</strong> the Baltic Shield. Precambrian Research<br />

64, 3–21.<br />

50 Pasi Eilu & Tero Niiranen (ed.)


Grönholm, P., 1999: The mesothermal Saattopora<br />

copper-gold deposit <strong>in</strong> the Palaeoproterozoic<br />

Central Lapland greenstone belt,<br />

Northern F<strong>in</strong>land. In N.J. Cook & K. Sundblad<br />

(eds.): Precambrian gold <strong>in</strong> the Fennoscandian<br />

and Ukra<strong>in</strong>ian Shields and related<br />

areas. <strong>Gold</strong> ’99 Trondheim, Norway, 4–6 May<br />

1999. Geological Survey of Norway. Trondheim.<br />

83 pp.<br />

Groves, D.I., 1993: The crustal cont<strong>in</strong>uum model<br />

for late-Archaean lode-gold <strong>deposits</strong> of the<br />

Yilgarn Block, Western Australia. M<strong>in</strong>eralium<br />

Deposita 28, 366–374.<br />

Hanski, E. & Huhma, H., 2005: Central Lapland<br />

greenstone belt. In M. Leht<strong>in</strong>en, P.A.<br />

Nurmi & O.T. Rämö (eds.): Precambrian<br />

Geology of F<strong>in</strong>land – key to the evolution of<br />

the Fennoscandian Shield. Developments <strong>in</strong><br />

Precambrian Geology 14. Amsterdam: Elsevier,<br />

139–194.<br />

Hanski, E., Huhma, H. & Vaasjoki, M., 2001:<br />

Geochronology of <strong>northern</strong> F<strong>in</strong>land: a summary<br />

and discussion. Geological Survey of F<strong>in</strong>land,<br />

Special Paper 33, 255–279.<br />

Hanski, E., Huhma, H. & Perttunen, V.,<br />

2005: SIMS U-Pb, Sm-Nd isotope and geochemical<br />

study of an arkosite-amphibolite<br />

suite, Peräpohja Schist Belt: evidence for ca.<br />

1.98 Ga A-type felsic magmatism <strong>in</strong> <strong>northern</strong><br />

F<strong>in</strong>land. Geological Society of F<strong>in</strong>land, Bullet<strong>in</strong><br />

77, 5–29.<br />

Härkönen, I. & Ke<strong>in</strong>änen, V. ,1989: Exploration<br />

of structurally controlled gold <strong>deposits</strong> <strong>in</strong> the<br />

Central Lapland greenstone belt. Geological<br />

Survey of F<strong>in</strong>land, Special Paper 10, 79–82.<br />

Heilimo, E., Halla, J., Lauri, L.S., Rämö, O.T.,<br />

Huhma, H., Kurhila, M.I & Front, K., 2009:<br />

The Paleoproterozoic Nattanen-type granites<br />

<strong>in</strong> <strong>northern</strong> F<strong>in</strong>land and vic<strong>in</strong>ity – a postcollisional<br />

oxidized A-type suite. Bullet<strong>in</strong> of the<br />

Geological Society of F<strong>in</strong>land 81, 7–38.<br />

Hiltunen, A. 1982. The Precambrian geology<br />

and skarn iron ores of the Rautuvaara area,<br />

<strong>northern</strong> F<strong>in</strong>land. Geological Survey of F<strong>in</strong>land,<br />

Bullet<strong>in</strong> 318, 133 pp.<br />

Hitzman, M.W., Oreskes, N. & E<strong>in</strong>audi, M.T.,<br />

1992: Geological characteristics and tectonic<br />

sett<strong>in</strong>g of Proterozoic iron oxide (Cu-U-<br />

Au-REE) <strong>deposits</strong>. Precambrian Research 58,<br />

241–287.<br />

Holma, M. & Ke<strong>in</strong>änen, V., 2007: The Levijärvi–Louk<strong>in</strong>en<br />

gold occurrence: An example<br />

of orogenic gold m<strong>in</strong>eralisation with atypical<br />

metal association. Geological Survey of F<strong>in</strong>land,<br />

Special Paper 44, 165–186.<br />

Hölttä, P. & Karhu, J., 2001: Oxygen and carbon<br />

isotope compositions of carbonates <strong>in</strong> the<br />

alteration zones of orogenic gold <strong>deposits</strong> <strong>in</strong><br />

central F<strong>in</strong>nish Lapland. Geological Survey of<br />

F<strong>in</strong>land, Special Paper 31, 25–29.<br />

Hölttä, P., Väisänen, M., Väänänen, L. & Mann<strong>in</strong>en<br />

T., 2007: Paleoproterozoic metamorphism<br />

and deformation <strong>in</strong> Central F<strong>in</strong>nish<br />

Lapland. Geological Survey of F<strong>in</strong>land, Special<br />

Paper 44, 7−56.<br />

Hölttä, P., Balagansky, V., Garde, A., Mertanen,<br />

S., Peltonen, P., Slabunov, A., Sorjonen-Ward,<br />

P. & Whitehouse, M., 2008: Archean of Greenland<br />

and Fennoscandia. Episodes 31, 13–19.<br />

Hölttä, P., Heilimo, E., Huhma, H., Juopperi,<br />

H., Kont<strong>in</strong>en, A., Konnunaho, J., Lauri, L.,<br />

Mikkola, P., Paavola, J. & Sorjonen-Ward,<br />

P., 2012: Archaean complexes of the Karelia<br />

prov<strong>in</strong>ce <strong>in</strong> F<strong>in</strong>land. Geological Survey of F<strong>in</strong>land,<br />

Special Paper 54, 9−20.<br />

Huhma, H., 1986: Sm-Nd, U-Pb and Pb-Pb isotopic<br />

evidence for the orig<strong>in</strong> of the Early Proterozoic<br />

Svecokarelian crust <strong>in</strong> F<strong>in</strong>land. Geological<br />

Survey of F<strong>in</strong>land, Bullet<strong>in</strong> 337, 48 pp.<br />

Huhma, H., Cliff, R., Perttunen, V. & Sakko,<br />

M., 1990: Sm-Nd and Pb isotopic study of<br />

ma<strong>fi</strong>c rocks associated with early Proterozoic<br />

cont<strong>in</strong>ental rift<strong>in</strong>g: the Peräpohja schist belt<br />

<strong>in</strong> <strong>northern</strong> F<strong>in</strong>land. Contributions to M<strong>in</strong>eralogy<br />

and Petrology 104, 367–379.<br />

Huhma, H., Mutanen, T. & Whitehouse, M.,<br />

2004: Oldest rocks of the Fennoscandian<br />

Shield: The 3.5 Ga Siurua trondhjemite gneiss<br />

<strong>in</strong> the Archaean Pudasjärvi Granulite Belt,<br />

F<strong>in</strong>land. GFF 126, 10.<br />

Excursion Guidebook FIN1 51


Huhma, H., O’Brien, H., Lahaye, Y. & Mänttäri,<br />

I., 2011: Isotope geology and Fennoscandian<br />

lithosphere evolution. Geological Survey<br />

of F<strong>in</strong>land, Special Paper 49, 35–48.<br />

Hulkki, H., 1990: Sodankylän Sattasvaaran komatiittikompleks<strong>in</strong><br />

Au-kriitt<strong>in</strong>en muuttumisvyöhyke.<br />

MSc thesis. Department of Geology,<br />

University of Hels<strong>in</strong>ki. 190 pp.<br />

Hulkki, H., 2002: Exploration report cover<strong>in</strong>g<br />

the claim areas Palolaki 1–3, M<strong>in</strong>e reg.<br />

no. 5623/1–3, and S<strong>in</strong>oselkä 1–2, M<strong>in</strong>e Reg.<br />

no. 5631/1–2, <strong>in</strong> the municipality of Kittilä.<br />

Geological Survey of F<strong>in</strong>land, Report M<br />

06/3721/2002/1/10, 8 pp.<br />

Hulkki, H. & Ke<strong>in</strong>änen, V., 2007: The alteration<br />

and fluid <strong>in</strong>clusion characteristics of the<br />

Hirvilavanmaa gold deposit, Central Lapland<br />

Greenstone Belt, F<strong>in</strong>land. Geological Survey of<br />

F<strong>in</strong>land, Special Paper 44, 135–151.<br />

Hulkki, H., Salmir<strong>in</strong>ne, H., Kar<strong>in</strong>en, T., Nykänen,<br />

V. & Sarala, P., 2010: The Petäjäselkä<br />

gold prospect. Geological Survey of F<strong>in</strong>land,<br />

Report M19/3721/2010/62, 37 pp.<br />

Ilj<strong>in</strong>a, M. & Hanski, E., 2005: Layered ma<strong>fi</strong>c<br />

<strong>in</strong>trusions of the Tornio-Näränkävaara belt.<br />

In M. Leht<strong>in</strong>en, P.A. Nurmi & O.T. Rämö<br />

(eds.): Precambrian geology of F<strong>in</strong>land – key<br />

to the evolution of the Fennoscandian Shield.<br />

Developments <strong>in</strong> Precambrian Geology 14.<br />

Amsterdam, Elsevier, 101–138.<br />

Karhu, J., 2005: Paleoproterozoic carbon isotope<br />

excursion. In M. Leht<strong>in</strong>en, P.A. Nurmi<br />

& O.T. Rämö (eds.): Precambrian geology of<br />

F<strong>in</strong>land – key to the evolution of the Fennoscandian<br />

Shield. Developments <strong>in</strong> Precambrian<br />

Geology 14. Amsterdam, Elsevier, 669–680.<br />

Ke<strong>in</strong>änen, V., 1990: Tutkimustyöselostus Kittilän<br />

kunnassa valtausalueella Pikku-Mustavaara<br />

(Kaivosrekister<strong>in</strong>umero 4296/1) suoritetuista<br />

kupari- ja kultatutkimuksista vuos<strong>in</strong>a<br />

1987–89. Geological Survey of F<strong>in</strong>land, Report<br />

M06/2734/-90/2/10, 2 pp.<br />

Ke<strong>in</strong>änen, V., 2002: Report on m<strong>in</strong>eral exploration<br />

carried out <strong>in</strong> Kittilä parish on<br />

exploration claims Naakenavaara 1, M<strong>in</strong>e<br />

Register no. 5522/1, Naakenavaara 2, M<strong>in</strong>e<br />

Register no. 5522/2, Naakenavaara 3, M<strong>in</strong>e<br />

Register no. 6089/3, Naakenavaara 4 and 5,<br />

M<strong>in</strong>e Register nos. 6159/1 and 2, Naakenavuoma<br />

1 and 2, M<strong>in</strong>e Register nos. 6089/1<br />

and 2 and Putaanperä 1, M<strong>in</strong>e Register no.<br />

5686/1. Geological Survey of F<strong>in</strong>land, Report<br />

M06/2734/2002/1/10, 6 pp.<br />

Koist<strong>in</strong>en, T., Stephens, M.B., Bogatchev, V.,<br />

Nordgulen, Ø., Wennerström, M. & Korhonen,<br />

J. (comp.), 2001: Geological map of<br />

the Fennoscandian Shield, scale 1:2 000 000.<br />

Trondheim: Geological Survey of Norway,<br />

Uppsala: Geological Survey of Sweden, Moscow:<br />

M<strong>in</strong>istry of Natural Resources of Russia.<br />

Espoo: Geological Survey of F<strong>in</strong>land.<br />

Kojonen, K. & Johanson, B., 1988: Pahtavaaran<br />

Au-malmiaiheen malmim<strong>in</strong>eraaleista (Ore<br />

m<strong>in</strong>erals <strong>in</strong> the Pahtavuoma deposit). Geological<br />

Survey of F<strong>in</strong>land, Report M40/3714/-<br />

88/1/41.2, 2 pp.)<br />

Kojonen, K. & Johanson, B., 1999: Determ<strong>in</strong>ation<br />

of refractory gold distribution by microanalysis,<br />

diagnostic leach<strong>in</strong>g and image<br />

analysis. M<strong>in</strong>eralogy and Petrology 67, 1–19.<br />

Kont<strong>in</strong>en, A., 1987: An early Proterozoic ophiolite<br />

– the Jormua ma<strong>fi</strong>c-ultrama<strong>fi</strong>c complex,<br />

northeastern F<strong>in</strong>land. Precambrian Research<br />

35, 313–341.<br />

Korkalo, T., 2006: <strong>Gold</strong> and copper <strong>deposits</strong><br />

<strong>in</strong> Central Lapland, <strong>northern</strong> F<strong>in</strong>land, with<br />

special reference to their exploration and exploitation.<br />

Acta Univ. Oulensis, A Scientiae<br />

Rerum Naturalium 461, 122 pp.<br />

Korkiakoski, E., 1992: Geology and geochemistry<br />

of the metakomatiite hosted Pahtavaara gold<br />

deposit <strong>in</strong> Sodankylä, <strong>northern</strong> F<strong>in</strong>land, with<br />

emphasis on hydrothermal alteration. Geological<br />

Survey of F<strong>in</strong>land, Bullet<strong>in</strong> 360, 96 pp.<br />

Korvuo, E., 1997: Kaivosla<strong>in</strong> 19§:n muka<strong>in</strong>en<br />

tutkimustyöselostus valtausalue Harrilommol<br />

1, kaiv.rek.nro 4519/1. Outokumpu Oy,<br />

Report 080/2741/EK/91, 3 pp.<br />

Krill, A.G., Bergh, S., L<strong>in</strong>dahl, I., Mearns, E.W.,<br />

Often, M., Olerud, S., Olesen, O., Sandstad,<br />

52 Pasi Eilu & Tero Niiranen (ed.)


J.S., Siedlecka, A. & Solli, A., 1985: Rb-Sr,<br />

U-Pb and Sm-Nd isotopic dates from Precambrian<br />

rocks of F<strong>in</strong>nmark. Norges geologiske<br />

undersøkelse, Bullet<strong>in</strong> 403, 37–54.<br />

Kyläkoski, M., Hanski, E. & Huhma, H.,<br />

2012a: The Petäjäskoski Formation, a new<br />

litho stratigraphic unit <strong>in</strong> the Paleoproterozoic<br />

Peräpohja Belt, <strong>northern</strong> F<strong>in</strong>land. Bullet<strong>in</strong> of<br />

the Geological Society of F<strong>in</strong>land 84, 85–120.<br />

Kyläkoski, M., Eilu, P. & Perdahl, J.-A., 2012b:<br />

F037 Peräpohja Cu-Co. Geological Survey of<br />

F<strong>in</strong>land, Special Paper 53, 301–302.<br />

Laajoki, K., 2005: Karelian supracrustal rocks.<br />

In M. Leht<strong>in</strong>en, P.A. Nurmi & O.T. Rämö<br />

(eds.): Precambrian Geology of F<strong>in</strong>land – Key<br />

to the Evolution of the Fennoscandian Shield.<br />

Developments <strong>in</strong> Precambrian Geology 14.<br />

Amsterdam, Elsevier, 279–342.<br />

Laht<strong>in</strong>en, R., 2012: Ma<strong>in</strong> geological features of<br />

Fennoscandia. Geological Survey of F<strong>in</strong>land,<br />

Special Paper 53, 13–18.<br />

Laht<strong>in</strong>en, R., Korja, A. & Nironen, M., 2005:<br />

Palaeoproterozoic tectonic evolution of the<br />

Fennoscandian Shield. In M. Leht<strong>in</strong>en, P.A.<br />

Nurmi & O.T. Rämö (eds.): Precambrian Geology<br />

of F<strong>in</strong>land – Key to the Evolution of the<br />

Fennoscandian Shield. Developments <strong>in</strong> Precambrian<br />

Geology 14. Amsterdam, Elsevier,<br />

418–532.<br />

Laht<strong>in</strong>en, R., Garde, A.A. & Melezhik, V.A.,<br />

2008: Paleoproterozoic evolution of Fennoscandia<br />

and Greenland. Episodes 31, 20–28.<br />

Lauri, L.S., Mikkola, P. & Kar<strong>in</strong>en, T., 2012a:<br />

Early Paleoproterozoic felsic and ma<strong>fi</strong>c magmatism<br />

<strong>in</strong> the Karelian prov<strong>in</strong>ce of the Fennoscandian<br />

shield. Lithos 151, 74–82.<br />

Lauri, L.S., Andersen, T., Räsänen, J. & Juopperi,<br />

H., 2012b: Temporal and Hf isotope<br />

geochemical evolution of southern F<strong>in</strong>nish<br />

Lapland from 2.77 Ga to 1.76 Ga. Bullet<strong>in</strong> of<br />

the Geological Society of F<strong>in</strong>land 84, 121–140.<br />

Lehtonen, M.I., Airo, M.L., Eilu, P., Hanski,<br />

E., Kortela<strong>in</strong>en, V., Lanne, E., Mann<strong>in</strong>en, T.,<br />

Rastas, P., Räsänen, J. & Virransalo, P., 1998:<br />

The stratigraphy, petrology and geochemistry<br />

of the Kittilä greenstone area, <strong>northern</strong> F<strong>in</strong>land.<br />

Geological Survey of F<strong>in</strong>land, Report of<br />

Investigation 140, 144 pp.<br />

Luosto, U., Flueh, E.R., Lund, C.-E. & Work<strong>in</strong>g<br />

Group, 1989: The crustal structure along the<br />

POLAR Pro<strong>fi</strong>le from seismic refraction <strong>in</strong>vestigations.<br />

Tectonophysics 162, 51–85.<br />

Mänttäri, I., 1995: Lead isotope characteristics<br />

of epigenetic gold m<strong>in</strong>eralization <strong>in</strong> the<br />

Palaeoproterozoic Lapland greenstone belt,<br />

<strong>northern</strong> F<strong>in</strong>land. Geological Survey of F<strong>in</strong>land,<br />

Bullet<strong>in</strong> 381, 70 pp.<br />

Mart<strong>in</strong>sson, O., 1997: Tectonic sett<strong>in</strong>g and metallogeny<br />

of the Kiruna Greenstones. PhD thesis,<br />

Luleå University of Technology, Sweden.<br />

49 pp.<br />

Melezhik, V.A., 2006: Multiple causes of Earth’s<br />

earliest global glaciation. Terra Nova 18, 130–<br />

137.<br />

Melezhik, V.A., Huhma, H., Condon, D.J., Fallick,<br />

A.E. & Whitehouse, M.J., 2007: Temporal<br />

constra<strong>in</strong>ts on the Paleoproterozoic Lomagundi–Jatuli<br />

carbon isotopic event. Geology<br />

35, 655–658.<br />

Mellqvist, C., Öhlander, B., Skiöld, T. & Wikström,<br />

A., 1999: The Archaean–Proterozoic<br />

Palaeoboundary <strong>in</strong> the Luleå area, <strong>northern</strong><br />

Sweden: <strong>fi</strong>eld and isotope geochemical evidence<br />

for a sharp terrane boundary. Precambrian<br />

Research 96, 225–243.<br />

Mellqvist, C., Öhlander, B., Weihed, P. & Schöberg,<br />

H., 2003: Some aspects on the subdivision<br />

of the Haparanda and Jörn <strong>in</strong>trusive<br />

suites <strong>in</strong> <strong>northern</strong> Sweden. GFF 125, 77–85.<br />

Mustonen, M., 2012: Geochemistry and petrography<br />

of the volcanic rocks <strong>in</strong> the Rompas area,<br />

Ylitornio, <strong>northern</strong> F<strong>in</strong>land. MSc thesis, Department<br />

of Geosciences, Geology and m<strong>in</strong>eralogy,<br />

University of Oulu. 62 pp.<br />

Niiranen, T., Poutia<strong>in</strong>en, M. & Mänttäri, I.,<br />

2007: Geology, geochemistry, fluid <strong>in</strong>clusion<br />

characteristics, and U–Pb age studies on iron<br />

oxide–Cu–Au <strong>deposits</strong> <strong>in</strong> the Kolari region,<br />

<strong>northern</strong> F<strong>in</strong>land. Ore Geology Reviews 30,<br />

75–105.<br />

Excursion Guidebook FIN1 53


Niiranen, T., Hulkki, H., Nykänen, V. & Lahti,<br />

I., 2012: Hydrothermal alteration, fluid <strong>in</strong>clusion<br />

characteristics and tectonic sett<strong>in</strong>g of the<br />

Paleoproterozoic Saattopora orogenic Au(-Cu)<br />

deposit, <strong>northern</strong> F<strong>in</strong>land. Proceed<strong>in</strong>gs of the<br />

34th International Geological Congress 2012,<br />

5–10 August 2012, Brisbane, Australia. Canberra:<br />

Australian Geosciences Council, 3934.<br />

Ödman, O., 1957: Beskrivn<strong>in</strong>g till Bergrundskarta<br />

över Norrbottens Län. Sveriges geologiska<br />

undersökn<strong>in</strong>g Ca 41, 151 pp.<br />

Ödman, O.H., Härme, M., Mikkola, A. & Simonen,<br />

A., 1949: Den svensk-f<strong>in</strong>ska geologiska<br />

exkursionen i Tornedalen sommaren 1948.<br />

Geologiska Fören<strong>in</strong>gens i Stockholm Förhandl<strong>in</strong>gar<br />

71, 113.<br />

Parkk<strong>in</strong>en, J., 1997: The Suurikuusikko <strong>Gold</strong><br />

Deposit. M<strong>in</strong>eral Resource Estimate. Geological<br />

Survey of F<strong>in</strong>land, Report M 19/2743/97/1,<br />

20 pp.<br />

Patison, N.L., 2001: Structural and fluid chemical<br />

controls on gold m<strong>in</strong>eralisation <strong>in</strong> the<br />

Central Lapland Greenstone Belt, <strong>northern</strong><br />

F<strong>in</strong>land. Geological Survey of F<strong>in</strong>land, Report<br />

M 16/2001/6, 5 pp.<br />

Patison, N.L., Ojala V.J. & Lampela R., 2006:<br />

Kittilä m<strong>in</strong>e 2006. Pit stereophotography<br />

and mapp<strong>in</strong>g: con<strong>fi</strong>dential report for Agnico<br />

Eagle F<strong>in</strong>land. Geological Survey of F<strong>in</strong>land,<br />

Report R/764/41/2006.<br />

Patison, N. J., 2007: Structural controls on gold<br />

m<strong>in</strong>eralisation <strong>in</strong> the Central Lapland Greenstone<br />

Belt. Geological Survey of F<strong>in</strong>land, Special<br />

Paper 44, 105–122.<br />

Patison, N. J., 2011: Kittilä M<strong>in</strong>e (Suurikuusikko<br />

deposit). In Active and ongo<strong>in</strong>g gold exploration<br />

and m<strong>in</strong><strong>in</strong>g <strong>in</strong> Northern F<strong>in</strong>land.<br />

Excursion guide, 18–20 August 2011. 25th<br />

International Applied Geochemistry Symposium<br />

2011, 22–26 August 2011 Rovaniemi,<br />

F<strong>in</strong>land. Vuorimiesyhdistys – F<strong>in</strong>nish Association<br />

of M<strong>in</strong><strong>in</strong>g and Metallurgical Eng<strong>in</strong>eers,<br />

Serie B, No. B92-7, 24–31.<br />

Patison, N.L, Korja, A., Laht<strong>in</strong>en, R., Ojala, V.J.<br />

& the FIRE Work<strong>in</strong>g Group, 2006: FIRE<br />

seismic reflection pro<strong>fi</strong>les 4, 4A and 4B: Insights<br />

<strong>in</strong>to the Crustal Structure of Northern<br />

F<strong>in</strong>land from Ranua to Näätämö. Geological<br />

Survey of F<strong>in</strong>land, Special Paper 43, 161–222.<br />

Peltonen, P., 2005: Ophiolites. In M. Leht<strong>in</strong>en,<br />

P.A. Nurmi & O.T. Rämö (eds.): Precambrian<br />

Geology of F<strong>in</strong>land – Key to the Evolution of<br />

the Fennoscandian Shield. Developments <strong>in</strong><br />

Precambrian Geology 14. Amsterdam, Elsevier,<br />

237–278.<br />

Perttunen, V. & Hanski, E., 2003: Pre-quaternary<br />

rocks of the Törmäsjärvi and Koivu<br />

map-sheet areas. Explanation to the bedrock<br />

map, sheets 2631 and 2633. Geological Survey<br />

of F<strong>in</strong>land. 88 pp.<br />

Perttunen, V. & Vaasjoki, M., 2001: U-Pb<br />

geo chronology of the Peräpohja schist belt,<br />

northwestern F<strong>in</strong>land. Geological Survey of<br />

F<strong>in</strong>land, Special Paper 33, 45–84.<br />

Pulkk<strong>in</strong>en, E., Ke<strong>in</strong>änen, V. & Salmir<strong>in</strong>ne,<br />

H., 2005: The Sakiatieva gold prospect <strong>in</strong><br />

the Central Lapland Greenstone Belt, F<strong>in</strong>land.<br />

Geological Survey of F<strong>in</strong>land, Report<br />

CM06/3741/2005/1/10, 23 pp.<br />

Rastas, P., Huhma, H., Hanski, E., Lehtonen,<br />

M.I., Härkönen, I., Kortela<strong>in</strong>en, V., Mänttäri,<br />

I. & Paakkola, J., 2001: U–Pb isotopic<br />

studies on the Kittilä greenstone area, Central<br />

Lapland, F<strong>in</strong>land. Geological Survey of F<strong>in</strong>land,<br />

Special Paper 33, 95–141.<br />

Saalmann, K. & Niiranen, T., 2010: Hydrothermal<br />

alteration and structural control on<br />

gold deposition <strong>in</strong> the Hanhimaa shear zone<br />

and western part of the Sirkka L<strong>in</strong>e. Geological<br />

Survey of F<strong>in</strong>land, Report M19/2741/2010/58,<br />

30 pp.<br />

Saverikko, M., 1990: Komatiitic explosive volcanism<br />

and its tectonic sett<strong>in</strong>g <strong>in</strong> F<strong>in</strong>land,<br />

the Fennoscandian (Baltic) Shield. Bullet<strong>in</strong><br />

of the Geological Society of F<strong>in</strong>land 62, 3–38.<br />

Sorjonen-Ward, P., Nironen, M. & Luukkonen,<br />

E., 1997: Greenstone associations <strong>in</strong> F<strong>in</strong>land.<br />

In M.J. de Wit & L.D. Ashwal (eds.):<br />

Greenstone belts. Clarendon Press, Oxford.<br />

677–698.<br />

54 Pasi Eilu & Tero Niiranen (ed.)


Sorjonen-Ward, P., Ojala, V.J. & Airo, M.-L.,<br />

2003: Structural modell<strong>in</strong>g and magmatic<br />

expression of hydrothermal alteration <strong>in</strong> the<br />

Paleoproterozoic Lapland greenstone belt,<br />

<strong>northern</strong> Fennoscandian Shield. In D.G.<br />

Eliopoulos et al. (eds.): M<strong>in</strong>eral Exploration<br />

and Susta<strong>in</strong>able Development. Proceed<strong>in</strong>gs of<br />

the Seventh Biennial SGA Meet<strong>in</strong>g, Athens,<br />

Greece, 24–28. August 2003. Millpress, Rotterdam.<br />

1107–1110.<br />

Talikka, M. & Eilu, P., 2011: Hanhimaa gold<br />

project. In Active and ongo<strong>in</strong>g gold exploration<br />

and m<strong>in</strong><strong>in</strong>g <strong>in</strong> Northern F<strong>in</strong>land. Excursion<br />

guide, 18–20 August 2011. 25th International<br />

Applied Geochemistry Symposium<br />

2011, 22–26 August 2011 Rovaniemi, F<strong>in</strong>land.<br />

Vuorimiesyhdistys – F<strong>in</strong>nish Association<br />

of M<strong>in</strong><strong>in</strong>g and Metallurgical Eng<strong>in</strong>eers, Serie<br />

B, Nro B92-7, 32–35.<br />

Tuisku, P. & Huhma, H., 2006: Evolution of<br />

Migmatitic Granulite Complexes: Implications<br />

from Lapland Granulite Belt, Part II:<br />

Isotopic dat<strong>in</strong>g. Bullet<strong>in</strong> of the Geological Society<br />

of F<strong>in</strong>land 78, 143–175.<br />

Väänänen, J., 2004: Sieppijärven ja Pasmajärven<br />

kartta-alueiden kallioperä. Summary: Pre-<br />

Quaternary rocks of the Sieppijärvi and Pasmajärvi<br />

map-sheet areas. Geological map of<br />

F<strong>in</strong>land 1:100 000. Explanation to the maps of<br />

Pre-Quaternary rocks, Sheets 2624 and 2642.<br />

Geological Survey of F<strong>in</strong>land, 55 pp.<br />

Väänänen, J. & Lehtonen, M. I., 2001: U-Pb<br />

isotopic age determ<strong>in</strong>ations from the Kolari–<br />

Muonio area, western F<strong>in</strong>nish Lapland. Geological<br />

Survey of F<strong>in</strong>land, Special Paper 33,<br />

85–93.<br />

Valkama, J., 2006: Kultataskun löytym<strong>in</strong>en<br />

Kiistalassa keväällä 1986 johti Suurikuusikon<br />

esi<strong>in</strong>tymän jäljille. Geological Survey of<br />

F<strong>in</strong>land, Report M 19/2743/2006/1/10, 7 pp.<br />

Vuollo, J., 1994: Paleoproterozoic basic igneous<br />

events <strong>in</strong> eastern Fennoscandian Shield between<br />

2.45 and 1.97 Ga. Acta Universitatis<br />

Ouluensis, Ser A no 250, 47 pp.<br />

Vuollo, J. & Huhma, H., 2005: Paleoproterozoic<br />

ma<strong>fi</strong>c dikes <strong>in</strong> NE F<strong>in</strong>land. In M. Leht<strong>in</strong>en,<br />

P.A. Nurmi & O.T. Rämö (eds.): Precambrian<br />

Geology of F<strong>in</strong>land – Key to the Evolution of<br />

the Fennoscandian Shield. Developments <strong>in</strong><br />

Precambrian Geology 14. Amsterdam, Elsevier,<br />

195–236.<br />

Ward, P., Härkönen, I. & Pankka, H.S., 1989:<br />

Structural studies <strong>in</strong> the Lapland greenstone<br />

belt, <strong>northern</strong> F<strong>in</strong>land and their application<br />

to gold m<strong>in</strong>eralization. Geological Survey of<br />

F<strong>in</strong>land, Special Paper 10, 71–78.<br />

Excursion Guidebook FIN1 55


Geological Survey of Sweden<br />

Box 670<br />

SE-751 28 Uppsala, Sweden<br />

www.sgu.se<br />

Uppsala 2013<br />

ISBN 978-91-7403-208-6<br />

Pr<strong>in</strong>t: Elanders Sverige AB

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!