27.12.2013 Views

Syllabus Vector Differentiation - Velocity and Acceleration - Gradient ...

Syllabus Vector Differentiation - Velocity and Acceleration - Gradient ...

Syllabus Vector Differentiation - Velocity and Acceleration - Gradient ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

<strong>Syllabus</strong><br />

<strong>Vector</strong> <strong>Differentiation</strong><br />

- <strong>Velocity</strong> <strong>and</strong> <strong>Acceleration</strong><br />

- <strong>Gradient</strong><br />

- Divergence<br />

- Curl<br />

- Laplacian<br />

- Solenoidal <strong>and</strong> Irrotational <strong>Vector</strong>s<br />

Recap<br />

Scalar product<br />

<br />

: a .<br />

<br />

b<br />

<br />

a1 b1<br />

a2<br />

b2<br />

a3<br />

b3<br />

<br />

|<br />

a | | b | cos<br />

,<br />

<br />

is<br />

the<br />

angle<br />

between<br />

<br />

a<br />

<strong>and</strong><br />

<br />

b<br />

Pr ojection :<br />

projection<br />

of<br />

<br />

a<br />

on<br />

<br />

b<br />

is<br />

<br />

a . b.<br />

Work done : If a force<br />

<br />

F displaces are provide from A to B then<br />

the work done is<br />

<br />

F . AB<br />

<strong>Vector</strong><br />

product :<br />

<br />

a<br />

<br />

<br />

b<br />

<br />

<br />

i<br />

a1<br />

b1<br />

<br />

j<br />

a2<br />

b2<br />

<br />

k<br />

a3<br />

b3<br />

<br />

| a | | b | sin<br />

<br />

<br />

n<br />

where<br />

<br />

n<br />

is<br />

unit<br />

vector<br />

perpendicular<br />

to<br />

both<br />

<br />

a<br />

<strong>and</strong><br />

<br />

b<br />

Moment: If the vecto r moment of a force<br />

<br />

F about a po int A<br />

through a point<br />

P<br />

is<br />

<br />

M<br />

<br />

<br />

AP<br />

<br />

<br />

F<br />

Scalar<br />

triple<br />

<br />

product : [ a ,<br />

<br />

b ,<br />

<br />

c ]<br />

<br />

<br />

a .( b<br />

<br />

<br />

c )<br />

a1<br />

b1<br />

c1<br />

a2<br />

c2<br />

c3<br />

a3<br />

b3<br />

c3<br />

Page 1 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

Equation of line :<br />

Equations of a line pas sin g through (x1, y1, z1)<br />

<strong>and</strong><br />

direction<br />

ratios<br />

a, b, c are<br />

x x1 y y1<br />

z z<br />

<br />

1<br />

a b c<br />

Equation of a plane : is of the form<br />

ax + by + cz + d = 0 where a,b,c are the DR's of the normal.<br />

Introduction<br />

In this chapter the basic concepts of Differential Calculus of scalar functions are<br />

extended to vector functions.<br />

Here we study vector differentiation, gradient, divergence, curl, solenoidal <strong>and</strong><br />

irrational fields.<br />

Also we study about vector integration <strong>and</strong> verification of the integral theorems.<br />

<strong>Vector</strong> Function of a Scalar Variable<br />

<br />

Let f f1<br />

i f2<br />

j f3<br />

k where f1, f2<br />

<strong>and</strong> f3<br />

are<br />

functions<br />

of<br />

a<br />

var iable<br />

t<br />

is called a vector function.<br />

If f1, f2 <strong>and</strong> f3 are differentiable then we define<br />

<br />

d f f(t t) f(t)<br />

df <br />

1 df <br />

2 df <br />

lim i j <br />

3<br />

k<br />

dt t0<br />

t dt dt dt<br />

Similarly higher order derivatives can also be defined.<br />

Note:<br />

<br />

d f <br />

0<br />

dt<br />

iff<br />

<br />

f<br />

is<br />

a<br />

cons tan t<br />

vector .<br />

Page 2 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

Rules of differentiation<br />

<br />

1. If g(t) is a scalar function of t <strong>and</strong> f (t) is a vector function of<br />

<br />

d d f d <br />

scalar t then ( f) f<br />

dt dt dt<br />

2. If<br />

<br />

<strong>and</strong><br />

<br />

are<br />

scalar<br />

cons tan ts,<br />

<br />

f<br />

<strong>and</strong><br />

<br />

g<br />

are vector<br />

functions of<br />

t<br />

then<br />

d<br />

dt<br />

<br />

( f<br />

<br />

<br />

g)<br />

<br />

<br />

d f<br />

<br />

dt<br />

<br />

<br />

d g<br />

<br />

dt<br />

3.<br />

d<br />

dt<br />

Proof:<br />

4.<br />

d<br />

dt<br />

Proof:<br />

<br />

( f . g)<br />

<br />

d g<br />

f .<br />

dt<br />

<br />

d f <br />

. g<br />

dt<br />

<br />

Let f f1<br />

i f2<br />

j f3<br />

k<br />

<br />

f . g<br />

<br />

g g1<br />

i g2<br />

j g3<br />

k<br />

f1 g1<br />

f2<br />

g2<br />

f3<br />

g3<br />

d dg1<br />

df1<br />

dg2<br />

df2<br />

dg3<br />

df3<br />

( f . g) f1 g1<br />

f2<br />

g2<br />

f3<br />

g3<br />

dt<br />

dt dt dt dt dt dt<br />

dg<br />

<br />

<br />

<br />

1 dg<br />

<br />

2 dg<br />

<br />

3 df<br />

<br />

1 df<br />

<br />

2 df<br />

f<br />

<br />

3<br />

1 f2<br />

f3<br />

g1<br />

g2<br />

g3<br />

<br />

dt dt dt dt dt dt <br />

<br />

d g<br />

f . <br />

dt<br />

<br />

( f <br />

df<br />

.<br />

dt<br />

<br />

g<br />

<br />

d g d f<br />

g) f <br />

dt dt<br />

<br />

Let f f1<br />

i f2<br />

j f3<br />

k<br />

<br />

g g1<br />

i g2<br />

j g3<br />

k<br />

<br />

g<br />

<br />

f g<br />

<br />

<br />

i<br />

f1<br />

g1<br />

<br />

j<br />

f2<br />

g2<br />

<br />

k<br />

f3<br />

g3<br />

Page 3 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

<br />

f g i (f2<br />

g3<br />

g2<br />

f3)<br />

d<br />

dt<br />

<br />

<br />

( f g)<br />

<br />

d<br />

dt<br />

<br />

i (f2<br />

g3<br />

g2<br />

f3)<br />

<br />

<br />

<br />

d f<br />

i<br />

2<br />

<br />

dt<br />

g3<br />

f2<br />

dg3<br />

dt<br />

<br />

dg2<br />

dt<br />

f3<br />

g2<br />

df3<br />

<br />

<br />

dt <br />

<br />

<br />

d f<br />

i<br />

2<br />

<br />

dt<br />

dg<br />

g <br />

2<br />

3<br />

dt<br />

<br />

f3<br />

<br />

<br />

<br />

<br />

i<br />

<br />

f2<br />

<br />

dg3<br />

dt<br />

g2<br />

df3<br />

<br />

<br />

dt <br />

<br />

d f<br />

<br />

dt<br />

<br />

g<br />

<br />

<br />

f<br />

<br />

<br />

d g<br />

dt<br />

5.<br />

d<br />

dt<br />

<br />

<br />

<br />

<br />

f , g, h <br />

<br />

<br />

<br />

<br />

<br />

d<br />

f<br />

,<br />

dt<br />

<br />

<br />

<br />

<br />

<br />

g, h <br />

<br />

<br />

<br />

<br />

<br />

<br />

f<br />

<br />

<br />

,<br />

<br />

d g <br />

d h <br />

,h f , g ,<br />

dt<br />

dt<br />

<br />

<br />

<br />

<br />

<br />

Proof:<br />

d<br />

dt<br />

<br />

f ,<br />

<br />

<br />

g,<br />

<br />

h <br />

<br />

<br />

d<br />

dt<br />

<br />

<br />

<br />

f<br />

<br />

<br />

<br />

<br />

g .<br />

<br />

<br />

<br />

<br />

<br />

h <br />

<br />

<br />

d<br />

dt<br />

<br />

f<br />

<br />

<br />

<br />

<br />

g .<br />

<br />

<br />

<br />

h<br />

<br />

<br />

f<br />

<br />

<br />

<br />

<br />

g .<br />

<br />

<br />

<br />

d h<br />

dt<br />

<br />

d f<br />

<br />

dt<br />

<br />

<br />

<br />

g <br />

<br />

<br />

.<br />

<br />

h<br />

<br />

<br />

<br />

f<br />

<br />

<br />

<br />

<br />

d g <br />

.<br />

dt <br />

<br />

<br />

h<br />

<br />

<br />

<br />

f g .<br />

<br />

<br />

<br />

d h<br />

dt<br />

<br />

d<br />

f<br />

,<br />

dt<br />

<br />

<br />

<br />

<br />

<br />

g , h <br />

<br />

<br />

<br />

<br />

<br />

d g <br />

<br />

f , , h<br />

dt<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

f ,<br />

<br />

<br />

<br />

g,<br />

<br />

d h <br />

dt<br />

<br />

<br />

<br />

<br />

<br />

d f<br />

6. If | f | cons tan t then f . 0<br />

dt<br />

Proof:<br />

<br />

Let | f | <br />

C<br />

<br />

| f | a<br />

2<br />

where a is constant<br />

<br />

<br />

f .<br />

<br />

f<br />

<br />

cons tan t<br />

<br />

d<br />

dt<br />

<br />

f .<br />

<br />

<br />

<br />

f <br />

<br />

<br />

<br />

0<br />

Page 4 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

<br />

d f d f <br />

f . . f 0<br />

dt dt<br />

<br />

d f<br />

f .<br />

dt<br />

0<br />

7. If<br />

<br />

f<br />

has<br />

a<br />

fixed<br />

direction<br />

then<br />

<br />

f<br />

<br />

d f <br />

0<br />

dt<br />

Proof:<br />

Let<br />

<br />

f<br />

<br />

<br />

f e<br />

Now<br />

<br />

f <br />

<br />

d f<br />

dt<br />

<br />

f e <br />

d<br />

dt<br />

<br />

(f e)<br />

<br />

df d e <br />

f e e 0<br />

dt dt<br />

f<br />

df<br />

dt<br />

<br />

(e e)<br />

df <br />

f (0)<br />

dt<br />

<br />

0<br />

8.If<br />

<br />

f<br />

<br />

<br />

d f<br />

dt<br />

<br />

<br />

0<br />

then<br />

<br />

f<br />

has<br />

a<br />

fixed<br />

direction.<br />

Equation of a Space Curve<br />

Let P (x,y,z) be any point in space then its position vector is<br />

<br />

OP<br />

<br />

<br />

r<br />

<br />

<br />

x i<br />

<br />

y j<br />

<br />

<br />

z k<br />

If x = x(t), y = y(t) <strong>and</strong> z = z(t) are functions of a scalar variable<br />

t then<br />

<br />

r r (t)<br />

describes<br />

a<br />

curve<br />

in<br />

space<br />

called<br />

the<br />

space<br />

curve.<br />

Page 5 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

Note 1:<br />

<br />

d r<br />

dt<br />

represents<br />

the<br />

velocity<br />

<br />

v<br />

(rate<br />

of<br />

change<br />

of<br />

position<br />

with<br />

which<br />

the<br />

ter min al po int<br />

of<br />

<br />

r<br />

describes the<br />

curve )<br />

Note 2:<br />

<br />

d r<br />

dt<br />

is<br />

along<br />

the<br />

direction<br />

of<br />

the<br />

tan gent<br />

to<br />

the<br />

space<br />

curve<br />

at<br />

P (x, y, z)<br />

Note 3:<br />

The<br />

unit<br />

tan gent<br />

vector<br />

to<br />

the<br />

space<br />

curve<br />

is<br />

denoted by<br />

<br />

t<br />

<strong>and</strong><br />

is given by<br />

<br />

t<br />

<br />

<br />

d r<br />

dt<br />

<br />

d r<br />

| |<br />

dt<br />

Note 4:<br />

<br />

d v<br />

dt<br />

<br />

<br />

d<br />

2<br />

r<br />

<br />

is called the acceleration a<br />

dt<br />

2<br />

of<br />

the<br />

curve<br />

at time<br />

t.<br />

Unit Normal to a Space Curve<br />

Let A be a fixed point on the curve <strong>and</strong> s be the length of the arc AP where<br />

P(x,y,z) is a point on the space curve.<br />

Page 6 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

Let<br />

<br />

t<br />

be<br />

the<br />

unit<br />

tan gent<br />

vector<br />

at<br />

P.<br />

Consider<br />

d.w.r.t s<br />

<br />

t . t<br />

1<br />

<br />

t<br />

.<br />

<br />

d t<br />

ds<br />

<br />

<br />

d t <br />

. t<br />

ds<br />

<br />

0<br />

<br />

<br />

d t<br />

2 t . <br />

ds<br />

0<br />

<br />

<br />

t<br />

<br />

d t<br />

.<br />

ds<br />

<br />

0<br />

<br />

d t<br />

ds<br />

is<br />

a normal<br />

to<br />

the<br />

space<br />

curve<br />

<strong>and</strong><br />

<br />

n<br />

<br />

<br />

d t<br />

ds<br />

<br />

d t<br />

| |<br />

ds<br />

is<br />

called<br />

the<br />

unit<br />

normal to<br />

the<br />

curve.<br />

Scalar <strong>and</strong> <strong>Vector</strong> Fields<br />

Scalar Valued Function<br />

Let P(x,y,z) which is a scalar is called a scalar point function.<br />

Note: A scalar point function is also called a scalar fixed . = (x,y,z)<br />

Ex.: (x,y,z) = x 2 + y 2 + z 2<br />

<strong>Vector</strong> Valued Function<br />

Page 7 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

Let P(x,y,z) be a point. A vector point function is a vector whose<br />

components are real valued functions of x,y,z. A vector point function is called a<br />

vector<br />

field<br />

<br />

F .<br />

Ex:<br />

<br />

<br />

f f (x, y, z) f1<br />

i f2<br />

j f3<br />

k<br />

<br />

F xyz i x<br />

2<br />

y j yz k<br />

Differential<br />

operator<br />

:<br />

<br />

denotes<br />

the<br />

operation<br />

<br />

i<br />

x<br />

<br />

<br />

y<br />

<br />

j<br />

<br />

<br />

k<br />

z<br />

<br />

<br />

<br />

i<br />

x<br />

<br />

does<br />

not<br />

represent<br />

a<br />

vector<br />

if<br />

only<br />

defines<br />

the<br />

differential<br />

operator<br />

<strong>Gradient</strong> of a Scalar Field<br />

<br />

Let(x, y, z) be a scalar field, then i k i<br />

x z x<br />

is called the gradient of denoted by .<br />

The<br />

following<br />

are<br />

some<br />

results<br />

obtained<br />

by<br />

the<br />

definition<br />

of<br />

<br />

.<br />

1. ( )<br />

,<br />

is a scalar cons tan t.<br />

2. ( )<br />

,<br />

<strong>and</strong> are scalar fields.<br />

3. ( )<br />

,<br />

<strong>and</strong> are scalar cons tan ts<br />

4.() <br />

<br />

5.<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

2<br />

<br />

6. d dx dy dz<br />

x y z<br />

<br />

i<br />

<br />

<br />

<br />

x<br />

<br />

<br />

j<br />

<br />

y<br />

<br />

<br />

k<br />

<br />

<br />

z <br />

<br />

<br />

i<br />

dx<br />

<br />

<br />

<br />

<br />

j dy<br />

<br />

<br />

k dz<br />

<br />

<br />

d<br />

<br />

<br />

<br />

. d r<br />

Page 8 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

Geometrical Interpretation<br />

Q(x, y, z)<br />

c represents a surface in space <strong>and</strong><br />

to the surface at any point.<br />

<br />

represents a normal<br />

Note 1: Since = c on the surface.<br />

<br />

d . d r<br />

<br />

0<br />

which<br />

shows<br />

that<br />

<br />

is<br />

perpendicular<br />

to<br />

the<br />

tan gent<br />

plane<br />

at<br />

any<br />

po int .<br />

Note<br />

2 : Unit<br />

vector<br />

along<br />

<br />

is<br />

denoted by<br />

<br />

n<br />

<br />

<br />

is<br />

| |<br />

called<br />

the<br />

unit<br />

normal<br />

to the surface (x,y,z) = c.<br />

Directional Derivative<br />

Let<br />

<br />

a<br />

be<br />

a<br />

vector<br />

inclined at<br />

an<br />

angle<br />

<br />

with<br />

<br />

then<br />

<br />

.<br />

<br />

a is<br />

called<br />

the<br />

directional<br />

derivative<br />

along<br />

<br />

a .<br />

Note : Maximum value<br />

of directional<br />

derivative<br />

is<br />

<br />

<br />

n | |<br />

Page 9 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

Divergence of a <strong>Vector</strong> Field<br />

<br />

<br />

Let f f1<br />

i f2<br />

j f3<br />

k be a vector field then divergence of f<br />

denoted by<br />

div<br />

<br />

f<br />

or<br />

<br />

.<br />

f<br />

is<br />

defined<br />

as<br />

f<br />

f<br />

1 f2<br />

f <br />

3 i<br />

div. f . f <br />

x y z x<br />

Physical Interpretation<br />

If<br />

<br />

v the<br />

velocity<br />

of<br />

a moving<br />

fluid<br />

at<br />

a po int<br />

P<br />

at<br />

time<br />

t,<br />

then<br />

<br />

div v<br />

represents<br />

the rate at which the fluid moves out of a unit volume enclosing the point P.<br />

Solenoidal <strong>Vector</strong><br />

A<br />

vector<br />

field<br />

<br />

f<br />

is<br />

said<br />

to<br />

be<br />

solenoidal<br />

if<br />

<br />

div. f<br />

<br />

0.<br />

Properties<br />

<br />

1. div ( f g) div f div g , where f <strong>and</strong> g are vector fields.<br />

<br />

2. div ( f ) div f where is a scalar cons tan t.<br />

3.<br />

<br />

div ( f g)<br />

cons tan ts.<br />

<br />

<br />

div f <br />

<br />

div g<br />

where<br />

<br />

<strong>and</strong><br />

<br />

are<br />

scalar<br />

4.<br />

If<br />

<br />

<br />

is a scalar field <strong>and</strong> f is a vector field then div ( f ) div f .<br />

Proof:<br />

<br />

Let f f1<br />

i f2<br />

j f3<br />

k<br />

<br />

then f f1<br />

i f2<br />

j f3<br />

k<br />

<br />

div ( f ) ( f1 ) ( f2<br />

) ( f3)<br />

x y z<br />

<br />

f1<br />

x<br />

<br />

<br />

f1<br />

x<br />

<br />

f<br />

<br />

2<br />

y<br />

<br />

f2<br />

<br />

y<br />

<br />

f<br />

<br />

3<br />

y<br />

<br />

f3<br />

<br />

y<br />

<br />

<br />

<br />

<br />

<br />

f1<br />

<br />

<br />

x <br />

<br />

<br />

<br />

i<br />

x<br />

<br />

. f1<br />

i<br />

<br />

<br />

div f<br />

<br />

<br />

.<br />

f<br />

Page 10 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

Laplacian of a scalar field <br />

Let<br />

then<br />

= (x,y,z) be a scalar field<br />

<br />

is a vector field<br />

<strong>and</strong><br />

div<br />

( )<br />

.<br />

<br />

<br />

<br />

x<br />

<br />

2<br />

<br />

<br />

x<br />

2<br />

<br />

<br />

x <br />

<br />

<br />

<br />

y<br />

<br />

<br />

<br />

<br />

2<br />

<br />

<br />

y<br />

2<br />

z<br />

2<br />

<br />

<br />

<br />

<br />

y <br />

<br />

<br />

z<br />

<br />

<br />

z <br />

denoted by<br />

<br />

2 <br />

is<br />

called<br />

the<br />

Laplacian<br />

of<br />

a<br />

scalar<br />

field.<br />

Note 1:<br />

<br />

2<br />

<br />

<br />

2<br />

x<br />

2<br />

<br />

2<br />

<br />

y<br />

2<br />

<br />

2<br />

<br />

z<br />

2<br />

Note 2:<br />

A<br />

scalar<br />

field<br />

<br />

is<br />

called<br />

a harmonic<br />

function<br />

if<br />

<br />

2<br />

<br />

<br />

0<br />

Note 3:<br />

<br />

2<br />

() <br />

2<br />

, where <br />

2<br />

<strong>and</strong> are cons tan ts,<br />

<br />

<strong>and</strong><br />

<br />

are scalar fields.<br />

Curl of a <strong>Vector</strong> field<br />

<br />

Let f f1<br />

i f2<br />

j f3<br />

k<br />

then<br />

curl<br />

of<br />

<br />

f<br />

denoted by<br />

curl<br />

<br />

f<br />

or<br />

<br />

<br />

<br />

f<br />

is<br />

defined<br />

as<br />

<br />

<br />

<br />

f<br />

<br />

<br />

i j k<br />

/ x / y<br />

/ z<br />

f1 f2<br />

f3<br />

<br />

<br />

f <br />

<br />

3 f<br />

<br />

2<br />

i<br />

y z <br />

Physical Interpretation<br />

<br />

If v is the velocity of a particle in rigid body rotating about a fixed<br />

axis<br />

then<br />

the<br />

angular<br />

velocity<br />

at<br />

any<br />

po int<br />

is<br />

given by<br />

1<br />

2<br />

<br />

curl v .<br />

Page 11 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

Irrational <strong>Vector</strong><br />

<br />

<br />

f is said to irrational if curl f 0<br />

Properties<br />

(i)<br />

If<br />

<br />

f<br />

<strong>and</strong><br />

<br />

g<br />

are<br />

vector<br />

fields then<br />

<br />

curl ( f<br />

<br />

<br />

g)<br />

<br />

curl<br />

<br />

f<br />

<br />

curl<br />

<br />

g<br />

<br />

<br />

(ii) Curl ( f ) Curl f , where is a scalar cons tan t.<br />

(iii)<br />

If<br />

<br />

is<br />

a<br />

scalar<br />

field<br />

<strong>and</strong><br />

<br />

f<br />

is<br />

vector<br />

field<br />

then<br />

<br />

curl ( f )<br />

<br />

<br />

curl<br />

<br />

f<br />

<br />

<br />

<br />

<br />

f<br />

Proof:<br />

<br />

<br />

Curl ( f ) ( f3)<br />

( f2<br />

) i<br />

<br />

y z <br />

<br />

<br />

<br />

f<br />

<br />

<br />

3<br />

y<br />

<br />

f <br />

2<br />

i<br />

z <br />

<br />

<br />

f3<br />

y<br />

<br />

<br />

f2<br />

i <br />

z <br />

<br />

<br />

f f <br />

<br />

<br />

Curl ( f ) <br />

3<br />

<br />

2<br />

i f3<br />

f2<br />

i ...(1)<br />

y z y z <br />

Consider<br />

<br />

<br />

<br />

f<br />

<br />

<br />

i j k<br />

/ x / y / z<br />

f1 f2<br />

f3<br />

<br />

<br />

<br />

f3<br />

y<br />

<br />

<br />

f2<br />

<br />

z <br />

<br />

i<br />

<br />

<br />

Curl ( f )<br />

<br />

<br />

curl<br />

<br />

f<br />

<br />

<br />

f<br />

(iv)<br />

<br />

Curl ( )<br />

0<br />

Proof:<br />

Curl ( )<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

i<br />

y z z y <br />

<br />

0<br />

<br />

<br />

(v). If f is a vector field then div (Curl f ) 0<br />

Proof:<br />

Page 12 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

Page 13 of 72<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

k<br />

y<br />

f<br />

x<br />

f<br />

i<br />

x<br />

f<br />

z<br />

f<br />

i<br />

z<br />

f<br />

y<br />

f<br />

f<br />

Curl<br />

1<br />

2<br />

3<br />

1<br />

2<br />

3<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

y<br />

f<br />

x<br />

f<br />

x<br />

x<br />

f<br />

z<br />

f<br />

z<br />

z<br />

f<br />

y<br />

f<br />

x<br />

f)<br />

(curl<br />

div<br />

1<br />

2<br />

3<br />

1<br />

2<br />

3<br />

y<br />

z<br />

f<br />

x<br />

z<br />

f<br />

x<br />

y<br />

f<br />

z<br />

y<br />

f<br />

z<br />

x<br />

f<br />

y<br />

x<br />

f 1<br />

2<br />

2<br />

2<br />

3<br />

2<br />

1<br />

2<br />

2<br />

2<br />

3<br />

2<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

= 0<br />

Some important Identities<br />

(i) Divergence of a vector product:<br />

then<br />

fields<br />

vector<br />

are<br />

g<br />

<strong>and</strong><br />

f<br />

If<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

g<br />

curl<br />

.<br />

f<br />

f<br />

g .curl<br />

g)<br />

( f<br />

div<br />

Proof:<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

k<br />

f<br />

j<br />

f<br />

i<br />

f<br />

f<br />

Let 3<br />

2<br />

1<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

k<br />

g<br />

j<br />

g<br />

i<br />

g<br />

g 3<br />

2<br />

1<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

k<br />

)<br />

g<br />

f<br />

g<br />

(f<br />

j<br />

)<br />

g<br />

f<br />

g<br />

(f<br />

i<br />

)<br />

f<br />

g<br />

g<br />

(f<br />

g<br />

f 1<br />

2<br />

2<br />

1<br />

3<br />

1<br />

1<br />

3<br />

3<br />

2<br />

3<br />

2<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

2<br />

3<br />

3<br />

2 g<br />

f<br />

g<br />

f<br />

x<br />

g)<br />

div (f<br />

g)<br />

( f<br />

x<br />

.<br />

i<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

x<br />

g<br />

f<br />

g<br />

x<br />

f<br />

.<br />

i<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

f<br />

x<br />

g<br />

.<br />

i<br />

g<br />

x<br />

f<br />

.<br />

i<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

f<br />

.<br />

x<br />

g<br />

i<br />

g<br />

.<br />

x<br />

f<br />

i<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

f<br />

.<br />

g)<br />

(<br />

g<br />

.<br />

)<br />

f<br />

(<br />

<br />

<br />

<br />

<br />

<br />

<br />

g<br />

Curl<br />

.<br />

f<br />

f<br />

Curl<br />

.<br />

g<br />

(ii)<br />

Curl of Curl of a vector:


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

<br />

<br />

Curl (Curl f ) grad (div f ) <br />

2<br />

f<br />

Proof:<br />

<br />

Let f f1<br />

i f2<br />

j f3<br />

k<br />

f3 f2 f1 f2 f2 f <br />

f i j<br />

1 <br />

k<br />

y z z1<br />

x x y <br />

<br />

Curl (Curl f )<br />

<br />

<br />

<br />

i <br />

<br />

f<br />

<br />

2<br />

y x<br />

<br />

<br />

<br />

f1<br />

<br />

<br />

y <br />

<br />

<br />

z<br />

<br />

<br />

<br />

f1<br />

z<br />

f <br />

<br />

3<br />

<br />

x <br />

<br />

<br />

2<br />

f <br />

2<br />

f <br />

2<br />

<br />

2<br />

<br />

<br />

<br />

1<br />

<br />

1 f<br />

<br />

1 f<br />

<br />

3<br />

i<br />

y<br />

x<br />

<br />

y<br />

2<br />

z<br />

2 z x <br />

<br />

<br />

<br />

2<br />

f <br />

2<br />

f <br />

2<br />

f <br />

2<br />

<br />

<br />

3<br />

<br />

2<br />

<br />

2 f<br />

<br />

1<br />

j<br />

z<br />

y<br />

<br />

z<br />

2<br />

x<br />

2 x y <br />

<br />

<br />

<br />

2<br />

<br />

2<br />

f <br />

2<br />

f f <br />

2<br />

1 3 3 f2<br />

<br />

k<br />

x<br />

z<br />

<br />

x<br />

2<br />

y<br />

2 y z <br />

<br />

adding<br />

<strong>and</strong><br />

subtracting<br />

<br />

2<br />

f1<br />

,<br />

y<br />

2<br />

<br />

2<br />

f3<br />

z<br />

2<br />

to<br />

each<br />

of<br />

the<br />

terms.<br />

<br />

<br />

<br />

<br />

i <br />

<br />

<br />

<br />

x<br />

f1<br />

<br />

x<br />

f<br />

<br />

2<br />

y<br />

f<br />

<br />

<br />

2<br />

<br />

<br />

3 f<br />

<br />

1<br />

z<br />

<br />

<br />

x<br />

2<br />

<br />

2<br />

f<br />

<br />

2<br />

y<br />

2<br />

<br />

2<br />

f <br />

<br />

<br />

1<br />

<br />

<br />

z<br />

2<br />

<br />

<br />

<br />

<br />

i (div f )<br />

x<br />

<br />

<br />

<br />

2<br />

f<br />

Note 1:<br />

<br />

(div f )<br />

<br />

<br />

<br />

2<br />

f<br />

<br />

<br />

The operator f . (f i f j f k) . <br />

1 2 3 <br />

<br />

<br />

i <br />

x<br />

<br />

<br />

<br />

f1<br />

f2<br />

f3<br />

x<br />

y<br />

z<br />

<br />

j<br />

y<br />

<br />

<br />

<br />

k <br />

z <br />

<br />

is called the Linear differential operator.<br />

Note 2: If is a scalar field<br />

Note 3:<br />

<br />

<br />

<br />

<br />

f . <br />

f1<br />

f2<br />

f<br />

<br />

3<br />

<br />

x y<br />

<br />

z<br />

Page 14 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

Page 15 of 72<br />

field<br />

a vector<br />

is<br />

g<br />

If<br />

<br />

z<br />

g<br />

f<br />

y<br />

g<br />

f<br />

x<br />

g<br />

f<br />

g<br />

.<br />

f 3<br />

2<br />

1<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

(iii)<br />

<strong>Gradient</strong> of a scalar field:<br />

then<br />

fields<br />

vector<br />

are<br />

g<br />

<strong>and</strong><br />

f<br />

If<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

f<br />

)<br />

( g .<br />

g<br />

)<br />

.<br />

( f<br />

f<br />

Curl<br />

g<br />

g<br />

Curl<br />

f<br />

g)<br />

.<br />

( f<br />

Proof:<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

)<br />

g<br />

.<br />

( f<br />

x<br />

i<br />

g)<br />

.<br />

( f<br />

Consider<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

x<br />

g<br />

.<br />

f<br />

g<br />

.<br />

x<br />

f<br />

i<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

...(1)<br />

x<br />

g<br />

.<br />

f<br />

i<br />

x<br />

f<br />

g .<br />

i<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

x<br />

f<br />

i<br />

g<br />

f<br />

Curl<br />

g<br />

Now<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

x<br />

f<br />

i<br />

g<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

x<br />

f<br />

i<br />

g .<br />

i<br />

x<br />

f<br />

g .<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

f<br />

g .<br />

x<br />

f<br />

g .<br />

i<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

...(2)<br />

x<br />

f<br />

g .<br />

i<br />

g<br />

)<br />

( g .<br />

f<br />

Curl<br />

g<br />

Similarly<br />

...(3)<br />

x<br />

g<br />

.<br />

f<br />

i<br />

g<br />

)<br />

.<br />

( f<br />

g<br />

curl<br />

f


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

Page 16 of 72<br />

From (1), (2) <strong>and</strong> (3)<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

f<br />

)<br />

( g .<br />

g<br />

)<br />

.<br />

( f<br />

f<br />

Curl<br />

g<br />

g<br />

Curl<br />

f<br />

g)<br />

.<br />

( f<br />

Note:<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

f<br />

)<br />

.<br />

2( f<br />

f<br />

Curl<br />

f<br />

2<br />

)<br />

f<br />

.<br />

( f<br />

then<br />

g<br />

f<br />

If<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

f<br />

)<br />

.<br />

( f<br />

f<br />

Curl<br />

f<br />

)<br />

f<br />

.<br />

( f<br />

grad<br />

2<br />

1<br />

or<br />

(iv) Curl of a vector product<br />

then<br />

fields<br />

vector<br />

are<br />

g<br />

<strong>and</strong><br />

f<br />

If<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

g<br />

)<br />

.<br />

( f<br />

f<br />

)<br />

( g .<br />

f<br />

g div<br />

g<br />

div<br />

f<br />

g)<br />

( f<br />

Curl<br />

Proof:<br />

g)<br />

( f<br />

x<br />

i<br />

g)<br />

( f<br />

Curl<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

x<br />

g<br />

f<br />

g<br />

x<br />

f<br />

i<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

x<br />

g<br />

f<br />

g<br />

x<br />

f<br />

i<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

x<br />

g<br />

f<br />

i<br />

g<br />

x<br />

f<br />

i<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

x<br />

g<br />

)<br />

f<br />

.<br />

( i<br />

f<br />

x<br />

g<br />

i<br />

g<br />

x<br />

f<br />

.<br />

i<br />

x<br />

f<br />

g)<br />

.<br />

( i<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

x<br />

g<br />

f<br />

x<br />

g<br />

.<br />

i<br />

f<br />

x<br />

f<br />

.<br />

i<br />

g<br />

x<br />

f<br />

g 1<br />

1<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

g<br />

)<br />

.<br />

f<br />

(<br />

g<br />

div<br />

f<br />

f<br />

g div<br />

f<br />

)<br />

( g .<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

g<br />

)<br />

.<br />

( f<br />

f<br />

)<br />

( g .<br />

f<br />

div<br />

g<br />

g<br />

div<br />

f<br />

Integration of <strong>Vector</strong> functions<br />

a<br />

be<br />

C<br />

<strong>and</strong><br />

space<br />

in<br />

R<br />

region<br />

a<br />

over<br />

defined<br />

field<br />

vector<br />

a<br />

be<br />

f<br />

Let


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

curve in R whose equation is<br />

<br />

r x(t) i y (t) j z(t) k<br />

Let A <strong>and</strong> B be two points on Curve C corresponding to t = a <strong>and</strong> t = b,<br />

We<br />

have<br />

<br />

t<br />

<br />

<br />

d r<br />

dt<br />

<br />

d r<br />

| |<br />

dt<br />

<br />

AB<br />

<br />

f . t ds<br />

Note 1:<br />

Note 2:<br />

Note 3:<br />

Note 4:<br />

The<br />

is<br />

<br />

Since t<br />

called the line int egral<br />

above int egral<br />

<br />

d r<br />

<br />

ds<br />

<br />

of f<br />

is also represented as<br />

<br />

C<br />

<br />

f . t ds<br />

<br />

<br />

C<br />

along curve C between<br />

<br />

f .d r<br />

<br />

<br />

f .d r <br />

<br />

f1 dx <br />

<br />

f2<br />

dy <br />

<br />

f3<br />

dz<br />

C C C C<br />

Also<br />

<br />

<br />

b<br />

dx dy dz<br />

1 dt<br />

dt dt dt<br />

a<br />

<br />

<br />

<br />

f .d r <br />

f<br />

f2<br />

f3<br />

<br />

<br />

C<br />

<br />

C<br />

<br />

f . t ds<br />

A<br />

<strong>and</strong> B.<br />

Physical Meaning:<br />

Page 17 of 72


C<br />

Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

<br />

f .d r represents the work done in moving a particle of unit<br />

along the Curve C from A to B.<br />

mass<br />

Surface Integral of a vector function<br />

The<br />

surface int egral<br />

of<br />

<br />

f<br />

over a<br />

surface<br />

S<br />

is<br />

defined<br />

as<br />

<br />

S<br />

<br />

f .n<br />

dS<br />

where<br />

<br />

n<br />

is the unit normal to the surface S <strong>and</strong> dS = dx dy<br />

Physical Meaning:<br />

The<br />

surface int egral<br />

of<br />

<br />

f<br />

gives<br />

the<br />

total normal<br />

flux<br />

through<br />

a<br />

surface.<br />

Volume integral of a vector function<br />

The<br />

volume int egral<br />

<br />

of f<br />

over<br />

a<br />

volume V<br />

is<br />

defined<br />

as<br />

<br />

V<br />

<br />

f dV<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

f1d V<br />

<br />

i<br />

<br />

f2<br />

dV<br />

<br />

j<br />

<br />

d V<br />

<br />

k<br />

V V V <br />

Integral Theorems<br />

Green's Theorem (Statement only)<br />

Let M(x,y) <strong>and</strong> N(x,y) be two functions defined in a region A in the xy plane with<br />

a simple closed curve C as its boundary then<br />

<br />

C<br />

(M dx<br />

<br />

Mdy)<br />

<br />

N<br />

<br />

<br />

x<br />

A<br />

M <br />

dx dy<br />

y <br />

Strokes Theorem (Statement only)<br />

Let S be an open surface bounded by a simple closed curve C for a field<br />

Page 18 of 72


f<br />

defined<br />

Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

over a region containing S <strong>and</strong> C.<br />

<br />

C<br />

<br />

f .d r<br />

<br />

<br />

S<br />

(Curl<br />

<br />

f ) .n<br />

dS<br />

Gauss Divergence theorem (Statement only)<br />

Let S be the closed boundary surface of a region of Volume V. Then for a<br />

<br />

vector field f defined in V <strong>and</strong> on S.<br />

<br />

S<br />

<br />

f .n<br />

dS <br />

<br />

S<br />

i.e., in Cartesian form<br />

<br />

div f dV<br />

f<br />

f<br />

f<br />

1 dx dy dz<br />

x<br />

y<br />

z<br />

V<br />

<br />

f dy dz f <br />

1<br />

<br />

2<br />

<br />

3<br />

2 dz dx f3<br />

dx dy<br />

<br />

S<br />

Note:<br />

Page 19 of 72


For<br />

Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

<br />

any vector field f , <strong>and</strong> any closed surface S<br />

<br />

S<br />

<br />

Curl f . n<br />

dS<br />

<br />

0<br />

Page 20 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

Summary<br />

<strong>Vector</strong> function: A vector function of a scalar variable t is of the form<br />

<br />

f1(t)<br />

i f2<br />

(t) j<br />

f3(t)<br />

k<br />

<strong>Differentiation</strong> of a <strong>Vector</strong>:<br />

<br />

d f df <br />

<br />

1 df df<br />

i <br />

2<br />

j<br />

3<br />

k<br />

dt dt dt dt<br />

Equation of a space curve: Equation of a space curve is represented by<br />

<br />

r (t)<br />

<br />

x(t) i y(t) j z (t) k<br />

<br />

d r<br />

<strong>Velocity</strong> :<br />

dt<br />

space curve.<br />

is<br />

the<br />

<br />

velocity v<br />

<strong>and</strong> is<br />

along<br />

the<br />

tan gent<br />

to<br />

the<br />

Unit<br />

tan gent vector<br />

<br />

: t<br />

<br />

<br />

d r<br />

dt<br />

<br />

d r<br />

| |<br />

dt<br />

<br />

Unit normal : n <br />

|<br />

<br />

d t<br />

ds<br />

<br />

d t<br />

|<br />

ds<br />

is called the unit normal to the curve.<br />

Scalar field: A scalar corresponding to each (x,y,z) in a region R.<br />

<strong>Vector</strong> field: A vector corresponding to each (x,y,z) in a region R<br />

<br />

<br />

<br />

<br />

r f1<br />

(x, y, z) i f2<br />

(x, y, z) j f3(x, y, z) k<br />

<strong>Gradient</strong>: If<br />

<br />

is<br />

a scalar field<br />

then<br />

<br />

<br />

<br />

i<br />

x<br />

<br />

j<br />

y<br />

<br />

k<br />

z<br />

is<br />

called<br />

the<br />

gradient of .<br />

Unit Normal to the surface : If = c is a surface then<br />

<br />

| |<br />

<br />

<br />

n<br />

is<br />

the unit<br />

normal<br />

to the surface.<br />

Page 21 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

<br />

Directional derivative: . a is called the directional derivative in<br />

<br />

the direction of a .<br />

<br />

Divergence of a vector field :If f f1<br />

i f2<br />

j f3<br />

k<br />

is<br />

a vector<br />

field<br />

then<br />

div<br />

<br />

f .<br />

f<br />

f<br />

<br />

1<br />

x<br />

f<br />

<br />

2<br />

y<br />

<br />

f3<br />

z<br />

<br />

f1<br />

x<br />

Solenoidal:<br />

<br />

f<br />

is<br />

solenoida.l of<br />

<br />

div f<br />

<br />

0<br />

Laplacian of a scalar field: Let be a scalar field then<br />

<br />

2<br />

<br />

<br />

<br />

2<br />

<br />

x<br />

2<br />

<br />

2<br />

<br />

<br />

y<br />

2<br />

<br />

2<br />

<br />

<br />

z<br />

2<br />

Curl<br />

of<br />

a<br />

vector<br />

field: Let<br />

<br />

f<br />

be<br />

a<br />

vector<br />

field<br />

then<br />

curl<br />

of<br />

<br />

f<br />

Curl<br />

<br />

f<br />

<br />

<br />

<br />

f<br />

<br />

<br />

i j k<br />

<br />

x<br />

y<br />

z<br />

f1 f2<br />

f3<br />

<br />

<br />

f <br />

<br />

3 f<br />

<br />

2<br />

i<br />

y z <br />

<br />

Irrational: f<br />

is<br />

irrational if<br />

Curl<br />

<br />

f 0<br />

Introduction<br />

In this chapter the basic concepts of Differential Calculus of scalar functions are<br />

extended to vector functions.<br />

Here we study vector differentiation, gradient, divergence, curl, solenoidal <strong>and</strong><br />

irrational fields.<br />

Also we study about vector integration <strong>and</strong> verification of the integral theorems.<br />

<strong>Vector</strong> Function of a Scalar Variable<br />

<br />

Let f f1<br />

i f2<br />

j f3<br />

k where f1, f2<br />

<strong>and</strong> f3<br />

are<br />

functions<br />

of<br />

a<br />

var iable<br />

t<br />

is called a vector function.<br />

Page 22 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

If f1, f2 <strong>and</strong> f3 are differentiable then we define<br />

<br />

d f f(t t) f(t)<br />

df <br />

1 df <br />

2 df <br />

lim i j <br />

3<br />

k<br />

dt t0<br />

t dt dt dt<br />

Similarly higher order derivatives can also be defined.<br />

Note:<br />

<br />

d f <br />

0<br />

dt<br />

iff<br />

<br />

f<br />

is<br />

a<br />

cons tan t<br />

vector .<br />

Rules of differentiation<br />

1. If<br />

g(t) is<br />

a<br />

scalar<br />

function<br />

of<br />

t<br />

<strong>and</strong><br />

<br />

f (t) is a<br />

vector<br />

function<br />

of<br />

<br />

d d f d <br />

scalar t then ( f) f<br />

dt dt dt<br />

2. If<br />

<br />

<strong>and</strong><br />

<br />

are<br />

scalar<br />

cons tan ts,<br />

<br />

f<br />

<strong>and</strong><br />

<br />

g<br />

are vector<br />

functions of<br />

t<br />

then<br />

d<br />

dt<br />

<br />

( f<br />

<br />

<br />

g)<br />

<br />

<br />

d f<br />

<br />

dt<br />

<br />

<br />

d g<br />

<br />

dt<br />

3.<br />

d<br />

dt<br />

Proof:<br />

<br />

( f . g)<br />

<br />

d g<br />

f .<br />

dt<br />

<br />

d f <br />

. g<br />

dt<br />

<br />

Let f f1<br />

i f2<br />

j f3<br />

k<br />

<br />

f . g<br />

<br />

g g1<br />

i g2<br />

j g3<br />

k<br />

f1 g1<br />

f2<br />

g2<br />

f3<br />

g3<br />

d dg1<br />

df1<br />

dg2<br />

df2<br />

dg3<br />

df3<br />

( f . g) f1 g1<br />

f2<br />

g2<br />

f3<br />

g3<br />

dt<br />

dt dt dt dt dt dt<br />

dg<br />

<br />

<br />

<br />

1 dg<br />

<br />

2 dg<br />

<br />

3 df<br />

<br />

1 df<br />

<br />

2 df<br />

f<br />

<br />

3<br />

1 f2<br />

f3<br />

g1<br />

g2<br />

g3<br />

<br />

dt dt dt dt dt dt <br />

<br />

d g<br />

f .<br />

dt<br />

<br />

df <br />

. g<br />

dt<br />

Page 23 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

Page 24 of 72<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

g<br />

dt<br />

f<br />

d<br />

dt<br />

d g<br />

f<br />

g)<br />

( f<br />

dt<br />

d<br />

4.<br />

Proof:<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

k<br />

f<br />

j<br />

f<br />

i<br />

f<br />

f<br />

Let 3<br />

2<br />

1<br />

<br />

<br />

<br />

<br />

<br />

<br />

k<br />

g<br />

j<br />

g<br />

i<br />

g<br />

g 3<br />

2<br />

1<br />

3<br />

2<br />

1<br />

3<br />

2<br />

1<br />

g<br />

g<br />

g<br />

f<br />

f<br />

f<br />

k<br />

j<br />

i<br />

g<br />

f<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

)<br />

f<br />

g<br />

g<br />

(f<br />

i<br />

g<br />

f 3<br />

2<br />

3<br />

2<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

)<br />

f<br />

g<br />

g<br />

(f<br />

i<br />

dt<br />

d<br />

g)<br />

( f<br />

dt<br />

d<br />

3<br />

2<br />

3<br />

2<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

dt<br />

df<br />

g<br />

f<br />

dt<br />

dg<br />

dt<br />

dg<br />

f<br />

g<br />

dt<br />

d f<br />

i<br />

3<br />

2<br />

3<br />

2<br />

3<br />

2<br />

3<br />

2<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

dt<br />

df<br />

g<br />

dt<br />

dg<br />

f<br />

i<br />

f<br />

dt<br />

dg<br />

g<br />

dt<br />

d f<br />

i<br />

3<br />

2<br />

3<br />

2<br />

3<br />

2<br />

3<br />

2<br />

dt<br />

d g<br />

f<br />

g<br />

dt<br />

f<br />

d<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

dt<br />

d h<br />

g ,<br />

,<br />

f<br />

,h<br />

dt<br />

d g<br />

,<br />

f<br />

h<br />

g,<br />

,<br />

dt<br />

f<br />

d<br />

h<br />

g,<br />

,<br />

f<br />

dt<br />

d<br />

5.<br />

Proof:<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

h<br />

.<br />

g<br />

f<br />

dt<br />

d<br />

h<br />

g,<br />

,<br />

f<br />

dt<br />

d<br />

dt<br />

d h<br />

.<br />

g<br />

f<br />

h<br />

.<br />

g<br />

f<br />

dt<br />

d<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

dt<br />

d h<br />

.<br />

g<br />

f<br />

h<br />

.<br />

dt<br />

d g<br />

f<br />

h<br />

.<br />

g<br />

dt<br />

f<br />

d<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

dt<br />

d h<br />

g,<br />

,<br />

f<br />

h<br />

,<br />

dt<br />

d g<br />

,<br />

f<br />

h<br />

g ,<br />

,<br />

dt<br />

f<br />

d


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

<br />

<br />

d f<br />

6. If | f | cons tan t then f . 0<br />

dt<br />

Proof:<br />

<br />

Let | f | <br />

C<br />

<br />

| f | a<br />

2<br />

where a is constant<br />

<br />

<br />

f .<br />

<br />

f<br />

<br />

cons tan t<br />

<br />

d<br />

dt<br />

<br />

f .<br />

<br />

<br />

<br />

f <br />

<br />

<br />

<br />

0<br />

<br />

f .<br />

<br />

d f d f <br />

. f <br />

dt dt<br />

0<br />

<br />

<br />

d f<br />

f .<br />

dt<br />

<br />

0<br />

7. If<br />

<br />

f<br />

has<br />

a<br />

fixed<br />

direction<br />

then<br />

<br />

f<br />

<br />

d f <br />

0<br />

dt<br />

Proof:<br />

Let<br />

<br />

f<br />

<br />

<br />

f e<br />

Now<br />

<br />

f <br />

<br />

d f<br />

dt<br />

<br />

f e <br />

d<br />

dt<br />

<br />

(f e)<br />

<br />

df d e <br />

f e e 0<br />

dt dt<br />

f<br />

df<br />

dt<br />

<br />

(e e)<br />

df <br />

f (0)<br />

dt<br />

<br />

0<br />

8.If<br />

<br />

d f<br />

f <br />

dt<br />

<br />

<br />

0<br />

then<br />

<br />

f<br />

has<br />

a<br />

fixed<br />

direction.<br />

Page 25 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

Equation of a Space Curve<br />

Let P (x,y,z) be any point in space then its position vector is<br />

<br />

OP<br />

<br />

<br />

r<br />

<br />

<br />

x i<br />

<br />

y j<br />

<br />

<br />

z k<br />

If x = x(t), y = y(t) <strong>and</strong> z = z(t) are functions of a scalar variable<br />

t then<br />

<br />

r r (t)<br />

describes<br />

a<br />

curve<br />

in<br />

space<br />

called<br />

the<br />

space<br />

curve.<br />

Note 1:<br />

<br />

d r<br />

dt<br />

represents<br />

the<br />

velocity<br />

<br />

v<br />

(rate<br />

of<br />

change<br />

of<br />

position<br />

with<br />

which<br />

the<br />

ter min al po int<br />

of<br />

<br />

r<br />

describes the<br />

curve )<br />

Note 2:<br />

<br />

d r<br />

dt<br />

is<br />

along<br />

the<br />

direction<br />

of<br />

the<br />

tan gent<br />

to<br />

the<br />

space<br />

curve<br />

at<br />

P (x, y, z)<br />

Note 3:<br />

The<br />

unit<br />

tan gent<br />

vector<br />

to<br />

the<br />

space<br />

curve<br />

is<br />

denoted by<br />

<br />

t<br />

<strong>and</strong><br />

is given by<br />

<br />

d r<br />

<br />

t <br />

dt<br />

<br />

d r<br />

| |<br />

dt<br />

Page 26 of 72


Note 4:<br />

<br />

d v<br />

dt<br />

Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

<br />

d<br />

2<br />

r<br />

<br />

is called the acceleration a of<br />

dt<br />

2<br />

the<br />

curve<br />

at time<br />

t.<br />

Unit Normal to a Space Curve<br />

Let A be a fixed point on the curve <strong>and</strong> s be the length of the arc AP where<br />

P(x,y,z) is a point on the space curve.<br />

Let<br />

<br />

t<br />

be<br />

the<br />

unit<br />

tan gent<br />

vector<br />

at<br />

P.<br />

Consider<br />

d.w.r.t s<br />

<br />

t . t<br />

1<br />

<br />

t<br />

.<br />

<br />

d t<br />

ds<br />

<br />

<br />

d t <br />

. t<br />

ds<br />

<br />

0<br />

<br />

<br />

d t<br />

2 t . <br />

ds<br />

0<br />

<br />

<br />

t<br />

<br />

d t<br />

.<br />

ds<br />

<br />

0<br />

<br />

d t<br />

ds<br />

is<br />

a normal<br />

to<br />

the<br />

space<br />

curve<br />

<strong>and</strong><br />

<br />

n<br />

<br />

<br />

d t<br />

ds<br />

<br />

d t<br />

| |<br />

ds<br />

is called<br />

the<br />

unit<br />

normal to<br />

the<br />

curve.<br />

Page 27 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

Scalar <strong>and</strong> <strong>Vector</strong> Fields<br />

Scalar Valued Function<br />

Let P(x,y,z) which is a scalar is called a scalar point function.<br />

Note: A scalar point function is also called a scalar fixed . = (x,y,z)<br />

Ex.: (x,y,z) = x 2 + y 2 + z 2<br />

<strong>Vector</strong> Valued Function<br />

Let P(x,y,z) be a point. A vector point function is a vector whose<br />

components are real valued functions of x,y,z. A vector point function is called a<br />

<br />

vector field F .<br />

Ex:<br />

<br />

<br />

f f (x, y, z) f1<br />

i f2<br />

j f3<br />

k<br />

<br />

F<br />

<br />

<br />

xyz i<br />

<br />

<br />

x<br />

2<br />

y j<br />

<br />

<br />

yz k<br />

Differential<br />

operator<br />

:<br />

<br />

denotes<br />

the<br />

operation<br />

<br />

i<br />

x<br />

<br />

<br />

y<br />

<br />

j<br />

<br />

<br />

k<br />

z<br />

<br />

<br />

<br />

i<br />

x<br />

<br />

does<br />

not<br />

represent<br />

a<br />

vector<br />

if<br />

only<br />

defines<br />

the<br />

differential<br />

operator<br />

<strong>Gradient</strong> of a Scalar Field<br />

<br />

Let(x, y, z) be a scalar field, then i k i<br />

x z x<br />

is called the gradient of denoted by .<br />

The<br />

following<br />

are<br />

some<br />

results<br />

obtained<br />

by<br />

the<br />

definition<br />

of<br />

<br />

.<br />

1. ( )<br />

,<br />

is a scalar cons tan t.<br />

2. ( )<br />

,<br />

<strong>and</strong> are scalar fields.<br />

3. ( )<br />

,<br />

<strong>and</strong> are scalar cons tan ts<br />

4.() <br />

<br />

<br />

5. <br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

2<br />

Page 28 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

<br />

6. d dx dy dz<br />

x y z<br />

<br />

i<br />

<br />

<br />

<br />

x<br />

<br />

<br />

j<br />

<br />

y<br />

<br />

<br />

k<br />

<br />

<br />

z <br />

<br />

<br />

i<br />

dx<br />

<br />

<br />

<br />

<br />

j dy<br />

<br />

<br />

k dz<br />

<br />

<br />

d<br />

<br />

<br />

<br />

. d r<br />

Geometrical Interpretation<br />

Q (x, y, z)<br />

<br />

c<br />

represents<br />

a<br />

surface<br />

in space<br />

<strong>and</strong><br />

<br />

represents<br />

a normal<br />

to the surface at any point.<br />

Note 1: Since = c on the surface.<br />

<br />

d . d r<br />

<br />

0<br />

which<br />

shows<br />

that<br />

<br />

is<br />

perpendicular<br />

to<br />

the<br />

tan gent<br />

plane<br />

at<br />

any<br />

po int .<br />

Note<br />

2 : Unit<br />

vector<br />

along<br />

<br />

is<br />

denoted by<br />

<br />

n<br />

<br />

<br />

is<br />

| |<br />

called<br />

the<br />

unit<br />

normal<br />

to the surface (x,y,z) = c.<br />

Directional Derivative<br />

Let<br />

<br />

a<br />

be<br />

a<br />

vector<br />

inclined at<br />

an<br />

angle<br />

<br />

with<br />

<br />

then<br />

<br />

.<br />

<br />

a is<br />

called<br />

the<br />

directional<br />

derivative<br />

along<br />

<br />

a .<br />

Page 29 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

Note : Maximum value<br />

of directional<br />

derivative<br />

is<br />

<br />

<br />

<br />

n<br />

| |<br />

Divergence of a <strong>Vector</strong> Field<br />

<br />

Let f f1<br />

i f2<br />

j f3<br />

k<br />

be<br />

a<br />

vector<br />

field<br />

then<br />

divergence<br />

of<br />

<br />

f<br />

denoted by<br />

div<br />

<br />

f<br />

or<br />

<br />

.<br />

f<br />

is<br />

defined<br />

as<br />

f<br />

f<br />

1 f2<br />

f <br />

3 i<br />

div. f . f <br />

x y z x<br />

Physical Interpretation<br />

If<br />

<br />

v the<br />

velocity<br />

of<br />

a moving<br />

fluid<br />

at<br />

a po int<br />

P<br />

at<br />

time<br />

t,<br />

then<br />

<br />

div v<br />

represents<br />

the rate at which the fluid moves out of a unit volume enclosing the point P.<br />

Solenoidal <strong>Vector</strong><br />

A<br />

vector<br />

field<br />

<br />

f<br />

is<br />

said<br />

to<br />

be<br />

solenoidal<br />

if<br />

<br />

div. f<br />

<br />

0.<br />

Properties<br />

<br />

1. div ( f g) div f div g , where f <strong>and</strong> g are vector fields.<br />

<br />

2. div ( f ) div f where is a scalar cons tan t.<br />

3.<br />

<br />

div ( f g)<br />

cons tan ts.<br />

<br />

<br />

div f <br />

<br />

div g<br />

where<br />

<br />

<strong>and</strong><br />

<br />

are<br />

scalar<br />

4.<br />

If<br />

<br />

<br />

is a scalar field <strong>and</strong> f is a vector field then div ( f ) div f .<br />

Proof:<br />

Page 30 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

<br />

Let f f1<br />

i f2<br />

j f3<br />

k<br />

<br />

then f f1<br />

i f2<br />

j f3<br />

k<br />

<br />

div ( f ) ( f1 ) ( f2<br />

) ( f3)<br />

x y z<br />

<br />

f1<br />

x<br />

<br />

<br />

f1<br />

x<br />

<br />

f<br />

<br />

2<br />

y<br />

<br />

f2<br />

<br />

y<br />

<br />

f<br />

<br />

3<br />

y<br />

<br />

f3<br />

<br />

y<br />

<br />

<br />

<br />

<br />

<br />

f1<br />

<br />

<br />

x <br />

<br />

<br />

<br />

i<br />

x<br />

<br />

. f1<br />

i<br />

<br />

div<br />

<br />

f<br />

<br />

<br />

.<br />

f<br />

Laplacian of a scalar field <br />

Let<br />

then<br />

= (x,y,z) be a scalar field<br />

<br />

is a vector field<br />

<strong>and</strong><br />

div<br />

( )<br />

.<br />

<br />

<br />

<br />

x<br />

<br />

<br />

x <br />

<br />

<br />

<br />

y<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

y <br />

<br />

<br />

z<br />

<br />

<br />

z <br />

<br />

2<br />

<br />

<br />

x<br />

2<br />

<br />

<br />

2<br />

<br />

y<br />

2<br />

<br />

<br />

z<br />

2<br />

denoted by<br />

<br />

2 <br />

is<br />

called<br />

the<br />

Laplacian<br />

of<br />

a<br />

scalar<br />

field.<br />

Note 1:<br />

<br />

2<br />

<br />

<br />

2<br />

x<br />

2<br />

<br />

2<br />

<br />

y<br />

2<br />

<br />

2<br />

<br />

z<br />

2<br />

Note 2:<br />

A<br />

scalar<br />

field<br />

<br />

is<br />

called<br />

a harmonic<br />

function if<br />

<br />

2<br />

<br />

<br />

0<br />

Note 3:<br />

<br />

2<br />

() <br />

2<br />

, where <br />

2<br />

<strong>and</strong> are cons tan ts,<br />

<br />

<strong>and</strong><br />

<br />

are scalar fields.<br />

Curl of a <strong>Vector</strong> field<br />

<br />

Let f f1<br />

i f2<br />

j f3<br />

k<br />

then<br />

curl<br />

of<br />

<br />

f<br />

denoted by<br />

curl<br />

<br />

f<br />

or<br />

Page 31 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

<br />

<br />

<br />

i j k<br />

f is defined as f / x / y<br />

/ z<br />

f1 f2<br />

f3<br />

<br />

<br />

f <br />

<br />

3 f<br />

<br />

2<br />

i<br />

y z <br />

Physical Interpretation<br />

<br />

If v is the velocity of a particle in rigid body rotating about a fixed<br />

axis<br />

then<br />

the<br />

angular<br />

velocity<br />

at<br />

any<br />

po int<br />

is<br />

given by<br />

1<br />

2<br />

curl<br />

<br />

v .<br />

Irrational <strong>Vector</strong><br />

<br />

f<br />

is<br />

said<br />

to<br />

irrational if<br />

curl<br />

<br />

f<br />

<br />

0<br />

Properties<br />

(i)<br />

If<br />

<br />

f<br />

<strong>and</strong><br />

<br />

g<br />

are<br />

vector<br />

fields then<br />

<br />

curl ( f<br />

<br />

<br />

g)<br />

<br />

curl<br />

<br />

f<br />

<br />

curl<br />

<br />

g<br />

<br />

<br />

(ii) Curl ( f ) Curl f , where is a scalar cons tan t.<br />

(iii)<br />

If<br />

<br />

is<br />

a<br />

scalar<br />

field<br />

<strong>and</strong><br />

<br />

f<br />

is<br />

vector<br />

field<br />

then<br />

<br />

curl ( f )<br />

<br />

<br />

curl<br />

<br />

f<br />

<br />

<br />

<br />

<br />

f<br />

Proof:<br />

<br />

<br />

Curl ( f ) ( f3)<br />

( f2<br />

) i<br />

<br />

y z <br />

<br />

<br />

<br />

f<br />

<br />

<br />

3<br />

y<br />

<br />

f <br />

2<br />

i<br />

z <br />

<br />

<br />

f3<br />

y<br />

<br />

<br />

f2<br />

i <br />

z <br />

<br />

<br />

f f <br />

<br />

<br />

Curl ( f ) <br />

3<br />

<br />

2<br />

i f3<br />

f2<br />

i ...(1)<br />

y z y z <br />

Consider<br />

<br />

<br />

f <br />

<br />

i j k<br />

/ x / y / z<br />

f1 f2<br />

f3<br />

Page 32 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

Page 33 of 72<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

i<br />

f<br />

z<br />

f<br />

y<br />

2<br />

3<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

f<br />

f<br />

curl<br />

)<br />

f<br />

(<br />

Curl<br />

(iv)<br />

<br />

<br />

<br />

0<br />

)<br />

(<br />

Curl<br />

Proof:<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

i<br />

y<br />

z<br />

z<br />

y<br />

)<br />

(<br />

Curl<br />

<br />

0<br />

(v). 0<br />

)<br />

f<br />

(Curl<br />

div<br />

then<br />

field<br />

vector<br />

a<br />

is<br />

f<br />

If<br />

<br />

<br />

<br />

Proof:<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

k<br />

y<br />

f<br />

x<br />

f<br />

i<br />

x<br />

f<br />

z<br />

f<br />

i<br />

z<br />

f<br />

y<br />

f<br />

f<br />

Curl<br />

1<br />

2<br />

3<br />

1<br />

2<br />

3<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

y<br />

f<br />

x<br />

f<br />

x<br />

x<br />

f<br />

z<br />

f<br />

z<br />

z<br />

f<br />

y<br />

f<br />

x<br />

f )<br />

(curl<br />

div<br />

1<br />

2<br />

3<br />

1<br />

2<br />

3<br />

y<br />

z<br />

f<br />

x<br />

z<br />

f<br />

x<br />

y<br />

f<br />

z<br />

y<br />

f<br />

z<br />

x<br />

f<br />

y<br />

x<br />

f 1<br />

2<br />

2<br />

2<br />

3<br />

2<br />

1<br />

2<br />

2<br />

2<br />

3<br />

2<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

= 0<br />

Some important Identities<br />

(i) Divergence of a vector product:<br />

then<br />

fields<br />

vector<br />

are<br />

g<br />

<strong>and</strong><br />

f<br />

If<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

g<br />

curl<br />

.<br />

f<br />

f<br />

g .curl<br />

g)<br />

( f<br />

div<br />

Proof:<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

k<br />

f<br />

j<br />

f<br />

i<br />

f<br />

f<br />

Let 3<br />

2<br />

1<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

k<br />

g<br />

j<br />

g<br />

i<br />

g<br />

g 3<br />

2<br />

1<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

k<br />

)<br />

g<br />

f<br />

g<br />

(f<br />

j<br />

)<br />

g<br />

f<br />

g<br />

(f<br />

i<br />

)<br />

f<br />

g<br />

g<br />

(f<br />

g<br />

f 1<br />

2<br />

2<br />

1<br />

3<br />

1<br />

1<br />

3<br />

3<br />

2<br />

3<br />

2<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

2<br />

3<br />

3<br />

2 g<br />

f<br />

g<br />

f<br />

x<br />

g)<br />

div (f


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

<br />

i . ( f g)<br />

x<br />

<br />

<br />

<br />

i<br />

.<br />

<br />

<br />

f<br />

<br />

x<br />

<br />

<br />

<br />

g<br />

<br />

<br />

f<br />

<br />

<br />

g <br />

<br />

x <br />

<br />

<br />

<br />

<br />

f<br />

i . <br />

x<br />

<br />

<br />

<br />

<br />

g <br />

<br />

<br />

<br />

<br />

<br />

g<br />

i . <br />

x<br />

<br />

<br />

<br />

<br />

f <br />

<br />

<br />

<br />

<br />

<br />

<br />

i<br />

<br />

<br />

<br />

<br />

f <br />

.<br />

x <br />

<br />

<br />

g<br />

<br />

<br />

<br />

<br />

i<br />

<br />

<br />

<br />

<br />

g <br />

.<br />

x <br />

<br />

<br />

f<br />

<br />

( f ) .<br />

<br />

g<br />

<br />

( <br />

<br />

g) .<br />

<br />

f<br />

<br />

g . Curl<br />

<br />

f<br />

<br />

<br />

f . Curl<br />

<br />

g<br />

(ii)<br />

Curl of Curl of a vector:<br />

<br />

Curl (Curl f )<br />

<br />

grad (div<br />

<br />

f )<br />

<br />

<br />

<br />

2<br />

f<br />

Proof:<br />

<br />

Let f f1<br />

i f2<br />

j f3<br />

k<br />

f3 f2 f1 f2 f2 f <br />

f i j<br />

1 <br />

k<br />

y z z1<br />

x x y <br />

<br />

Curl (Curl f )<br />

<br />

<br />

<br />

i <br />

<br />

f<br />

<br />

2<br />

y x<br />

<br />

<br />

<br />

f1<br />

<br />

<br />

y <br />

<br />

<br />

z<br />

<br />

<br />

<br />

f1<br />

z<br />

f <br />

<br />

3<br />

<br />

x <br />

<br />

<br />

2<br />

f <br />

2<br />

f <br />

2<br />

<br />

2<br />

<br />

<br />

<br />

1<br />

<br />

1 f<br />

<br />

1 f<br />

<br />

3<br />

i<br />

y<br />

x<br />

<br />

y<br />

2<br />

z<br />

2 z x <br />

<br />

<br />

<br />

2<br />

f <br />

2<br />

f <br />

2<br />

f <br />

2<br />

<br />

<br />

3<br />

<br />

2<br />

<br />

2 f<br />

<br />

1<br />

j<br />

z<br />

y<br />

<br />

z<br />

2<br />

x<br />

2 x y <br />

<br />

<br />

<br />

2<br />

<br />

2<br />

f <br />

2<br />

f f <br />

2<br />

1 3 3 f2<br />

<br />

k<br />

x<br />

z<br />

<br />

x<br />

2<br />

y<br />

2 y z <br />

<br />

adding<br />

<strong>and</strong><br />

subtracting<br />

<br />

2<br />

f1<br />

,<br />

y<br />

2<br />

<br />

2<br />

f3<br />

z<br />

2<br />

to<br />

each<br />

of<br />

the<br />

terms.<br />

<br />

<br />

<br />

<br />

i <br />

<br />

<br />

<br />

x<br />

f1<br />

<br />

x<br />

f<br />

<br />

2<br />

y<br />

f<br />

<br />

<br />

2<br />

<br />

<br />

3 f<br />

<br />

1<br />

z<br />

<br />

<br />

x<br />

2<br />

<br />

2<br />

f<br />

<br />

2<br />

y<br />

2<br />

<br />

2<br />

f <br />

<br />

<br />

1<br />

<br />

<br />

z<br />

2<br />

<br />

Page 34 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

<br />

i (div f ) <br />

2<br />

f<br />

x<br />

Note 1:<br />

<br />

(div f )<br />

<br />

<br />

<br />

2<br />

f<br />

<br />

<br />

The operator f . (f i f j f k) . <br />

1 2 3 <br />

<br />

<br />

i <br />

x<br />

<br />

<br />

<br />

f1<br />

f2<br />

f3<br />

x<br />

y<br />

z<br />

<br />

j<br />

y<br />

<br />

<br />

<br />

k <br />

z <br />

<br />

is called the Linear differential operator.<br />

Note 2: If is a scalar field<br />

Note 3:<br />

If<br />

<br />

<br />

<br />

<br />

f . <br />

f1<br />

f2<br />

f<br />

<br />

3<br />

<br />

x y<br />

<br />

g is a vector field<br />

<br />

z<br />

<br />

g g<br />

f . g f1<br />

f2<br />

f3<br />

x<br />

y<br />

<br />

g<br />

z<br />

(iii)<br />

<strong>Gradient</strong> of a scalar field:<br />

<br />

If f<br />

<br />

<strong>and</strong> g are vector fields<br />

then<br />

<br />

<br />

( f . g)<br />

<br />

<br />

f<br />

<br />

Curl<br />

<br />

g<br />

<br />

<br />

g<br />

<br />

Curl<br />

<br />

f<br />

<br />

<br />

( f . )<br />

g<br />

<br />

<br />

( g . )<br />

f<br />

Proof:<br />

Consider<br />

<br />

( f . g) i ( f . g)<br />

x<br />

<br />

<br />

<br />

<br />

<br />

f g <br />

i . g f . <br />

x x <br />

<br />

<br />

<br />

<br />

<br />

<br />

f <br />

i g . <br />

x <br />

<br />

<br />

<br />

<br />

g <br />

i f . <br />

x <br />

<br />

...(1)<br />

<br />

Now g Curl<br />

<br />

f<br />

<br />

<br />

g <br />

<br />

<br />

i<br />

<br />

<br />

f<br />

x<br />

Page 35 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

<br />

f <br />

g i <br />

x <br />

<br />

<br />

<br />

<br />

<br />

<br />

f <br />

<br />

g . i<br />

<br />

x<br />

<br />

<br />

<br />

<br />

<br />

g . i <br />

<br />

<br />

<br />

f <br />

<br />

x<br />

<br />

<br />

<br />

i<br />

<br />

<br />

f <br />

g . <br />

x<br />

<br />

<br />

<br />

<br />

g . <br />

f<br />

<br />

<br />

<br />

<br />

g<br />

<br />

Curl<br />

<br />

f<br />

<br />

<br />

( g . )<br />

g<br />

<br />

<br />

<br />

i<br />

<br />

<br />

f<br />

g .<br />

x<br />

<br />

<br />

<br />

<br />

<br />

<br />

...(2)<br />

Similarly<br />

<br />

f <br />

<br />

curl g<br />

From (1), (2) <strong>and</strong> (3)<br />

Note:<br />

<br />

( f . g)<br />

<br />

( f . )<br />

g <br />

<br />

f Curl<br />

<br />

g<br />

<br />

<br />

<br />

g <br />

i f . <br />

x <br />

<br />

<br />

g Curl<br />

<br />

f<br />

...(3)<br />

<br />

( f . )<br />

g ( g . )<br />

f<br />

If<br />

<br />

f<br />

<br />

<br />

g<br />

then<br />

<br />

<br />

( f . f )<br />

<br />

<br />

2 f<br />

<br />

Curl<br />

<br />

f 2( f . )<br />

f<br />

or<br />

1 <br />

grad ( f . f )<br />

2<br />

<br />

<br />

f <br />

Curl<br />

<br />

f <br />

<br />

( f . )<br />

f<br />

(iv) Curl of a vector product<br />

<br />

If f<br />

<strong>and</strong><br />

<br />

g<br />

are<br />

vector<br />

fields<br />

then<br />

<br />

Curl ( f <br />

<br />

g)<br />

<br />

<br />

f div<br />

<br />

g g div f ( g . )<br />

f ( f . )<br />

g<br />

Proof:<br />

<br />

Curl ( f g)<br />

<br />

<br />

<br />

i<br />

<br />

<br />

x<br />

<br />

( f g)<br />

<br />

<br />

<br />

i<br />

<br />

<br />

<br />

f<br />

<br />

x<br />

<br />

<br />

g<br />

<br />

<br />

f <br />

<br />

g <br />

<br />

x<br />

<br />

<br />

Page 36 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

Page 37 of 72<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

x<br />

g<br />

f<br />

g<br />

x<br />

f<br />

i<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

x<br />

g<br />

f<br />

i<br />

g<br />

x<br />

f<br />

i<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

x<br />

g<br />

)<br />

f<br />

.<br />

( i<br />

f<br />

x<br />

g<br />

i<br />

g<br />

x<br />

f<br />

.<br />

i<br />

x<br />

f<br />

g)<br />

.<br />

( i<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

x<br />

g<br />

f<br />

x<br />

g<br />

.<br />

i<br />

f<br />

x<br />

f<br />

.<br />

i<br />

g<br />

x<br />

f<br />

g 1<br />

1<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

g<br />

)<br />

.<br />

( f<br />

g<br />

div<br />

f<br />

f<br />

g div<br />

f<br />

)<br />

( g .<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

g<br />

)<br />

.<br />

f<br />

(<br />

f<br />

)<br />

( g .<br />

f<br />

div<br />

g<br />

g<br />

div<br />

f<br />

Question <strong>and</strong> answers<br />

01. If<br />

<br />

<br />

<br />

h<br />

g,<br />

,<br />

f<br />

are vectors functions of a scalar variable t. Prove that<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

dt<br />

d h<br />

x<br />

g<br />

x<br />

f<br />

h<br />

x<br />

dt<br />

d g<br />

x<br />

f<br />

h<br />

x<br />

g<br />

x<br />

dt<br />

f<br />

d<br />

h<br />

x<br />

g<br />

x<br />

f<br />

dt<br />

d<br />

Suggested answer:<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

h<br />

x<br />

g<br />

dt<br />

d<br />

x<br />

f<br />

h<br />

x<br />

g<br />

x<br />

dt<br />

f<br />

d<br />

h<br />

x<br />

g<br />

x<br />

f<br />

dt<br />

d<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

dt<br />

d h<br />

x<br />

g<br />

h<br />

x<br />

dt<br />

d g<br />

x<br />

f<br />

h<br />

x<br />

g<br />

x<br />

dt<br />

f<br />

d<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

dt<br />

d h<br />

x<br />

g<br />

fx<br />

h<br />

x<br />

dt<br />

d g<br />

x<br />

f<br />

h<br />

x<br />

g<br />

x<br />

dt<br />

f<br />

d<br />

02. If<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

k<br />

t<br />

j<br />

sin t<br />

i<br />

cos t<br />

g<br />

2t k,<br />

j<br />

e<br />

i<br />

e<br />

f<br />

,<br />

e<br />

t<br />

t<br />

2t


d<br />

find i)<br />

dt<br />

Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

<br />

<br />

d <br />

d <br />

f , ii) f g iii) f x g <br />

<br />

<br />

dt<br />

<br />

dt<br />

<br />

Suggested answer:<br />

<br />

i) f e<br />

t<br />

i e<br />

3t<br />

j<br />

<br />

2te<br />

2t<br />

k<br />

d<br />

dt<br />

<br />

f e<br />

t<br />

<br />

<br />

<br />

i 3e<br />

3t<br />

j <br />

2<br />

<br />

<br />

2te<br />

2t<br />

<br />

<br />

e<br />

2t<br />

<br />

k<br />

<br />

ii)<br />

d<br />

dt<br />

<br />

<br />

f g (e<br />

t<br />

<br />

<br />

<br />

sin t) i ( e<br />

t<br />

<br />

cos t) j<br />

(<br />

<br />

2 1) k<br />

iii)<br />

<br />

f x g <br />

<br />

i j<br />

e<br />

t<br />

e<br />

t<br />

cos t sin t<br />

<br />

k<br />

2t<br />

t<br />

<br />

i( te<br />

t<br />

<br />

2t sin t)<br />

<br />

j(te<br />

t<br />

<br />

e<br />

t<br />

cos t) k(e<br />

t<br />

sin t e<br />

t<br />

)<br />

<br />

d <br />

( f x g) i te<br />

t<br />

e<br />

t<br />

2t cos t 2 sin t<br />

dt<br />

<br />

<br />

j e<br />

t<br />

te<br />

t<br />

e<br />

t cos t e<br />

t<br />

sin t<br />

<br />

<br />

k e<br />

t<br />

cos t e<br />

t<br />

sin t e<br />

t cos t e<br />

t<br />

sin t .<br />

<br />

<br />

<br />

03. A particle moves along the curve whose parametric coordinates are x = e -t ,<br />

y = 2 cos 3t, z = 2 sin 3t. Here t is time i) Determine its velocity <strong>and</strong><br />

acceleration at time t ii) find the magnitude of velocity <strong>and</strong> acceleration at t =<br />

0.<br />

Suggested answer:<br />

Page 38 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

i) Equation to the curve is<br />

<br />

r e<br />

t<br />

<br />

<br />

i<br />

2 cos 3t j<br />

2 sin3t k<br />

<br />

v <br />

<br />

d r<br />

dt<br />

<br />

<br />

e<br />

t<br />

i 6 sin3t j<br />

6 cos 3t k<br />

<br />

a <br />

<br />

d<br />

2<br />

r<br />

dt<br />

2<br />

<br />

<br />

<br />

e<br />

t<br />

i 18 cos 3t j<br />

18 sin3t k<br />

ii) At t = 0,<br />

<br />

v i 6 k,<br />

<br />

a i 18 j<br />

<strong>and</strong><br />

<br />

<br />

| v | 37, | a | 325<br />

04. Find the unit tangent vectors at any point on the curve x = t 2 +1, y = 4t - 3,<br />

z = 2t 2 - 6t. Determine the unit tangent at the point t = 2.<br />

Suggested answer:<br />

Equation to the space curve is<br />

<br />

<br />

<br />

r (t<br />

2<br />

1) i<br />

(4t 3) j<br />

(2t<br />

2<br />

6t) k<br />

<br />

d r<br />

dt<br />

<br />

<br />

2t i 4 j<br />

(4t 6) k<br />

<br />

d r <br />

<br />

dt <br />

t2<br />

<br />

4 i 4 j<br />

2 k<br />

unit tangent<br />

<br />

t <br />

<br />

d r<br />

dt<br />

<br />

d r<br />

dt<br />

Page 39 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

<br />

4 i 4 j<br />

2k<br />

<br />

36<br />

<br />

2<br />

3<br />

<br />

i <br />

2<br />

3<br />

1 <br />

j<br />

k<br />

3<br />

05. A particle moves so that its position vector is given by<br />

<br />

r cos t<br />

i<br />

sin t<br />

j,<br />

is<br />

a<br />

cons tan t<br />

show<br />

that<br />

<br />

i) velocity v<br />

is perpendicular to<br />

<br />

r<br />

ii) acceleration<br />

to the distance from the origin.<br />

<br />

a is directed towards the origin <strong>and</strong> has magnitude proportional<br />

<br />

iii) r x v is a cons tan t vector.<br />

Suggested answer:<br />

i)<br />

<br />

r cos t<br />

i sin t<br />

j<br />

<br />

d r<br />

dt<br />

<br />

<br />

sin t<br />

i cos t<br />

j v<br />

Now<br />

<br />

v . r 0<br />

<br />

v r<br />

ii)<br />

<br />

a <br />

<br />

d<br />

2<br />

r<br />

dt<br />

2<br />

<br />

<br />

<br />

2<br />

cos t<br />

i sin t<br />

j<br />

<br />

a <br />

2<br />

r<br />

<br />

| a | 2 <br />

| r |<br />

iii)<br />

<br />

r x v<br />

Page 40 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

<br />

<br />

<br />

(cos t<br />

i sin t<br />

j)x( sin t<br />

i cos t<br />

j)<br />

2 cos t( i x j) sin<br />

2<br />

<br />

t( j x i)<br />

<br />

<br />

cos<br />

2<br />

t k<br />

sin<br />

2<br />

t<br />

k<br />

<br />

k<br />

= constant vector.<br />

<br />

<br />

d f <br />

06. Two vector f <strong>and</strong> g such that x f ,<br />

dt<br />

<br />

d <br />

for some , prove that ( f x g) x( f x g)<br />

.<br />

dt<br />

<br />

d g<br />

dt<br />

<br />

x g<br />

Suggested answer:<br />

d<br />

dt<br />

<br />

d g d f <br />

( f x g) f x x g<br />

dt dt<br />

<br />

f x( x g) ( x f )x g<br />

<br />

( f . g) ( f . )<br />

g ( g . )<br />

f ( g . f ) <br />

<br />

( g . )<br />

f ( f . )<br />

g<br />

<br />

<br />

x( f x g)<br />

07. If x = t 2 +1, y = 4t - 3, z = 2t 2 - 6t represents the parametric equations of a<br />

space curve. Find the angle between the unit tangents at t = 1 <strong>and</strong> t = 2.<br />

Page 41 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

Suggested answer:<br />

<br />

<br />

<br />

<br />

r (t<br />

2<br />

1) i (4t 3) j<br />

(2t<br />

2<br />

6t) k<br />

<br />

d r<br />

dt<br />

<br />

<br />

2t i 4 j<br />

(4t 6) k<br />

<br />

t <br />

<br />

<br />

2t i 4 j<br />

(4t 6)k<br />

4t<br />

2<br />

16 16t<br />

2<br />

36 48t<br />

<br />

<br />

<br />

2t i 4 j<br />

(4t 6)k<br />

20t<br />

2<br />

48t 52<br />

<br />

t t1<br />

<br />

<br />

2 i 4 j<br />

2 k<br />

24<br />

<br />

a<br />

(say)<br />

<br />

t t2<br />

<br />

<br />

4 i 4 j<br />

2 k<br />

36<br />

<br />

2 2 2 <br />

i j<br />

k b (say)<br />

3 3 3<br />

Let be the angle between<br />

<br />

a<br />

<br />

<strong>and</strong> b<br />

<br />

<br />

<br />

a . b<br />

cos 1 <br />

<br />

<br />

|<br />

a || b | <br />

<br />

<br />

5<br />

cos 1 <br />

3<br />

6 <br />

08. If<br />

<br />

f cosnt <br />

sinnt<br />

<br />

<br />

where n is a constant scalar <strong>and</strong><br />

<br />

<strong>and</strong> <br />

are<br />

constant vectors prove that<br />

Page 42 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

<br />

d f <br />

i) f x n( a x b)<br />

dt<br />

ii)<br />

<br />

d<br />

2<br />

f<br />

dt<br />

2<br />

<br />

n<br />

2<br />

f<br />

iii)<br />

<br />

<br />

<br />

f ,<br />

<br />

<br />

<br />

d f d<br />

2<br />

f <br />

, 0<br />

dt dt<br />

2 <br />

<br />

<br />

Suggested answer:<br />

Given<br />

<br />

f cos nt a sinnt b<br />

<br />

d f<br />

i) f x<br />

dt<br />

<br />

d f<br />

<br />

<br />

n sinnt a n cos nt b<br />

dt<br />

<br />

<br />

<br />

(cos nt a sinnt b )x( n sinnt a n cos nt b )<br />

<br />

<br />

n cos<br />

2<br />

nt( a x b ) n sin<br />

2<br />

t(b x a)<br />

<br />

n( a x b )<br />

<br />

d<br />

2<br />

f<br />

ii)<br />

dt<br />

2<br />

<br />

<br />

n<br />

2<br />

cos nt a n<br />

2<br />

sinnt b<br />

<br />

<br />

f<br />

<br />

<br />

<br />

iii) f ,<br />

<br />

<br />

<br />

d f<br />

,<br />

dt<br />

n 2 0<br />

<br />

<br />

d<br />

2<br />

f <br />

d f <br />

f , , n<br />

2 <br />

f<br />

dt<br />

2 <br />

dt<br />

<br />

<br />

<br />

<br />

<br />

<br />

09. A particle moves along the curve x = t 3 + 1, y = t 2 , z = t + 5 where t is the<br />

time. Find the components of velocity <strong>and</strong> acceleration along the vector<br />

Page 43 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

<br />

c i 3 j<br />

2 k at t = 1.<br />

Suggested answer:<br />

<br />

r (t<br />

3<br />

<br />

1) i t<br />

2<br />

j<br />

(t 5) k<br />

<br />

d r <br />

3t<br />

2<br />

i 2t j<br />

k<br />

dt<br />

<br />

d<br />

2<br />

r<br />

dt<br />

2<br />

<br />

6t i 2 j<br />

<br />

d r <br />

<br />

dt <br />

t1<br />

<br />

v 3 i 2 j<br />

k<br />

Now velocity along<br />

<br />

c is<br />

<br />

v c <br />

11<br />

14<br />

12<br />

<strong>Acceleration</strong> along c is a . c .<br />

14<br />

<br />

<br />

d d A d<br />

2<br />

A d A d<br />

3<br />

<br />

<br />

<br />

A <br />

10. Show that A, , A . x .<br />

dt<br />

<br />

dt dt<br />

2 <br />

dt dt<br />

3<br />

<br />

<br />

<br />

<br />

<br />

<br />

Suggested answer:<br />

d<br />

dt<br />

<br />

<br />

<br />

A,<br />

<br />

<br />

<br />

d A<br />

,<br />

dt<br />

<br />

d<br />

2<br />

A <br />

2 <br />

dt <br />

<br />

<br />

d A<br />

,<br />

dt<br />

<br />

<br />

<br />

d A<br />

,<br />

dt<br />

<br />

<br />

d<br />

2<br />

A <br />

<br />

A,<br />

dt<br />

2<br />

<br />

<br />

<br />

d<br />

2<br />

A<br />

,<br />

dt<br />

2<br />

<br />

<br />

d<br />

2<br />

A <br />

<br />

A,<br />

dt<br />

2<br />

<br />

<br />

<br />

d A<br />

,<br />

dt<br />

<br />

d<br />

3<br />

A <br />

3 <br />

dt <br />

<br />

Page 44 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

<br />

<br />

d A d<br />

3<br />

A <br />

0 0 A,<br />

,<br />

dt 3 <br />

dt <br />

<br />

<br />

<br />

<br />

11. If R A e<br />

nt<br />

B e<br />

nt<br />

, where A <strong>and</strong> B are cons tan t vectors<br />

<br />

d<br />

2<br />

R <br />

then show that n<br />

2<br />

R .<br />

dt<br />

2<br />

Suggested answer:<br />

<br />

d R<br />

dt<br />

<br />

ne<br />

nt<br />

A ne<br />

nt<br />

B<br />

<br />

d<br />

2<br />

R<br />

dt<br />

2<br />

<br />

n<br />

2<br />

e<br />

nt<br />

A n<br />

2<br />

e<br />

nt<br />

B<br />

<br />

n 2 R<br />

<br />

12. Find unit vector normal to the curve 4 sin t i 4 cos t j<br />

3t k .<br />

Suggested answer:<br />

We have<br />

<br />

r 4 sin t i 4 cos t j<br />

3t k<br />

<br />

d r<br />

dt<br />

<br />

4 cos t i 4 sin t j<br />

3k<br />

<br />

d r<br />

dt<br />

5<br />

Page 45 of 72


t <br />

<br />

d r<br />

dt<br />

<br />

d r<br />

dt<br />

Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

<br />

<br />

4 cos t i 4 sin t j<br />

3k<br />

5<br />

<br />

d t<br />

ds<br />

<br />

<br />

d t dt <br />

<br />

dt ds <br />

<br />

d t/ dt<br />

ds / dt<br />

<br />

also<br />

ds d r<br />

<br />

dt dt<br />

5<br />

<br />

d t<br />

<br />

ds<br />

<br />

1<br />

25<br />

<br />

( 4 sin t i 4 cos t j)<br />

<strong>and</strong><br />

<br />

N <br />

<br />

4<br />

(sin t<br />

25<br />

<br />

i cos t j)<br />

16 /(25)<br />

2 <br />

<br />

<br />

(sin t i cos j)<br />

13. Find the unit normal vector to the curve x = 3 cost, y = 3sint, x = 4t.<br />

Suggested answer:<br />

We have<br />

<br />

r 3 cos t i 3 sin t j<br />

4t k<br />

<br />

d r<br />

v <br />

dt<br />

<br />

| v | 5<br />

<br />

3 sin t i 3 cos t j<br />

4 k<br />

(tan gent vector)<br />

Page 46 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

<br />

t <br />

<br />

d r / dt<br />

ds / dt<br />

<br />

d t/ dt<br />

<br />

<br />

| d r / dt |<br />

<br />

1 <br />

( 3 cos t i 3 sin t j)<br />

25<br />

unit normal vector<br />

<br />

d t/ ds<br />

N <br />

<br />

| d t/ ds |<br />

<br />

3 <br />

(cos t i sin t j)<br />

25<br />

3 / 25<br />

<br />

(cos t i sin t j)<br />

<br />

14. The position vectors of a moving particle at time t is r t<br />

2<br />

i t<br />

3<br />

j<br />

t<br />

4<br />

k .<br />

Find the tangential <strong>and</strong> normal components of its acceleration at t = 1.<br />

Suggested answer:<br />

<br />

r t<br />

2<br />

<br />

i<br />

t<br />

3<br />

j<br />

t<br />

4<br />

k<br />

<br />

v <br />

<br />

d r<br />

dt<br />

<br />

2t i 3t<br />

2<br />

j<br />

4t<br />

4<br />

k<br />

<br />

v t1<br />

<br />

2 i 3 j<br />

4 k<br />

<br />

v <br />

1 <br />

(2 i 3 j<br />

4 k)<br />

29<br />

<br />

a t1<br />

<br />

2 i 6 j<br />

12 k<br />

Page 47 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

tangential component acceleration is<br />

<br />

a .v <br />

70<br />

29<br />

<br />

Normal component of acceleration |<br />

a ( a .v) v |<br />

<br />

<br />

82 i 36 j<br />

68 k<br />

29<br />

<br />

1<br />

29<br />

82<br />

2<br />

36<br />

2<br />

68<br />

2<br />

= 3.8774<br />

15. If is a function of r only, then prove that<br />

1 d<br />

d<br />

<br />

r r .<br />

r dr dr<br />

Suggested answer:<br />

We have<br />

r<br />

2<br />

<br />

r . r x<br />

2<br />

y<br />

2<br />

z<br />

2<br />

r<br />

x<br />

<br />

x<br />

r<br />

,<br />

r<br />

y<br />

<br />

y<br />

r<br />

,<br />

r<br />

z<br />

<br />

z<br />

r<br />

<br />

<br />

i<br />

x<br />

<br />

j<br />

y<br />

<br />

k<br />

z<br />

d<br />

i<br />

dr<br />

x<br />

r<br />

d<br />

j<br />

dr<br />

y<br />

r<br />

d<br />

k<br />

dr<br />

z<br />

r<br />

1 d<br />

<br />

(x i y j<br />

z k)<br />

r dr<br />

Page 48 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

<br />

1 d<br />

d<br />

r r d<br />

<br />

r r<br />

r dr dr r dr<br />

16. Find <br />

in the following<br />

i)<br />

ii)<br />

x<br />

2<br />

y<br />

3<br />

z<br />

4<br />

at (1, 0, -2)<br />

<br />

1<br />

r<br />

2<br />

Suggested answer:<br />

<br />

<br />

<br />

i) <br />

2xy<br />

3<br />

z<br />

4<br />

i 3x<br />

2<br />

y<br />

2<br />

z<br />

4<br />

j<br />

4x<br />

2<br />

y<br />

3<br />

z<br />

3<br />

k<br />

( )<br />

(1,0, 2)<br />

<br />

2 i 3 j<br />

4 k<br />

ii)<br />

<br />

1<br />

r<br />

2<br />

we have<br />

<br />

<br />

1 d<br />

<br />

r<br />

r dr<br />

<br />

1 2 <br />

<br />

r<br />

r r<br />

3<br />

<br />

<br />

<br />

2 r<br />

r<br />

4<br />

17. Find the equation of the tangent plane to the surface xyz = 6 at the point (1,<br />

2, 3).<br />

Suggested answer:<br />

xyz<br />

<br />

<br />

yz i xz j<br />

xy k<br />

<br />

(1,2,3)<br />

6 i 3 j<br />

2 k<br />

<br />

Page 49 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

unit normal to the surface<br />

<br />

n <br />

|<br />

<br />

<br />

<br />

|<br />

<br />

6 i 3 j<br />

2 k<br />

7<br />

<br />

Equation of the tangent plane in vector form is ( r a).n 0<br />

Where<br />

<br />

r x i y j<br />

z k,<br />

<br />

a i 2 j<br />

3k<br />

ie<br />

6(x 1) 3(y 2) 2(z 3) 0<br />

i.e., 6x + 3y + 2z = 18<br />

18. Find the angle between the surfaces xlogz = y 2 - 1 <strong>and</strong> x 2 y = 2 - z at the<br />

point (1, 1, 1).<br />

Suggested answer:<br />

Let <br />

2<br />

1 x log z y<br />

2 x 2 y z<br />

1<br />

<br />

log z i 2y j<br />

x<br />

z<br />

<br />

k<br />

2<br />

<br />

2xy i x<br />

2<br />

j<br />

k<br />

( 1)<br />

(1,1,1 )<br />

<br />

2<br />

j<br />

k<br />

( 2)<br />

(1, 1, 1)<br />

<br />

2 i j<br />

k<br />

The angle between the surfaces is the angle between 1<br />

<strong>and</strong> 2.<br />

Page 50 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

Let be the angle between 1 <strong>and</strong> <br />

2<br />

.<br />

cos<br />

1 1<br />

<br />

<br />

<br />

2<br />

| 1<br />

|| 2<br />

|<br />

cos 1 1<br />

<br />

<br />

30<br />

<br />

cos 1<br />

1<br />

30<br />

19. Find the constants a <strong>and</strong> b such that the surfaces ax 2 - byz = (a + 2)x <strong>and</strong><br />

4x 2 y+z 3 are orthogonal at (1, -1, 2).<br />

Suggested answer:<br />

Let ax<br />

2<br />

1 byz (a 2)x<br />

...(1)<br />

4x<br />

2<br />

y z<br />

3<br />

2 4<br />

...(2)<br />

1<br />

<br />

[2ax (a 2)] i bz j<br />

by k<br />

2<br />

<br />

8xy i 4x<br />

2<br />

j<br />

3z<br />

2<br />

k<br />

<br />

( 1)<br />

(1, 1,2)<br />

(a 2) i 2b j<br />

b k, ( 2)<br />

(1, 1,2)<br />

<br />

8<br />

i 4 j<br />

12 k<br />

given 1 <strong>and</strong> 2<br />

are orthogonal<br />

1. 2<br />

0<br />

i.e., -8(a - 2) + 4(-2b) + 12b = 0<br />

2a<br />

b 4<br />

...(3)<br />

Page 51 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

Also 1 2<br />

at (1, -1, 2)<br />

a 2b (a 2) 4<br />

8 4<br />

i.e., 2b - 2 = 0<br />

b 1<br />

substituting in (3), we get<br />

a = 5/2.<br />

20. Find the directional derivative of xyz<br />

along the direction<br />

of the normal to the surface x<br />

2<br />

z y<br />

2<br />

x yz<br />

2<br />

3, at( 1,1,1).<br />

Suggested answer:<br />

Let<br />

<br />

xyz,<br />

x<br />

2<br />

z y<br />

2<br />

x yz<br />

2<br />

<br />

<br />

yz i<br />

xz j<br />

xy k<br />

<br />

at<br />

<br />

(1, 1, 1) i j<br />

k<br />

<br />

<br />

<br />

(2xz y<br />

2<br />

) i (2yx z<br />

2<br />

) j<br />

(x<br />

2<br />

<br />

2zy) k<br />

<br />

at<br />

<br />

(1, 1, 1) 3 i 3 j<br />

3k<br />

<br />

n <br />

|<br />

<br />

<br />

<br />

|<br />

<br />

i j<br />

k<br />

3<br />

Directional directive of along<br />

<br />

n is<br />

Page 52 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

1(1) 1(1) (1)<br />

. n <br />

3<br />

3<br />

<br />

<br />

<br />

21. If F (x<br />

3<br />

y<br />

3<br />

z<br />

3<br />

3xyz) find div F <strong>and</strong> curl F .<br />

Suggested answer:<br />

<br />

F (3x<br />

2<br />

<br />

3yz) i<br />

(3y<br />

2<br />

<br />

3xz) j<br />

(3z<br />

2<br />

<br />

3xy) k<br />

<br />

div F 6x 6y 6z<br />

<br />

i j k<br />

<br />

Curl F <br />

x y z<br />

3x<br />

2<br />

3yz 3y<br />

2<br />

3xz 3z<br />

2<br />

3xy<br />

<br />

<br />

<br />

i(<br />

3x<br />

3x) j( 3y<br />

3y) k( 3z<br />

3z)<br />

<br />

0<br />

22. If<br />

<br />

is a constant vector <strong>and</strong><br />

<br />

v x r<br />

then show that<br />

<br />

div v 0.<br />

Suggested answer:<br />

Let<br />

<br />

r x i y j<br />

z k<br />

<br />

v x r<br />

Page 53 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

<br />

i j k<br />

1 2<br />

3<br />

x y z<br />

<br />

<br />

<br />

v i[ 2z<br />

3y]<br />

j[ 1z<br />

2x]<br />

k[ 1y<br />

2x]<br />

<br />

<br />

<br />

div v ( 2z<br />

3y)<br />

( 1y<br />

g3x)<br />

( 1y<br />

2x)<br />

x<br />

y<br />

z<br />

= 0<br />

<br />

<br />

<br />

<br />

23. If f (x 2y z) i (x y z) j<br />

( x<br />

y 2z)k find div f .<br />

Suggested answer:<br />

<br />

div f <br />

<br />

<br />

<br />

(x 2y z) (x y z) ( x<br />

y 2z)<br />

x<br />

y<br />

z<br />

1 1 <br />

2<br />

2<br />

24. If<br />

<br />

f x<br />

2<br />

<br />

i<br />

y<br />

2<br />

j<br />

z k <strong>and</strong> g yz i zx j<br />

xy k<br />

show that<br />

<br />

f x g<br />

is a solenoidal vector.<br />

Suggested answer:<br />

<br />

f x g <br />

<br />

i<br />

x<br />

2<br />

yz<br />

<br />

j<br />

y<br />

2<br />

zx<br />

<br />

k<br />

z<br />

2<br />

xy<br />

<br />

f x g i{xy<br />

3<br />

<br />

<br />

xz<br />

3<br />

} j{x<br />

3<br />

y yz<br />

3<br />

} k{zx<br />

3<br />

zy<br />

3<br />

}<br />

Page 54 of 72


div<br />

Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

<br />

( f x g) (y<br />

3<br />

z<br />

3<br />

) (z<br />

3<br />

x<br />

3<br />

) (x<br />

3<br />

y<br />

3<br />

)<br />

0<br />

<br />

f x g is solenoidal.<br />

25. Prove that<br />

<br />

div (r<br />

n<br />

r ) (n 3)r<br />

n<br />

.<br />

Suggested answer:<br />

<br />

div (r<br />

n<br />

r ) r<br />

n<br />

. r r<br />

n<br />

div r<br />

<br />

nr<br />

n1<br />

<br />

x<br />

r<br />

<br />

i nr<br />

n1<br />

y<br />

r<br />

<br />

<br />

<br />

<br />

z<br />

nr<br />

n 1<br />

k.<br />

r r<br />

n<br />

<br />

r <br />

<br />

<br />

x <br />

x<br />

<br />

<br />

y <br />

y<br />

<br />

<br />

z<br />

<br />

nr<br />

n1<br />

<br />

{x i y j<br />

z k}. r r<br />

n<br />

.(3)<br />

r<br />

nr<br />

n2<br />

.r<br />

2<br />

r<br />

n<br />

(3)<br />

( n 3)r<br />

n<br />

26. If<br />

<br />

a is a constant vector then prove that<br />

<br />

i) div( a x r ) 0<br />

<br />

ii) div ( r x( r x a)) 2( r . a)<br />

<br />

iii) div{r<br />

n<br />

( a x r )} 0, n being<br />

a<br />

cons tan t.<br />

Suggested answer:<br />

<br />

Let a a1<br />

i a2<br />

j<br />

a3<br />

k<br />

Page 55 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

<br />

r x i y j<br />

z k<br />

<br />

<br />

i j k<br />

i)<br />

a x r a1<br />

a2<br />

a3<br />

x y z<br />

<br />

<br />

<br />

( a2z<br />

a3y)<br />

i (a3x<br />

a1z)<br />

j<br />

(a1y<br />

a2x)<br />

k<br />

<br />

<br />

<br />

div( a x r ) (a2z<br />

a3y)<br />

(a3x<br />

a1z)<br />

(a1y<br />

a2x)<br />

0<br />

x<br />

y<br />

z<br />

<br />

ii) r x( r x a) ( r . a) r ( r . r ) a<br />

<br />

div( r x( r x a)) ( r . a). r ( r . a)div r div(r<br />

2 <br />

<br />

a)<br />

<br />

a . r ( r . a)3 a . r<br />

2<br />

<br />

r<br />

2<br />

div a<br />

<br />

a . r 3( a . r ) a{2r<br />

x<br />

r<br />

<br />

i <br />

y z <br />

2r j<br />

2r k}<br />

r r<br />

<br />

a . r 3( a . r ) 2( a . r )<br />

<br />

2( a . r )<br />

<br />

<br />

iii) div{r<br />

n<br />

( a x r )} r<br />

n<br />

.( a x r ) r<br />

n<br />

div( a x r )<br />

<br />

r <br />

nr<br />

n1<br />

.( a x r ) r<br />

n<br />

div( a x r )<br />

r<br />

Page 56 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

<br />

0 r<br />

n<br />

div( a x r )<br />

<br />

<br />

i j k<br />

a x r a1<br />

a2<br />

a3<br />

x y z<br />

<br />

i(a2z a3y) j(a1z a3x) k(a1y a2x)<br />

<br />

<br />

<br />

div( a x r ) (a2z<br />

a3y)<br />

(a3x<br />

a1z)<br />

(a1y<br />

a2x)<br />

x<br />

y<br />

z<br />

= 0 + 0 + 0<br />

= 0<br />

div(r<br />

n <br />

( a x r )) 0<br />

27. If<br />

<br />

a <strong>and</strong><br />

<br />

b<br />

are constant vectors, prove that<br />

<br />

i) div{( a x r ) b} a . b<br />

<br />

ii) div { a x( r x b )} 2( a . b )<br />

<br />

iii) div {( a x r )x(b x r )} [a,<br />

b , r ]<br />

Suggested answer:<br />

<br />

Let a a1<br />

i a2<br />

j<br />

a3<br />

k<br />

<br />

b b1<br />

i b2<br />

j<br />

b3<br />

k<br />

Page 57 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

<br />

c x i y j<br />

z k<br />

i)<br />

<br />

div[( a . r ) b ] ( a . r ). b a . r div b<br />

<br />

a . b ( a . r )(0)<br />

<br />

a . b<br />

<br />

ii) we have a x( r x b ) ( a . b ) r ( a . r ) b<br />

<br />

<br />

div{ a x( r x b )} div{( a . b ) r } div{( a . r ) b}<br />

<br />

( a . b )div r ( a x r ). b ( a . r )div b<br />

<br />

( a . b )3 a . b ( a r )0<br />

<br />

2( a . b )<br />

iii)Let<br />

<br />

a x r p<br />

<br />

( a x r )x(b x r ) p x(b x r )<br />

<br />

(p . r ) b (p . b ) r<br />

<br />

{( a x r ). r } b {( a x r ). b} r<br />

<br />

2( a . b )<br />

Page 58 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

<br />

iii)Let a x r p<br />

<br />

( a x r )x(b x r ) p x(b x r )<br />

<br />

(p . r ) b (p . b ) r<br />

<br />

{( a x r ). r } b {( a x r ). b} r<br />

<br />

0 [ a, r , b ] r<br />

<br />

( a x r )x(b x r ) [a,<br />

<br />

b ,<br />

<br />

r ] r<br />

<br />

div{( a x r )x(b x r )} [a,<br />

b , r ]. r [a, b , r ]div r<br />

<br />

r . [a,<br />

b ,<br />

<br />

r ] [a, b , r ](3)<br />

...(1)<br />

<br />

a1<br />

a2<br />

a3<br />

[ a, b , r ] b1<br />

b2<br />

b3<br />

x y z<br />

a1(b<br />

2z<br />

b3y)<br />

a2(b1<br />

z b3x)<br />

a3(b1<br />

y b2x)<br />

<br />

<br />

<br />

<br />

[ a, b , r ] (a2b3<br />

a3b2<br />

) i ( a1b<br />

3 a3b1<br />

) j<br />

(a1b<br />

2 a2b1<br />

) k<br />

<br />

a x b<br />

<br />

Now r . [a,<br />

b , r ] r .( a x b )<br />

( a2b3<br />

a3b2<br />

)x (a3b1<br />

a1b<br />

3)y<br />

(a1b<br />

2 a2b1)z<br />

Page 59 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

<br />

[a, b , r ]<br />

In (1)<br />

<br />

div{( a x r )x(b x r )} [a, b , r ] 3[a, b , r ]<br />

<br />

[a, b , r ]<br />

28.<br />

<br />

If a<br />

<strong>and</strong><br />

<br />

b<br />

are vectors, prove that<br />

<br />

1<br />

1 <br />

a . {b . } {3( a, r )(b . r ) r<br />

2<br />

<br />

( a . b )}.<br />

r r<br />

5<br />

Suggested answer:<br />

<br />

<br />

1<br />

1<br />

r<br />

b . <br />

b . <br />

r <br />

r<br />

2<br />

r<br />

<br />

1 <br />

(b . r )<br />

r<br />

3<br />

<br />

<br />

1<br />

b . <br />

<br />

<br />

<br />

r <br />

1 1<br />

(b . r ) (b . r ) <br />

<br />

3<br />

3<br />

r<br />

r <br />

<br />

<br />

1 3 r<br />

[b ] (b . r ). <br />

r<br />

3<br />

r<br />

4<br />

r<br />

<br />

<br />

1<br />

b . <br />

<br />

<br />

<br />

r <br />

<br />

b 3(b . r ) <br />

r<br />

r<br />

3<br />

r<br />

5<br />

<br />

<br />

<br />

<br />

1<br />

b 3(b . r )<br />

a . b . <br />

a . . a . r<br />

<br />

r <br />

r<br />

3 r<br />

5<br />

<br />

Page 60 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

1<br />

<br />

r<br />

5<br />

<br />

<br />

<br />

3( a . r )(b . r ) ( a . b )r<br />

2<br />

<br />

<br />

<br />

<br />

<br />

<br />

29. If F (x y 1) i j<br />

(x y)k show that F .Curl F 0.<br />

Suggested answer:<br />

<br />

Curl F <br />

<br />

i<br />

<br />

x<br />

x y 1<br />

<br />

j<br />

<br />

y<br />

1<br />

<br />

k<br />

<br />

z<br />

(x y)<br />

<br />

i(<br />

1)<br />

j( 1)<br />

k( 1)<br />

<br />

Curl F i j<br />

k<br />

<br />

F .Curl F (x y 1)( 1)<br />

1(1) (x y)( 1)<br />

= -x - y - 1 + 1 + x + y<br />

= 0<br />

<br />

<br />

30. If F x<br />

2<br />

y i 2xz j<br />

2yz k find x(<br />

x<br />

F ).<br />

Suggested answer:<br />

<br />

x<br />

F <br />

<br />

i<br />

<br />

x<br />

x<br />

2<br />

y<br />

<br />

j<br />

<br />

y<br />

2xz<br />

<br />

k<br />

<br />

z<br />

2yz<br />

<br />

<br />

i(2z 2x) j(0) k( 2z<br />

x<br />

2<br />

)<br />

Page 61 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

<br />

i j k<br />

<br />

x(<br />

x<br />

F ) <br />

x<br />

y<br />

z<br />

2z 2x 0 2z x<br />

2<br />

<br />

(2x 2) j<br />

31. Find the directional derivative of<br />

x<br />

2<br />

yz 4xz<br />

2<br />

at (1, -2, -1)<br />

<br />

in the direction 2 i j<br />

2 k .<br />

Suggested answer:<br />

<br />

<br />

<br />

(2xyz 4z<br />

2<br />

) i x<br />

2<br />

z j<br />

(x<br />

2<br />

y 8xz) k<br />

<br />

at<br />

(1,<br />

2,<br />

<br />

1)is 8 i j<br />

10 k<br />

Let<br />

<br />

c 2 i j<br />

2 k<br />

Directional derivative in the direction of<br />

<br />

c<br />

is<br />

<br />

(2 i j<br />

2 k)<br />

. c (8 i j<br />

10 k).<br />

3<br />

<br />

1<br />

(16<br />

3<br />

1 20)<br />

37<br />

<br />

3<br />

32. Find the directional derivative of 4xz<br />

3 3x<br />

2<br />

y<br />

2<br />

z at (2, -1, 2)<br />

<br />

in the direction of 2 i 3 j<br />

6 k .<br />

Page 62 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

Suggested answer:<br />

<br />

<br />

<br />

<br />

(4x<br />

3<br />

6xy<br />

2<br />

z) i ( 6x<br />

2<br />

yz) j<br />

(12xz<br />

2<br />

3x<br />

2<br />

y<br />

2<br />

) k<br />

<br />

at<br />

(2, 1,2)<br />

<br />

8 i 48 j<br />

84 k<br />

<br />

c 2 i 3 j<br />

6 k<br />

1<br />

. c [8(2) 48( 3)<br />

(84)(6)]<br />

7<br />

376<br />

<br />

7<br />

33. Find the directional derivative of<br />

x<br />

2<br />

y<br />

2<br />

z<br />

2<br />

at (1, 1, -1)<br />

in the direction of the tangent to the curve x = e t , y = 1 + 2sint,<br />

z = t - cost, 1 t 1.<br />

Suggested answer:<br />

x<br />

2<br />

y<br />

2<br />

z<br />

2<br />

<br />

<br />

<br />

<br />

2xy<br />

2<br />

z<br />

2<br />

i 2x<br />

2<br />

yz<br />

2<br />

j<br />

2x<br />

2<br />

y<br />

2<br />

z k<br />

<br />

at<br />

(1, 1,<br />

<br />

1) 2 i 2 j<br />

2 k<br />

<br />

<br />

<br />

r e<br />

t<br />

i (1 2 sin t) j<br />

(t cos t) k<br />

<br />

d r<br />

dt<br />

at t<br />

0<br />

is<br />

<br />

i 2 j<br />

k<br />

Page 63 of 72


t <br />

<br />

d r<br />

dt<br />

<br />

d r<br />

dt<br />

<br />

Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

<br />

i 2 j<br />

k<br />

6<br />

directional derivative of in the direction of<br />

<br />

c<br />

is<br />

<br />

( i 2 j<br />

k)<br />

(2 i 2 j<br />

2 k).<br />

6<br />

<br />

1<br />

[2 4 2]<br />

6<br />

<br />

4<br />

6<br />

34. Find the equation of the tangent plane <strong>and</strong> the normal line to the surface z =<br />

x 2 + y 2 at (2, -1, 5).<br />

Suggested answer:<br />

x<br />

2<br />

y<br />

2<br />

z<br />

<br />

<br />

2x i 2y j<br />

k<br />

Equation to the normal line at (2, -1, 5) is<br />

x 2<br />

4<br />

<br />

y 1<br />

<br />

2<br />

z 5<br />

1<br />

Equation the tangent plane is 4(x - 2) + (-1)(y + 2)(-1)(z - 5) = 0<br />

i.e., 4x - 2y - z - 5 = 0<br />

Page 64 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

35. Find the angle between the surface x 2 + y 2 + z 2 = 9 <strong>and</strong> z = x 2 + y 2 -3 at<br />

the point (2, -1, 2).<br />

Suggested answer:<br />

Let<br />

x<br />

2<br />

y<br />

2<br />

z<br />

2<br />

1 9<br />

x<br />

2<br />

y<br />

2<br />

2 z 3<br />

1<br />

<br />

2x i 2y j<br />

2z k<br />

1<br />

at<br />

(2, 1,2)<br />

<br />

4 i 2 j<br />

4 k<br />

2<br />

<br />

2x i 2y j<br />

k<br />

2<br />

<br />

at (2, 1,2) 4 i 2 j<br />

k<br />

Angle between the surfaces is the angle between 1 <strong>and</strong> 2.<br />

<br />

<br />

.<br />

cos<br />

1 1 2<br />

<br />

<br />

|<br />

1<br />

|| 2<br />

| <br />

<br />

<br />

4(4) ( 2)( 2) 4( 1)<br />

cos 1 <br />

<br />

36 21 <br />

<br />

<br />

8<br />

cos 1 <br />

3<br />

21 <br />

36. Find the values of a <strong>and</strong> b such that the surfaces ax 2 - byz = (a + 2)x <strong>and</strong><br />

4x 2 y + z 3 = 4 are orthogonal at (1, -1, 2).<br />

Suggested answer:<br />

Let : ax<br />

2<br />

1 byz (a 2)x 0<br />

...(1)<br />

Page 65 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

: 4x<br />

2<br />

y z<br />

3<br />

2 4 0<br />

...(2)<br />

Given (1, -1, 2) is a point on (1) <strong>and</strong> (2)<br />

1 2<br />

at (1, 1,2)<br />

i.e., a + 2b - (a + 2) -4 + 8 - 4<br />

2b - 2 = 0<br />

b 1<br />

1<br />

<br />

(2ax (a 2)) i<br />

bz j<br />

by k<br />

<br />

1 at (1, 1,2) (a 2) i 2 j<br />

by k<br />

2<br />

<br />

8xy i 4x<br />

2<br />

j<br />

3z<br />

2<br />

k<br />

<br />

2<br />

at (1, 1,2) 8<br />

i 4 j<br />

12 k<br />

since 1 <strong>and</strong> 2<br />

are orthogonal<br />

1. 2<br />

0<br />

-8(a - 2) - 8 + 12 = 0<br />

i.e., a = 5/2<br />

a 5 / 2<br />

<strong>and</strong> b 1<br />

37. Find the constant a, b, c so that the vector<br />

<br />

<br />

<br />

<br />

f (x 2y az) i (bx 3y z) j<br />

(4x cy 2z)k<br />

is irrotational.<br />

Page 66 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

Suggested answer:<br />

<br />

F is irrotational if<br />

<br />

Curl F 0<br />

i j k<br />

<br />

CurlF <br />

0<br />

x y z<br />

x 2y az bx 3y z 4x cy 2z<br />

c 1 0, 4 a 0, b 2 0<br />

a 4,b 2, c 1<br />

38. If <strong>and</strong> <br />

are scalar fields prove that<br />

i) div{ }<br />

<br />

2<br />

.<br />

<br />

ii) <br />

2<br />

( )<br />

<br />

2<br />

<br />

2<br />

2.<br />

<br />

Suggested answer:<br />

i) div( )<br />

.<br />

div( )<br />

. <br />

2 <br />

...(1)<br />

ii) similarly<br />

div( ) . <br />

2 <br />

...(2)<br />

adding (1) <strong>and</strong> (2)<br />

div( )<br />

div( )<br />

<br />

2<br />

<br />

2<br />

2.<br />

<br />

...(3)<br />

Also div( <br />

) div( ) div( ( )) <br />

2<br />

( )<br />

<br />

2<br />

( )<br />

<br />

2<br />

<br />

2<br />

2.<br />

<br />

39. Evaluate<br />

i)<br />

2 r<br />

2 <br />

Page 67 of 72


ii)<br />

Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

<br />

<br />

<br />

2 r<br />

div<br />

<br />

r<br />

2 <br />

<br />

Suggested answer:<br />

i) <br />

2<br />

r<br />

2<br />

<br />

<br />

2<br />

2<br />

2<br />

(r<br />

2 <br />

) (r<br />

2 <br />

) (r<br />

2<br />

)<br />

x<br />

2<br />

y<br />

2<br />

z<br />

2<br />

<br />

x y <br />

2r<br />

2r<br />

<br />

x<br />

r y<br />

r <br />

<br />

<br />

<br />

2r<br />

z <br />

z <br />

<br />

r <br />

= 2 + 2 + 2<br />

= 6<br />

ii)<br />

<br />

r 1 1<br />

div<br />

<br />

<br />

. r <br />

r<br />

2<br />

r<br />

2<br />

r<br />

2<br />

<br />

<br />

div r<br />

<br />

<br />

2 r 1<br />

.<br />

r (3)<br />

r<br />

3 r r<br />

2<br />

<br />

<br />

2 3 <br />

r<br />

2<br />

r<br />

2<br />

1<br />

<br />

r<br />

2<br />

40.<br />

3 Find the value of a if f(axy x) i(a 2)x j(1<br />

2 a )xz<br />

2<br />

<br />

k<br />

is irrotational.<br />

Suggested answer:<br />

Since<br />

<br />

f is irrotational<br />

Page 68 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

<br />

Curl f 0<br />

<br />

i<br />

<br />

i.e.,<br />

x<br />

axy z<br />

3<br />

<br />

j<br />

<br />

y<br />

(a 2)x<br />

2<br />

<br />

k<br />

<br />

z<br />

(1 a)xz<br />

2<br />

0<br />

<br />

(1<br />

a)z<br />

2<br />

3z<br />

2<br />

k (a<br />

2)2x ax<br />

<br />

<br />

i{0 0} j<br />

0<br />

z 2<br />

1<br />

a 3 0 <strong>and</strong> x (a<br />

2)2 a 0<br />

a 4<br />

41. Show that<br />

<br />

r<br />

r<br />

3<br />

is both solenoidal <strong>and</strong> irrotational.<br />

Suggested answer:<br />

<br />

r 1<br />

div<br />

<br />

r<br />

3<br />

r<br />

3<br />

<br />

1 <br />

div r <br />

<br />

. r<br />

r<br />

3<br />

<br />

1<br />

(3) <br />

r<br />

3<br />

<br />

3 r <br />

.<br />

r<br />

r<br />

4 r <br />

<br />

3 3 <br />

r<br />

3<br />

r<br />

3<br />

= 0<br />

<br />

r 1 1 <br />

Curl<br />

Curl r <br />

<br />

x r<br />

r<br />

3 r<br />

3<br />

r<br />

3<br />

<br />

<br />

Page 69 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

<br />

1 3 r <br />

(0) x<br />

r<br />

r<br />

3 r<br />

4 r <br />

<br />

<br />

0 0<br />

<br />

0<br />

42. If<br />

<br />

a is a constant vector prove the following<br />

i)<br />

<br />

<br />

<br />

<br />

Curl( a . r ) a 0<br />

<br />

<br />

ii)Curl{ r x( a x r )} 3( r x a)<br />

<br />

<br />

iii)Curl{r<br />

n<br />

( a x r )} (n 2)r<br />

n<br />

a nr<br />

n2<br />

( r . a) r<br />

Suggested answer:<br />

<br />

i)Curl{( a . r ) a} ( a . r )Curl a ( a . r )x a<br />

<br />

( a . r ) 0 a x a ( a . r ) a<br />

<br />

0 0<br />

<br />

0<br />

<br />

<br />

ii) Curl{ r x( a x r )} Curl{( r . r ) a ( r . a) r }<br />

<br />

<br />

Curl{( r . r ) a} Curl{( r . a) r }<br />

<br />

( r . r )Curl a ( r . r )x a ( r . a)x r<br />

Page 70 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

<br />

r <br />

0 2r x a ( r . a) 0 a x r<br />

r<br />

<br />

2( r x a) r x a<br />

<br />

3( r x a)<br />

<br />

<br />

iii) Curl{r<br />

n<br />

( a x r )} r<br />

n<br />

Curl( a x r ) r<br />

n<br />

x( a x r )<br />

<br />

r <br />

r<br />

n<br />

Curl( a x r ) nr<br />

n1<br />

x( a x r )<br />

r<br />

<br />

<br />

r<br />

n<br />

Curl( a x r ) nr<br />

n2<br />

{( r . r ) a ( r . a) r }<br />

<br />

r<br />

n<br />

Curl( a x r ) nr<br />

n<br />

a nr<br />

n2<br />

( r . a) r<br />

...(1)<br />

<br />

<br />

i j k<br />

<br />

<br />

<br />

Consider ( a x r ) a1 a2<br />

a3<br />

i(a2z<br />

a3y)<br />

j(a3x<br />

a1z)<br />

k(a1y<br />

a2x)<br />

x y z<br />

<br />

Curl( a x r ) <br />

<br />

i<br />

<br />

x<br />

a2z<br />

a3y<br />

<br />

j<br />

<br />

y<br />

a3x<br />

a1z<br />

<br />

k<br />

<br />

z<br />

a1y<br />

a2x<br />

<br />

2 a<br />

<br />

in (1)<br />

<br />

Curl{r<br />

n<br />

( a x r )} 2r<br />

n<br />

a nr<br />

n<br />

a nr<br />

n2<br />

( r . a) r<br />

<br />

(n 2)r<br />

n<br />

a nr<br />

n2<br />

( r . a) r<br />

Page 71 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

Page 72 of 72

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!