16.08.2013 Views

The computation of turbulent natural convection flows - Turbulence ...

The computation of turbulent natural convection flows - Turbulence ...

The computation of turbulent natural convection flows - Turbulence ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

cl Equilibrium length scale constant<br />

cp Specific heat capacity at constant pressure<br />

Cth1, Cth2 Convective terms in thermal AWF<br />

D Additional term in k equation<br />

D Part <strong>of</strong> εij<br />

dθ Diffusive transport <strong>of</strong> scalar invariance θ 2<br />

dε diffusion <strong>of</strong> the <strong>turbulent</strong> kinetic energy dissipation rate<br />

diθ Diffusive transport <strong>of</strong> scalar fluxuiθ<br />

Dij Tensor in φij model<br />

dij Diffusive transport <strong>of</strong> Reynolds stress<br />

d a i Indicator <strong>of</strong> length-scale gradient direction<br />

E Additional dissipation source term in ε equation<br />

fµ,f1, f2 Damping functions used in the low-Reynolds-number k-ε model<br />

Fε Scaling function<br />

fA Part <strong>of</strong>φij model<br />

fb1, fb2, fb3, fb4 Buoyant constants in the AWF<br />

Fi External force<br />

g Acceleration due to gravity<br />

Gθ Generation rate <strong>of</strong> scalar invariance θ 2<br />

Giθ Buoyant generation rate <strong>of</strong>uiθ<br />

Gij Buoyant production <strong>of</strong> Reynolds stress<br />

Gk Buoyant production <strong>of</strong> <strong>turbulent</strong> kinetic energy<br />

Grx Local Grash<strong>of</strong> number,≡ gβ∆Θx3<br />

ν 2<br />

35

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!