07.01.2014 Views

on the localisation in the superimposed soundfield - Hauptmikrofon ...

on the localisation in the superimposed soundfield - Hauptmikrofon ...

on the localisation in the superimposed soundfield - Hauptmikrofon ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

1<br />

ON THE LOCALISATION<br />

IN THE SUPERIMPOSED SOUNDFIELD<br />

by<br />

Dipl.-Ing. Gün<strong>the</strong>r Theile<br />

Dissertati<strong>on</strong><br />

submitted for <strong>the</strong> award of <strong>the</strong> degree<br />

Dr.-Ing.<br />

Fachbereich 21 (Umwelttechnik)<br />

Technische Universität Berl<strong>in</strong><br />

Exam<strong>in</strong>ers :<br />

Prof. Dr.-Ing. G. Boerger<br />

Prof. Dr.-Ing. L. Cremer<br />

Prof. Dr. phil. G. Plenge<br />

Date of oral exam<strong>in</strong>ati<strong>on</strong>: 30.April 1980<br />

Berl<strong>in</strong> 1980<br />

D83<br />

Translated by:<br />

Tobias Neher, PhD<br />

t.neher@surrey.ac.uk


2<br />

C<strong>on</strong>tent<br />

Abstract 3<br />

1. Introducti<strong>on</strong> 4<br />

2. The “phantom source” 8<br />

2.1 The hypo<strong>the</strong>tical pr<strong>in</strong>ciple of summ<strong>in</strong>g localizati<strong>on</strong> 9<br />

2.2 The “spectral objecti<strong>on</strong>” to summ<strong>in</strong>g localizati<strong>on</strong> 9<br />

2.2.1 Measurement of <strong>the</strong> comb filter effect 12<br />

2.2.2 Listen<strong>in</strong>g test <strong>on</strong> <strong>the</strong> suppressi<strong>on</strong> of sound colourati<strong>on</strong> 15<br />

3. An associati<strong>on</strong> model for <strong>the</strong> localisati<strong>on</strong> process 21<br />

3.1 The localisati<strong>on</strong> stimulus selecti<strong>on</strong> 23<br />

3.1.1 The spatial decod<strong>in</strong>g 23<br />

3.1.2 The associative pattern recogniti<strong>on</strong> 24<br />

3.1.3 The functi<strong>on</strong>al pr<strong>in</strong>ciple of <strong>the</strong> locati<strong>on</strong> associati<strong>on</strong> stage 27<br />

3.2 The associati<strong>on</strong> model 28<br />

3.2.1 Sensati<strong>on</strong>al or percepti<strong>on</strong>al model? 28<br />

3.2.2 The functi<strong>on</strong><strong>in</strong>g of <strong>the</strong> associati<strong>on</strong> model 32<br />

4. The localisati<strong>on</strong> process <strong>in</strong> <strong>the</strong> <strong>superimposed</strong><br />

sound field – Discussi<strong>on</strong> of <strong>the</strong> associati<strong>on</strong> model 37<br />

4.1 Limits of <strong>the</strong> localisati<strong>on</strong> stimulus selecti<strong>on</strong> 37<br />

4.2 Two coherent sound sources 41<br />

4.2.1 The elevati<strong>on</strong> and distance of <strong>the</strong> phantom source 41<br />

4.2.2 The sound colour of <strong>the</strong> phantom source 43<br />

4.2.3 Lateral phantom sources 45<br />

4.2.4 Auditory events <strong>in</strong> <strong>the</strong> case of narrow-band signals 46<br />

4.2.5 Auditory events <strong>in</strong> <strong>the</strong> case of out-of-phase signals 48<br />

4.3 Two <strong>in</strong>coherent sound sources 50<br />

4.3.1 The “law of <strong>the</strong> first localisati<strong>on</strong> stimulus” 51<br />

4.3.2 The cocktail party effect 54<br />

5. A c<strong>on</strong>sequence of <strong>the</strong> associati<strong>on</strong> model 56<br />

5.1 Lateralisati<strong>on</strong> – The loudspeaker distance zero 57<br />

5.2 Time-<strong>in</strong>tensity equivalence <strong>in</strong> <strong>the</strong> case of artificial head signals 59<br />

6. Summary 64<br />

Bibliography 66


3<br />

Abstract<br />

Theile, Gün<strong>the</strong>r<br />

On <strong>the</strong> localisati<strong>on</strong> <strong>in</strong> <strong>the</strong> <strong>superimposed</strong> sound field<br />

A new localisati<strong>on</strong> model, <strong>the</strong> “associati<strong>on</strong> model”, is <strong>in</strong>troduced. It is based <strong>on</strong> <strong>the</strong><br />

fundamental noti<strong>on</strong> that localisati<strong>on</strong> takes place because of auditory experience<br />

(perceptual process). The ear signals’ dependency <strong>on</strong>to <strong>the</strong> locati<strong>on</strong> of a sound source<br />

is <strong>in</strong>terpreted as a mechanism for encod<strong>in</strong>g spatial <strong>in</strong>formati<strong>on</strong>, whereby knowledge of<br />

this mechanism enables <strong>the</strong> decod<strong>in</strong>g of this spatial <strong>in</strong>formati<strong>on</strong>. In <strong>the</strong> <strong>superimposed</strong><br />

sound field, localisati<strong>on</strong> <strong>the</strong>refore manifests itself as a process for <strong>the</strong> simultaneous<br />

decod<strong>in</strong>g of different spatial <strong>in</strong>formati<strong>on</strong>.<br />

The model c<strong>on</strong>ta<strong>in</strong>s a “locati<strong>on</strong> associati<strong>on</strong> stage”, which performs this process. This<br />

stage precedes a sec<strong>on</strong>d central process<strong>in</strong>g stage, <strong>the</strong> “gestalt associati<strong>on</strong> stage”. Each<br />

of <strong>the</strong>se two process<strong>in</strong>g stages manifests itself <strong>in</strong> <strong>the</strong> form of a pattern selecti<strong>on</strong><br />

process, which is c<strong>on</strong>trolled <strong>in</strong> an associative manner. A sound stimulus leads to a<br />

locati<strong>on</strong> associati<strong>on</strong> dur<strong>in</strong>g <strong>the</strong> first and to a gestalt associati<strong>on</strong> dur<strong>in</strong>g <strong>the</strong> sec<strong>on</strong>d<br />

process<strong>in</strong>g stage. The two stages determ<strong>in</strong>e <strong>the</strong> auditory event properties <strong>in</strong> a c<strong>on</strong>jo<strong>in</strong>t<br />

manner.<br />

The rigorous differentiati<strong>on</strong> of <strong>the</strong>se two stimulus evaluati<strong>on</strong> stages corresp<strong>on</strong>ds<br />

entirely to <strong>the</strong> two elementary areas of auditory experience. The received ear signals<br />

can be attributed to <strong>the</strong> two sound source characteristics of “locati<strong>on</strong>” and “signal”,<br />

which always occur <strong>in</strong> a pairwise fashi<strong>on</strong>.<br />

This two-stage, associative selecti<strong>on</strong> process <strong>in</strong> <strong>the</strong> associati<strong>on</strong> model thus represents<br />

a uniform approach for <strong>the</strong> c<strong>on</strong>sistent explanati<strong>on</strong> of important phenomena of spatial<br />

hear<strong>in</strong>g. In c<strong>on</strong>trast to summ<strong>in</strong>g localisati<strong>on</strong> <strong>the</strong>ories, <strong>the</strong> model is <strong>in</strong> agreement with<br />

<strong>the</strong> psychoacoustic pr<strong>in</strong>ciples govern<strong>in</strong>g <strong>the</strong> formati<strong>on</strong> of “phantom sources” with<br />

respect to <strong>the</strong>ir directi<strong>on</strong>s, distances, elevati<strong>on</strong>s and sound colours. Moreover, it<br />

supplies plausible explanati<strong>on</strong>s for <strong>the</strong> “law of <strong>the</strong> first wavefr<strong>on</strong>t”, <strong>the</strong> “cocktail party<br />

effect” as well as “<strong>in</strong>side-<strong>the</strong>-head locatedness”. As a c<strong>on</strong>sequence, <strong>the</strong> model also<br />

postulates that <strong>the</strong> human hear<strong>in</strong>g system’s localisati<strong>on</strong> functi<strong>on</strong> can nei<strong>the</strong>r be<br />

<strong>in</strong>vestigated by means of narrow-band signals, nor can it be scrut<strong>in</strong>ised under<br />

lateralisati<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>s.


4<br />

1. Introducti<strong>on</strong><br />

In <strong>the</strong> c<strong>on</strong>text of spatial hear<strong>in</strong>g, BLAUERT 1974 def<strong>in</strong>ed <strong>the</strong> term “localisati<strong>on</strong>” as<br />

<strong>the</strong> mapp<strong>in</strong>g of <strong>the</strong> locati<strong>on</strong> of an auditory event to certa<strong>in</strong> characteristics of a sound<br />

event. If, based <strong>on</strong> BLAUERT 1969, <strong>the</strong> term “auditory event” is generally<br />

understood to describe <strong>the</strong> “auditory percepti<strong>on</strong> determ<strong>in</strong>ed by temporal, spatial and<br />

o<strong>the</strong>r attributes” and <strong>the</strong> term “sound event” as <strong>the</strong> equally determ<strong>in</strong>ed “physical<br />

aspect of <strong>the</strong> listen<strong>in</strong>g process”, <strong>the</strong>n <strong>in</strong>itially <strong>on</strong>e obta<strong>in</strong>s an important descriptive<br />

basis for <strong>in</strong>vestigati<strong>on</strong>s <strong>in</strong>to spatial hear<strong>in</strong>g.<br />

Dur<strong>in</strong>g <strong>the</strong> course of this work, however, it has been found that as so<strong>on</strong> as more than<br />

<strong>on</strong>e sound source determ<strong>in</strong>es <strong>the</strong> properties of <strong>the</strong> ear signals, a more precise<br />

def<strong>in</strong>iti<strong>on</strong> of terms is required.<br />

Under natural c<strong>on</strong>diti<strong>on</strong>s, <strong>the</strong> listen<strong>in</strong>g process predom<strong>in</strong>antly takes place <strong>in</strong> a<br />

<strong>superimposed</strong> sound field. Normally, a multitude of <strong>in</strong>terfer<strong>in</strong>g sources [e.g.<br />

reflecti<strong>on</strong>s from <strong>the</strong> floor or room boundaries (mirror sources)] but also equipollent<br />

sound sources (e.g. different speakers <strong>in</strong> <strong>the</strong> vic<strong>in</strong>ity of a listener) produce ear signals<br />

that do not corresp<strong>on</strong>d <strong>in</strong> any way to <strong>the</strong> elementary case of a s<strong>in</strong>gle sound source.<br />

Yet, even under such sound field c<strong>on</strong>diti<strong>on</strong>s, <strong>the</strong> human hear<strong>in</strong>g system is capable of<br />

“carry<strong>in</strong>g out a very mean<strong>in</strong>gful selecti<strong>on</strong>, order<strong>in</strong>g and group<strong>in</strong>g process” (PLENGE<br />

1973), so that, despite <strong>the</strong> superpositi<strong>on</strong>, <strong>the</strong> auditory event mapp<strong>in</strong>gs can be<br />

accomplished. In this respect, two well-known auditory phenomena are <strong>the</strong> “law of<br />

<strong>the</strong> first wavefr<strong>on</strong>t” (CREMER 1948) and <strong>the</strong> “cocktail party effect” (CHERRY 1953,<br />

1954).<br />

It appears that <strong>in</strong> <strong>the</strong> <strong>superimposed</strong> sound field <strong>the</strong> localisati<strong>on</strong> mechanism relies <strong>on</strong><br />

underly<strong>in</strong>g processes that are not directly applicable to <strong>the</strong> localisati<strong>on</strong> of a s<strong>in</strong>gle<br />

sound source <strong>in</strong> a free sound field. These are all those processes that enable a separate<br />

evaluati<strong>on</strong> of certa<strong>in</strong> ear signal comp<strong>on</strong>ents.<br />

What are <strong>the</strong> ear signal comp<strong>on</strong>ents that <strong>the</strong> auditory system discrim<strong>in</strong>ates <strong>in</strong> <strong>the</strong><br />

<strong>superimposed</strong> sound field? Which characteristics of a sound event allow for this to<br />

happen?<br />

The literature is full of <strong>in</strong>vestigati<strong>on</strong>s address<strong>in</strong>g <strong>the</strong>se two questi<strong>on</strong>s. Most notably,<br />

this is <strong>the</strong> case for all studies <strong>in</strong>to <strong>the</strong> phenomena of <strong>the</strong> “phantom source”, <strong>the</strong> “law of<br />

<strong>the</strong> first wavefr<strong>on</strong>t” and <strong>the</strong> “cocktail party effect” (see BLAUERT 1974 for<br />

references as well as <strong>the</strong> follow<strong>in</strong>g secti<strong>on</strong>s of this <strong>the</strong>sis). Fur<strong>the</strong>rmore, <strong>in</strong>vestigati<strong>on</strong>s<br />

<strong>in</strong> <strong>the</strong> area of b<strong>in</strong>aural signal detecti<strong>on</strong> (see BLAUERT 1974 for references as well as<br />

DOMNITZ / COLBURN 1976, 1977, HAFTER 1977, KOENIG et al. 1977, ALLEN<br />

et al. 1977, HAWKINS et al. 1978, HAFTER et al. 1979) and some studies<br />

c<strong>on</strong>cern<strong>in</strong>g particular questi<strong>on</strong>s of auditory percepti<strong>on</strong> (e.g. see PLENGE 1973 for


5<br />

references as well as WETTSCHURECK 1976, MASSARO / WARNER 1977,<br />

POLLACK 1977, DANNENBRING / BREGMAN 1978, PALEFF / NICKERSON<br />

1978, LEHRINGER 1979) are of relevance, too. The various <strong>in</strong>dividual phenomena of<br />

spatial hear<strong>in</strong>g have often been scrut<strong>in</strong>ised experimentally <strong>in</strong> great detail, and for <strong>the</strong><br />

predom<strong>in</strong>ant part of <strong>the</strong> psychoacoustic pr<strong>in</strong>ciples that were thus identified <strong>the</strong>re are<br />

models attempt<strong>in</strong>g to describe <strong>the</strong> hear<strong>in</strong>g system’s various functi<strong>on</strong>s.<br />

The majority of <strong>the</strong>se are communicati<strong>on</strong>s eng<strong>in</strong>eer<strong>in</strong>g models that, with<strong>in</strong> <strong>the</strong>ir areas<br />

of validity, specify relati<strong>on</strong>ships between certa<strong>in</strong> ear signal characteristics and<br />

attributes of auditory events. However, due to <strong>the</strong>ir areas of validity be<strong>in</strong>g restricted, it<br />

has to be asked whe<strong>the</strong>r <strong>the</strong>y can provide <strong>in</strong>formati<strong>on</strong> improv<strong>in</strong>g <strong>the</strong> understand<strong>in</strong>g of<br />

<strong>the</strong> functi<strong>on</strong> of <strong>the</strong> whole evaluati<strong>on</strong> process of spatial hear<strong>in</strong>g. For <strong>in</strong>stance, what is<br />

<strong>the</strong> po<strong>in</strong>t of a model that <strong>on</strong>ly caters for directi<strong>on</strong>al hear<strong>in</strong>g <strong>in</strong> <strong>the</strong> c<strong>on</strong>text of<br />

stereoph<strong>on</strong>y and that is <strong>on</strong>ly valid <strong>in</strong> <strong>the</strong> horiz<strong>on</strong>tal plane, but not for broadband<br />

signals and not for estimat<strong>in</strong>g <strong>the</strong> distance of an auditory event (see WENDT 1963)?<br />

Presumably, it is precisely <strong>the</strong> relati<strong>on</strong>ships between <strong>the</strong> different sub-aspects of<br />

spatial hear<strong>in</strong>g, which can br<strong>in</strong>g about <strong>the</strong> desired comprehensi<strong>on</strong> of <strong>the</strong> functi<strong>on</strong><strong>in</strong>g<br />

of <strong>the</strong> human hear<strong>in</strong>g system. Yet, <strong>the</strong>se c<strong>on</strong>necti<strong>on</strong>s are hi<strong>the</strong>rto relatively unknown.<br />

To give four examples:<br />

1. In <strong>the</strong> case of stereoph<strong>on</strong>y <strong>in</strong> <strong>the</strong> <strong>superimposed</strong> sound field, <strong>the</strong>re arise certa<strong>in</strong><br />

auditory events <strong>in</strong>-between <strong>the</strong> loudspeakers because of <strong>the</strong> resultant ear signals<br />

(“phantom source”, see Chapter 2). Although it is possible to create identical<br />

auditory events us<strong>in</strong>g a suitable s<strong>in</strong>gle sound source, <strong>the</strong> two sets of ear<br />

signals will not be identical <strong>in</strong> terms of frequency c<strong>on</strong>tent and degree of coherence<br />

(see Secti<strong>on</strong> 2.2). Until now, <strong>the</strong> c<strong>on</strong>necti<strong>on</strong> between <strong>the</strong> localisati<strong>on</strong> of a<br />

s<strong>in</strong>gle sound source <strong>in</strong> <strong>the</strong> <strong>superimposed</strong> and <strong>in</strong> <strong>the</strong> free sound field has not<br />

been resolved c<strong>on</strong>sistently (see Secti<strong>on</strong> 4.2).<br />

2. The areas of validity of <strong>the</strong> “law of <strong>the</strong> first wavefr<strong>on</strong>t” and of “summ<strong>in</strong>g localisati<strong>on</strong>”<br />

are given by different time delay regi<strong>on</strong>s (see Secti<strong>on</strong> 2.1). Both<br />

phenomena arise <strong>in</strong> <strong>the</strong> <strong>superimposed</strong> sound field due to <strong>the</strong> sec<strong>on</strong>d sound<br />

event arriv<strong>in</strong>g later compared to <strong>the</strong> first <strong>on</strong>e. The demarcati<strong>on</strong> of <strong>the</strong>se two<br />

phenomena is based <strong>on</strong> different psychoacoustic pr<strong>in</strong>ciples govern<strong>in</strong>g <strong>the</strong> directi<strong>on</strong><br />

of an auditory event – possibly also because <strong>the</strong> first effect is of importance<br />

for listen<strong>in</strong>g <strong>in</strong> enclosed spaces, whilst <strong>the</strong> sec<strong>on</strong>d effect is relevant to<br />

applicati<strong>on</strong>s of stereoph<strong>on</strong>ic sound reproducti<strong>on</strong>. It is assumed, however, that a<br />

functi<strong>on</strong> of <strong>the</strong> hear<strong>in</strong>g system (applicable to listen<strong>in</strong>g <strong>in</strong> <strong>the</strong> <strong>superimposed</strong><br />

sound field) can be found, which can c<strong>on</strong>jo<strong>in</strong>tly expla<strong>in</strong> <strong>the</strong> auditory event<br />

mapp<strong>in</strong>g for all signal delays (see Secti<strong>on</strong> 4.3.1).<br />

3. Lateralisati<strong>on</strong> experiments provide <strong>in</strong>formati<strong>on</strong> about <strong>the</strong> evaluati<strong>on</strong> of <strong>in</strong>teraural<br />

signal differences. Based <strong>on</strong> <strong>the</strong>se, <strong>on</strong>e can also develop models for <strong>the</strong>


6<br />

occurrence of laterally displaced auditory events. Never<strong>the</strong>less, <strong>the</strong>re is no<br />

verified hypo<strong>the</strong>sis that allows for a generalisati<strong>on</strong> of <strong>the</strong>se f<strong>in</strong>d<strong>in</strong>gs with respect<br />

to spatial hear<strong>in</strong>g. Hi<strong>the</strong>rto, <strong>the</strong> functi<strong>on</strong>al relati<strong>on</strong>ship between lateralised<br />

and localised auditory event locati<strong>on</strong>s is unknown (see Chapter 5).<br />

4. The “cocktail party effect” implies that a target signal arriv<strong>in</strong>g from a certa<strong>in</strong><br />

directi<strong>on</strong> will be masked less by an <strong>in</strong>terfer<strong>in</strong>g signal arriv<strong>in</strong>g from a different<br />

directi<strong>on</strong> if a subject listens b<strong>in</strong>aurally ra<strong>the</strong>r than m<strong>on</strong>aurally. Generally<br />

speak<strong>in</strong>g, for both <strong>the</strong> <strong>superimposed</strong> sound field as well as headph<strong>on</strong>e-based<br />

sound reproducti<strong>on</strong>, <strong>the</strong> mask<strong>in</strong>g threshold for <strong>the</strong> target signal decreases if <strong>the</strong><br />

target and masker signals produce auditory events at different locati<strong>on</strong>s. It<br />

seems that lateralisati<strong>on</strong> experiments c<strong>on</strong>ducted <strong>in</strong> <strong>the</strong> area of b<strong>in</strong>aural signal<br />

detecti<strong>on</strong> are clearly related to <strong>the</strong> questi<strong>on</strong> of which ear signal comp<strong>on</strong>ents<br />

can be discrim<strong>in</strong>ated by <strong>the</strong> hear<strong>in</strong>g system <strong>in</strong> <strong>the</strong> <strong>superimposed</strong> sound field.<br />

Up to now, however, little is known about <strong>the</strong> significance of so-called “detecti<strong>on</strong><br />

models” to <strong>the</strong> localisati<strong>on</strong> process <strong>in</strong> <strong>the</strong> <strong>superimposed</strong> sound field (see<br />

Secti<strong>on</strong> 4.3.2).<br />

These examples <strong>in</strong>dicate that ra<strong>the</strong>r than <strong>in</strong>vestigat<strong>in</strong>g it “holistically”, <strong>the</strong> spatial<br />

hear<strong>in</strong>g mechanism of <strong>the</strong> auditory system has largely been studied <strong>in</strong> terms of<br />

demarcated sub-areas so far. Perhaps this may be expla<strong>in</strong>ed by <strong>the</strong> efforts of<br />

communicati<strong>on</strong>s eng<strong>in</strong>eers to model immediately any observed relati<strong>on</strong>ships between<br />

properties of sound and auditory events <strong>in</strong> <strong>the</strong> form of psychoacoustic pr<strong>in</strong>ciples,<br />

<strong>the</strong>reby necessitat<strong>in</strong>g a precise demarcati<strong>on</strong>.<br />

The above examples fur<strong>the</strong>r show that especially <strong>the</strong> limits of <strong>the</strong> areas of validity of<br />

<strong>in</strong>dividual auditory phenomena as well as possible <strong>in</strong>terrelati<strong>on</strong>s between <strong>the</strong>se<br />

phenomena must be of particular <strong>in</strong>terest, which can also be said about <strong>the</strong> f<strong>in</strong>d<strong>in</strong>gs<br />

from o<strong>the</strong>r scientific fields such as neurophysiology and perceptual research. In this<br />

respect, <strong>the</strong> use of associative storage technology, signal process<strong>in</strong>g (e.g. see<br />

WIGSTROEM 1974, WILLWACHER 1976, KOHONEN 1977, BOHN 1978) and<br />

possibly also holography (see WESS / ROEDER 1977) may create new possibilities<br />

(see Secti<strong>on</strong> 3.2.1).<br />

In this <strong>the</strong>sis, a model for <strong>the</strong> localisati<strong>on</strong> process <strong>in</strong> <strong>the</strong> <strong>superimposed</strong> sound field will<br />

be described that takes <strong>in</strong>to account a large number of different auditory phenomena<br />

<strong>in</strong> a uniform manner. It is based <strong>on</strong> <strong>the</strong> noti<strong>on</strong> that localisati<strong>on</strong> occurs due to a<br />

“comparis<strong>on</strong> of current and learnt stimulus patterns” (PLENGE 1973). That is, <strong>the</strong><br />

mapp<strong>in</strong>g of auditory events takes place as a result of auditory experience. If <strong>the</strong> ear<br />

signals’ dependency <strong>on</strong>to sound source locati<strong>on</strong> is <strong>in</strong>terpreted as a mechanism for<br />

encod<strong>in</strong>g spatial <strong>in</strong>formati<strong>on</strong>, <strong>the</strong>n knowledge of this dependency can be seen as a key<br />

for decod<strong>in</strong>g <strong>the</strong> spatial <strong>in</strong>formati<strong>on</strong>. In <strong>the</strong> <strong>superimposed</strong> sound field, localisati<strong>on</strong><br />

<strong>the</strong>refore manifests itself as a process for <strong>the</strong> simultaneous decod<strong>in</strong>g of different


7<br />

spatial <strong>in</strong>formati<strong>on</strong>. Depend<strong>in</strong>g <strong>on</strong> <strong>the</strong> number and properties of <strong>the</strong> <strong>in</strong>volved sound<br />

events, this process will work completely, partially or will not work at all.<br />

What are <strong>the</strong> <strong>in</strong>volved sound events? At this po<strong>in</strong>t, it is appropriate to def<strong>in</strong>e <strong>the</strong> term<br />

“sound event” precisely. So far, it is unclear how two sound events are actually to be<br />

discrim<strong>in</strong>ated. If, <strong>in</strong> accordance with BLAUERT 1974, <strong>on</strong>e c<strong>on</strong>siders exclusively “<strong>the</strong><br />

physical side of <strong>the</strong> listen<strong>in</strong>g process”, <strong>on</strong>ly <strong>the</strong> effects of <strong>the</strong> head and p<strong>in</strong>nae <strong>in</strong> <strong>the</strong><br />

sound field will be taken <strong>in</strong>to account. In this case, however, two different,<br />

simultaneous sound events will <strong>on</strong>ly exist if <strong>the</strong>y exhibit different spatial properties<br />

(source locati<strong>on</strong>s, propagati<strong>on</strong> directi<strong>on</strong>s of <strong>the</strong> wavefr<strong>on</strong>ts etc.). With regard to <strong>the</strong><br />

<strong>superimposed</strong> sound field, this view does not seem mean<strong>in</strong>gful, s<strong>in</strong>ce <strong>the</strong> listen<strong>in</strong>g<br />

process will <strong>the</strong>n be substantially characterised by <strong>the</strong> discrim<strong>in</strong>ability of <strong>in</strong>dividual<br />

signal comp<strong>on</strong>ents.<br />

Two spatially separated loudspeakers, for example, can, depend<strong>in</strong>g <strong>on</strong> <strong>the</strong> properties<br />

of <strong>the</strong> emitted signals, ei<strong>the</strong>r produce two simultaneous auditory events at different<br />

locati<strong>on</strong>s or a s<strong>in</strong>gle auditory event at a third locati<strong>on</strong>. What is more, a s<strong>in</strong>gle<br />

loudspeaker radiat<strong>in</strong>g two different signals can produce two simultaneous auditory<br />

events. The evaluati<strong>on</strong> processes <strong>in</strong> <strong>the</strong> hear<strong>in</strong>g system, which lead to <strong>the</strong> formati<strong>on</strong> of<br />

<strong>the</strong> auditory event locati<strong>on</strong> and gestalt, always determ<strong>in</strong>e <strong>the</strong> properties of <strong>the</strong> auditory<br />

events <strong>in</strong> a c<strong>on</strong>jo<strong>in</strong>t fashi<strong>on</strong>. It seems that <strong>the</strong>y <strong>in</strong>fluence each o<strong>the</strong>r. The physical side<br />

of <strong>the</strong> localisati<strong>on</strong> process can <strong>on</strong>ly be expla<strong>in</strong>ed with <strong>the</strong> help of sound events that<br />

cannot just be discrim<strong>in</strong>ated <strong>in</strong> terms of <strong>the</strong>ir spatial characteristics. For <strong>the</strong> rema<strong>in</strong>der<br />

of this <strong>the</strong>sis, <strong>the</strong> follow<strong>in</strong>g def<strong>in</strong>iti<strong>on</strong>s will <strong>the</strong>refore apply:<br />

Sound event:<br />

A sound event is that part of a sound, which stems from a s<strong>in</strong>gle sound source<br />

and which determ<strong>in</strong>es or <strong>in</strong>fluences <strong>the</strong> associated auditory event with respect to<br />

its locati<strong>on</strong> and gestalt.<br />

Localisati<strong>on</strong> will thus be def<strong>in</strong>ed as follows<br />

Localisati<strong>on</strong>:<br />

Localisati<strong>on</strong> is <strong>the</strong> mechanism/process that maps <strong>the</strong> locati<strong>on</strong> of an externalised<br />

auditory event to certa<strong>in</strong> characteristics of <strong>on</strong>e or more sound events.<br />

The aim of this work is to uncover relati<strong>on</strong>ships between <strong>in</strong>dividual localisati<strong>on</strong><br />

phenomena <strong>in</strong> <strong>the</strong> <strong>superimposed</strong> sound field, as this can possibly lead to a better<br />

understand<strong>in</strong>g of <strong>the</strong> functi<strong>on</strong><strong>in</strong>g of our hear<strong>in</strong>g system with regard to spatial<br />

percepti<strong>on</strong>. This objective does not appear <strong>in</strong>appropriate or unrealistic, provided that<br />

localisati<strong>on</strong> is strictly regarded as <strong>the</strong> result of a perceptual process that is solely<br />

possible because of auditory experience.


8<br />

2. .The “phantom source”<br />

An important special case of localisati<strong>on</strong> <strong>in</strong> <strong>the</strong> <strong>superimposed</strong> sound field is if several<br />

sound events are mapped to a comm<strong>on</strong> auditory event, so that its locati<strong>on</strong> does not<br />

corresp<strong>on</strong>d to <strong>the</strong> <strong>on</strong>es of <strong>the</strong> sound sources. This case is referred to as a “phantom<br />

source”, s<strong>in</strong>ce an auditory event is perceived to be at a positi<strong>on</strong> where no sound source<br />

is actually located.<br />

Yet, bear<strong>in</strong>g <strong>in</strong> m<strong>in</strong>d <strong>the</strong> def<strong>in</strong>iti<strong>on</strong>s given above, <strong>the</strong> term “sound source” cannot be<br />

utilised for describ<strong>in</strong>g an auditory event. In <strong>the</strong> literature, a phantom source is thus<br />

also <strong>in</strong>terpreted as an imag<strong>in</strong>ary, fictitious sound source, with <strong>the</strong> help of which <strong>on</strong>e<br />

tries to describe <strong>the</strong> physical side of <strong>the</strong> localisati<strong>on</strong> process. One proceeds <strong>on</strong> <strong>the</strong><br />

assumpti<strong>on</strong> that, <strong>in</strong> pr<strong>in</strong>ciple, a phantom source c<strong>on</strong>stitutes a substitute sound source<br />

produc<strong>in</strong>g <strong>the</strong> same ear signal characteristics <strong>in</strong> its sound field as it would <strong>in</strong> a<br />

corresp<strong>on</strong>d<strong>in</strong>g <strong>superimposed</strong> sound field at <strong>the</strong> same listen<strong>in</strong>g positi<strong>on</strong>.<br />

As will be shown below, <strong>in</strong> many cases serious objecti<strong>on</strong>s have to be raised with<br />

regard to this assumpti<strong>on</strong> (see Secti<strong>on</strong>s 2.2 and 4.2). Never<strong>the</strong>less, for <strong>the</strong> time be<strong>in</strong>g,<br />

<strong>the</strong> term “phantom source” shall be used to characterise particular sound field<br />

c<strong>on</strong>stellati<strong>on</strong>s <strong>in</strong> <strong>the</strong> usual manner. Unless specified o<strong>the</strong>rwise, “phantom source”<br />

specifically refers to <strong>the</strong> sound field produced by two coherent signals that are played<br />

back over a c<strong>on</strong>venti<strong>on</strong>al, loudspeaker-based stereo set-up (see Figure 1).<br />

Figure 1:<br />

C<strong>on</strong>venti<strong>on</strong>al, loudspeaker-based stereo set-up<br />

This special case of localisati<strong>on</strong> <strong>in</strong> <strong>the</strong> <strong>superimposed</strong> sound field is not just of<br />

particular relevance to <strong>the</strong> electroacoustic reproducti<strong>on</strong> of spatially distributed sound


9<br />

sources. As already <strong>in</strong>dicated above, important <strong>in</strong>sights <strong>in</strong>to <strong>the</strong> functi<strong>on</strong><strong>in</strong>g of <strong>the</strong><br />

auditory system with regard to spatial hear<strong>in</strong>g can possibly be ga<strong>in</strong>ed if <strong>in</strong>dividual<br />

phenomena can be <strong>in</strong>tegrated <strong>in</strong>to a generally valid <strong>the</strong>ory of auditory percepti<strong>on</strong>. In<br />

this c<strong>on</strong>text, <strong>the</strong> psychoacoustic regularities govern<strong>in</strong>g <strong>the</strong> phantom source<br />

phenomena appear to be especially important. These have been scrut<strong>in</strong>ised and<br />

described <strong>in</strong> a multitude of studies (e.g. DE BOER 1940, WENDT 1963, BOERGER<br />

1965, ORTMEYER 1966, DAMASKE 1969/70, BLAUERT 1970, GARDNER 1973,<br />

THEILE / PLENGE 1977, LOY 1978), and different <strong>the</strong>ories have been developed for<br />

<strong>the</strong>ir explanati<strong>on</strong>.<br />

2.1 The hypo<strong>the</strong>tical pr<strong>in</strong>ciple of summ<strong>in</strong>g localisati<strong>on</strong><br />

All of <strong>the</strong> known phantom source <strong>the</strong>ories have <strong>in</strong> comm<strong>on</strong> that <strong>the</strong>y are based <strong>on</strong> <strong>the</strong><br />

fundamental assumpti<strong>on</strong> that “summ<strong>in</strong>g localisati<strong>on</strong>” (WARNCKE 1941) takes place.<br />

Summ<strong>in</strong>g localisati<strong>on</strong> is understood to imply that <strong>the</strong> superpositi<strong>on</strong> of sound fields at<br />

<strong>the</strong> ears leads to summed signals, <strong>the</strong> comp<strong>on</strong>ents of which <strong>the</strong> human hear<strong>in</strong>g system<br />

is unable to discrim<strong>in</strong>ate. For <strong>the</strong> localisati<strong>on</strong> of a “phantom source” and a<br />

corresp<strong>on</strong>d<strong>in</strong>g real source that is situated at <strong>the</strong> same locati<strong>on</strong> as <strong>the</strong> phantom source<br />

<strong>on</strong>e <strong>the</strong>refore assumes an equivalence of <strong>the</strong> ear signal characteristics at <strong>the</strong> left and<br />

right ear, respectively. The studies deal<strong>in</strong>g with summ<strong>in</strong>g localisati<strong>on</strong> describe<br />

different <strong>the</strong>ories of equivalence. However, <strong>the</strong>ir areas of validity are limited to<br />

directi<strong>on</strong>al hear<strong>in</strong>g, often even to directi<strong>on</strong>al hear<strong>in</strong>g <strong>in</strong> <strong>the</strong> horiz<strong>on</strong>tal plane. Examples<br />

are <strong>the</strong> well-known summ<strong>in</strong>g localisati<strong>on</strong> <strong>the</strong>ories by LEAKEY 1959, FRANSSEN<br />

1960/63, MAKITA 1962, WENDT 1963, MERTENS 1965.<br />

2.2 The “spectral objecti<strong>on</strong>” to summ<strong>in</strong>g localisati<strong>on</strong><br />

The summ<strong>in</strong>g localisati<strong>on</strong> models take <strong>in</strong>to account <strong>the</strong> <strong>in</strong>teraural phase, time and<br />

<strong>in</strong>tensity differences that occur <strong>in</strong> <strong>the</strong> <strong>superimposed</strong> sound field, but <strong>the</strong>y do not<br />

c<strong>on</strong>sider <strong>the</strong> resultant spectral characteristics of <strong>the</strong> ear signals. The sound field at<br />

each ear is composed of comp<strong>on</strong>ents that are delayed with respect to each o<strong>the</strong>r, so<br />

that each signal arriv<strong>in</strong>g at <strong>the</strong> two ears will be spectrally modified <strong>in</strong> accordance with<br />

<strong>the</strong> comb filter effect (see Figure 2).<br />

Especially <strong>the</strong> most recent experiences with head-related, stereoph<strong>on</strong>ic record<strong>in</strong>greproducti<strong>on</strong><br />

systems have shown that even small l<strong>in</strong>ear distorti<strong>on</strong>s can lead to <strong>in</strong>side<strong>the</strong>-head<br />

locatedness (PLENGE 1973, NAKAMURA 1976, LAWS et al. 1976/77,<br />

BLAUERT et al. 1978). The localisati<strong>on</strong>, i.e. <strong>the</strong> mapp<strong>in</strong>g of externalised auditory<br />

events, requires precisely <strong>the</strong> characteristic spectral attributes that, under natural<br />

listen<strong>in</strong>g c<strong>on</strong>diti<strong>on</strong>s, are provided by <strong>the</strong> outer ear. This f<strong>in</strong>d<strong>in</strong>g c<strong>on</strong>tradicts <strong>the</strong><br />

summ<strong>in</strong>g localisati<strong>on</strong> <strong>the</strong>ories. The l<strong>in</strong>ear distorti<strong>on</strong>s result<strong>in</strong>g from <strong>the</strong> comb filter


10<br />

effects do not give rise to spectral characteristics that a substitute sound source<br />

situated at <strong>the</strong> same locati<strong>on</strong> as <strong>the</strong> phantom source would produce. N<strong>on</strong>e<strong>the</strong>less, <strong>the</strong><br />

phantom source is perceived outside <strong>the</strong> head, i.e. at approximately <strong>the</strong> average<br />

distance of <strong>the</strong> auditory event locati<strong>on</strong>s that <strong>the</strong> two loudspeaker signals produce<br />

<strong>in</strong>dividually (REICHARDT / HAUSTEIN 1968). The comb filter effect at <strong>the</strong> ears<br />

does not <strong>in</strong>fluence <strong>the</strong> distance percepti<strong>on</strong>.<br />

Figure 2:<br />

Graphical illustrati<strong>on</strong> of <strong>the</strong> comb filter effect at <strong>the</strong> ears for <strong>the</strong> case of<br />

a phantom source. The solid l<strong>in</strong>e applies for Ü A ≠ Ü B .<br />

Ano<strong>the</strong>r objecti<strong>on</strong> to <strong>the</strong> summ<strong>in</strong>g localisati<strong>on</strong> pr<strong>in</strong>ciple also derives from <strong>the</strong><br />

effective spectrum. In <strong>the</strong> median plane, characteristic frequency bands determ<strong>in</strong>e <strong>the</strong><br />

directi<strong>on</strong> of an auditory event (BLAUERT 1969). Accord<strong>in</strong>gly, <strong>the</strong> elevati<strong>on</strong> of an<br />

auditory event results from <strong>the</strong> spectral properties of <strong>the</strong> ear signals (BLOOM 1977).<br />

Notwithstand<strong>in</strong>g, this fact is not generally compatible with summ<strong>in</strong>g localisati<strong>on</strong>, as<br />

equivalent <strong>in</strong>terchannel level and time differences lead to <strong>the</strong> same auditory event<br />

locati<strong>on</strong>s. If <strong>the</strong> loudspeakers are set up symmetrically with respect to <strong>the</strong> listener’s<br />

median plane, <strong>the</strong>n, depend<strong>in</strong>g <strong>on</strong> <strong>the</strong> applied <strong>in</strong>terchannel level difference, <strong>the</strong><br />

phantom source will move <strong>in</strong> <strong>the</strong> fr<strong>on</strong>tal plane at a c<strong>on</strong>stant distance. The same effect<br />

occurs if <strong>in</strong>stead of <strong>the</strong> level difference a time difference is varied. A certa<strong>in</strong> elevati<strong>on</strong><br />

angle can be achieved both with an <strong>in</strong>terchannel level and time difference. Yet, <strong>in</strong><br />

<strong>the</strong>se two cases <strong>the</strong> comb filter effects at <strong>the</strong> ears lead to very different spectra, also <strong>in</strong><br />

<strong>the</strong> crucial regi<strong>on</strong> around 8 kHz (see BLOOM 1977).<br />

Thus, it seems that reservati<strong>on</strong>s have to be expressed with respect to <strong>the</strong> summ<strong>in</strong>g<br />

localisati<strong>on</strong> pr<strong>in</strong>ciple, because <strong>in</strong> terms of its spectrum <strong>the</strong> phantom source may not be<br />

c<strong>on</strong>sidered a substitute sound source.


11<br />

This “spectral objecti<strong>on</strong>” relates to <strong>the</strong> sound colour of <strong>the</strong> phantom source, too. It can<br />

be shown that equivalent <strong>in</strong>terchannel level and time differences, which lead to <strong>the</strong><br />

same phantom source directi<strong>on</strong>, also create <strong>the</strong> same phantom source sound colour,<br />

even though <strong>the</strong> two scenarios will result <strong>in</strong> different spectra. This phenomen<strong>on</strong> can<br />

easily be dem<strong>on</strong>strated <strong>in</strong> a simple listen<strong>in</strong>g test (Figure 3):<br />

white noise white noise<br />

lateral<br />

head<br />

movement<br />

lateral<br />

head<br />

movement<br />

b<strong>in</strong>aural listen<strong>in</strong>g<br />

phantom source moves<br />

sound colour hardly changes<br />

m<strong>on</strong>aural listen<strong>in</strong>g<br />

no phantom source<br />

sound colour changes a lot<br />

Figure 3:<br />

Test<strong>in</strong>g <strong>the</strong> suppressi<strong>on</strong> of sound colourati<strong>on</strong>. The comb filter effect<br />

can <strong>on</strong>ly be detected when listen<strong>in</strong>g m<strong>on</strong>aurally.<br />

The listener should be positi<strong>on</strong>ed <strong>in</strong> fr<strong>on</strong>t of two loudspeakers that are set up <strong>in</strong> an<br />

anechoic chamber and that radiate coherent white noise (at a suitably low level).<br />

Lateral head movements cause lateral displacements of <strong>the</strong> phantom source (timebased<br />

stereoph<strong>on</strong>y), whilst <strong>the</strong> sound colour hardly changes. Mov<strong>in</strong>g <strong>the</strong> head <strong>in</strong> <strong>the</strong><br />

same manner whilst cover<strong>in</strong>g <strong>on</strong>e ear will lead to clearly perceivable sound colour<br />

changes. The sound colourati<strong>on</strong>, which is caused by <strong>the</strong> comb filter and which can be<br />

detected at each ear <strong>in</strong>dividually, disappears when listen<strong>in</strong>g b<strong>in</strong>aurally, i.e. as so<strong>on</strong> as<br />

a phantom source arises. Its occurrence implies <strong>the</strong> suppressi<strong>on</strong> of sound colourati<strong>on</strong>.<br />

This effect was first po<strong>in</strong>ted out by THEILE 1978.<br />

Before <strong>in</strong>vestigat<strong>in</strong>g <strong>the</strong> c<strong>on</strong>necti<strong>on</strong> between <strong>the</strong> suppressi<strong>on</strong> of sound colourati<strong>on</strong> and<br />

<strong>the</strong> localisability of phantom sources by means of a listen<strong>in</strong>g test, <strong>the</strong> l<strong>in</strong>ear distorti<strong>on</strong>s<br />

occurr<strong>in</strong>g at <strong>the</strong> left and right ear due to <strong>the</strong> comb filter effect shall be quantified.


12<br />

2.2.1 Measurement of <strong>the</strong> comb filter effect<br />

An artificial head (NEUMANN KU 80) is set up at <strong>the</strong> listen<strong>in</strong>g positi<strong>on</strong> of a<br />

c<strong>on</strong>venti<strong>on</strong>al stereo layout (see Figure 1). The levels of <strong>the</strong> frequency bands (see<br />

ZWICKER / FELDKELLER 1967) of <strong>the</strong> artificial head signals <strong>in</strong>-between 0.25 and<br />

6 kHz are measured as a functi<strong>on</strong> of <strong>the</strong> time delay ∆t between <strong>the</strong> loudspeaker<br />

signals. The time delays ∆t = 0, 90, 210, 270 and 480 µs are achieved by displac<strong>in</strong>g<br />

<strong>the</strong> artificial head by 0 to 16 cm to <strong>the</strong> right. This corresp<strong>on</strong>ds to a shift <strong>in</strong> phantom<br />

source directi<strong>on</strong> from Φ = 0° ... +25°. The occurr<strong>in</strong>g level changes are negligible. The<br />

results are shown <strong>in</strong> Figure 4.<br />

left ear<br />

right ear<br />

Figure 4: Comb filter effect for time-based stereoph<strong>on</strong>y, see text<br />

(<strong>the</strong> auditory event shifts to <strong>the</strong> right))


13<br />

The measurements display <strong>the</strong> spectral changes that result at <strong>the</strong> left ear when switch<strong>in</strong>g<br />

<strong>on</strong> Loudspeaker B (i.e. <strong>the</strong> right loudspeaker) and <strong>the</strong> spectral changes that result at <strong>the</strong><br />

right ear when switch<strong>in</strong>g <strong>on</strong> Loudspeaker A (i.e. <strong>the</strong> left loudspeaker). The transfer<br />

functi<strong>on</strong>s of <strong>the</strong> entire ‘loudspeaker - outer ear - microph<strong>on</strong>e’ set-up have been<br />

elim<strong>in</strong>ated. The <strong>in</strong>serted arrows mark those frequencies at which, from a calculati<strong>on</strong>al<br />

viewpo<strong>in</strong>t, <strong>on</strong>e would expect <strong>the</strong>re to be a trough if <strong>on</strong>e assumes that <strong>the</strong> <strong>in</strong>teraural time<br />

differences are frequency-<strong>in</strong>dependent (τ A - τ B ≈ 250 µs for Ω A = Ω B = 30°). Look<strong>in</strong>g at<br />

<strong>the</strong>se measurements, <strong>the</strong> follow<strong>in</strong>g observati<strong>on</strong>s can be made:<br />

1. The troughs are <strong>in</strong> <strong>the</strong> order of 10 dB or more. The boosts, especially at low<br />

frequencies, often amount to 5 dB. At mid frequencies spectral differences of about<br />

15 dB occur, whilst at high frequencies this value is somewhat reduced due to <strong>the</strong><br />

greater attenuati<strong>on</strong> of <strong>the</strong> crosstalk comp<strong>on</strong>ents.<br />

2. The troughs’ locati<strong>on</strong>s <strong>in</strong> <strong>the</strong> frequency spectrum are <strong>on</strong>ly “ear-symmetrical” for ∆t<br />

= 0, i.e. if ∆t is <strong>in</strong>creased up to 250 µs, <strong>the</strong> troughs will shift to <strong>the</strong> high frequencies<br />

at <strong>on</strong>e ear and to <strong>the</strong> low frequencies at <strong>the</strong> o<strong>the</strong>r ear. For ∆t up to 250 µs, <strong>the</strong> time<br />

delay result<strong>in</strong>g at <strong>on</strong>e ear equals zero (<strong>in</strong> this case <strong>the</strong> left ear, which does not ‘face’<br />

<strong>the</strong> phantom source). For ∆t > 250 µs, <strong>the</strong> troughs appear at progressively lower<br />

frequencies at both ears.<br />

Figure 5:<br />

The mean values of <strong>the</strong> resultant spectra at <strong>the</strong> ears, taken<br />

from Figure 4


14<br />

3. It has to be ruled out that <strong>the</strong> suppressi<strong>on</strong> of sound colourati<strong>on</strong> can be expla<strong>in</strong>ed by<br />

means of some k<strong>in</strong>d of an averag<strong>in</strong>g process that <strong>the</strong> hear<strong>in</strong>g system carries out <strong>on</strong><br />

<strong>the</strong> spectra result<strong>in</strong>g at <strong>the</strong> left and right ears. Figure 5 shows <strong>the</strong> mean values of<br />

<strong>the</strong>se spectra. The resultant fluctuati<strong>on</strong>s <strong>in</strong> <strong>the</strong> amplitude spectrum would be clearly<br />

detectable.<br />

4. In <strong>the</strong> case of time-based stereoph<strong>on</strong>y, <strong>the</strong> ear signals’ spectral characteristics are<br />

very different from <strong>the</strong> <strong>on</strong>es of a real sound source that, like <strong>the</strong> phantom source,<br />

moves between 0° and 30°. This is evident from compar<strong>in</strong>g <strong>the</strong> measurements<br />

shown <strong>in</strong> Figure 6. This figure displays <strong>the</strong> spectral modificati<strong>on</strong>s that result if<br />

Loudspeaker B is moved from Ω B = 30° to <strong>the</strong> centre, Ω B = 0°. As <strong>the</strong> listen<strong>in</strong>g test<br />

to be reported <strong>in</strong> Secti<strong>on</strong> 2.2.2 will show, <strong>the</strong>se deviati<strong>on</strong>s cause perceivable sound<br />

colourati<strong>on</strong> <strong>in</strong> <strong>the</strong> case of m<strong>on</strong>aural listen<strong>in</strong>g.<br />

left ear<br />

right ear<br />

Figure 6:<br />

Changes <strong>in</strong> <strong>the</strong> ear signals’ spectra as a functi<strong>on</strong> of <strong>the</strong> angle of <strong>in</strong>cidence<br />

Ω B , relative to Ω B = 30°.<br />

5. As for <strong>the</strong> distance and elevati<strong>on</strong> of <strong>the</strong> phantom source, <strong>on</strong>e can see from Figure 4<br />

that <strong>the</strong> auditory system has to <strong>in</strong>terpret <strong>the</strong> signals as be<strong>in</strong>g “l<strong>in</strong>early distorted”,<br />

because no real sound source can produce such <strong>in</strong>teraural spectral differences. The


15<br />

respective <strong>in</strong>teraural transfer functi<strong>on</strong>s are not available (except when ∆t = 0). This is<br />

especially evident for 200 µs < ∆t < 300 µs. At <strong>the</strong> left ear troughs <strong>on</strong>ly occur above<br />

f = 10 kHz, whereas at <strong>the</strong> right ear four m<strong>in</strong>ima exist <strong>in</strong>-between 1 and 10 kHz (see<br />

∆t = 210 µs and 270 µs <strong>in</strong> Figure 4). Besides, for ∆t = 250 µs ± 50 µs <strong>the</strong> locati<strong>on</strong> of<br />

<strong>the</strong>se m<strong>in</strong>ima varies by 22% without <strong>the</strong> spectrum of <strong>the</strong> left ear signal chang<strong>in</strong>g at all.<br />

S<strong>in</strong>ce <strong>the</strong> transfer functi<strong>on</strong>s of <strong>the</strong> outer ears are relatively c<strong>on</strong>stant <strong>in</strong> <strong>the</strong> important<br />

frequency regi<strong>on</strong> (see Figure 6), nei<strong>the</strong>r <strong>the</strong> stable (externalised) localisati<strong>on</strong> nor <strong>the</strong><br />

elevati<strong>on</strong> can be brought <strong>in</strong>to agreement with <strong>the</strong> <strong>in</strong>teraural spectral differences.<br />

2.2.2 Listen<strong>in</strong>g test <strong>on</strong> <strong>the</strong> suppressi<strong>on</strong> of sound colourati<strong>on</strong><br />

In order to ensure identical test c<strong>on</strong>diti<strong>on</strong>s for each subject, <strong>the</strong> ear signals occurr<strong>in</strong>g<br />

<strong>in</strong> an anechoic chamber at <strong>the</strong> listen<strong>in</strong>g positi<strong>on</strong> of a stereoph<strong>on</strong>ic loudspeaker set-up<br />

are reproduced with <strong>the</strong> help of <strong>the</strong> artificial head. The loudspeakers radiate coherent<br />

white noise and <strong>the</strong> durati<strong>on</strong> of <strong>the</strong> presentati<strong>on</strong>s ranges from 5 to 10 s. Dur<strong>in</strong>g this<br />

time <strong>in</strong>terval, <strong>the</strong> artificial head is moved al<strong>on</strong>g <strong>the</strong> <strong>in</strong>teraural axis at a rate of approx.<br />

0.5 to 0.1 Hz and a maximum displacement amplitude of 20 cm from <strong>the</strong> centre. This<br />

movement more or less corresp<strong>on</strong>ds to a variati<strong>on</strong> <strong>in</strong> time delay of maximally ±600 µs<br />

(time-based stereoph<strong>on</strong>y). As expected, when play<strong>in</strong>g back <strong>the</strong> artificial head signals<br />

over headph<strong>on</strong>es, this leads to large lateral displacements of <strong>the</strong> auditory event.<br />

Keep<strong>in</strong>g <strong>the</strong> pivot<strong>in</strong>g movement of <strong>the</strong> artificial head, <strong>the</strong> follow<strong>in</strong>g test signals are<br />

generated and recorded <strong>in</strong> a random order:<br />

Group A:<br />

The variable is <strong>the</strong> horiz<strong>on</strong>tal directi<strong>on</strong> of <strong>the</strong> artificial head, δ. The follow<strong>in</strong>g signals<br />

are chosen:<br />

A1: with δ = 0°<br />

A2: with δ = 30°<br />

A3: with δ = 60°<br />

A4: with δ = 90°<br />

A5: with δ = 180°<br />

Group B:<br />

The directi<strong>on</strong> of <strong>the</strong> artificial head is kept c<strong>on</strong>stant, δ = 0°. The variables are different<br />

errors that have been <strong>in</strong>troduced deliberately <strong>in</strong>to <strong>the</strong> head-related record<strong>in</strong>g and<br />

reproducti<strong>on</strong> system. The follow<strong>in</strong>g reproducti<strong>on</strong> scenarios are chosen:<br />

B1: Dichotic, phase-<strong>in</strong>verted presentati<strong>on</strong> of <strong>the</strong> artificial head signals<br />

B2: Dichotic presentati<strong>on</strong> of <strong>the</strong> artificial head signals with <strong>on</strong>e ear signal be<strong>in</strong>g<br />

delayed by ∆t = 200 ms<br />

B3: M<strong>on</strong>otic presentati<strong>on</strong> of <strong>on</strong>e artificial head signal<br />

B4: Diotic presentati<strong>on</strong> of <strong>on</strong>e artificial head signal


16<br />

B5: Dichotic presentati<strong>on</strong> of <strong>the</strong> artificial head signals, which have been recorded<br />

without <strong>the</strong> p<strong>in</strong>nae of <strong>the</strong> artificial head<br />

B6: Dichotic presentati<strong>on</strong> of <strong>the</strong> microph<strong>on</strong>e signals, which have been recorded<br />

without <strong>the</strong> head and p<strong>in</strong>nae of <strong>the</strong> artificial head<br />

When presented over headph<strong>on</strong>es, <strong>the</strong> test signals A1 … A4 and B1 … B6 create<br />

more or less stable phantom sources. To give an example, depend<strong>in</strong>g <strong>on</strong> <strong>the</strong> accuracy<br />

of <strong>the</strong> record<strong>in</strong>g and playback stages, Signal A1 should produce an easily localisable<br />

phantom source, whilst Signal B2 will certa<strong>in</strong>ly result <strong>in</strong> a poor reproducti<strong>on</strong>. In order<br />

to be able to compare <strong>the</strong>se scenarios to <strong>the</strong> localisati<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>s applicable to a real<br />

sound source, three o<strong>the</strong>r test signals are also <strong>in</strong>cluded:<br />

Group C:<br />

No phantom source situati<strong>on</strong>, but a loudspeaker positi<strong>on</strong>ed <strong>in</strong> <strong>the</strong> median plane. The<br />

follow<strong>in</strong>g reproducti<strong>on</strong> scenarios are chosen:<br />

C1: O<strong>the</strong>rwise as A1<br />

C2: Instead of <strong>the</strong> pivot<strong>in</strong>g movement, <strong>the</strong> artificial head is rotated by δ ± 30°<br />

C3: As C2, but diotic presentati<strong>on</strong> of <strong>on</strong>e artificial head signal<br />

Us<strong>in</strong>g headph<strong>on</strong>es, each test signal is presented to <strong>the</strong> subjects twice. For each<br />

presentati<strong>on</strong>, <strong>the</strong> auditory event (produced by <strong>the</strong> associated test signal) has to be<br />

evaluated <strong>in</strong> terms of <strong>on</strong>e attribute of detectability, i.e. <strong>the</strong> detectability of sound<br />

colour changes (Attribute Kl) or <strong>the</strong> detectability of directi<strong>on</strong>al changes (Attribute<br />

Ri). A 5-po<strong>in</strong>t rat<strong>in</strong>g scale is used:<br />

0: not detectable<br />

0.25: just about detectable<br />

0.5: detectable<br />

0.75: clearly detectable<br />

1: very clearly detectable<br />

Before each trial, <strong>the</strong> subjects are presented with a few test examples. This helps<br />

improve judgement c<strong>on</strong>sistency and prevents learn<strong>in</strong>g effects dur<strong>in</strong>g <strong>the</strong> actual<br />

listen<strong>in</strong>g test. Dur<strong>in</strong>g this tra<strong>in</strong><strong>in</strong>g phase, <strong>the</strong> subjects’ attenti<strong>on</strong> is drawn ei<strong>the</strong>r to<br />

Attribute Kl or Attribute Ri. For 11 participants this happens first for Kl, whilst 11<br />

o<strong>the</strong>r participants are asked to evaluate Ri first.<br />

Listen<strong>in</strong>g test results<br />

1. The relati<strong>on</strong>ship between <strong>the</strong> attributes Kl and Ri for <strong>the</strong> test signal groups A<br />

and B is evident from Figure 7. Each <strong>in</strong>cluded Kl/Ri-value c<strong>on</strong>stitutes <strong>the</strong><br />

arithmetic mean of <strong>the</strong> verdicts of 11 subjects for <strong>on</strong>e test signal (four mean


17<br />

values per test signal). The two calculated regressi<strong>on</strong> l<strong>in</strong>es (<strong>the</strong> first <strong>on</strong>e go<strong>in</strong>g<br />

from Ri to Kl, <strong>the</strong> sec<strong>on</strong>d <strong>on</strong>e from Kl to Ri) dem<strong>on</strong>strate a close, l<strong>in</strong>ear<br />

relati<strong>on</strong>ship; <strong>the</strong> correlati<strong>on</strong> coefficient is<br />

r = -0.91.<br />

The detectability of sound colour changes is <strong>in</strong>versely related to <strong>the</strong> perceptibility<br />

of directi<strong>on</strong>al changes.<br />

Bild 7 :<br />

Relati<strong>on</strong>ship between <strong>the</strong> detectability of directi<strong>on</strong>al and sound<br />

colour changes<br />

2. The attributes’ dependency <strong>on</strong>to <strong>the</strong> test signals is apparent from <strong>the</strong> overview<br />

of <strong>the</strong> results given <strong>in</strong> Figure 8. The test signals have been sorted al<strong>on</strong>g <strong>the</strong><br />

abscissa <strong>in</strong> such a way that an <strong>in</strong>/decreas<strong>in</strong>g trend <strong>in</strong> terms of <strong>the</strong> attribute<br />

rat<strong>in</strong>gs results (<strong>the</strong> curves at <strong>the</strong> bottom of Figure 8 depict <strong>the</strong> corresp<strong>on</strong>d<strong>in</strong>g<br />

standard deviati<strong>on</strong>s). As can clearly be seen, for all reproducti<strong>on</strong> scenarios that<br />

cannot produce phantom sources (test signals A4, B4, B3, B2), <strong>the</strong> comb filter<br />

effects at <strong>the</strong> ears are clearly detectable. On <strong>the</strong> o<strong>the</strong>r hand, <strong>on</strong>e can see that <strong>in</strong><br />

<strong>the</strong> case of an error-free reproducti<strong>on</strong> <strong>the</strong> auditory event clearly moves and that<br />

<strong>the</strong> spectral changes at <strong>the</strong> ears are hardly detectable (test signal A1).


18<br />

clearly detectable<br />

just about detectable<br />

Figure 8:<br />

Overview of results, see text<br />

2. The attributes’ dependency <strong>on</strong>to <strong>the</strong> test signals is apparent from <strong>the</strong> overview<br />

of <strong>the</strong> results given <strong>in</strong> Figure 8. The test signals have been sorted al<strong>on</strong>g <strong>the</strong><br />

abscissa <strong>in</strong> such a way that an <strong>in</strong>/decreas<strong>in</strong>g trend <strong>in</strong> terms of <strong>the</strong> attribute<br />

rat<strong>in</strong>gs results (<strong>the</strong> curves at <strong>the</strong> bottom of Figure 8 depict <strong>the</strong> corresp<strong>on</strong>d<strong>in</strong>g<br />

standard deviati<strong>on</strong>s). As can clearly be seen, for all reproducti<strong>on</strong> scenarios that<br />

cannot produce phantom sources (test signals A4, B4, B3, B2), <strong>the</strong> comb filter<br />

effects at <strong>the</strong> ears are clearly detectable. On <strong>the</strong> o<strong>the</strong>r hand, <strong>on</strong>e can see that <strong>in</strong><br />

<strong>the</strong> case of an error-free reproducti<strong>on</strong> <strong>the</strong> auditory event clearly moves and that<br />

<strong>the</strong> spectral changes at <strong>the</strong> ears are hardly detectable (test signal A1).<br />

3. Compared to test signal C2, however, it has to be noted that when reproduc<strong>in</strong>g<br />

<strong>the</strong> ear signals stemm<strong>in</strong>g from a real sound source that moves with<strong>in</strong> an<br />

angular range of ±30° over <strong>the</strong> artificial head system, a smaller Ri and a larger<br />

Kl result for <strong>the</strong> phantom source compared to <strong>the</strong> real source (see also Figure 9).


19<br />

b<strong>in</strong>aural<br />

m<strong>on</strong>aural<br />

Figure 9:<br />

Results for <strong>the</strong> test signals C2, C3 and A1 … A4<br />

4. A perceivable sound colour change also occurs for real sound sources if <strong>the</strong><br />

associated b<strong>in</strong>aural, directi<strong>on</strong>al characteristics are miss<strong>in</strong>g (test signals C2 and<br />

C3, Figure 9a). This detectability of sound colour changes is as high as <strong>the</strong> <strong>on</strong>e<br />

for <strong>the</strong> normal phantom source situati<strong>on</strong> (test signals C3 and A1, Figure 9).<br />

5. Figure 9 presents Attributes Kl and Ri as a functi<strong>on</strong> of <strong>the</strong> artificial head<br />

directi<strong>on</strong> δ. The localisability of <strong>the</strong> phantom source reduces with <strong>in</strong>creas<strong>in</strong>g δ.<br />

Lateral phantom sources (δ = 90°) do not occur (e.g. see RATLIFF 1974,<br />

THEILE / PLENGE 1977), <strong>the</strong> dectability of <strong>the</strong> sound colour changes is<br />

accord<strong>in</strong>gly large.


20<br />

6. For <strong>the</strong> phantom source situati<strong>on</strong>, a relatively large drop <strong>in</strong> <strong>the</strong> detectability of<br />

directi<strong>on</strong>al changes already occurs if <strong>in</strong>stead of a normal artificial head system<br />

a dummy head without <strong>the</strong> p<strong>in</strong>nae is used (Figure 10). Manipulat<strong>in</strong>g <strong>the</strong><br />

artificial head <strong>in</strong> this way causes negligible changes <strong>in</strong> <strong>the</strong> <strong>in</strong>teraural level and<br />

time differences; <strong>the</strong> resultant changes <strong>in</strong> <strong>the</strong> ear signals’ spectra <strong>on</strong> <strong>the</strong>ir own<br />

give rise to a greatly reduced detectability of <strong>the</strong> phantom source movement.<br />

white noise<br />

dummy<br />

head<br />

as A1<br />

however, dummy<br />

head without p<strong>in</strong>nae<br />

Figure 10:<br />

Results for <strong>the</strong> test signals B4, B5, A1<br />

Overall <strong>the</strong>n, this listen<strong>in</strong>g test showed that:<br />

The suppressi<strong>on</strong> of sound colourati<strong>on</strong> <strong>in</strong> <strong>the</strong> <strong>superimposed</strong>, broadband sound field for<br />

<strong>the</strong> case of two coherent sound sources takes place to <strong>the</strong> extent to which a phantom<br />

source arises. The sound colour of <strong>the</strong> phantom source does not corresp<strong>on</strong>d<br />

completely to <strong>the</strong> spectral properties of <strong>the</strong> ear signals.


21<br />

3. An associati<strong>on</strong> model for <strong>the</strong> localisati<strong>on</strong> process<br />

If <strong>the</strong> ear signals result<strong>in</strong>g from <strong>the</strong> superpositi<strong>on</strong> of sound fields and <strong>the</strong> ear signals<br />

stemm<strong>in</strong>g from an <strong>in</strong>dividual sound source produce identical auditory events, <strong>the</strong>n <strong>in</strong><br />

both cases broadband signals will exhibit different spectra. Assum<strong>in</strong>g that <strong>the</strong> ear<br />

signals are processed as a whole, <strong>the</strong> spectral characteristics of <strong>the</strong> ear signals <strong>in</strong> <strong>the</strong><br />

phantom source situati<strong>on</strong> cannot be brought <strong>in</strong>to agreement with <strong>the</strong> distance,<br />

elevati<strong>on</strong> and sound colour of <strong>the</strong> auditory event.<br />

The aforementi<strong>on</strong>ed spectral objecti<strong>on</strong> is valid if <strong>on</strong>e tries to <strong>in</strong>terpret summ<strong>in</strong>g<br />

localisati<strong>on</strong> models as localisati<strong>on</strong> models. Summ<strong>in</strong>g localisati<strong>on</strong> models are not<br />

based <strong>on</strong> f<strong>in</strong>d<strong>in</strong>gs c<strong>on</strong>cern<strong>in</strong>g localisati<strong>on</strong>, but <strong>on</strong> <strong>the</strong>ories of directi<strong>on</strong> hear<strong>in</strong>g. It is<br />

not possible to extend <strong>the</strong> summ<strong>in</strong>g localisati<strong>on</strong> pr<strong>in</strong>ciple’s limited area of validity to<br />

all phantom source phenomena. If <strong>on</strong>e assumes that understand<strong>in</strong>g <strong>the</strong> phantom source<br />

should ultimately improve our understand<strong>in</strong>g of spatial hear<strong>in</strong>g, it follows that <strong>the</strong><br />

“summ<strong>in</strong>g localisati<strong>on</strong>” approach has to be questi<strong>on</strong>ed.<br />

A fundamental approach should be aimed for that can lead to a uniform explanati<strong>on</strong> of<br />

<strong>the</strong> properties of auditory events <strong>in</strong> <strong>the</strong> <strong>superimposed</strong> sound field, i.e. an approach that<br />

takes <strong>in</strong>to account <strong>the</strong> general f<strong>in</strong>d<strong>in</strong>gs with respect to localisati<strong>on</strong> (psychoacoustic<br />

pr<strong>in</strong>ciples of <strong>in</strong>side-<strong>the</strong>-head locatedness, distance and directi<strong>on</strong> hear<strong>in</strong>g as well as <strong>the</strong><br />

percepti<strong>on</strong> of simultaneous auditory events).<br />

The spectral objecti<strong>on</strong> <strong>in</strong>itiates <strong>the</strong> development of a complete localisati<strong>on</strong> model<br />

hav<strong>in</strong>g an area of validity that <strong>in</strong>cludes phantom as well as real sources.<br />

In Secti<strong>on</strong> 2.2 it was found that <strong>in</strong> <strong>the</strong> phantom source situati<strong>on</strong> <strong>the</strong> comb filter effects<br />

at <strong>the</strong> ears <strong>in</strong>fluence nei<strong>the</strong>r distance percepti<strong>on</strong> nor perceived sound colour. It is not<br />

<strong>the</strong> actual spectra at <strong>the</strong> ears that are operative, but ra<strong>the</strong>r those spectra that <strong>the</strong><br />

loudspeakers produce at <strong>the</strong> ears <strong>in</strong>dividually.<br />

This observati<strong>on</strong> leads to <strong>the</strong> suppositi<strong>on</strong> that <strong>the</strong> auditory system separates <strong>the</strong><br />

comp<strong>on</strong>ents of <strong>the</strong> summed signals occurr<strong>in</strong>g at <strong>the</strong> ears. If <strong>the</strong> ear signals’<br />

dependency <strong>on</strong>to sound source locati<strong>on</strong> is understood as a mechanism for encod<strong>in</strong>g<br />

spatial <strong>in</strong>formati<strong>on</strong>, <strong>the</strong>n knowledge of this dependency can be seen as a key for<br />

decod<strong>in</strong>g <strong>the</strong> spatial <strong>in</strong>formati<strong>on</strong>. Suppos<strong>in</strong>g that <strong>in</strong> <strong>the</strong> <strong>superimposed</strong> sound field <strong>the</strong><br />

simultaneous decod<strong>in</strong>g of at least two types of spatial <strong>in</strong>formati<strong>on</strong> is possible (e.g. by<br />

means of pattern recogniti<strong>on</strong> processes), it is c<strong>on</strong>ceivable that <strong>the</strong> summed signals’<br />

discrete comp<strong>on</strong>ents are processed separately.<br />

Should this type of process<strong>in</strong>g <strong>in</strong> <strong>the</strong> auditory system be c<strong>on</strong>sidered fur<strong>the</strong>r? As will<br />

be seen, this approach leads to a localisati<strong>on</strong> model that is <strong>in</strong> agreement with many


22<br />

phenomena of spatial hear<strong>in</strong>g, hence offer<strong>in</strong>g new possibilities for <strong>the</strong>ir explanati<strong>on</strong>.<br />

Initially, this approach appears functi<strong>on</strong>al for two reas<strong>on</strong>s:<br />

1. It can offer an explanati<strong>on</strong> for <strong>the</strong> <strong>in</strong>effectiveness of <strong>the</strong> comb filter effect <strong>in</strong><br />

<strong>the</strong> phantom source situati<strong>on</strong> (see Secti<strong>on</strong> 3.2.2).<br />

2. It agrees with <strong>the</strong> hypo<strong>the</strong>sis that localisati<strong>on</strong> should be seen as <strong>the</strong> c<strong>on</strong>sequence<br />

of a perceptual process, which arises due to auditory experience<br />

al<strong>on</strong>e (see Secti<strong>on</strong>s 3.1.2 and 3.2.1).<br />

Therefore, <strong>the</strong> new localisati<strong>on</strong> model c<strong>on</strong>ta<strong>in</strong>s a process<strong>in</strong>g stage that, as a result of<br />

auditory experience, can separate such ear signal comp<strong>on</strong>ents. These comp<strong>on</strong>ents are<br />

coupled to each o<strong>the</strong>r due to <strong>the</strong> effect of <strong>the</strong> head and p<strong>in</strong>nae <strong>in</strong> <strong>the</strong> <strong>superimposed</strong><br />

sound field. In <strong>the</strong> follow<strong>in</strong>g, <strong>the</strong>se ear signal comp<strong>on</strong>ents shall be described as<br />

“localisati<strong>on</strong> stimuli”.<br />

Def<strong>in</strong>iti<strong>on</strong>:<br />

Sufficiently broadband ear signals or ear signal comp<strong>on</strong>ents at <strong>the</strong> ear drums of<br />

<strong>the</strong> two ears toge<strong>the</strong>r c<strong>on</strong>stitute a localisati<strong>on</strong> stimulus if, based <strong>on</strong> <strong>the</strong>ir temporal<br />

and spectral properties, <strong>the</strong>y can be mapped to a s<strong>in</strong>gle sound event locati<strong>on</strong>.<br />

The process<strong>in</strong>g stage for <strong>the</strong> selecti<strong>on</strong> of localisati<strong>on</strong> stimuli is called “locati<strong>on</strong><br />

associati<strong>on</strong> stage”. It precedes a sec<strong>on</strong>d, higher-level central process<strong>in</strong>g stage<br />

c<strong>on</strong>ta<strong>in</strong>ed <strong>in</strong> <strong>the</strong> model. This so-called “gestalt associati<strong>on</strong> stage” comprises those<br />

processes that determ<strong>in</strong>e <strong>the</strong> qualitative properties of an auditory event except for its<br />

spatial characteristics (see Secti<strong>on</strong> 3.2 for details).<br />

Hence, <strong>the</strong> localisati<strong>on</strong> model is essentially characterised by two-dimensi<strong>on</strong>al<br />

stimulus process<strong>in</strong>g. The rigorous differentiati<strong>on</strong> of <strong>the</strong> two process<strong>in</strong>g stages<br />

corresp<strong>on</strong>ds entirely to <strong>the</strong> two elementary areas of auditory experience: <strong>the</strong> received<br />

ear signals can be attributed to <strong>the</strong> two sound source characteristics of “locati<strong>on</strong>” and<br />

“signal”, which always occur <strong>in</strong> a pairwise fashi<strong>on</strong>. As a result, <strong>the</strong> auditory events<br />

occurr<strong>in</strong>g <strong>in</strong> <strong>the</strong> model can be traced back to <strong>the</strong> effects of a locati<strong>on</strong>- and gestaltdeterm<strong>in</strong><strong>in</strong>g<br />

process<strong>in</strong>g stage.<br />

A stimulus has to pass both of <strong>the</strong>se stages for it to lead to a percepti<strong>on</strong>. The two<br />

processes thus always determ<strong>in</strong>e <strong>the</strong> properties of auditory events <strong>in</strong> a c<strong>on</strong>jo<strong>in</strong>t<br />

fashi<strong>on</strong>. C<strong>on</strong>sequently, <strong>the</strong> gestalt-determ<strong>in</strong><strong>in</strong>g process<strong>in</strong>g stage is an element of <strong>the</strong><br />

localisati<strong>on</strong> model as well.


23<br />

3.1 The localisati<strong>on</strong> stimulus selecti<strong>on</strong><br />

A characteristic of <strong>the</strong> model’s locati<strong>on</strong> associati<strong>on</strong> stage is that it tries to <strong>in</strong>terpret a<br />

received stimulus as a localisati<strong>on</strong> stimulus, i.e. it automatically compares <strong>the</strong> <strong>in</strong>put<br />

stimulus with stimulus patterns that have been associated with certa<strong>in</strong> auditory event<br />

locati<strong>on</strong>s as a result of auditory experience. Only a localisati<strong>on</strong> stimulus leads to<br />

localisati<strong>on</strong>. Such a stimulus will be available if <strong>the</strong> characteristics of <strong>the</strong> ear signals<br />

are compatible with <strong>the</strong> auditory experience <strong>in</strong> terms of both time and spectrum. Due<br />

to this property, <strong>the</strong> human hear<strong>in</strong>g system is capable of comb<strong>in</strong><strong>in</strong>g signal comp<strong>on</strong>ents<br />

that are characteristic of a sound event locati<strong>on</strong> and of forward<strong>in</strong>g <strong>the</strong>m collectively<br />

(localisati<strong>on</strong> stimulus selecti<strong>on</strong>). “Collective forward<strong>in</strong>g” implies that <strong>the</strong> localisati<strong>on</strong><br />

stimulus selecti<strong>on</strong> can be <strong>in</strong>terpreted as a fusi<strong>on</strong> process, which comb<strong>in</strong>es <strong>the</strong> b<strong>in</strong>aural<br />

signal comp<strong>on</strong>ents of a particular sound source <strong>in</strong> an unseparable manner and which<br />

equips <strong>the</strong>se comp<strong>on</strong>ents with <strong>the</strong> re-codified spatial <strong>in</strong>formati<strong>on</strong> that leads to <strong>the</strong><br />

percepti<strong>on</strong>. In <strong>the</strong> <strong>superimposed</strong> sound field, <strong>the</strong> localisati<strong>on</strong> stimulus selecti<strong>on</strong> acts as<br />

a filter enabl<strong>in</strong>g <strong>the</strong> simultaneous discrim<strong>in</strong>ati<strong>on</strong> of <strong>in</strong>dividual source signals.<br />

This functi<strong>on</strong> of <strong>the</strong> hypo<strong>the</strong>tical locati<strong>on</strong> associati<strong>on</strong> stage can probably not be<br />

modelled us<strong>in</strong>g operators that, based <strong>on</strong> current knowledge, are physiologically<br />

possible. Ra<strong>the</strong>r, <strong>the</strong> performance features of this process<strong>in</strong>g stage shall be described<br />

as much as possible by means of l<strong>in</strong>ear system <strong>the</strong>ories and, with<strong>in</strong> <strong>the</strong> framework of<br />

this work, for maximally two sound events of an arbitrary spatial c<strong>on</strong>stellati<strong>on</strong> <strong>on</strong>ly<br />

(see Secti<strong>on</strong> 4.1). In essence, a c<strong>on</strong>trollable filter is envisaged hav<strong>in</strong>g a transfer<br />

functi<strong>on</strong> that is <strong>in</strong>versely related to <strong>the</strong> locati<strong>on</strong>-dependent transfer functi<strong>on</strong> of <strong>the</strong><br />

outer ear (see Secti<strong>on</strong> 3.1.1). The identificati<strong>on</strong> of <strong>the</strong> currently operative transfer<br />

functi<strong>on</strong> takes place by means of pattern recogniti<strong>on</strong> processes (see Secti<strong>on</strong> 3.1.2 as<br />

well as PLENGE 1973).<br />

3.1.1 The spatial decod<strong>in</strong>g<br />

The human hear<strong>in</strong>g system comprises an evaluati<strong>on</strong> system with two <strong>in</strong>put channels.<br />

These channels are preceded by a comm<strong>on</strong> l<strong>in</strong>ear network hav<strong>in</strong>g a transfer functi<strong>on</strong><br />

M that results from <strong>the</strong> effects of <strong>the</strong> head and p<strong>in</strong>nae <strong>in</strong> <strong>the</strong> sound field. M is a<br />

functi<strong>on</strong> of <strong>the</strong> sound source locati<strong>on</strong> i that l<strong>in</strong>ks <strong>the</strong> ear signals <strong>in</strong> a def<strong>in</strong>ed way<br />

(“spatial encod<strong>in</strong>g”). If a source signal Q is present at <strong>the</strong> <strong>in</strong>put to <strong>the</strong> matrix M(i), <strong>the</strong><br />

l<strong>in</strong>ked signals appear at <strong>the</strong> <strong>in</strong>puts to <strong>the</strong> evaluati<strong>on</strong> system <strong>in</strong> <strong>the</strong> form of liQ = L and<br />

riQ = R (li, ri = acoustic transmissi<strong>on</strong> factors for <strong>the</strong> left and right ear, respectively,<br />

and a given source locati<strong>on</strong> i; see BLAUERT / LAWS 1973). After <strong>the</strong> spatial<br />

decod<strong>in</strong>g, resp<strong>on</strong>se Q’ appears at <strong>the</strong> allocated output i’ (see Figure 11).


24<br />

Outer ear<br />

Auditory system<br />

M(i)<br />

Evaluati<strong>on</strong><br />

system<br />

Source<br />

signal Q<br />

Spatial<br />

encod<strong>in</strong>g<br />

Spatial<br />

decod<strong>in</strong>g<br />

Auditory<br />

event Q´<br />

Ear signals<br />

Figure 11:<br />

The spatial transmissi<strong>on</strong> system<br />

To this end, <strong>the</strong> decod<strong>in</strong>g mechanism has to adapt to <strong>the</strong> sound source locati<strong>on</strong>s. This<br />

adaptati<strong>on</strong> requires an associative process of pattern recogniti<strong>on</strong>.<br />

The nature of localisati<strong>on</strong> shall <strong>the</strong>refore lie <strong>in</strong> a recogniti<strong>on</strong> process that leads to <strong>the</strong><br />

selecti<strong>on</strong>. Corresp<strong>on</strong>d<strong>in</strong>gly, <strong>the</strong> functi<strong>on</strong>al pr<strong>in</strong>ciple of <strong>the</strong> locati<strong>on</strong> associati<strong>on</strong> stage<br />

c<strong>on</strong>ta<strong>in</strong>s a “pattern recogniti<strong>on</strong>” build<strong>in</strong>g block that provides <strong>the</strong> <strong>in</strong>formati<strong>on</strong> for an<br />

optimal filter adaptati<strong>on</strong>. This pattern recogniti<strong>on</strong> process lays <strong>the</strong> foundati<strong>on</strong> for an<br />

extracti<strong>on</strong> of certa<strong>in</strong> signal patterns.<br />

3.1.2 The associative pattern recogniti<strong>on</strong><br />

The assumpti<strong>on</strong> that certa<strong>in</strong> stimuli trigger particular associati<strong>on</strong> processes c<strong>on</strong>stitutes<br />

an important hypo<strong>the</strong>sis for <strong>the</strong> development of pert<strong>in</strong>ent pattern recogniti<strong>on</strong> models.<br />

If localisati<strong>on</strong> is also seen as an associative process, <strong>on</strong>e obta<strong>in</strong>s a plausible<br />

explanati<strong>on</strong> for <strong>the</strong> assumed ability of <strong>the</strong> auditory system to discrim<strong>in</strong>ate <strong>the</strong><br />

comp<strong>on</strong>ents of a <strong>superimposed</strong> sound field <strong>in</strong> <strong>the</strong> case of two coherent sound sources.<br />

If associati<strong>on</strong> processes normally lead to c<strong>on</strong>gruent sound and auditory event<br />

locati<strong>on</strong>s, it has to be possible to expla<strong>in</strong> localisati<strong>on</strong> deviati<strong>on</strong>s with <strong>the</strong> help of <strong>the</strong>se<br />

associati<strong>on</strong> processes. In fact, this does not just seem to apply to <strong>the</strong> “phantom source”<br />

phenomen<strong>on</strong>. O<strong>the</strong>r localisati<strong>on</strong> phenomena suggest associative processes, too. The<br />

follow<strong>in</strong>g examples of divergencies between sound and auditory event locati<strong>on</strong>s arise<br />

under specific, unnatural c<strong>on</strong>diti<strong>on</strong>s:


25<br />

1. The directi<strong>on</strong> of an auditory event <strong>in</strong> <strong>the</strong> median plane is directly related to <strong>the</strong><br />

spectrum of <strong>the</strong> source signal. For narrowband signals it is <strong>in</strong>dependent of <strong>the</strong> signal’s<br />

angle of <strong>in</strong>cidence. This spectral dependency can be traced back to <strong>the</strong> l<strong>in</strong>ear<br />

distorti<strong>on</strong>s that are caused by <strong>the</strong> head and p<strong>in</strong>nae and that lead to <strong>the</strong> form<strong>in</strong>g of<br />

directi<strong>on</strong>-determ<strong>in</strong><strong>in</strong>g stimulus patterns (“directi<strong>on</strong>al bands”, BLAUERT 1969).<br />

2. If <strong>the</strong> source signal is known, <strong>the</strong> distance of an auditory event will be directly<br />

related to <strong>the</strong> level and spectrum of this signal (e.g. see LAWS 1972). In <strong>the</strong> case of<br />

loudspeaker reproducti<strong>on</strong> <strong>in</strong> <strong>the</strong> free sound field, it is dependent <strong>on</strong> <strong>the</strong> auditory<br />

experience (PLENGE 1973). The relati<strong>on</strong>ship between <strong>the</strong> perceived loudness level<br />

and sound colour and <strong>the</strong> associatively determ<strong>in</strong>ed loudness and “pitch” of <strong>the</strong> sound<br />

source is crucial.<br />

3. In <strong>the</strong> case of a wr<strong>on</strong>g adaptati<strong>on</strong> to <strong>the</strong> present auditory experience, an auditory<br />

event’s directi<strong>on</strong> does not corresp<strong>on</strong>d to <strong>the</strong> angle of <strong>in</strong>cidence of <strong>the</strong> source signal,<br />

e.g. after <strong>the</strong> sudden normalisati<strong>on</strong> of a hear<strong>in</strong>g system that was affected m<strong>on</strong>aurally<br />

by an illness (operati<strong>on</strong>, RÖSER 1965).<br />

4. The locati<strong>on</strong> of an auditory event can be <strong>in</strong>fluenced through guided associati<strong>on</strong>, e.g.<br />

by means of accompany<strong>in</strong>g acoustic or optical stimuli [e.g. KLEMM 1909 (“spatial<br />

complicati<strong>on</strong>”), BLAUERT 1970, PLENGE 1973, MASSARO / WARNER 1977,<br />

LEHRINGER 1979].<br />

5. The manifold causes for <strong>in</strong>side-<strong>the</strong>-head locatedness can be c<strong>on</strong>jo<strong>in</strong>tly expla<strong>in</strong>ed if<br />

<strong>on</strong>e assumes that localisati<strong>on</strong> takes place based <strong>on</strong> a comparis<strong>on</strong> of current <strong>in</strong>put and<br />

learnt stimulus patterns (PLENGE 1972, 1974). Inside-<strong>the</strong>-head locatedness occurs if<br />

a stimulus cannot be mapped to a locati<strong>on</strong>-determ<strong>in</strong><strong>in</strong>g stimulus pattern. This can be<br />

prevented by means of guided associati<strong>on</strong> (e.g. visual <strong>in</strong>formati<strong>on</strong> JEFFRESS /<br />

TAYLOR 1961).<br />

Important phenomena of localisati<strong>on</strong> suggest that <strong>the</strong> relati<strong>on</strong>ship between <strong>the</strong><br />

locati<strong>on</strong> of an auditory event and <strong>the</strong> locati<strong>on</strong> of a sound source is determ<strong>in</strong>ed by <strong>the</strong><br />

associati<strong>on</strong> characteristics. Before develop<strong>in</strong>g <strong>the</strong> complete localisati<strong>on</strong> model, <strong>the</strong><br />

significance of <strong>the</strong> associati<strong>on</strong> pr<strong>in</strong>ciple to o<strong>the</strong>r fields of research and applicati<strong>on</strong>s<br />

shall be briefly depicted. In this c<strong>on</strong>text, it turns out that with <strong>the</strong> help of some k<strong>in</strong>d of<br />

“associative pattern recogniti<strong>on</strong>” essential areas of <strong>the</strong> perceptual process can be<br />

expla<strong>in</strong>ed and also described <strong>in</strong> a greatly simplified form. C<strong>on</strong>versely, associati<strong>on</strong><br />

processes related to neural process<strong>in</strong>g <strong>in</strong> <strong>the</strong> central nervous system turn out not to be<br />

generally proven from a neurophysiological viewpo<strong>in</strong>t.<br />

However, from a perceptual psychologist or <strong>in</strong>formati<strong>on</strong> <strong>the</strong>orist’s perspective,<br />

associati<strong>on</strong> and pattern recogniti<strong>on</strong> mechanisms often provide <strong>the</strong> <strong>on</strong>ly possible<br />

explanati<strong>on</strong> for certa<strong>in</strong> phenomena c<strong>on</strong>cern<strong>in</strong>g auditory (and visual) percepti<strong>on</strong>. This


26<br />

<strong>in</strong>cludes <strong>the</strong> occurrence of “simultaneous auditory events” when present<strong>in</strong>g different<br />

source signals over a s<strong>in</strong>gle loudspeaker, for example. From a communicati<strong>on</strong>seng<strong>in</strong>eer<strong>in</strong>g<br />

po<strong>in</strong>t of view, this corresp<strong>on</strong>ds to <strong>the</strong> recepti<strong>on</strong> of separate signals after<br />

transmissi<strong>on</strong> over a s<strong>in</strong>gle channel with <strong>the</strong> bandwidth of <strong>on</strong>e signal <strong>on</strong>ly. These<br />

fundamental abilities of our hear<strong>in</strong>g system can easily be dem<strong>on</strong>strated and, from a<br />

communicati<strong>on</strong>s eng<strong>in</strong>eer<strong>in</strong>g viewpo<strong>in</strong>t, probably <strong>on</strong>ly be expla<strong>in</strong>ed with <strong>the</strong> help of<br />

<strong>the</strong> <strong>in</strong>formati<strong>on</strong>-reduc<strong>in</strong>g effect of pattern recogniti<strong>on</strong> mechanisms.<br />

Def<strong>in</strong>iti<strong>on</strong> :<br />

Associative pattern recogniti<strong>on</strong> is a process that l<strong>in</strong>ks an <strong>in</strong>put<br />

pattern with a stored pattern, even if <strong>on</strong>ly some parts of <strong>the</strong><br />

stored pattern are c<strong>on</strong>ta<strong>in</strong>ed <strong>in</strong> <strong>the</strong> <strong>in</strong>put pattern.<br />

For a l<strong>on</strong>g time, this mechanism, which to this day rema<strong>in</strong>s hypo<strong>the</strong>tical, has been <strong>the</strong><br />

subject of <strong>in</strong>terest <strong>in</strong> various fields of research, most notably so <strong>in</strong> cybernetics (see<br />

FLECHTNER 1972). In neurophysiology, <strong>on</strong>e assumes <strong>the</strong> existence of a “sensory<br />

associati<strong>on</strong> system” for <strong>the</strong> process<strong>in</strong>g of sensory stimuli <strong>in</strong> <strong>the</strong> central nervous system<br />

(e.g. CASPERS 1973); meanwhile it is c<strong>on</strong>sidered to be virtually unexplored. The<br />

ideas observable <strong>in</strong> this c<strong>on</strong>text are str<strong>on</strong>gly <strong>in</strong>fluenced by cybernetic models.<br />

Especially more recently, researchers have tried to model specific capabilities of <strong>the</strong><br />

human bra<strong>in</strong> <strong>in</strong> order to scrut<strong>in</strong>ise <strong>the</strong>m or to apply <strong>the</strong>m for technical purposes.<br />

Apparently, associative <strong>in</strong>formati<strong>on</strong> storage and associative <strong>in</strong>formati<strong>on</strong> recall<br />

c<strong>on</strong>stitute a basic process<strong>in</strong>g pr<strong>in</strong>ciple (see FUKUSHIMA 1973, POGGIO 1975,<br />

KOHONEN et al. 1976, KOHONEN / OJA 1976, KOKONEN 1977, WESS /<br />

ROEDER 1977, BOHN 1978, FUKUSHIMA / MIYAKE 1978, MURAKAMI et al.<br />

1978).<br />

For <strong>in</strong>stance, a “model of a neural network” by WIGSTROEM 1974, “which is<br />

<strong>in</strong>tended as a possible descripti<strong>on</strong> of <strong>the</strong> cerebral cortex, c<strong>on</strong>sists of a network of cells<br />

assumed to be of excitatory and <strong>in</strong>hibitory type. It is shown that, under suitable<br />

c<strong>on</strong>diti<strong>on</strong>s, <strong>the</strong> output pattern will become composed of just <strong>on</strong>e major comp<strong>on</strong>ent<br />

even if <strong>the</strong> excitatory <strong>in</strong>put pattern is a mixture of several patterns that were present<br />

dur<strong>in</strong>g learn<strong>in</strong>g. This major comp<strong>on</strong>ent is a part of <strong>the</strong> specific output pattern that<br />

dur<strong>in</strong>g learn<strong>in</strong>g became associated with <strong>the</strong> <strong>in</strong>put pattern. The behaviour is obta<strong>in</strong>ed<br />

through a dynamic process <strong>in</strong> which <strong>the</strong> pattern separati<strong>on</strong> properties of <strong>the</strong> feedback<br />

l<strong>in</strong>k play an important role. The model’s operati<strong>on</strong> can be viewed as pattern<br />

recogniti<strong>on</strong>.”<br />

Ano<strong>the</strong>r relevant example is <strong>the</strong> work by WILLWACHER 1976 who compared <strong>the</strong><br />

abilities of an associative storage system to functi<strong>on</strong>s of <strong>the</strong> human bra<strong>in</strong>. The<br />

presented network is capable of imitat<strong>in</strong>g effects of <strong>the</strong> human bra<strong>in</strong> <strong>in</strong> a greatly<br />

simplified form: parallel associati<strong>on</strong> (complete recall of a pattern due to <strong>in</strong>put of a<br />

comp<strong>on</strong>ent of this pattern), serial associati<strong>on</strong> (recall of a temporal sequence of


27<br />

<strong>in</strong>formati<strong>on</strong> patterns due to <strong>in</strong>put of <strong>the</strong> first pattern of <strong>the</strong> sequence), classificati<strong>on</strong> of<br />

an unknown (not stored) <strong>in</strong>formati<strong>on</strong> pattern, coord<strong>in</strong>ati<strong>on</strong> of patterns from two fields<br />

of <strong>the</strong> system, associati<strong>on</strong> of a more probable pattern sequence, disturbance of <strong>the</strong><br />

associati<strong>on</strong> process, “memory aids”, “abstracti<strong>on</strong> of comm<strong>on</strong> characteristics”,<br />

“reversal learn<strong>in</strong>g”, “productive ideas”.<br />

These and o<strong>the</strong>r cybernetic approaches have <strong>in</strong> comm<strong>on</strong> that <strong>the</strong> employed system<br />

comp<strong>on</strong>ents exhibit a behaviour analogous to <strong>the</strong> <strong>on</strong>e of real neur<strong>on</strong>s. S<strong>in</strong>ce to this day<br />

<strong>the</strong>re are no detailed neurological f<strong>in</strong>d<strong>in</strong>gs regard<strong>in</strong>g <strong>the</strong> structure of <strong>the</strong> human bra<strong>in</strong><br />

and <strong>the</strong> form of pattern recogniti<strong>on</strong>, <strong>on</strong>e syn<strong>the</strong>sises respective cortical effects based<br />

<strong>on</strong> <strong>the</strong> known functi<strong>on</strong>al modules so as to derive hypo<strong>the</strong>ses regard<strong>in</strong>g <strong>the</strong> functi<strong>on</strong><strong>in</strong>g<br />

of <strong>the</strong> bra<strong>in</strong>. The central hypo<strong>the</strong>sis is that associative processes represent a basic<br />

pr<strong>in</strong>ciple of sensory stimulus process<strong>in</strong>g.<br />

3.1.3 The functi<strong>on</strong>al pr<strong>in</strong>ciple of <strong>the</strong> locati<strong>on</strong> associati<strong>on</strong> stage<br />

The locati<strong>on</strong> associati<strong>on</strong> stage performs <strong>the</strong> localisati<strong>on</strong> stimulus selecti<strong>on</strong> accord<strong>in</strong>g<br />

to Secti<strong>on</strong> 3.1. The process<strong>in</strong>g of this stage can be described by <strong>the</strong> effect of a<br />

locati<strong>on</strong>-dependent filter (see Secti<strong>on</strong> 3.1.1), <strong>the</strong> parameters of which are c<strong>on</strong>trolled as<br />

a result of associative pattern recogniti<strong>on</strong> as outl<strong>in</strong>ed <strong>in</strong> Secti<strong>on</strong> 3.1.2. A “b<strong>in</strong>aural<br />

correlati<strong>on</strong> pattern” (see Secti<strong>on</strong> 4.1) is chosen as a useful signal pattern for <strong>the</strong><br />

recogniti<strong>on</strong> process. In Figure 13 <strong>the</strong> functi<strong>on</strong>al pr<strong>in</strong>ciple of <strong>the</strong> locati<strong>on</strong> associati<strong>on</strong><br />

stage is shown.<br />

Spatial encod<strong>in</strong>g<br />

from<br />

peripheral<br />

stage<br />

c<strong>on</strong>trollable /<br />

adaptive filter<br />

„ M -1 “<br />

to <strong>the</strong><br />

gestalt<br />

associati<strong>on</strong><br />

stage<br />

Input<br />

B<strong>in</strong>aural<br />

correlati<strong>on</strong><br />

pattern<br />

Associative<br />

pattern<br />

recogniti<strong>on</strong><br />

Stored<br />

B<strong>in</strong>aural<br />

correlati<strong>on</strong><br />

pattern<br />

Figure 13:<br />

Functi<strong>on</strong>al pr<strong>in</strong>ciple of <strong>the</strong> locati<strong>on</strong> associati<strong>on</strong> stage


28<br />

It is assumed that <strong>the</strong> relati<strong>on</strong>ship between <strong>the</strong> <strong>in</strong>- and output signal can describe <strong>the</strong><br />

behaviour of this hypo<strong>the</strong>tical process<strong>in</strong>g stage. This functi<strong>on</strong>al pr<strong>in</strong>ciple is not meant<br />

to replicate <strong>the</strong> <strong>in</strong>ner structure of <strong>the</strong> sensory process<strong>in</strong>g. Its functi<strong>on</strong><strong>in</strong>g requires <strong>the</strong><br />

materialisati<strong>on</strong> of <strong>the</strong> experience processes <strong>in</strong> <strong>the</strong> past, so that <strong>the</strong> stored b<strong>in</strong>aural<br />

correlati<strong>on</strong> pattern is available.<br />

A characteristic of <strong>the</strong> locati<strong>on</strong> associati<strong>on</strong> stage is its selective property. The signal<br />

com<strong>in</strong>g from <strong>the</strong> peripheral stage (see Secti<strong>on</strong> 3.2) c<strong>on</strong>ta<strong>in</strong>s <strong>in</strong>formati<strong>on</strong> about spatial<br />

as well as gestalt features (of <strong>on</strong>e sound source). The spatial <strong>in</strong>formati<strong>on</strong> is recognised<br />

with <strong>the</strong> help of <strong>the</strong> pattern recogniti<strong>on</strong> process, whilst <strong>the</strong> gestalt <strong>in</strong>formati<strong>on</strong> is<br />

discrim<strong>in</strong>ated by means of <strong>the</strong> adaptive filter and <strong>the</strong>n passed <strong>on</strong> to <strong>the</strong> gestalt<br />

associati<strong>on</strong> stage.<br />

In o<strong>the</strong>r words, <strong>the</strong> imp<strong>in</strong>g<strong>in</strong>g signal is ‘freed from’ <strong>the</strong> <strong>in</strong>fluence of <strong>the</strong> outer ear with<br />

<strong>the</strong> help of <strong>the</strong> locati<strong>on</strong>-dependent filter “M -1 ”, <strong>the</strong> weight<strong>in</strong>g of <strong>the</strong> source signal by<br />

means of <strong>the</strong> effective transfer functi<strong>on</strong> is reversed, and <strong>the</strong> source signal as well as<br />

<strong>the</strong> <strong>in</strong>formati<strong>on</strong> obta<strong>in</strong>ed about <strong>the</strong> directi<strong>on</strong> and distance of <strong>the</strong> source are forwarded<br />

separately.<br />

3.2 The associati<strong>on</strong> model<br />

The new localisati<strong>on</strong> model is called “associati<strong>on</strong> model”. Before depict<strong>in</strong>g <strong>the</strong><br />

functi<strong>on</strong><strong>in</strong>g of <strong>the</strong> complete localisati<strong>on</strong> model, <strong>the</strong> fundamental approach – i.e. to<br />

regard localisati<strong>on</strong> as <strong>the</strong> result of a perceptual process that is solely possible because<br />

of auditory experience – shall be described <strong>in</strong> a more detail.<br />

3.2.1 Sensati<strong>on</strong>al or percepti<strong>on</strong>al model?<br />

In <strong>the</strong> sensory system, <strong>the</strong> hypo<strong>the</strong>tical associati<strong>on</strong> process corresp<strong>on</strong>ds to <strong>the</strong> functi<strong>on</strong><br />

of a highly effective filter carry<strong>in</strong>g out <strong>in</strong>formati<strong>on</strong> reducti<strong>on</strong> <strong>in</strong>-between peripheral<br />

recepti<strong>on</strong> and c<strong>on</strong>scious percepti<strong>on</strong>. On <strong>the</strong> <strong>on</strong>e hand, stored associati<strong>on</strong> patterns that<br />

are <strong>in</strong>fluenced by previous experience give rise to a mean<strong>in</strong>gful selecti<strong>on</strong> of<br />

<strong>in</strong>formati<strong>on</strong>. On <strong>the</strong> o<strong>the</strong>r hand, <strong>in</strong> spite of <strong>the</strong> <strong>in</strong>formati<strong>on</strong> reducti<strong>on</strong>, <strong>the</strong>y allow for a<br />

sufficiently accurate recogniti<strong>on</strong> of <strong>the</strong> stimulus c<strong>on</strong>figurati<strong>on</strong>s of <strong>the</strong> envir<strong>on</strong>ment<br />

(MARKO 1971, KEIDEL 1973).<br />

If, due to lack of experience, miss<strong>in</strong>g adaptati<strong>on</strong> or biological reas<strong>on</strong>s, no associati<strong>on</strong>s<br />

can be formed, mean<strong>in</strong>gless sensati<strong>on</strong>s ra<strong>the</strong>r than c<strong>on</strong>scious percepti<strong>on</strong>s will be <strong>the</strong><br />

c<strong>on</strong>sequence. This phenomen<strong>on</strong> is well known <strong>in</strong> <strong>the</strong> field of neurophysiology.<br />

Deactivati<strong>on</strong> of <strong>the</strong> so-called associati<strong>on</strong> cortices <strong>in</strong> <strong>the</strong> sensory system causes<br />

percepti<strong>on</strong> disorder, i.e. it impairs <strong>the</strong> perceptual functi<strong>on</strong> of sensory <strong>in</strong>formati<strong>on</strong>


29<br />

(agnosia). For humans, agnosia can develop with respect to different sensory<br />

modalities. If, for example, <strong>the</strong> auditory associati<strong>on</strong> area (<strong>in</strong> <strong>the</strong> left temporal lobe) is<br />

destroyed, speech comprehensi<strong>on</strong> (am<strong>on</strong>gst o<strong>the</strong>r th<strong>in</strong>gs) is lost. Although <strong>the</strong> affected<br />

pers<strong>on</strong> can still hear, <strong>the</strong> mean<strong>in</strong>g of <strong>the</strong> signal is hidden. It is not known, however, if<br />

<strong>the</strong> ability to localise can be cut off as well (such physiological verificati<strong>on</strong> of locati<strong>on</strong><br />

associati<strong>on</strong> would be very enlighten<strong>in</strong>g <strong>in</strong>deed).<br />

The significance of associati<strong>on</strong> processes to c<strong>on</strong>scious percepti<strong>on</strong>s leads to a mean<strong>in</strong>gful<br />

term<strong>in</strong>ological dist<strong>in</strong>cti<strong>on</strong> between <strong>the</strong> terms “sensati<strong>on</strong>” and “percepti<strong>on</strong>”.<br />

Def<strong>in</strong>iti<strong>on</strong> :<br />

Sensati<strong>on</strong>s are sensory events caused by stimuli that cannot be<br />

subdivided fur<strong>the</strong>r and that are not affected by learn<strong>in</strong>g processes,<br />

c<strong>on</strong>scious or subc<strong>on</strong>scious <strong>in</strong>terpretati<strong>on</strong>s. They do not<br />

arise as a result of associati<strong>on</strong>s.<br />

Def<strong>in</strong>iti<strong>on</strong> :<br />

Percepti<strong>on</strong>s are sensory events caused by stimuli that are<br />

mapped to <strong>the</strong> outside world as a result of sensory experience<br />

and that can <strong>the</strong>refore be <strong>in</strong>fluenced by learn<strong>in</strong>g processes,<br />

c<strong>on</strong>scious and subc<strong>on</strong>scious <strong>in</strong>terpretati<strong>on</strong>s. They arise as a result<br />

of associati<strong>on</strong>s.<br />

This demarcati<strong>on</strong> implies that when develop<strong>in</strong>g perceptual models, it should always<br />

be clarified whe<strong>the</strong>r a sensati<strong>on</strong> or percepti<strong>on</strong> model shall or ra<strong>the</strong>r can describe <strong>the</strong><br />

process of <strong>in</strong>terest.<br />

When <strong>in</strong>vestigat<strong>in</strong>g perceptual processes, <strong>the</strong> ma<strong>in</strong> problem <strong>the</strong>refore lies <strong>in</strong> <strong>the</strong><br />

necessary demarcati<strong>on</strong>. This is where sources of error orig<strong>in</strong>ate, because without<br />

knowledge of <strong>the</strong> whole process <strong>on</strong>e cannot decide if or to what extent sub-areas of<br />

<strong>the</strong> perceptual process can be described separately.<br />

With some reservati<strong>on</strong>s, it should be possible to c<strong>on</strong>sider spatial hear<strong>in</strong>g <strong>in</strong> isolati<strong>on</strong><br />

from visual percepti<strong>on</strong>. However, how can <strong>on</strong>e justify c<strong>on</strong>sider<strong>in</strong>g directi<strong>on</strong>al hear<strong>in</strong>g<br />

<strong>in</strong> isolati<strong>on</strong> from distance hear<strong>in</strong>g?<br />

Directi<strong>on</strong> and distance are <strong>on</strong>ly co-ord<strong>in</strong>ates of <strong>the</strong> locati<strong>on</strong> of an auditory event;<br />

directi<strong>on</strong> does not exist without distance. A model for directi<strong>on</strong>al hear<strong>in</strong>g is no<br />

perceptual model, which is why it does not <strong>in</strong>evitably describe a specific functi<strong>on</strong> of<br />

<strong>the</strong> auditory system with regard to spatial hear<strong>in</strong>g. Likewise, <strong>in</strong>vestigat<strong>in</strong>g localisati<strong>on</strong><br />

by means of s<strong>in</strong>e t<strong>on</strong>es is also questi<strong>on</strong>able. How should <strong>the</strong> auditory system be able<br />

to determ<strong>in</strong>e <strong>the</strong> distance of a sound source radiat<strong>in</strong>g a pure t<strong>on</strong>e (see Secti<strong>on</strong> 4.2.4)?


30<br />

In terms of <strong>the</strong> localisati<strong>on</strong> model to be depicted below, it is assumed that directi<strong>on</strong><br />

and distance are <strong>in</strong>separable qualities of spatial hear<strong>in</strong>g.<br />

It is strik<strong>in</strong>g that <strong>in</strong> <strong>the</strong> area of visual percepti<strong>on</strong> many genu<strong>in</strong>e percepti<strong>on</strong> models are<br />

known, whereas this is hardly <strong>the</strong> case for auditory percepti<strong>on</strong>. From a<br />

neurophysiologist and <strong>in</strong>formati<strong>on</strong> <strong>the</strong>orist’s viewpo<strong>in</strong>t this is <strong>in</strong>comprehensible, as no<br />

fundamental differences exist between <strong>the</strong> eye and ear’s functi<strong>on</strong> as receptors of<br />

<strong>in</strong>formati<strong>on</strong>. N<strong>on</strong>e<strong>the</strong>less, <strong>the</strong>re are two reas<strong>on</strong>s for this deficiency. Firstly, due to<br />

commercial reas<strong>on</strong>s a much larger <strong>in</strong>terest exists for technical applicati<strong>on</strong>s of visual<br />

percepti<strong>on</strong> models (data reducti<strong>on</strong> by means of appropriate source cod<strong>in</strong>g for image<br />

transmissi<strong>on</strong>, e.g. replicati<strong>on</strong> of pattern recogniti<strong>on</strong> pr<strong>in</strong>ciples with <strong>the</strong> help of<br />

classificati<strong>on</strong> processes or adaptive filters). Sec<strong>on</strong>dly, pattern recogniti<strong>on</strong> and<br />

associati<strong>on</strong> pr<strong>in</strong>ciples are more clearly recognisable <strong>in</strong> visual compared to auditory<br />

percepti<strong>on</strong>.<br />

At this po<strong>in</strong>t, two perceptual models – <strong>on</strong>e from <strong>the</strong> visual and <strong>on</strong>e from <strong>the</strong> acoustical<br />

doma<strong>in</strong> – shall be briefly del<strong>in</strong>eated, s<strong>in</strong>ce <strong>the</strong>y c<strong>on</strong>ta<strong>in</strong> mechanisms also featured <strong>in</strong><br />

<strong>the</strong> new localisati<strong>on</strong> model.<br />

Replicat<strong>in</strong>g <strong>the</strong> visual system, MARKO 1974, 1978 proposed <strong>the</strong> so-called “layer<br />

model” for pattern recogniti<strong>on</strong>, which he based <strong>on</strong> c<strong>on</strong>siderati<strong>on</strong>s of system <strong>the</strong>ory<br />

(see Figure 14).<br />

The “layer” is meant to symbolise a layer of neur<strong>on</strong>s <strong>on</strong> which <strong>on</strong>e should imag<strong>in</strong>e<br />

excitati<strong>on</strong> patterns. The hatch<strong>in</strong>g of <strong>the</strong> layer is supposed to <strong>in</strong>dicate that threshold<br />

elements are present at <strong>the</strong> output, so that <strong>on</strong>ly suprathreshold signals are passed <strong>on</strong>.<br />

In terms of system <strong>the</strong>ory, this arrangement corresp<strong>on</strong>ds to a multi-stage threshold<br />

logic. The n<strong>on</strong>-l<strong>in</strong>earity given by <strong>the</strong> threshold elements is crucial for <strong>the</strong><br />

classificati<strong>on</strong> process. With<strong>in</strong> <strong>the</strong> discrete stages, local filter<strong>in</strong>g is carried out<br />

(orientati<strong>on</strong>-selective filter, edge detecti<strong>on</strong>), <strong>the</strong> subsequent n<strong>on</strong>-l<strong>in</strong>ear distorti<strong>on</strong> (e.g.<br />

maximum detecti<strong>on</strong>) enabl<strong>in</strong>g <strong>the</strong> classificati<strong>on</strong>. It is worth emphasis<strong>in</strong>g <strong>the</strong> multistage<br />

pr<strong>in</strong>ciple of this classificati<strong>on</strong> model.<br />

The pattern characteristics are discrim<strong>in</strong>ated and forwarded <strong>on</strong>e after <strong>the</strong> o<strong>the</strong>r. They<br />

complement each o<strong>the</strong>r after hav<strong>in</strong>g passed through all layers, thus form<strong>in</strong>g <strong>the</strong><br />

complete pattern. This is also a feature of <strong>the</strong> associati<strong>on</strong> model.


31<br />

n<strong>on</strong>l<strong>in</strong>ear<br />

classificati<strong>on</strong><br />

e.g.<br />

maximum<br />

detector<br />

Input<br />

layer<br />

Directi<strong>on</strong>al<br />

filter<br />

Higher level<br />

cues<br />

Figure 14 :<br />

Layer model for pattern recogniti<strong>on</strong> with local filter<strong>in</strong>g with<strong>in</strong> <strong>the</strong> discrete<br />

stages and subsequent n<strong>on</strong>-l<strong>in</strong>ear computati<strong>on</strong> (after MARKO 1978)<br />

MODEL FOR LOCALISATION (DIRECTION AND DISTANCE)<br />

LONG TERM<br />

STORAGE<br />

Learned<br />

hear<strong>in</strong>g<br />

ability<br />

SHORT TERM<br />

STORAGE<br />

Knowledge<br />

of sources<br />

and space<br />

(signal)<br />

STIMULUS<br />

STIMULUS PROCESSING - comparis<strong>on</strong><br />

with stored STIMULUS PATTERN<br />

LOCALISATION<br />

Figure 15:<br />

Localisati<strong>on</strong> model for <strong>the</strong> explanati<strong>on</strong> of <strong>in</strong>side-<strong>the</strong>-head locatedness<br />

(after PLENGE 1973)


32<br />

A rigorous perceptual model for auditory percepti<strong>on</strong> is given by a psychologically<br />

oriented localisati<strong>on</strong> model that was proposed by PLENGE 1973. This model probably<br />

offers a comprehensive explanati<strong>on</strong> for <strong>in</strong>side-<strong>the</strong>-head locatedness (Figure 15).<br />

It comprises both short- and l<strong>on</strong>g-term memory as well as a stimulus process<strong>in</strong>g<br />

mechanism that compares stored stimulus patterns to <strong>in</strong>put patterns. The stimulus<br />

process<strong>in</strong>g does not lead to (externalised) localisati<strong>on</strong> if (1) <strong>the</strong> short-term memory<br />

does not c<strong>on</strong>ta<strong>in</strong> or (still) c<strong>on</strong>ta<strong>in</strong>s wr<strong>on</strong>g <strong>in</strong>formati<strong>on</strong> about sound sources and <strong>the</strong>ir<br />

locati<strong>on</strong>s or (2) <strong>the</strong> stimuli are of such a k<strong>in</strong>d that “<strong>the</strong>y cannot be mapped to a<br />

stimulus pattern c<strong>on</strong>ta<strong>in</strong>ed <strong>in</strong> l<strong>on</strong>g-term memory”.<br />

Remarkably, <strong>in</strong> this model localisati<strong>on</strong> is traced back to a learn<strong>in</strong>g process, <strong>the</strong> shortterm<br />

as well as <strong>the</strong> l<strong>on</strong>g-term memory be<strong>in</strong>g of particular importance. The approach<br />

“stimulus process<strong>in</strong>g by means of comparis<strong>on</strong> with stored stimulus patterns” is<br />

c<strong>on</strong>ta<strong>in</strong>ed <strong>in</strong> <strong>the</strong> associati<strong>on</strong> model. The “associatively guided pattern recogniti<strong>on</strong>” can<br />

be seen as its fur<strong>the</strong>r development.<br />

3.2.2 The functi<strong>on</strong><strong>in</strong>g of <strong>the</strong> associati<strong>on</strong> model<br />

The above c<strong>on</strong>siderati<strong>on</strong>s lead to <strong>the</strong> follow<strong>in</strong>g functi<strong>on</strong>al pr<strong>in</strong>ciple of <strong>the</strong> associati<strong>on</strong><br />

model (Figure 16).<br />

Apart from <strong>the</strong> peripheral stage that subdivides <strong>the</strong> ear signals <strong>in</strong>to spectral<br />

comp<strong>on</strong>ents of approximately c<strong>on</strong>stant relative bandwidth with <strong>the</strong> help of filter banks<br />

(see ZWICKER / FELDKELLER 1967, DUIFHUIS 1972, BLAUERT 1974, 1978),<br />

<strong>the</strong> associati<strong>on</strong> model comprises <strong>the</strong> two central process<strong>in</strong>g stages “locati<strong>on</strong><br />

associati<strong>on</strong> stage” and “gestalt associati<strong>on</strong> stage”. Each of <strong>the</strong>se two process<strong>in</strong>g<br />

mechanisms takes place <strong>in</strong> <strong>the</strong> form of an associatively guided pattern selecti<strong>on</strong>.<br />

Hav<strong>in</strong>g passed <strong>the</strong> peripheral stage, certa<strong>in</strong> ear signals give rise to a locati<strong>on</strong><br />

associati<strong>on</strong> <strong>in</strong> <strong>the</strong> first and to a gestalt associati<strong>on</strong> <strong>in</strong> <strong>the</strong> sec<strong>on</strong>d, higher-level stage.<br />

The two stages always determ<strong>in</strong>e <strong>the</strong> auditory event properties <strong>in</strong> a c<strong>on</strong>jo<strong>in</strong>t fashi<strong>on</strong>.<br />

The rigorous differentiati<strong>on</strong> of <strong>the</strong>se two stimulus evaluati<strong>on</strong> stages corresp<strong>on</strong>ds<br />

entirely to <strong>the</strong> two elementary areas of auditory experience. The received ear signals<br />

can be attributed to <strong>the</strong> two sound source characteristics of “locati<strong>on</strong>” and “signal”,<br />

which are <strong>in</strong>dependent of each o<strong>the</strong>r but always occur <strong>in</strong> a pairwise fashi<strong>on</strong>.<br />

In pr<strong>in</strong>ciple, <strong>the</strong> two central evaluati<strong>on</strong> stages <strong>the</strong>refore also c<strong>on</strong>ta<strong>in</strong> <strong>the</strong> same<br />

process<strong>in</strong>g mechanisms. Similar to <strong>the</strong> locati<strong>on</strong> associati<strong>on</strong> stage’s mechanism for<br />

localisati<strong>on</strong> stimulus selecti<strong>on</strong> that was outl<strong>in</strong>ed above, <strong>the</strong> gestalt associati<strong>on</strong> stage<br />

c<strong>on</strong>ta<strong>in</strong>s a mechanism for <strong>the</strong> selecti<strong>on</strong> of <strong>the</strong> gestalt.


33<br />

o<strong>the</strong>r specific systems (visual, tactile)<br />

n o n – s p e c i f i c s y s t e m<br />

Ear signal<br />

Ear signal<br />

Filterbank<br />

Filterbank<br />

Locati<strong>on</strong><br />

determ<strong>in</strong><strong>in</strong>g<br />

associative<br />

pattern<br />

selecti<strong>on</strong><br />

Gestalt<br />

determ<strong>in</strong><strong>in</strong>g<br />

associative<br />

pattern<br />

selecti<strong>on</strong><br />

Auditory<br />

event<br />

Peripheral<br />

stage<br />

Locati<strong>on</strong> associati<strong>on</strong><br />

stage<br />

Gestalt associati<strong>on</strong><br />

stage<br />

Auditory system<br />

Figure 16 :<br />

The functi<strong>on</strong>al pr<strong>in</strong>ciple of <strong>the</strong> associati<strong>on</strong> model<br />

It is assumed that <strong>the</strong> functi<strong>on</strong> of <strong>the</strong> acoustic associati<strong>on</strong> system is <strong>in</strong>fluenced by a socalled<br />

“n<strong>on</strong>-specific system” <strong>in</strong> terms of guided associati<strong>on</strong> (see Secti<strong>on</strong> 3.1.2).<br />

(Neurophysiological research has shown that this “reticulate system” is c<strong>on</strong>nected<br />

with all <strong>the</strong> areas of <strong>the</strong> cerebrum. One assumes that it is resp<strong>on</strong>sible for coord<strong>in</strong>at<strong>in</strong>g<br />

<strong>the</strong> <strong>in</strong>tegrati<strong>on</strong> of stimulati<strong>on</strong>s, e.g. <strong>the</strong> process<strong>in</strong>g of acoustic and optical signals, as<br />

well as a c<strong>on</strong>sciousness- and attenti<strong>on</strong>-depend<strong>in</strong>g filter<strong>in</strong>g of <strong>in</strong>formati<strong>on</strong>, see e.g.<br />

CASPERS 1973).<br />

The functi<strong>on</strong><strong>in</strong>g of <strong>the</strong> locati<strong>on</strong> associati<strong>on</strong> stage was already depicted <strong>in</strong> Secti<strong>on</strong><br />

3.1.3. A characteristic of <strong>the</strong> gestalt associati<strong>on</strong> stage is that it processes a received<br />

stimulus <strong>in</strong>dependently of its spatial <strong>in</strong>formati<strong>on</strong>. This stage represents all<br />

mechanisms that are necessary for <strong>the</strong> source- or gestalt-dependent percepti<strong>on</strong> of a<br />

stimulus. Its sub-areas are resp<strong>on</strong>sible for a multitude of different auditory<br />

phenomena. These <strong>in</strong>clude mechanisms for signal fusi<strong>on</strong> as well as <strong>the</strong> recogniti<strong>on</strong><br />

and evaluati<strong>on</strong> of music and speech.<br />

The psychoacoustic regularities of b<strong>in</strong>aural signal detecti<strong>on</strong> are important to <strong>the</strong><br />

functi<strong>on</strong><strong>in</strong>g of <strong>the</strong> associati<strong>on</strong> model (BMLD and BILD, see BLAUERT 1974, pp.<br />

206), which are attributed to <strong>the</strong> gestalt associati<strong>on</strong> stage (see Chapter 5). Such models<br />

(e.g. <strong>the</strong> “accumulati<strong>on</strong> model” by SCHENKEL 1967, <strong>the</strong> “EC model” by


34<br />

DURLACH 1963, 1972 or <strong>the</strong> “correlati<strong>on</strong> model” by OSMAN 1971) <strong>the</strong>refore<br />

follow <strong>the</strong> locati<strong>on</strong> associati<strong>on</strong> stage.<br />

The model for pitch percepti<strong>on</strong> of complex sounds by TERHARDT 1972 agrees<br />

especially well with <strong>the</strong> associative process<strong>in</strong>g of <strong>the</strong> gestalt associati<strong>on</strong> stage. It is<br />

based <strong>on</strong> <strong>the</strong> assumpti<strong>on</strong> that<br />

“… <strong>the</strong> human hear<strong>in</strong>g system does not <strong>in</strong>herently know <strong>the</strong> difference between<br />

harm<strong>on</strong>ic and n<strong>on</strong>-harm<strong>on</strong>ic sounds. If <strong>the</strong> hear<strong>in</strong>g system is ‘<strong>in</strong> a natural state’,<br />

every sound is made up of a complicated comb<strong>in</strong>ati<strong>on</strong> of spectral pitches and<br />

perceived sound pressure fluctuati<strong>on</strong>s. … With <strong>the</strong> help of acquired knowledge<br />

of pitch relati<strong>on</strong>s between harm<strong>on</strong>ically related sounds and <strong>the</strong> perceived<br />

frequency of <strong>the</strong> sound pressure fluctuati<strong>on</strong>s, <strong>the</strong> hear<strong>in</strong>g system allocates a t<strong>on</strong>al<br />

mean<strong>in</strong>g to each presented sound. This t<strong>on</strong>al mean<strong>in</strong>g is perceived more or less<br />

dist<strong>in</strong>ctively as ‘virtual pitch’.” (TERHARDT 1972)<br />

The associati<strong>on</strong> model is compatible with this model, too. The source signals, which<br />

are discrim<strong>in</strong>ated by <strong>the</strong> effect of <strong>the</strong> locati<strong>on</strong> associati<strong>on</strong> stage, c<strong>on</strong>ta<strong>in</strong> all spectral<br />

<strong>in</strong>formati<strong>on</strong>. The percepti<strong>on</strong> (see def<strong>in</strong>iti<strong>on</strong> <strong>on</strong> page 29) of sound colour can occur <strong>in</strong><br />

terms of both proposed models.<br />

At this po<strong>in</strong>t, a localisati<strong>on</strong> phenomen<strong>on</strong> shall be po<strong>in</strong>ted out that so far has not been<br />

explicitly <strong>in</strong>vestigated. The sound colour of an auditory event turns out to be largely<br />

<strong>in</strong>dependent of <strong>the</strong> locati<strong>on</strong> of a sound event, even though <strong>the</strong> spectra of <strong>the</strong> ear<br />

signals are str<strong>on</strong>gly locati<strong>on</strong>-dependent (e.g. see BLAUERT 1974). To illustrate, a<br />

listener slowly turn<strong>in</strong>g by 180° <strong>in</strong> fr<strong>on</strong>t of a loudspeaker that is located <strong>in</strong> an anechoic<br />

chamber and that radiates white noise hardly perceives changes <strong>in</strong> sound colour when<br />

listen<strong>in</strong>g b<strong>in</strong>aurally.<br />

This phenomen<strong>on</strong> can easily be expla<strong>in</strong>ed by means of <strong>the</strong> effect of <strong>the</strong> locati<strong>on</strong><br />

associati<strong>on</strong> stage. As a result of <strong>the</strong> localisati<strong>on</strong> stimulus selecti<strong>on</strong>, <strong>on</strong>ly <strong>the</strong><br />

discrim<strong>in</strong>ated source signal reaches <strong>the</strong> gestalt associati<strong>on</strong> stage. It is not until here<br />

that <strong>the</strong> process for determ<strong>in</strong><strong>in</strong>g sound colour takes place.<br />

What effect does <strong>the</strong> model have <strong>in</strong> <strong>the</strong> <strong>superimposed</strong> sound field? To beg<strong>in</strong> with, this<br />

shall be illustrated for <strong>the</strong> phantom source situati<strong>on</strong>.<br />

A useful way of depict<strong>in</strong>g <strong>the</strong> effect is by means of “impulse diagrams”, which depict<br />

<strong>the</strong> temporal, b<strong>in</strong>aural characteristics <strong>in</strong> a simple manner. The well-known hypo<strong>the</strong>sis<br />

that <strong>the</strong> auditory system <strong>in</strong>itially evaluates each ear signal similar to an autocorrelati<strong>on</strong><br />

analysis (e.g. LICKLIDER 1951) but separately for narrow frequency<br />

bands (e.g. ZWICKER / FELDKELLER 1967, DUIFHUIS 1972, BLAUERT 1974,<br />

1978) justifies this illustrati<strong>on</strong> method. The relative positi<strong>on</strong>s of <strong>the</strong> maxima reflect<br />

<strong>the</strong> <strong>in</strong>teraural time difference for each frequency band (see Secti<strong>on</strong> 4.1). For <strong>the</strong>


35<br />

simplified case of <strong>the</strong> <strong>in</strong>teraural time differences be<strong>in</strong>g frequency-<strong>in</strong>dependent, an<br />

impulse pair AL / AR shall represent <strong>the</strong> temporal characteristics of a discrim<strong>in</strong>able,<br />

sufficiently broadband sound source A (Figure 17).<br />

Figure 17 :<br />

Illustrati<strong>on</strong> of <strong>the</strong> temporal, b<strong>in</strong>aural characteristics of a sound event<br />

In accordance with <strong>the</strong> hypo<strong>the</strong>tical associati<strong>on</strong> process of <strong>the</strong> hear<strong>in</strong>g system, <strong>the</strong><br />

diagram has to be <strong>in</strong>terpreted as follows. If <strong>the</strong> ear signals featur<strong>in</strong>g <strong>the</strong>se temporal<br />

properties c<strong>on</strong>ta<strong>in</strong> appropriate spectral characteristics, <strong>the</strong>y will cause a locati<strong>on</strong><br />

associati<strong>on</strong>. Appropriate temporal and spectral characteristics are available if <strong>the</strong>y can<br />

be attributed to a particular sound source positi<strong>on</strong>ed at a certa<strong>in</strong> locati<strong>on</strong>.<br />

In <strong>the</strong> phantom source situati<strong>on</strong> <strong>the</strong> associati<strong>on</strong> model could <strong>the</strong>refore have <strong>the</strong><br />

follow<strong>in</strong>g effect (a discussi<strong>on</strong> will follow <strong>in</strong> Chapter 4):<br />

Based <strong>on</strong> associatively guided pattern recogniti<strong>on</strong>, <strong>the</strong> locati<strong>on</strong> associati<strong>on</strong> stage<br />

carries out <strong>the</strong> localisati<strong>on</strong> stimulus selecti<strong>on</strong>. It supplies <strong>the</strong> gestalt associati<strong>on</strong> stage<br />

with two separate stimulus resp<strong>on</strong>ses A’ and B’, which c<strong>on</strong>ta<strong>in</strong> <strong>the</strong> source signal<br />

characteristics of <strong>the</strong> sound sources A and B, respectively. In <strong>the</strong> gestalt associati<strong>on</strong><br />

stage <strong>the</strong> stimulus resp<strong>on</strong>ses A’ and B’ are subjected to a process that leads to <strong>the</strong><br />

gestalt of <strong>the</strong> auditory event be<strong>in</strong>g determ<strong>in</strong>ed. It is not until this po<strong>in</strong>t that <strong>the</strong> two<br />

stimulus resp<strong>on</strong>ses are fused to a s<strong>in</strong>gle stimulus resp<strong>on</strong>se. This is because <strong>the</strong><br />

(source-specific) spatial <strong>in</strong>formati<strong>on</strong> is not evaluated here, but ra<strong>the</strong>r <strong>the</strong> (identical)<br />

<strong>in</strong>formati<strong>on</strong> about <strong>the</strong> source signals. As l<strong>on</strong>g as <strong>the</strong> loudspeakers radiate sufficiently<br />

similar signals, complete fusi<strong>on</strong> occurs <strong>in</strong> this process<strong>in</strong>g stage. Hence, <strong>the</strong>re is <strong>on</strong>ly<br />

<strong>on</strong>e auditory event and c<strong>on</strong>sequently <strong>on</strong>ly <strong>on</strong>e comm<strong>on</strong> auditory event locati<strong>on</strong> – <strong>the</strong><br />

locati<strong>on</strong> of <strong>the</strong> phantom source.


36<br />

Figure 18 :<br />

Evaluati<strong>on</strong> of <strong>the</strong> ear signals <strong>in</strong> a phantom source situati<strong>on</strong><br />

a) associati<strong>on</strong> pr<strong>in</strong>ciple<br />

b) summ<strong>in</strong>g localisati<strong>on</strong> pr<strong>in</strong>ciple<br />

Us<strong>in</strong>g <strong>the</strong> hypo<strong>the</strong>tical locati<strong>on</strong> associati<strong>on</strong>, <strong>the</strong> hear<strong>in</strong>g system is able to retrieve<br />

those comp<strong>on</strong>ents from <strong>the</strong> <strong>superimposed</strong> sound fields AL + BL and BR + AR that<br />

each stem from <strong>on</strong>e loudspeaker. Due to <strong>the</strong>ir suitable temporal and spectral<br />

characteristics, <strong>the</strong> comp<strong>on</strong>ents AL / AR and BL / BR each cause a locati<strong>on</strong><br />

associati<strong>on</strong>. This is c<strong>on</strong>trasted by <strong>the</strong> summ<strong>in</strong>g localisati<strong>on</strong> pr<strong>in</strong>ciple shown <strong>in</strong> Figure<br />

18 b, <strong>the</strong> difference to <strong>the</strong> associati<strong>on</strong> pr<strong>in</strong>ciple be<strong>in</strong>g clearly visible. The summed<br />

signals AL + BL and BR + AR are evaluated; <strong>the</strong>y c<strong>on</strong>ta<strong>in</strong> <strong>the</strong> spectral changes due to<br />

<strong>the</strong> present comb filter (see Secti<strong>on</strong> 2.2.1).<br />

It appears that <strong>the</strong> associati<strong>on</strong> model offers a plausible explanati<strong>on</strong> for <strong>the</strong><br />

<strong>in</strong>effectiveness of <strong>the</strong> comb filter effect <strong>in</strong> <strong>the</strong> phantom source situati<strong>on</strong> – presumably,<br />

this is <strong>the</strong> <strong>on</strong>ly possible explanati<strong>on</strong>.<br />

In <strong>the</strong> next chapter, <strong>the</strong> associati<strong>on</strong> model shall be discussed <strong>in</strong> terms of specific<br />

auditory phenomena occurr<strong>in</strong>g for particular c<strong>on</strong>stellati<strong>on</strong>s of <strong>the</strong> <strong>superimposed</strong> sound<br />

field.


37<br />

4. The localisati<strong>on</strong> process <strong>in</strong> <strong>the</strong> <strong>superimposed</strong> sound field – Discussi<strong>on</strong> of <strong>the</strong><br />

associati<strong>on</strong> model<br />

The localisati<strong>on</strong> model described <strong>in</strong> <strong>the</strong> previous chapter states that, due to its<br />

associati<strong>on</strong> properties, <strong>the</strong> auditory system is capable of discrim<strong>in</strong>at<strong>in</strong>g at least two<br />

sound events simultaneously – even if <strong>the</strong>y differ with respect to <strong>the</strong>ir spatial qualities<br />

<strong>on</strong>ly. The hypo<strong>the</strong>tical demarcati<strong>on</strong> of <strong>the</strong> locati<strong>on</strong> and gestalt associati<strong>on</strong> stages as<br />

well as <strong>the</strong> assumpti<strong>on</strong> that both stages carry out a specific pattern selecti<strong>on</strong> as a result<br />

of associative signal process<strong>in</strong>g form a possible basis for <strong>the</strong> explanati<strong>on</strong> of our<br />

hear<strong>in</strong>g system’s capabilities <strong>in</strong> <strong>the</strong> <strong>superimposed</strong> sound field.<br />

If it is assumed that <strong>the</strong> two associati<strong>on</strong> processes have different effects <strong>on</strong>ly because<br />

of different stored patterns, <strong>the</strong>n, with<strong>in</strong> certa<strong>in</strong> limits (see Secti<strong>on</strong> 4.1), <strong>the</strong> abilities of<br />

<strong>the</strong> locati<strong>on</strong> associati<strong>on</strong> stage can be <strong>in</strong>ferred from <strong>the</strong> abilities of <strong>the</strong> gestalt<br />

associati<strong>on</strong> stage. To give an example, <strong>the</strong> ability of <strong>the</strong> gestalt associati<strong>on</strong> stage to<br />

discrim<strong>in</strong>ate simultaneously two (or more) sound events with identical spatial<br />

properties corresp<strong>on</strong>ds to <strong>the</strong> hypo<strong>the</strong>tical ability of <strong>the</strong> locati<strong>on</strong> associati<strong>on</strong> stage to<br />

discrim<strong>in</strong>ate simultaneously two (or more) sound events hav<strong>in</strong>g identical gestalt<br />

properties.<br />

From an <strong>in</strong>formati<strong>on</strong> <strong>the</strong>orist’s po<strong>in</strong>t of view, <strong>the</strong> limits of <strong>the</strong> localisati<strong>on</strong> stimulus<br />

selecti<strong>on</strong> are reached if <strong>the</strong> <strong>in</strong>formati<strong>on</strong> reducti<strong>on</strong>, which is achieved dur<strong>in</strong>g<br />

associative signal process<strong>in</strong>g, is used <strong>in</strong> an optimal way. With<strong>in</strong> <strong>the</strong> framework of this<br />

work, however, <strong>the</strong> limits shall <strong>on</strong>ly be fur<strong>the</strong>r <strong>in</strong>vestigated with respect to <strong>the</strong><br />

simultaneous discrim<strong>in</strong>ati<strong>on</strong> of two particular sound events of an arbitrary spatial<br />

c<strong>on</strong>stellati<strong>on</strong>.<br />

4.1 Limits of <strong>the</strong> localisati<strong>on</strong> stimulus selecti<strong>on</strong><br />

As was po<strong>in</strong>ted out <strong>in</strong> Secti<strong>on</strong> 3.1, <strong>the</strong> hypo<strong>the</strong>tical localisati<strong>on</strong> stimulus selecti<strong>on</strong> <strong>in</strong><br />

<strong>the</strong> sound field produced by two sound sources can be understood as an adaptive filter.<br />

This filter performs <strong>the</strong> spatial decod<strong>in</strong>g accord<strong>in</strong>g to Equati<strong>on</strong>s (5) and (6), provided<br />

that <strong>the</strong> associated pattern recogniti<strong>on</strong> process can supply <strong>the</strong> <strong>in</strong>formati<strong>on</strong> necessary<br />

for c<strong>on</strong>troll<strong>in</strong>g <strong>the</strong> filter.<br />

It has to be verified now if and with what restricti<strong>on</strong>s a localisati<strong>on</strong> stimulus selecti<strong>on</strong><br />

can be assumed. For <strong>the</strong> purpose of determ<strong>in</strong><strong>in</strong>g <strong>the</strong>se limits, <strong>the</strong> two established<br />

mechanisms of ‘adaptive filter’ and ‘associative pattern recogniti<strong>on</strong>’ shall be utilised.<br />

A prerequisite for <strong>the</strong> spatial decod<strong>in</strong>g is that an adequate pattern recogniti<strong>on</strong> can take<br />

place. That is why a useful signal pattern needs to be specified first, with <strong>the</strong> help of<br />

which <strong>the</strong> possibility of pattern recogniti<strong>on</strong> can be dem<strong>on</strong>strated. In c<strong>on</strong>formity with


38<br />

many well-known <strong>the</strong>ories of auditory percepti<strong>on</strong>, <strong>the</strong> hear<strong>in</strong>g system is <strong>in</strong>terpreted as<br />

a correlati<strong>on</strong> receiver <strong>in</strong> this c<strong>on</strong>text (see LICKLIDER 1951, SAYERS / CHERRY<br />

1957, SCHREIBER 1965, GRUBER 1967, OSMAN 1971, SCHROEDER 1975,<br />

BLAUERT 1974, 1978).<br />

It is presumed that to beg<strong>in</strong> with <strong>the</strong> ear signals are subdivided <strong>in</strong>to spectral<br />

comp<strong>on</strong>ents of approximately c<strong>on</strong>stant relative bandwidth by means of a filter bank<br />

(see ZWICKER / FELDKELLER 1967, DUIFHUIS 1972, BLAUERT 1974). The<br />

signals appear<strong>in</strong>g at <strong>the</strong> filters’ outputs are <strong>the</strong>n subjected to a short-term autocorrelati<strong>on</strong><br />

analysis of <strong>the</strong> form<br />

1<br />

Φ( τ ) = x(<br />

t)<br />

⋅ x(<br />

t −τ<br />

) = x t x t dt<br />

T<br />

∫ ( ) ⋅ ( −τ<br />

)<br />

T<br />

0<br />

as well as to a short-term cross-correlati<strong>on</strong> analysis of <strong>the</strong> form<br />

1<br />

Φ<br />

LR<br />

( τ ) = xL<br />

( t)<br />

⋅ xR<br />

( t −τ<br />

) = xL<br />

t xR<br />

t dt<br />

T<br />

∫ ( ) ⋅ ( −τ<br />

)<br />

T<br />

0<br />

so that an analysable pattern is present <strong>in</strong> <strong>the</strong> various functi<strong>on</strong>s of τ. This pattern shall<br />

be referred to as <strong>the</strong> “b<strong>in</strong>aural correlati<strong>on</strong> pattern”.<br />

The b<strong>in</strong>aural correlati<strong>on</strong> pattern supplies m<strong>on</strong>aural as well as <strong>in</strong>teraural temporal and<br />

spectral <strong>in</strong>formati<strong>on</strong>. A sound source located at a certa<strong>in</strong> distance produces maxima <strong>in</strong><br />

<strong>the</strong> b<strong>in</strong>aural correlati<strong>on</strong> pattern. Their relative locati<strong>on</strong>s, heights and widths can thus<br />

determ<strong>in</strong>e <strong>the</strong> locati<strong>on</strong> of <strong>the</strong> auditory event. It is possible to determ<strong>in</strong>e <strong>the</strong><br />

discrim<strong>in</strong>ability of different locati<strong>on</strong>-determ<strong>in</strong><strong>in</strong>g patterns that are simultaneously<br />

present <strong>in</strong> <strong>the</strong> <strong>superimposed</strong> sound field, which shall be described by means of <strong>the</strong><br />

discrim<strong>in</strong>ability of <strong>the</strong> maxima with<strong>in</strong> <strong>the</strong> time delay regi<strong>on</strong> τ.<br />

If, for example, <strong>on</strong>e computes <strong>the</strong> auto-correlati<strong>on</strong> functi<strong>on</strong> of an ear signal stemm<strong>in</strong>g<br />

from a phantom source situati<strong>on</strong> featur<strong>in</strong>g two loudspeakers (c<strong>on</strong>venti<strong>on</strong>al stereo setup)<br />

radiat<strong>in</strong>g coherent, band-limited white noise (∆f = 10 kHz), <strong>on</strong>e will f<strong>in</strong>d two<br />

dist<strong>in</strong>ct maxima separated by τ S = 250 µs, as illustrated <strong>in</strong> Figure 19 (<strong>on</strong>ly <strong>the</strong> positive<br />

τ-axis is shown).<br />

The m<strong>in</strong>imal separati<strong>on</strong> of <strong>the</strong>se maxima necessary for <strong>the</strong>ir discrim<strong>in</strong>ati<strong>on</strong> shall be<br />

def<strong>in</strong>ed as <strong>the</strong> resoluti<strong>on</strong> limit τ Sm<strong>in</strong> . τ Sm<strong>in</strong> decreases as a functi<strong>on</strong> of <strong>the</strong> width ∆τ of<br />

<strong>the</strong>se maxima. Due to<br />

∆τ =<br />

1<br />

2∆f


39<br />

Bild 19 :<br />

Auto-correlati<strong>on</strong> functi<strong>on</strong> of an ear signal, c<strong>on</strong>venti<strong>on</strong>al stereo<br />

set-up, loudspeaker signals: band-limited noise f0 = 10 kHz<br />

a m<strong>in</strong>imal signal bandwidth exists that is required for an adequate pattern recogniti<strong>on</strong>.<br />

Suppos<strong>in</strong>g that two maxima can still be discrim<strong>in</strong>ated if <strong>the</strong>ir separati<strong>on</strong> τ S is not<br />

smaller than <strong>the</strong>ir width ∆τ, i.e. if<br />

τ Sm<strong>in</strong> = ∆τ<br />

<strong>the</strong>n for <strong>the</strong> phantom source situati<strong>on</strong> with τ S = 250 µs and for signal bandwidths<br />

below<br />

f 1 1<br />

∆ = = = kHz<br />

2τ<br />

2 ⋅ 250µ<br />

s<br />

2<br />

S<br />

err<strong>on</strong>eous pattern recogniti<strong>on</strong> would result. As yet, however, <strong>the</strong> assumed resoluti<strong>on</strong><br />

limit does not take <strong>in</strong>to account <strong>the</strong> effects of associative signal process<strong>in</strong>g. To <strong>the</strong><br />

extent to which hidden comp<strong>on</strong>ents of a current <strong>in</strong>put pattern can be recognised with<br />

<strong>the</strong> help of <strong>the</strong> stored b<strong>in</strong>aural, locati<strong>on</strong>-determ<strong>in</strong><strong>in</strong>g pattern (see Secti<strong>on</strong> 3.1.2),<br />

localisati<strong>on</strong> stimulus selecti<strong>on</strong> is also possible for corresp<strong>on</strong>d<strong>in</strong>gly narrow<br />

bandwidths.<br />

Ano<strong>the</strong>r limitati<strong>on</strong> of <strong>the</strong> effectiveness of <strong>the</strong> localisati<strong>on</strong> stimulus selecti<strong>on</strong> derives<br />

from <strong>the</strong> maximum delay time τ max of <strong>the</strong> correlati<strong>on</strong> processes. The values given <strong>in</strong><br />

<strong>the</strong> literature vary a lot and lie <strong>in</strong>-between about 2 and 20 ms. BLAUERT 1974<br />

c<strong>on</strong>cludes <strong>the</strong> existence of a maximal delay time, s<strong>in</strong>ce <strong>the</strong> lateral displacement of an<br />

auditory event disappears if a certa<strong>in</strong> <strong>in</strong>teraural phase delay is exceeded (BLODGETT<br />

et al. 1956).


40<br />

Assum<strong>in</strong>g that a τ max exists, coherent signal parts can <strong>on</strong>ly lead to different<br />

localisati<strong>on</strong> stimuli if <strong>the</strong>ir time difference is ∆t < τ max . Two signals with a time<br />

difference greater than τ max will be judged to be completely <strong>in</strong>coherent by <strong>the</strong> auditory<br />

system. An auto-correlati<strong>on</strong> analysis of <strong>the</strong> sum of two such signals would reveal <strong>on</strong>ly<br />

<strong>on</strong>e maximum. In this case, spatial decod<strong>in</strong>g is no l<strong>on</strong>ger possible, provided that <strong>the</strong><br />

signals are sufficiently similar.<br />

This hypo<strong>the</strong>sis can easily be verified by modify<strong>in</strong>g <strong>the</strong> experiment described <strong>in</strong><br />

Secti<strong>on</strong> 2.2 and shown <strong>in</strong> Figure 3. Us<strong>in</strong>g an <strong>in</strong>terchannel time difference of, say, 3 ms,<br />

sound colour changes (as caused by lateral head movements) are also perceivable<br />

when listen<strong>in</strong>g b<strong>in</strong>aurally. It appears that τ max is smaller than 3 ms, so that both<br />

localisati<strong>on</strong> stimuli co<strong>in</strong>cide <strong>in</strong> <strong>the</strong> τ-regi<strong>on</strong> and are thus <strong>in</strong>separable. C<strong>on</strong>sequently,<br />

<strong>the</strong> comb filter effects occurr<strong>in</strong>g at <strong>the</strong> ears are audible (see Secti<strong>on</strong> 4.3.1).<br />

For <strong>the</strong> case of a sufficiently broadband signal, a third limitati<strong>on</strong> of <strong>the</strong> effectiveness<br />

of <strong>the</strong> localisati<strong>on</strong> stimulus selecti<strong>on</strong> has to be specified, i.e. for spectral comp<strong>on</strong>ents<br />

below a critical frequency f K .<br />

In Secti<strong>on</strong> 3.1.1 it was stated that under certa<strong>in</strong> c<strong>on</strong>diti<strong>on</strong>s an <strong>in</strong>verse matrix “M -1 ”<br />

will exist, which reverses <strong>the</strong> <strong>in</strong>teraural crosstalk (“l<strong>in</strong>k<strong>in</strong>g”) of <strong>the</strong> ear signals that is<br />

caused by <strong>the</strong> matrix M completely. A prerequisite for this is not just <strong>the</strong> associative<br />

pattern recogniti<strong>on</strong> process described <strong>in</strong> Secti<strong>on</strong> 3.1.2, which supplies <strong>the</strong> <strong>in</strong>formati<strong>on</strong><br />

necessary for c<strong>on</strong>troll<strong>in</strong>g <strong>the</strong> matrix “M -1 ”. Ra<strong>the</strong>r, <strong>the</strong> third limitati<strong>on</strong> becomes<br />

evident when scrut<strong>in</strong>is<strong>in</strong>g <strong>the</strong> matrix “M -1 ” more closely.<br />

Presuppos<strong>in</strong>g a decoder matrix that is optimally adapted to <strong>the</strong> sound source (see<br />

Figure 11), <strong>the</strong> functi<strong>on</strong> of this matrix “M -1 ” can be described numerically. It can be<br />

shown that <strong>the</strong> system does not give an unambiguous resp<strong>on</strong>se for low frequencies,<br />

because <strong>the</strong> acoustical transmissi<strong>on</strong> factors will approach 1 for frequencies below <strong>the</strong><br />

critical frequency f K .<br />

This is <strong>in</strong> l<strong>in</strong>e with <strong>the</strong> f<strong>in</strong>d<strong>in</strong>g that <strong>the</strong> low-frequency comp<strong>on</strong>ents of a sound event<br />

c<strong>on</strong>tribute very little to <strong>the</strong> formati<strong>on</strong> of an auditory event’s locati<strong>on</strong>. For <strong>in</strong>stance, <strong>in</strong><br />

<strong>the</strong> case of loudspeaker reproducti<strong>on</strong> <strong>the</strong> locati<strong>on</strong> of an auditory event will not depend<br />

<strong>on</strong> <strong>the</strong> locati<strong>on</strong> of <strong>the</strong> woofer if <strong>the</strong> crossover frequency is below about 250 Hz (see<br />

Secti<strong>on</strong> 4.2.2).<br />

To summarise, it is assumed that <strong>the</strong> two localisati<strong>on</strong> stimuli that stem from <strong>the</strong><br />

loudspeakers of a stereo set-up and that give rise to a “phantom source” can be<br />

discrim<strong>in</strong>ated. However, <strong>the</strong> follow<strong>in</strong>g restricti<strong>on</strong>s apply:


41<br />

1. For a given bandwidth ∆f, <strong>the</strong> time difference between <strong>the</strong> <strong>superimposed</strong><br />

signals must not fall short of a critical value ∆t. C<strong>on</strong>versely, for a given ∆t <strong>the</strong><br />

bandwidth must not be less than a critical value ∆f. For a c<strong>on</strong>venti<strong>on</strong>al stereo<br />

set-up, ∆f < 2kHz (estimate).<br />

2. The time difference ∆t between <strong>the</strong> <strong>superimposed</strong> signals must not exceed a<br />

certa<strong>in</strong> value.<br />

3. Below a critical frequency f K localisati<strong>on</strong> stimulus selecti<strong>on</strong> is no l<strong>on</strong>ger<br />

possible; f K < 500 Hz (estimate).<br />

4.2 Two coherent sound sources<br />

With<strong>in</strong> <strong>the</strong> qualitatively specified area of validity, a localisati<strong>on</strong> stimulus selecti<strong>on</strong> is<br />

assumed for <strong>the</strong> phantom source situati<strong>on</strong>. It shall now be dem<strong>on</strong>strated that based <strong>on</strong><br />

this hypo<strong>the</strong>sis <strong>the</strong> spectral and temporal characteristics of ear signals can be brought<br />

<strong>in</strong>to agreement with <strong>the</strong> directi<strong>on</strong>, distance, elevati<strong>on</strong>, width and sound colour of an<br />

auditory event.<br />

The limits of <strong>the</strong> localisati<strong>on</strong> stimulus selecti<strong>on</strong> also have to agree with <strong>the</strong> observable<br />

phenomena of auditory events if <strong>the</strong> associati<strong>on</strong> model shall describe <strong>the</strong> auditory<br />

system’s localisati<strong>on</strong> functi<strong>on</strong> <strong>in</strong> a <strong>superimposed</strong> sound field produced by two<br />

coherent sources. As will be shown, this is actually <strong>the</strong> case for a number of different<br />

phantom source phenomena. These <strong>in</strong>clude:<br />

1. <strong>the</strong> localisati<strong>on</strong> <strong>in</strong> <strong>the</strong> case of low frequencies<br />

2. <strong>the</strong> sound colour of <strong>the</strong> phantom source<br />

3. <strong>the</strong> localisati<strong>on</strong> of lateral phantom sources<br />

4. <strong>the</strong> auditory events <strong>in</strong> <strong>the</strong> case of narrow-band signals.<br />

In <strong>the</strong> follow<strong>in</strong>g secti<strong>on</strong>s, <strong>the</strong> associati<strong>on</strong> model will be discussed with regard to<br />

different well-known phantom source phenomena and <strong>the</strong> results of <strong>the</strong> listen<strong>in</strong>g test<br />

described <strong>in</strong> Secti<strong>on</strong> 2.2.2.<br />

4.2.1 The elevati<strong>on</strong> and distance of <strong>the</strong> phantom source<br />

It is possible that <strong>the</strong> phantom source locati<strong>on</strong> is not determ<strong>in</strong>ed by <strong>the</strong> summed<br />

signals occurr<strong>in</strong>g at <strong>the</strong> ears, but ra<strong>the</strong>r by <strong>the</strong> localisati<strong>on</strong> stimuli that <strong>the</strong> loudspeaker<br />

signals produce separately. S<strong>in</strong>ce <strong>the</strong> fusi<strong>on</strong> process takes place after <strong>the</strong> spatial<br />

decod<strong>in</strong>g has been completed, <strong>the</strong> phantom source locati<strong>on</strong> is given by <strong>the</strong> means of<br />

<strong>the</strong> distances and directi<strong>on</strong>s of <strong>the</strong> discrim<strong>in</strong>ated source locati<strong>on</strong>s. For this reas<strong>on</strong>,


42<br />

distance percepti<strong>on</strong> is not <strong>in</strong>fluenced by <strong>the</strong> comb filter effect, and nei<strong>the</strong>r do <strong>the</strong><br />

l<strong>in</strong>ear distorti<strong>on</strong>s (see Secti<strong>on</strong> 2.2.1) cause <strong>in</strong>side-<strong>the</strong>-head locatedness, nor do <strong>the</strong>y<br />

prevent fr<strong>on</strong>t-back reversals (THEILE 1975).<br />

The elevati<strong>on</strong> effect can be attributed to <strong>the</strong> localisati<strong>on</strong> stimulus selecti<strong>on</strong>, too. If two<br />

loudspeakers (arranged symmetrically with respect to <strong>the</strong> median plane) are moved <strong>on</strong><br />

a circle <strong>in</strong> <strong>the</strong> horiz<strong>on</strong>tal plane with <strong>the</strong> listener be<strong>in</strong>g positi<strong>on</strong>ed <strong>in</strong> <strong>the</strong> centre, <strong>the</strong><br />

auditory event locati<strong>on</strong> <strong>in</strong> <strong>the</strong> median plane will move with <strong>the</strong> discrim<strong>in</strong>ated average<br />

source distance. The mean of <strong>the</strong> distance and directi<strong>on</strong> lies <strong>on</strong> a circle <strong>in</strong> <strong>the</strong> median<br />

plane. The elevati<strong>on</strong> angle results from sound colour properties that, due to <strong>the</strong><br />

localisati<strong>on</strong> stimulus selecti<strong>on</strong>, are not <strong>in</strong>fluenced by <strong>the</strong> comb filter effect.<br />

This is proven by <strong>the</strong> fact outl<strong>in</strong>ed <strong>in</strong> Secti<strong>on</strong> 2.2 that equivalent <strong>in</strong>terchannel level and time<br />

differences (loudspeakers positi<strong>on</strong>ed at <strong>the</strong> listener’s sides al<strong>on</strong>g <strong>the</strong> <strong>in</strong>teraural axis) do not<br />

lead to different elevati<strong>on</strong>s of <strong>the</strong> phantom source, even though spectral differences will<br />

occur <strong>in</strong> <strong>the</strong> crucial frequency regi<strong>on</strong> around 8 kHz (see BLOOM 1977). If <strong>the</strong> listener<br />

moves <strong>the</strong> head sidewards by a few centimetres <strong>in</strong> <strong>the</strong> directi<strong>on</strong> of <strong>on</strong>e loudspeaker, <strong>the</strong><br />

resultant change of <strong>the</strong> (elevati<strong>on</strong>-salient) spectrum will be very different from <strong>the</strong> change<br />

that a head rotati<strong>on</strong> <strong>in</strong> fr<strong>on</strong>t of a substitute (real) sound source would produce.<br />

The spectrum salient to perceived elevati<strong>on</strong> is not <strong>the</strong> result<strong>in</strong>g spectrum of <strong>the</strong> ear<br />

signals, but <strong>the</strong> average spectrum of <strong>the</strong> two ear signals that <strong>the</strong> loudspeakers produce<br />

separately. If, as a result of <strong>the</strong> localisati<strong>on</strong> stimulus selecti<strong>on</strong>, <strong>the</strong> distance e and<br />

horiz<strong>on</strong>tal directi<strong>on</strong> ϕ of <strong>the</strong> phantom source have been determ<strong>in</strong>ed, it will be located<br />

<strong>on</strong> a circle with <strong>the</strong> radius e. The plane of this circle will be perpendicular to <strong>the</strong><br />

horiz<strong>on</strong>tal plane and will exhibit <strong>the</strong> directi<strong>on</strong> ϕ.<br />

The positi<strong>on</strong> <strong>on</strong> <strong>the</strong> circle is determ<strong>in</strong>ed by <strong>the</strong> average spectrum, i.e. <strong>the</strong> phantom<br />

source will be perceived to be at <strong>the</strong> locati<strong>on</strong> at which its sound colour characteristics<br />

match those of a substitute sound source as closely as possible.<br />

This noti<strong>on</strong> expla<strong>in</strong>s <strong>the</strong> measurements made by DAMASKE 1969/70 who<br />

determ<strong>in</strong>ed perceived elevati<strong>on</strong> as a functi<strong>on</strong> of <strong>the</strong> angle of <strong>the</strong> stereo base ∆Ω= 2|Ω A |<br />

= 2|Ω B | us<strong>in</strong>g band-limited noise (0.65 to 4.5 kHz) as <strong>the</strong> test signal. In pr<strong>in</strong>ciple, he<br />

found that as ∆Ω 180° <strong>the</strong> elevati<strong>on</strong> angle ε 90°, even though <strong>the</strong> directi<strong>on</strong>determ<strong>in</strong><strong>in</strong>g<br />

frequency band was not c<strong>on</strong>ta<strong>in</strong>ed <strong>in</strong> <strong>the</strong> noise signal. Regrettably,<br />

DAMASKE did not report <strong>the</strong> associated distances of <strong>the</strong> auditory events. The result<br />

c<strong>on</strong>tradicts <strong>the</strong> summ<strong>in</strong>g localisati<strong>on</strong> pr<strong>in</strong>ciple.<br />

Fur<strong>the</strong>rmore, <strong>the</strong> associati<strong>on</strong> model predicts a dependency of <strong>the</strong> elevati<strong>on</strong> and distance of a<br />

phantom source <strong>on</strong>to <strong>the</strong> bandwidth of <strong>the</strong> signal. If <strong>the</strong> bandwidth is below a critical value,<br />

localisati<strong>on</strong> stimulus selecti<strong>on</strong> is not possible. In this case, elevati<strong>on</strong> and distance percepti<strong>on</strong><br />

do no l<strong>on</strong>ger result from <strong>the</strong> spectra that <strong>the</strong> loudspeakers produce <strong>in</strong>dividually.


43<br />

For <strong>in</strong>formal verificati<strong>on</strong> purposes, a simple experiment can be executed. Coherent,<br />

low-pass filtered noise with f o = 500 Hz is played back <strong>in</strong> an anechoic chamber over a<br />

loudspeaker-based stereo set-up. The subject stands <strong>in</strong> fr<strong>on</strong>t of <strong>the</strong> loudspeakers, ∆Ω ≈<br />

150°. The auditory event is perceived close to <strong>the</strong> head. As expected, <strong>the</strong> distance<br />

<strong>in</strong>formati<strong>on</strong> is destroyed (a s<strong>in</strong>gle loudspeaker would lead to an adequate auditory<br />

event distance), <strong>the</strong> elevati<strong>on</strong> angle is zero. The result is <strong>the</strong> same if <strong>the</strong> subject moves<br />

backwards. The auditory event is characterised by a modest width.<br />

If <strong>the</strong> high-frequency c<strong>on</strong>tent of <strong>the</strong> noise signal is suddenly switched <strong>in</strong>, an<br />

<strong>in</strong>terest<strong>in</strong>g effect occurs. At first, a sec<strong>on</strong>d, high-frequency auditory event appears <strong>in</strong><br />

additi<strong>on</strong> to <strong>the</strong> low-frequency <strong>on</strong>e, which is clearly separated <strong>in</strong> space, i.e. it seems to<br />

be above <strong>the</strong> first <strong>on</strong>e and far<strong>the</strong>r away. Shortly afterwards, <strong>the</strong> two auditory events<br />

fuse. The low-frequency event moves upwards, <strong>the</strong> resultant auditory event locati<strong>on</strong><br />

be<strong>in</strong>g given by <strong>the</strong> positi<strong>on</strong> of <strong>the</strong> high-frequency event.<br />

The associati<strong>on</strong> model also expla<strong>in</strong>s this phenomen<strong>on</strong>, which until now has not been<br />

described. Switch<strong>in</strong>g <strong>in</strong> <strong>the</strong> high-frequency comp<strong>on</strong>ents leads to a greatly improved<br />

pattern recogniti<strong>on</strong>, because <strong>the</strong> signal bandwidth is <strong>in</strong>creased. Hence, <strong>the</strong><br />

characteristics of <strong>the</strong> discrim<strong>in</strong>ated localisati<strong>on</strong> stimuli determ<strong>in</strong>e <strong>the</strong> distance and<br />

elevati<strong>on</strong> of <strong>the</strong> phantom source. Although <strong>the</strong> comp<strong>on</strong>ents are not discrim<strong>in</strong>able at<br />

low frequencies (see Secti<strong>on</strong> 4.1), <strong>the</strong>y are attributed to <strong>the</strong> phantom source. It seems<br />

that this due to <strong>the</strong> associati<strong>on</strong> processes.<br />

4.2.2 The sound colour of <strong>the</strong> phantom source<br />

The n<strong>on</strong>-discrim<strong>in</strong>able low-frequency c<strong>on</strong>tent also <strong>in</strong>fluences <strong>the</strong> sound colour of <strong>the</strong><br />

phantom source. In <strong>the</strong> case of complete spatial decod<strong>in</strong>g, <strong>the</strong> sound colour is<br />

determ<strong>in</strong>ed by <strong>the</strong> average spectrum of <strong>the</strong> two ear signals that <strong>the</strong> two loudspeakers<br />

produce separately. A comparis<strong>on</strong> of <strong>the</strong> sound colour of a phantom and a real source<br />

(both hav<strong>in</strong>g <strong>the</strong> same locati<strong>on</strong> <strong>in</strong> <strong>the</strong> median plane and <strong>the</strong> same loudness for a white<br />

noise test signal) reveals that at low frequencies <strong>the</strong> loudspeaker signals cannot be<br />

sufficiently discrim<strong>in</strong>ated to suppress completely <strong>the</strong> level <strong>in</strong>crease evident below<br />

about 500 Hz (approx. +5 dB, see Secti<strong>on</strong> 2.2.1, Figures 4 and 5). Each of <strong>the</strong> two<br />

discrim<strong>in</strong>ated localisati<strong>on</strong> stimuli exhibits <strong>the</strong> level <strong>in</strong>crease at low frequencies. The<br />

sound colour of <strong>the</strong> phantom source is ‘darker’ than <strong>the</strong> <strong>on</strong>e of <strong>the</strong> real sound source.<br />

This can be seen as ano<strong>the</strong>r c<strong>on</strong>firmati<strong>on</strong> for <strong>the</strong> validity of <strong>the</strong> associati<strong>on</strong> model.<br />

The model shall now be discussed fur<strong>the</strong>r with regard to <strong>the</strong> results of <strong>the</strong> listen<strong>in</strong>g<br />

test outl<strong>in</strong>ed <strong>in</strong> Secti<strong>on</strong> 2.2.2. The aim of <strong>the</strong> experiment was to prove that <strong>the</strong> comb<br />

filter effect evident at <strong>the</strong> ears does not <strong>in</strong>fluence <strong>the</strong> sound colour of <strong>the</strong> phantom<br />

source as much as is stipulated by <strong>the</strong> summ<strong>in</strong>g localisati<strong>on</strong> <strong>the</strong>ories.


44<br />

To recap, an <strong>in</strong>verse relati<strong>on</strong>ship was measured between <strong>the</strong> perceptibility of changes <strong>in</strong><br />

sound colour and directi<strong>on</strong> of <strong>the</strong> auditory event (as caused by laterally displac<strong>in</strong>g <strong>the</strong><br />

artificial head positi<strong>on</strong>ed <strong>in</strong> fr<strong>on</strong>t of <strong>the</strong> phantom source c<strong>on</strong>figurati<strong>on</strong>) and <strong>the</strong> <strong>in</strong>clusi<strong>on</strong><br />

of more or less serious errors <strong>in</strong> <strong>the</strong> reproducti<strong>on</strong> set-up (test signals B1 … B6).<br />

The associati<strong>on</strong> model predicts this f<strong>in</strong>d<strong>in</strong>g. The localisati<strong>on</strong> stimulus selecti<strong>on</strong><br />

requires an adequate pattern recogniti<strong>on</strong>, which <strong>the</strong> different reproducti<strong>on</strong> errors<br />

handicapped to a greater or lesser degree. The magnitude of this localisati<strong>on</strong> stimulus<br />

‘destructi<strong>on</strong>’ determ<strong>in</strong>es <strong>the</strong> audibility of <strong>the</strong> spectral changes <strong>in</strong> <strong>the</strong> ear signals.<br />

The result for test signal B5 (see Secti<strong>on</strong> 2.2.2, Item 6, Figure 10) clearly shows that<br />

<strong>the</strong> <strong>in</strong>troduced reproducti<strong>on</strong> errors lead to a reduced discrim<strong>in</strong>ability of <strong>the</strong><br />

localisati<strong>on</strong> stimuli. Due to <strong>the</strong> absence of <strong>the</strong> p<strong>in</strong>nae, hardly any changes <strong>in</strong> <strong>the</strong><br />

<strong>in</strong>teraural time and level relati<strong>on</strong>ships are produced; essentially, <strong>the</strong> ear signals are<br />

l<strong>in</strong>early distorted. These l<strong>in</strong>ear distorti<strong>on</strong>s reduce <strong>the</strong> perceivability of directi<strong>on</strong>al<br />

changes. This can be expla<strong>in</strong>ed by means of a gradual destructi<strong>on</strong> of <strong>the</strong> localisati<strong>on</strong><br />

stimuli, even if <strong>the</strong> resultant ear signals lead to an <strong>in</strong>side-<strong>the</strong>-head locatedness already.<br />

Nei<strong>the</strong>r <strong>in</strong> a localisati<strong>on</strong> experiment (<strong>on</strong>e sound source) nor <strong>in</strong> a lateralisati<strong>on</strong><br />

experiment can l<strong>in</strong>ear distorti<strong>on</strong>s of such a magnitude impair <strong>the</strong> perceptibility of <strong>the</strong><br />

auditory event’s directi<strong>on</strong> or displacement.<br />

It can be shown that <strong>the</strong> degree of <strong>in</strong>teraural coherence is not str<strong>on</strong>gly <strong>in</strong>fluenced by<br />

<strong>the</strong> p<strong>in</strong>nae. In a phantom source situati<strong>on</strong>, this measure will be small and, <strong>in</strong> pr<strong>in</strong>ciple,<br />

would lead to an <strong>in</strong>creased width of <strong>the</strong> auditory event (see JEFFRESS/ BLODGETT/<br />

DEATHERAGE 1962). It is <strong>on</strong>ly <strong>the</strong> spectral effects of <strong>the</strong> p<strong>in</strong>nae that provide <strong>the</strong><br />

hear<strong>in</strong>g system with <strong>the</strong> possibility to separate clearly two localisati<strong>on</strong> stimuli, so that<br />

despite <strong>the</strong> small <strong>in</strong>teraural degree of coherence a def<strong>in</strong>ed auditory event locati<strong>on</strong> can<br />

occur.<br />

At this po<strong>in</strong>t, it is <strong>in</strong>terest<strong>in</strong>g to note that even if <strong>the</strong> artificial head system is free from<br />

reproducti<strong>on</strong> errors, <strong>the</strong> localisati<strong>on</strong> stimulus selecti<strong>on</strong> does not appear to work<br />

completely ei<strong>the</strong>r. Compared to a corresp<strong>on</strong>d<strong>in</strong>g rotati<strong>on</strong> of <strong>the</strong> artificial head <strong>in</strong> fr<strong>on</strong>t<br />

of a real sound source (Item 3, Figure 9, Test signals A1 and C2), <strong>the</strong> perceivability of<br />

directi<strong>on</strong>al changes is smaller. Based <strong>on</strong> this f<strong>in</strong>d<strong>in</strong>g, <strong>on</strong>e could deduce that <strong>the</strong><br />

employed dummy head system causes sound imag<strong>in</strong>g errors. However, more listen<strong>in</strong>g<br />

tests would have to be carried out to be able to c<strong>on</strong>firm that this is <strong>the</strong> case. The<br />

reproducti<strong>on</strong> of a phantom source by means of artificial head signals requires a very<br />

high degree of accuracy of <strong>the</strong> ear signals, because <strong>in</strong> this case <strong>the</strong> localisati<strong>on</strong><br />

stimulus selecti<strong>on</strong> will be more difficult than <strong>in</strong> a natural <strong>superimposed</strong> sound field.<br />

In <strong>the</strong> phantom source situati<strong>on</strong> <strong>the</strong> p<strong>in</strong>nae are especially important. It can be shown<br />

that <strong>the</strong>ir <strong>in</strong>fluence <strong>on</strong>to <strong>the</strong> sound colour of a phantom source is larger compared to<br />

<strong>the</strong>ir <strong>in</strong>fluence <strong>on</strong>to <strong>the</strong> sound colour of a real source.


45<br />

Therefore, <strong>the</strong> suppressi<strong>on</strong> of sound colourati<strong>on</strong> is dependent <strong>on</strong> <strong>the</strong> localisati<strong>on</strong><br />

stimulus selecti<strong>on</strong>. If this mechanism is impaired, <strong>the</strong> resultant spectra will have <strong>the</strong><br />

effect postulated by <strong>the</strong> summ<strong>in</strong>g localisati<strong>on</strong> pr<strong>in</strong>ciple. The transiti<strong>on</strong> between<br />

impaired and unimpaired localisati<strong>on</strong> stimulus selecti<strong>on</strong> is c<strong>on</strong>t<strong>in</strong>uous.<br />

4.2.3 Lateral phantom sources<br />

A destructi<strong>on</strong> of <strong>the</strong> localisati<strong>on</strong> stimulus selecti<strong>on</strong> does not just occur as a result of<br />

<strong>the</strong> destructi<strong>on</strong> of <strong>the</strong> localisati<strong>on</strong> stimuli (e.g. for m<strong>on</strong>aural listen<strong>in</strong>g), but also <strong>in</strong><br />

those cases for which <strong>the</strong> two stimuli do not sufficiently differ <strong>in</strong> <strong>the</strong> b<strong>in</strong>aural<br />

correlati<strong>on</strong> pattern. For broadband signals this is <strong>the</strong> case if <strong>the</strong> time difference ∆t<br />

between <strong>the</strong> <strong>superimposed</strong> signals is ei<strong>the</strong>r too large or too small (see Secti<strong>on</strong> 4.1).<br />

Bild 20:<br />

The <strong>in</strong>teraural time characteristics for a rotati<strong>on</strong> of <strong>the</strong> head <strong>in</strong> <strong>the</strong><br />

<strong>superimposed</strong> sound field produced by a c<strong>on</strong>venti<strong>on</strong>al stereo set-up


46<br />

For example, too small a time difference ∆t will result for a loudspeaker arrangement that<br />

is symmetrical with respect to <strong>the</strong> fr<strong>on</strong>tal plane (Figure 20, δ = 90°). The two maxima at<br />

each ear will appear at <strong>the</strong> same time; <strong>the</strong> localisati<strong>on</strong> stimuli are not discrim<strong>in</strong>able.<br />

C<strong>on</strong>sequently, <strong>the</strong>re will be no suppressi<strong>on</strong> of sound colourati<strong>on</strong>, which was c<strong>on</strong>firmed<br />

experimentally <strong>in</strong> Secti<strong>on</strong> 2.2.2 (Item 5, Figure 9b, Test signal A4). Fur<strong>the</strong>rmore, from<br />

Figure 9b it can be seen that <strong>the</strong> perceptibility of sound colourati<strong>on</strong> <strong>in</strong>creases as δ 90°.<br />

This is <strong>in</strong> l<strong>in</strong>e with <strong>the</strong> decrease <strong>in</strong> ∆t that is evident from Figure 20.<br />

In THEILE / PLENGE 1977 phantom source directi<strong>on</strong> was <strong>in</strong>vestigated as a functi<strong>on</strong><br />

of δ. The results showed that:<br />

1. For δ = 90°, <strong>the</strong> auditory event is located ei<strong>the</strong>r at <strong>the</strong> fr<strong>on</strong>tal or <strong>the</strong> rear<br />

loudspeaker, depend<strong>in</strong>g <strong>on</strong> <strong>the</strong> level ratio of <strong>the</strong> loudspeaker signals. In pr<strong>in</strong>ciple,<br />

lateral phantom sources do not arise. This is expla<strong>in</strong>ed by <strong>the</strong> localisati<strong>on</strong> model if<br />

<strong>on</strong>e assumes that for equal signal levels <strong>the</strong> localisati<strong>on</strong> stimuli cannot be<br />

discrim<strong>in</strong>ated due to identical <strong>in</strong>teraural time differences, but that for unequal<br />

levels <strong>on</strong>e or <strong>the</strong> o<strong>the</strong>r spectrum will dom<strong>in</strong>ate.<br />

2. The focus of <strong>the</strong> phantom source greatly decreases for δ > 60°. The time<br />

differences between <strong>the</strong> <strong>superimposed</strong> signals are of <strong>the</strong> magnitude ∆t < 200 µs<br />

(see Figure 20). It seems that this is where <strong>the</strong> discrim<strong>in</strong>ati<strong>on</strong> threshold of <strong>the</strong><br />

localisati<strong>on</strong> stimuli lies.<br />

3. As δ 90°, <strong>the</strong> directi<strong>on</strong> of <strong>the</strong> phantom source does not rema<strong>in</strong> <strong>in</strong> <strong>the</strong> centre of<br />

<strong>the</strong> loudspeaker base, but shifts by maximally 10° <strong>in</strong> <strong>the</strong> directi<strong>on</strong> of ϕ = 0°. This<br />

effect is <strong>in</strong> agreement with <strong>the</strong> fact that for a laterally displaced loudspeaker base<br />

<strong>the</strong> localisati<strong>on</strong> stimuli will not be simultaneously available. Of course, a<br />

localisati<strong>on</strong> stimulus can <strong>on</strong>ly be discrim<strong>in</strong>ated if it is available <strong>in</strong> b<strong>in</strong>aural form.<br />

This will happen later for <strong>the</strong> signal radiated by <strong>the</strong> loudspeaker closer to <strong>the</strong><br />

fr<strong>on</strong>tal plane (Signal B <strong>in</strong> Figure 20). Thus, <strong>the</strong> model expla<strong>in</strong>s <strong>the</strong> displacement<br />

from <strong>the</strong> centre of <strong>the</strong> loudspeaker base by means of a time difference between <strong>the</strong><br />

localisati<strong>on</strong> stimuli. This time difference will have a maximum value of about 200<br />

µs, which, accord<strong>in</strong>g to measurements made by WENDT 1963, corresp<strong>on</strong>ds to a<br />

change of ϕ = 10° … 15° <strong>in</strong> phantom source directi<strong>on</strong> (see Secti<strong>on</strong> 4.3.1).<br />

4.2.4 Auditory events <strong>in</strong> <strong>the</strong> case of narrow-band signals<br />

The associati<strong>on</strong> model is based <strong>on</strong> a pattern recogniti<strong>on</strong> process that is made possible<br />

by associative stimulus process<strong>in</strong>g. The localisati<strong>on</strong> process thus requires a sound<br />

source that allows for a sufficiently robust distance percepti<strong>on</strong> (see Secti<strong>on</strong> 3.2.1).<br />

This is <strong>the</strong> case if spectral characteristics of a current stimulus can be analysed.<br />

Associative stimulus process<strong>in</strong>g necessitates a sufficiently broadband stimulus.


47<br />

In <strong>the</strong> phantom source situati<strong>on</strong>, a localisati<strong>on</strong> stimulus selecti<strong>on</strong> <strong>on</strong>ly takes place if a<br />

certa<strong>in</strong> m<strong>in</strong>imum signal bandwidth is available. This bandwidth derives from treat<strong>in</strong>g<br />

<strong>the</strong> hear<strong>in</strong>g system as a correlati<strong>on</strong> receiver; it is likely to reduce if <strong>the</strong> operati<strong>on</strong> of<br />

associative pattern recogniti<strong>on</strong> is assumed.<br />

Hence, if <strong>the</strong> two loudspeakers radiate narrow-band signals, “summ<strong>in</strong>g localisati<strong>on</strong>” is<br />

an accurate descripti<strong>on</strong> of <strong>the</strong> listen<strong>in</strong>g c<strong>on</strong>diti<strong>on</strong>s. From <strong>the</strong> localisati<strong>on</strong> model it can<br />

be <strong>in</strong>ferred that an <strong>in</strong>vestigati<strong>on</strong> of <strong>the</strong> phantom source with <strong>the</strong> help of pure t<strong>on</strong>es<br />

does not allow c<strong>on</strong>clusi<strong>on</strong>s to be drawn about <strong>the</strong> functi<strong>on</strong><strong>in</strong>g of <strong>the</strong> auditory system<br />

when presented with broadband signals. Even <strong>the</strong> applicati<strong>on</strong> of such f<strong>in</strong>d<strong>in</strong>gs to <strong>the</strong><br />

sound imag<strong>in</strong>g pr<strong>in</strong>ciples of stereoph<strong>on</strong>y is questi<strong>on</strong>able.<br />

An example for this is <strong>the</strong> FRANSSEN effect (FRANSSEN 1960). Loudspeaker A is<br />

driven with a t<strong>on</strong>e hav<strong>in</strong>g a durati<strong>on</strong> of several sec<strong>on</strong>ds and an exp<strong>on</strong>ential attack and<br />

decay [Signal u A (t)]. Loudspeaker B is fed with Signal u B (t), which has such properties<br />

that <strong>the</strong> sum u A (t) + u B (t) would result <strong>in</strong> a rectangular amplitude envelope.<br />

Loudspeaker B <strong>the</strong>refore reproduces <strong>the</strong> (broadband) <strong>on</strong>set, whereas Loudspeaker A<br />

reproduces <strong>the</strong> (narrow-band) t<strong>on</strong>e that is free from <strong>on</strong>- and offsets. It is found that <strong>the</strong><br />

auditory event locati<strong>on</strong> is exclusively determ<strong>in</strong>ed by <strong>the</strong> <strong>on</strong>set. This is <strong>in</strong> c<strong>on</strong>formity<br />

with <strong>the</strong> associati<strong>on</strong> model if it is assumed that <strong>the</strong> t<strong>on</strong>e does not c<strong>on</strong>stitute a localisati<strong>on</strong><br />

stimulus, but ra<strong>the</strong>r that it is attributed to <strong>the</strong> localisati<strong>on</strong> stimulus already available<br />

because of miss<strong>in</strong>g distance <strong>in</strong>formati<strong>on</strong>. In this respect, WENDT 1964 found for<br />

stereoph<strong>on</strong>y that t<strong>on</strong>es with very rapid <strong>on</strong>- and offsets behave like broadband signals. A<br />

relati<strong>on</strong>ship between <strong>the</strong>se t<strong>on</strong>es and <strong>the</strong> auditory event locati<strong>on</strong>s, which WENDT<br />

determ<strong>in</strong>ed for c<strong>on</strong>t<strong>in</strong>uous and impulsive t<strong>on</strong>es, cannot be observed.<br />

There is no uniform summ<strong>in</strong>g localisati<strong>on</strong> <strong>the</strong>ory that allows correct predicti<strong>on</strong>s to be<br />

made for c<strong>on</strong>t<strong>in</strong>uous t<strong>on</strong>es (or Gaussian t<strong>on</strong>es, see BOERGER 1965) as well as<br />

broadband signals. This is not possible because <strong>in</strong> <strong>the</strong> case of t<strong>on</strong>es <strong>on</strong>ly <strong>the</strong> lateral<br />

displacements (as caused by <strong>the</strong> result<strong>in</strong>g <strong>in</strong>teraural phase differences) will be<br />

<strong>in</strong>terpreted as <strong>the</strong> auditory event’s directi<strong>on</strong> (due to prec<strong>on</strong>diti<strong>on</strong><strong>in</strong>g of subjects, see<br />

e.g. JEFFRESS / TAYLOR 1961, PLENGE 1973). In <strong>the</strong> case of broadband signals,<br />

<strong>the</strong> hear<strong>in</strong>g system <strong>in</strong>itially discrim<strong>in</strong>ates two localisati<strong>on</strong> stimuli, which are subjected<br />

to a fusi<strong>on</strong> process subsequently.<br />

At this po<strong>in</strong>t, an important f<strong>in</strong>d<strong>in</strong>g announces itself. For a fixed head located <strong>in</strong> <strong>the</strong> far<br />

field, distant sources radiat<strong>in</strong>g pure t<strong>on</strong>es do not supply any <strong>in</strong>formati<strong>on</strong> about <strong>the</strong>ir<br />

distance. The resultant <strong>in</strong>teraural phase and level relati<strong>on</strong>ships are equivalent to those<br />

of a corresp<strong>on</strong>d<strong>in</strong>g headph<strong>on</strong>e-based reproducti<strong>on</strong> set-up.


48<br />

In both cases, <strong>the</strong> locati<strong>on</strong> associati<strong>on</strong> stage of <strong>the</strong> localisati<strong>on</strong> model does not supply<br />

spatial <strong>in</strong>formati<strong>on</strong>, i.e. <strong>the</strong> ear signals pass it without be<strong>in</strong>g affected by it (see Figure<br />

16). The <strong>in</strong>terplay of <strong>in</strong>teraural time and level relati<strong>on</strong>ships is thus liable to <strong>the</strong> same<br />

psychoacoustic regularities. These regularities, however, can be traced back to <strong>the</strong><br />

effect of <strong>the</strong> gestalt associati<strong>on</strong> stage (see Chapter 5).<br />

4.2.5 Auditory events <strong>in</strong> <strong>the</strong> case of out-of-phase signals<br />

The special case of auditory events created by out-of-phase signals provides fur<strong>the</strong>r<br />

c<strong>on</strong>firmati<strong>on</strong> for <strong>the</strong> validity of <strong>the</strong> associati<strong>on</strong> model. This sound field c<strong>on</strong>stellati<strong>on</strong><br />

has been studied several times for narrow- as well as broadband signals (e.g. see<br />

GARDNER 1969, PLENGE 1972, MATSUDAIRA / FUKAMI 1973, LOY 1978).<br />

Based <strong>on</strong> <strong>the</strong> work by SANDEL / FEDDERSEN / JEFFRESS 1955, LOY 1978<br />

calculated <strong>the</strong> phantom source directi<strong>on</strong> for pure t<strong>on</strong>es by deriv<strong>in</strong>g <strong>in</strong>teraural phase<br />

delays from <strong>the</strong> resultant <strong>in</strong>teraural phase differences. This was also <strong>the</strong> approach<br />

taken by LEAKEY 1959, WENDT 1963, 1965 and o<strong>the</strong>rs. For frequencies below 2<br />

kHz, this results <strong>in</strong> auditory event directi<strong>on</strong>s ϕ > 30°, i.e. auditory events outside <strong>the</strong><br />

loudspeaker base (as frequency decreases ϕ 90°). Whilst LOY could c<strong>on</strong>firm his<br />

predicti<strong>on</strong>s experimentally for Gaussian t<strong>on</strong>es, a very large spread of <strong>the</strong> resp<strong>on</strong>ses<br />

could be observed that <strong>in</strong>creased as <strong>the</strong> <strong>in</strong>terchannel level difference ∆L 0. For ∆L<br />

= 0, no directi<strong>on</strong>al judgements were possible.<br />

Besides, LOY did not provide any <strong>in</strong>formati<strong>on</strong> about <strong>the</strong> distances of <strong>the</strong> auditory<br />

events. Accord<strong>in</strong>g to <strong>the</strong> associati<strong>on</strong> model, Gaussian t<strong>on</strong>es do not give rise to a locati<strong>on</strong><br />

associati<strong>on</strong> – nei<strong>the</strong>r <strong>in</strong> <strong>the</strong> sound field of a real source, nor <strong>in</strong> <strong>the</strong> phantom source<br />

situati<strong>on</strong>. Instead, <strong>the</strong> <strong>in</strong>teraural signal differences <strong>on</strong>ly lead to a lateral displacement,<br />

which will be <strong>in</strong>terpreted as <strong>the</strong> auditory event directi<strong>on</strong> because of <strong>the</strong> experimental<br />

c<strong>on</strong>diti<strong>on</strong>s (e.g. <strong>the</strong> subject’s knowledge that <strong>the</strong> sound source is a certa<strong>in</strong> distance<br />

away, evaluati<strong>on</strong> of <strong>the</strong> directi<strong>on</strong> of <strong>the</strong> auditory event ra<strong>the</strong>r than its locati<strong>on</strong>).<br />

Yet, it comes as a surprise that <strong>the</strong>se results agree with those obta<strong>in</strong>ed by o<strong>the</strong>r authors<br />

who used broadband test signals for <strong>the</strong>ir studies. GARDNER 1969 as well as<br />

PLENGE 1972 found that <strong>the</strong> auditory event will be perceived to be <strong>in</strong> <strong>the</strong> vic<strong>in</strong>ity of<br />

<strong>the</strong> listener’s head if <strong>the</strong> loudspeaker signals have equal levels (∆L = 0). If a level<br />

difference exists (∆L ≠ 0), <strong>the</strong> locati<strong>on</strong> of <strong>the</strong> centre of <strong>the</strong> auditory event will shift as<br />

a functi<strong>on</strong> of ∆L to maximally <strong>the</strong> loudspeaker distance <strong>in</strong> a directi<strong>on</strong> outside <strong>the</strong><br />

loudspeaker base, i.e. more or less accord<strong>in</strong>g to <strong>the</strong> results reported by LOY 1978. A<br />

significant localisati<strong>on</strong> blur is characteristic of this particular listen<strong>in</strong>g c<strong>on</strong>diti<strong>on</strong>.<br />

Us<strong>in</strong>g speech and music record<strong>in</strong>gs as <strong>the</strong> test signals, MATSUDAIRA / FUKAMI<br />

1973 measured phantom source directi<strong>on</strong> as a functi<strong>on</strong> of <strong>the</strong> <strong>in</strong>terchannel phase<br />

difference Θ. They reported that up to Θ ≈ 90° <strong>the</strong> localisati<strong>on</strong> blur was low and that


49<br />

<strong>the</strong> directi<strong>on</strong> of <strong>the</strong> auditory event ϕ 25° as Θ 90°. For even larger phase<br />

differences (i.e. Θ 180°) <strong>the</strong> localisati<strong>on</strong> blur <strong>in</strong>creased dramatically. However, <strong>the</strong><br />

medians of <strong>the</strong> auditory event directi<strong>on</strong>s approached zero, ϕ 0°. Auditory events<br />

outside <strong>the</strong> loudspeaker base did not arise. These effects can <strong>on</strong>ly be observed if <strong>the</strong><br />

signals c<strong>on</strong>ta<strong>in</strong> spectral comp<strong>on</strong>ents below about 2 kHz (BLAUERT 1974). The lowfrequency<br />

comp<strong>on</strong>ents determ<strong>in</strong>e <strong>the</strong> displacement of <strong>the</strong> auditory event. It seems that<br />

a fusi<strong>on</strong> of <strong>the</strong> discrim<strong>in</strong>ated localisati<strong>on</strong> stimuli does not take place (see Secti<strong>on</strong><br />

4.2.1). The localisati<strong>on</strong> stimulus selecti<strong>on</strong> takes place <strong>in</strong> <strong>the</strong> locati<strong>on</strong> associati<strong>on</strong> stage<br />

(see Secti<strong>on</strong> 3.2.2) and thus is <strong>in</strong>dependent of <strong>the</strong> phase relati<strong>on</strong>ship between <strong>the</strong><br />

source signals. It is not until <strong>the</strong> gestalt associati<strong>on</strong> stage that <strong>the</strong> relati<strong>on</strong>ship between<br />

<strong>the</strong> source signals takes effect.<br />

An <strong>in</strong>creas<strong>in</strong>g phase difference Θ 180° leads to <strong>the</strong> two high-frequency localisati<strong>on</strong><br />

stimuli progressively caus<strong>in</strong>g separate auditory events. The effect is similar to <strong>the</strong><br />

sound image produced by <strong>in</strong>coherent source signals (see DAMASKE 1967/68). The<br />

sound image dis<strong>in</strong>tegrates more and more and localisati<strong>on</strong> blur <strong>in</strong>creases. For Θ =<br />

180° and ∆L = 0, <strong>the</strong> “locatedness is almost completely undef<strong>in</strong>ed” (MATSUDAIRA /<br />

FUKAMI 1973). The centres of <strong>the</strong> auditory events are close to <strong>the</strong> listener’s head<br />

(low-frequency comp<strong>on</strong>ents) and at <strong>the</strong> positi<strong>on</strong>s of <strong>the</strong> loudspeakers (high-frequency<br />

comp<strong>on</strong>ents). For a c<strong>on</strong>stellati<strong>on</strong> that is asymmetric with respect to <strong>the</strong> median plane<br />

(∆L ≠ 0), a high-frequency auditory event dom<strong>in</strong>ates over <strong>the</strong> sec<strong>on</strong>d <strong>on</strong>e. The<br />

directi<strong>on</strong> of <strong>the</strong> centre of <strong>the</strong> auditory event is determ<strong>in</strong>ed by <strong>the</strong> resultant lowfrequency<br />

comp<strong>on</strong>ent.<br />

Thus, it follows that lateralisati<strong>on</strong> experiments do not allow <strong>in</strong>ferences to be made about<br />

<strong>the</strong> locati<strong>on</strong> associati<strong>on</strong> stage. It is strik<strong>in</strong>g that for both headph<strong>on</strong>e and free field<br />

reproducti<strong>on</strong> <strong>the</strong> source signals’ relati<strong>on</strong>ship gives rise to similar auditory event characteristics.<br />

As will be illustrated <strong>in</strong> Chapter 5, this does not just apply to <strong>the</strong> coherence and<br />

phase relati<strong>on</strong>ships, but also to <strong>the</strong> level and time differences between <strong>the</strong> signals.<br />

In this secti<strong>on</strong>, <strong>the</strong> phase relati<strong>on</strong>ship is especially important. It appears that out-ofphase<br />

signals lead to a discrim<strong>in</strong>ability <strong>in</strong> <strong>the</strong> gestalt associati<strong>on</strong> stage that is<br />

dependent <strong>on</strong> <strong>the</strong> spectrum of <strong>the</strong> signals. This is <strong>in</strong> agreement with <strong>the</strong><br />

psychoacoustic pr<strong>in</strong>ciples known from signal detecti<strong>on</strong> studies, which are<br />

predom<strong>in</strong>antly verified <strong>in</strong> lateralisati<strong>on</strong> experiments. The BMLD (for a def<strong>in</strong>iti<strong>on</strong> see<br />

BLAUERT 1974, pp. 206) for N π S 0 or N 0 S π has a magnitude of about 12 dB, which,<br />

<strong>in</strong> <strong>the</strong> c<strong>on</strong>text of <strong>the</strong> associati<strong>on</strong> model, can be <strong>in</strong>terpreted as <strong>the</strong> ability of <strong>the</strong> gestalt<br />

associati<strong>on</strong> stage to discrim<strong>in</strong>ate out-of-phase stimulus resp<strong>on</strong>ses of <strong>the</strong> locati<strong>on</strong><br />

associati<strong>on</strong> stage. In c<strong>on</strong>trast, this differentiati<strong>on</strong> does not seem possible for <strong>in</strong>-phase<br />

stimulus resp<strong>on</strong>ses. These c<strong>on</strong>diti<strong>on</strong>s corresp<strong>on</strong>d to <strong>the</strong> observati<strong>on</strong> made by SAYERS<br />

1964 that <strong>in</strong> a lateralisati<strong>on</strong> experiment <strong>in</strong>teraural phase differences around Θ = 180°<br />

can create two auditory events.


50<br />

4.3 Two <strong>in</strong>coherent sound sources<br />

In order to specify qualitatively <strong>the</strong> limits of <strong>the</strong> localisati<strong>on</strong> stimulus selecti<strong>on</strong>, <strong>the</strong><br />

b<strong>in</strong>aural correlati<strong>on</strong> pattern was utilised. In view of <strong>the</strong> discrim<strong>in</strong>ability of <strong>the</strong> maxima<br />

with<strong>in</strong> <strong>the</strong> time delay regi<strong>on</strong> τ, a possible discrim<strong>in</strong>ability of <strong>the</strong> source signals was<br />

deduced. In <strong>the</strong> case of two coherent sound sources, this approach can expla<strong>in</strong> a limited<br />

area of validity of <strong>the</strong> localisati<strong>on</strong> stimulus selecti<strong>on</strong>. For two <strong>in</strong>coherent sources,<br />

however, it does not provide a sufficient basis for <strong>the</strong> spatial decod<strong>in</strong>g. To illustrate,<br />

whilst two speakers positi<strong>on</strong>ed at different locati<strong>on</strong>s produce two auditory events, <strong>the</strong>y<br />

<strong>on</strong>ly create <strong>on</strong>e maximum with<strong>in</strong> each regi<strong>on</strong> of <strong>the</strong> b<strong>in</strong>aural correlati<strong>on</strong> pattern.<br />

It seems that <strong>the</strong> auditory system features much more effective processes for <strong>the</strong><br />

localisati<strong>on</strong> stimulus selecti<strong>on</strong> <strong>in</strong> <strong>the</strong> <strong>superimposed</strong> sound field. It is assumed that<br />

important selective properties of <strong>the</strong> hear<strong>in</strong>g system, <strong>in</strong>clud<strong>in</strong>g those of <strong>the</strong> locati<strong>on</strong><br />

and gestalt associati<strong>on</strong> stages, can be traced back to <strong>the</strong> effect of <strong>the</strong> hypo<strong>the</strong>tical<br />

associative stimulus process<strong>in</strong>g. Hence, <strong>the</strong> occurrence of “simultaneous auditory<br />

events” when present<strong>in</strong>g different signals over a s<strong>in</strong>gle loudspeaker is <strong>the</strong> result of <strong>the</strong><br />

stimulus process<strong>in</strong>g tak<strong>in</strong>g place <strong>in</strong> <strong>the</strong> gestalt associati<strong>on</strong> stage. Accord<strong>in</strong>gly,<br />

“simultaneous locati<strong>on</strong> associati<strong>on</strong>s” can be triggered due to similar mechanisms<br />

be<strong>in</strong>g at work <strong>in</strong> <strong>the</strong> locati<strong>on</strong> associati<strong>on</strong> stage.<br />

Both stages enable <strong>the</strong> simultaneous recogniti<strong>on</strong> of different patterns, s<strong>in</strong>ce<br />

“simultaneous auditory events” can be characterised not just by different auditory<br />

event gestalts, but also by different auditory event locati<strong>on</strong>s. This is even possible for<br />

two source signals hav<strong>in</strong>g identical amplitude envelopes if <strong>the</strong>ir spectra are<br />

sufficiently far apart (“double localisati<strong>on</strong>” of two Gaussian t<strong>on</strong>es, see BOERGER<br />

1965). The likelihood for this effect to occur is especially high if <strong>the</strong> source signals<br />

exhibit uncorrelated amplitude envelopes (cocktail party effect).<br />

The area of validity of <strong>the</strong> associati<strong>on</strong> model <strong>in</strong> <strong>the</strong> <strong>superimposed</strong> sound field is given<br />

by <strong>the</strong> discrim<strong>in</strong>ability of <strong>the</strong> source signals. In <strong>the</strong> case of coherent sound sources, <strong>the</strong><br />

po<strong>in</strong>t at which <strong>the</strong> localisati<strong>on</strong> stimuli can still be discrim<strong>in</strong>ated depends <strong>on</strong> <strong>the</strong> signal<br />

spectrum (see Secti<strong>on</strong> 4.1) as well as <strong>the</strong> result<strong>in</strong>g time difference ∆t between <strong>the</strong><br />

<strong>superimposed</strong> signals. For <strong>in</strong>coherent sources, this discrim<strong>in</strong>ati<strong>on</strong> threshold shall be<br />

def<strong>in</strong>ed by <strong>the</strong> “maximum gestalt resoluti<strong>on</strong>” of <strong>the</strong> hear<strong>in</strong>g system, which is given<br />

when <strong>the</strong> sound events are spatially c<strong>on</strong>gruent.<br />

As a result of <strong>the</strong> locati<strong>on</strong> associati<strong>on</strong> stage, every auditory event occurr<strong>in</strong>g <strong>in</strong> <strong>the</strong><br />

<strong>superimposed</strong> sound field c<strong>on</strong>ta<strong>in</strong>s some associated spatial <strong>in</strong>formati<strong>on</strong>. However,<br />

discrim<strong>in</strong>able localisati<strong>on</strong> stimuli are not just available for relatively dissimilar source<br />

signals, but, under certa<strong>in</strong> c<strong>on</strong>diti<strong>on</strong>s (see Secti<strong>on</strong> 4.1), also for spatially separated<br />

sources that emit identical signals. This is an important statement made by <strong>the</strong><br />

localisati<strong>on</strong> model.


51<br />

4.3.1 The “law of <strong>the</strong> first localisati<strong>on</strong> stimulus”<br />

Accept<strong>in</strong>g <strong>the</strong> correctness of <strong>the</strong> assumpti<strong>on</strong> made <strong>in</strong> Secti<strong>on</strong> 4.1 that <strong>the</strong> hear<strong>in</strong>g<br />

system judges two coherent signals as be<strong>in</strong>g <strong>in</strong>coherent if <strong>the</strong>ir relative time difference<br />

exceeds a value ∆t = τ max , an <strong>in</strong>terest<strong>in</strong>g relati<strong>on</strong>ship between <strong>the</strong> localisati<strong>on</strong> stimulus<br />

selecti<strong>on</strong> and <strong>the</strong> “law of <strong>the</strong> first wavefr<strong>on</strong>t” (CREMER 1948) emerges.<br />

For a c<strong>on</strong>venti<strong>on</strong>al stereo-up, a phantom source shifts from ϕ = 0° to ϕ = 30° if <strong>the</strong><br />

time difference between two broadband loudspeaker signals is <strong>in</strong>creased from zero to<br />

about 600 µs. The associati<strong>on</strong> model could expla<strong>in</strong> this phenomen<strong>on</strong> (time- as well as<br />

level-based stereoph<strong>on</strong>y) by means of psychoacoustic pr<strong>in</strong>ciples of <strong>the</strong> gestalt<br />

associati<strong>on</strong> stage. The localisati<strong>on</strong> stimulus arriv<strong>in</strong>g at <strong>the</strong> gestalt associati<strong>on</strong> stage<br />

first has a greater weight compared to <strong>the</strong> sec<strong>on</strong>d stimulus (<strong>the</strong> equivalent for levelbased<br />

stereoph<strong>on</strong>y would be <strong>the</strong> localisati<strong>on</strong> stimulus with <strong>the</strong> higher level). Despite<br />

<strong>the</strong>ir identity and relative time delay, <strong>the</strong> localisati<strong>on</strong> stimuli can be discrim<strong>in</strong>ated,<br />

s<strong>in</strong>ce each of <strong>the</strong>m is present <strong>in</strong> <strong>the</strong> b<strong>in</strong>aural correlati<strong>on</strong> pattern <strong>in</strong> a complete and<br />

discrim<strong>in</strong>able form (see Secti<strong>on</strong> 4.1).<br />

Yet, a fur<strong>the</strong>r <strong>in</strong>crease <strong>in</strong> <strong>the</strong> <strong>in</strong>terchannel time difference leads to an exceedance of<br />

<strong>the</strong> maximal time delay τ max . For stati<strong>on</strong>ary broadband signals (c<strong>on</strong>t<strong>in</strong>uous noise), this<br />

causes a disrupti<strong>on</strong> of <strong>the</strong> localisati<strong>on</strong> stimulus selecti<strong>on</strong>, which manifests itself <strong>in</strong> <strong>the</strong><br />

form of a reduced suppressi<strong>on</strong> of <strong>the</strong> comb filter effect, for example. In this particular<br />

sound field c<strong>on</strong>stellati<strong>on</strong>, <strong>the</strong> law of <strong>the</strong> first wavefr<strong>on</strong>t cannot be observed <strong>in</strong><br />

accordance with <strong>the</strong> associati<strong>on</strong> model. Analysable wavefr<strong>on</strong>ts that would allow for a<br />

localisati<strong>on</strong> stimulus selecti<strong>on</strong> of <strong>the</strong> imp<strong>in</strong>g<strong>in</strong>g sound comp<strong>on</strong>ents do not exist.<br />

In c<strong>on</strong>trast, for n<strong>on</strong>-stati<strong>on</strong>ary impulsive signals (clicks, speech, impulsive t<strong>on</strong>es) an<br />

<strong>in</strong>crease <strong>in</strong> <strong>the</strong> <strong>in</strong>terchannel time difference has a different effect. In <strong>the</strong> associati<strong>on</strong><br />

model, evaluati<strong>on</strong> of <strong>the</strong> amplitude envelope ensures that <strong>the</strong> primary and <strong>the</strong> delayed<br />

sound (reflecti<strong>on</strong>) can be discrim<strong>in</strong>ated as localisati<strong>on</strong> stimuli. Accord<strong>in</strong>g to a<br />

hypo<strong>the</strong>tical functi<strong>on</strong> of <strong>the</strong> gestalt associati<strong>on</strong> stage, <strong>the</strong> primary localisati<strong>on</strong> stimulus<br />

determ<strong>in</strong>es <strong>the</strong> auditory event. It does this even more so <strong>the</strong> larger <strong>the</strong> time difference<br />

between <strong>the</strong> arriv<strong>in</strong>g localisati<strong>on</strong> stimuli gets. Only when a time difference of about<br />

10 … 30 ms is exceeded will <strong>the</strong> subsequent localisati<strong>on</strong> stimulus ga<strong>in</strong> <strong>in</strong> perceptual<br />

weight. Bey<strong>on</strong>d <strong>the</strong> echo threshold (for a def<strong>in</strong>iti<strong>on</strong> see BLAUERT 1974), it will be<br />

perceived as a separate auditory event.<br />

It appears that <strong>the</strong> “law of <strong>the</strong> first wavefr<strong>on</strong>t” can be <strong>in</strong>terpreted as <strong>the</strong> “law of <strong>the</strong><br />

first localisati<strong>on</strong> stimulus”.<br />

Moreover, <strong>the</strong> model states that for time differences between 0 and 10 … 30 ms no<br />

fundamental difference exists <strong>in</strong> <strong>the</strong> stimulus evaluati<strong>on</strong>. Ra<strong>the</strong>r, it is assumed that <strong>the</strong><br />

psychoacoustic regularities of both time-based stereoph<strong>on</strong>y and <strong>the</strong> law of <strong>the</strong> first


52<br />

wavefr<strong>on</strong>t can be traced back to a time-dependent evaluati<strong>on</strong> of <strong>the</strong> localisati<strong>on</strong><br />

stimuli that arrive <strong>on</strong>e after <strong>the</strong> o<strong>the</strong>r.<br />

Of course, <strong>the</strong> law of <strong>the</strong> first localisati<strong>on</strong> stimulus is <strong>on</strong>ly valid if a localisati<strong>on</strong><br />

stimulus selecti<strong>on</strong> can take place. Therefore, <strong>the</strong> sound field c<strong>on</strong>diti<strong>on</strong>s discussed <strong>in</strong><br />

Secti<strong>on</strong>s 4.1 and 4.3 have to be satisfied. In particular, <strong>the</strong> need for sufficiently<br />

broadband signals also applies <strong>in</strong> <strong>the</strong> case of <strong>the</strong> law of <strong>the</strong> first wavefr<strong>on</strong>t. This is<br />

clearly dem<strong>on</strong>strated by an <strong>in</strong>vestigati<strong>on</strong> by BLAUERT / COBBEN 1978 who<br />

measured <strong>the</strong> auditory event directi<strong>on</strong> for narrow- and broadband impulses as a<br />

functi<strong>on</strong> of <strong>the</strong> <strong>in</strong>terchannel time difference (see Figure 21).<br />

0,5 kHz<br />

1 kHz<br />

left<br />

2 kHz<br />

broad band signal<br />

right<br />

ms<br />

Bild 21:<br />

Auditory event directi<strong>on</strong> ϕ as a functi<strong>on</strong> of <strong>the</strong> time delay ∆t of<br />

<strong>the</strong> right loudspeaker signal (after BLAUERT / COBBEN 1978)<br />

Nei<strong>the</strong>r is <strong>the</strong>re agreement between <strong>the</strong> localisati<strong>on</strong> curves of <strong>the</strong> low-frequency<br />

narrow-band signals and <strong>the</strong> curve measured for <strong>the</strong> broadband signal with<strong>in</strong> <strong>the</strong><br />

regi<strong>on</strong> of time-based stereoph<strong>on</strong>y, nor can any agreement be certified for larger time<br />

differences. From <strong>the</strong> periodicity of <strong>the</strong>se curves it can be seen that with<strong>in</strong> <strong>the</strong> whole<br />

time delay regi<strong>on</strong> summ<strong>in</strong>g localisati<strong>on</strong> has taken place, i.e. that <strong>the</strong> resultant<br />

<strong>in</strong>teraural signal differences have determ<strong>in</strong>ed <strong>the</strong> directi<strong>on</strong> of <strong>the</strong> auditory event. In<br />

c<strong>on</strong>formity with <strong>the</strong> associati<strong>on</strong> model, <strong>the</strong> law of <strong>the</strong> first wavefr<strong>on</strong>t is not valid for<br />

low-frequency narrow-band signals. This “anomaly of <strong>the</strong> law of <strong>the</strong> first wavefr<strong>on</strong>t”<br />

(BLAUERT / COBBEN 1978) is equivalent to <strong>the</strong> respective anomalies of time-based<br />

stereoph<strong>on</strong>y (see WENDT 1963). Both phenomena arise due to <strong>in</strong>sufficient signal<br />

bandwidths.


53<br />

Particular support for <strong>the</strong> assumed “law of <strong>the</strong> first localisati<strong>on</strong> stimulus” is provided<br />

by <strong>the</strong> fact that <strong>the</strong> pr<strong>in</strong>ciples of time-based stereoph<strong>on</strong>y as well as <strong>the</strong> law of <strong>the</strong> first<br />

wavefr<strong>on</strong>t also apply if <strong>the</strong> first signal is solely sent to <strong>on</strong>e and <strong>the</strong> delayed signal<br />

exclusively to <strong>the</strong> o<strong>the</strong>r ear us<strong>in</strong>g headph<strong>on</strong>es. As will be shown <strong>in</strong> Chapter 5, <strong>in</strong> <strong>the</strong><br />

case of dichotic presentati<strong>on</strong> <strong>the</strong> stimuli pass <strong>the</strong> locati<strong>on</strong> associati<strong>on</strong> stage without<br />

be<strong>in</strong>g affected by it. As l<strong>on</strong>g as an adequate spatial decod<strong>in</strong>g takes place (see Secti<strong>on</strong><br />

4, Figure 12), identical stimulus resp<strong>on</strong>ses (A’ and B’, respectively) will appear at <strong>the</strong><br />

<strong>in</strong>puts to <strong>the</strong> gestalt associati<strong>on</strong> stage for loudspeaker as well as headph<strong>on</strong>e<br />

reproducti<strong>on</strong>. S<strong>in</strong>ce <strong>the</strong> “law of <strong>the</strong> first localisati<strong>on</strong> stimulus” is attributed to <strong>the</strong> timedependent<br />

evaluati<strong>on</strong> of stimuli arriv<strong>in</strong>g at <strong>the</strong> gestalt associati<strong>on</strong> stage <strong>on</strong>e after <strong>the</strong><br />

o<strong>the</strong>r, its area of validity has to <strong>in</strong>clude dichotic headph<strong>on</strong>e reproducti<strong>on</strong>. Specifically,<br />

this applies to <strong>the</strong> follow<strong>in</strong>g phenomena:<br />

1. For both loudspeaker and headph<strong>on</strong>e reproducti<strong>on</strong>, <strong>the</strong> maximum lateral<br />

displacement of <strong>the</strong> auditory event occurs for time differences <strong>in</strong>-between 655<br />

and 800 µs (see TOOLE / SAYERS 1965, WENDT 1963).<br />

2. For clicks, <strong>the</strong> localisati<strong>on</strong> blur and <strong>the</strong> lateralisati<strong>on</strong> blur of a phantom source<br />

positi<strong>on</strong>ed <strong>in</strong> <strong>the</strong> median plane is about 20 µs (see KLEMM 1920, WENDT<br />

1963, HALL 1964).<br />

3. For both modes of reproducti<strong>on</strong>, <strong>the</strong> law of <strong>the</strong> first wavefr<strong>on</strong>t is valid <strong>in</strong> <strong>the</strong><br />

case of speech signals and time delays <strong>in</strong>-between 0.8 … 20 ms (<strong>the</strong> echo<br />

threshold is used for <strong>the</strong> threshold def<strong>in</strong>iti<strong>on</strong>, see BLAUERT 1974).<br />

4. In both cases, <strong>the</strong> echo threshold is str<strong>on</strong>gly signal-dependent. The steeper <strong>the</strong><br />

<strong>on</strong>- and offsets of <strong>the</strong> signals, <strong>the</strong> smaller <strong>the</strong> time delay at which <strong>the</strong> auditory<br />

event splits <strong>in</strong>to a primary auditory event and an echo.<br />

5. If <strong>the</strong> level of <strong>the</strong> reflecti<strong>on</strong> is <strong>in</strong>creased relative to <strong>the</strong> <strong>on</strong>e of <strong>the</strong> primary<br />

sound, <strong>the</strong> time delay needed for an echo to occur decreases <strong>in</strong> both cases. If<br />

<strong>the</strong> reflecti<strong>on</strong> level is lowered, <strong>the</strong> opposite effect occurs (see BABKOFF/<br />

SUTTON 1966, BLAUERT 1974).<br />

For impulsive broadband signals, <strong>the</strong> associati<strong>on</strong> model thus predicts that <strong>the</strong> auditory<br />

events aris<strong>in</strong>g due to <strong>in</strong>terchannel time differences can be expla<strong>in</strong>ed with <strong>the</strong> help of<br />

<strong>the</strong> “law of <strong>the</strong> first localisati<strong>on</strong> stimulus”. This means that <strong>the</strong> stimulus resp<strong>on</strong>ses<br />

arriv<strong>in</strong>g at <strong>the</strong> gestalt associati<strong>on</strong> stage first will dom<strong>in</strong>ate <strong>the</strong> process<strong>in</strong>g carried out <strong>in</strong><br />

this stage, whilst <strong>the</strong> later resp<strong>on</strong>ses will be suppressed. The model fur<strong>the</strong>r states that<br />

time-based stereoph<strong>on</strong>y is also possible for stati<strong>on</strong>ary broadband signals, whereas <strong>the</strong><br />

law of <strong>the</strong> first wavefr<strong>on</strong>t can <strong>on</strong>ly be verified for signals hav<strong>in</strong>g dist<strong>in</strong>ctly transient<br />

amplitude envelopes. Thirdly, it proclaims that <strong>the</strong> effects caused by signal delays<br />

should <strong>in</strong> pr<strong>in</strong>ciple also be observable for headph<strong>on</strong>e reproducti<strong>on</strong>, provided that an<br />

adequate localisability of <strong>the</strong> <strong>in</strong>dividual sound source is possible.


54<br />

4.3.2 The cocktail party effect<br />

The selective properties of both <strong>the</strong> locati<strong>on</strong> and gestalt associati<strong>on</strong> stage enable <strong>the</strong><br />

simultaneous discrim<strong>in</strong>ati<strong>on</strong> of different patterns. Depend<strong>in</strong>g <strong>on</strong> <strong>the</strong> source locati<strong>on</strong>s<br />

and <strong>the</strong> source signal characteristics, <strong>the</strong> associated locati<strong>on</strong> and gestalt associati<strong>on</strong>s<br />

arise. Suppos<strong>in</strong>g that each selecti<strong>on</strong> stage can discrim<strong>in</strong>ate at least two patterns<br />

simultaneously, a general approach results that can also be used for expla<strong>in</strong><strong>in</strong>g <strong>the</strong><br />

cocktail party effect by means of <strong>the</strong> associati<strong>on</strong> model.<br />

A phantom source disappears as so<strong>on</strong> as <strong>the</strong> two loudspeaker signals become<br />

sufficiently dissimilar, i.e. as so<strong>on</strong> as <strong>the</strong>y produce different auditory event gestalts.<br />

This is <strong>the</strong> general, natural case of a <strong>superimposed</strong> sound field. Normally, two sound<br />

sources do not just give rise to two different locati<strong>on</strong> associati<strong>on</strong>s, but also to two<br />

different gestalt associati<strong>on</strong>s. The two resultant auditory events <strong>the</strong>refore occur after a<br />

two-stage selecti<strong>on</strong> from which <strong>the</strong> largest possible resoluti<strong>on</strong> derives. If <strong>on</strong>ly <strong>the</strong><br />

gestalt associati<strong>on</strong> stage c<strong>on</strong>tributes to <strong>the</strong> auditory event resoluti<strong>on</strong> because <strong>the</strong> two<br />

loudspeakers are located at <strong>the</strong> same place, <strong>the</strong> auditory event discrim<strong>in</strong>ati<strong>on</strong><br />

decreases to its lower limit (resoluti<strong>on</strong> limit of <strong>the</strong> gestalt associati<strong>on</strong> stage, see<br />

Secti<strong>on</strong> 4.3). The significance of <strong>the</strong> gestalt associati<strong>on</strong> stage to spatial hear<strong>in</strong>g is<br />

evident here, too. Simultaneous auditory event locati<strong>on</strong>s can <strong>on</strong>ly occur if <strong>the</strong><br />

trigger<strong>in</strong>g stimulus patterns also produce different auditory event gestalts.<br />

C<strong>on</strong>versely, <strong>the</strong> cocktail party effect is due to <strong>the</strong> effect of <strong>the</strong> locati<strong>on</strong> associati<strong>on</strong><br />

stage. Under certa<strong>in</strong> c<strong>on</strong>diti<strong>on</strong>s, simultaneous auditory event gestalts can occur <strong>on</strong>ly if<br />

<strong>the</strong> trigger<strong>in</strong>g stimulus patterns also act as localisati<strong>on</strong> stimuli. To illustrate, a<br />

particular voice cannot be ‘extracted’ from a large group of speakers if <strong>on</strong>e ear is<br />

blocked, because <strong>the</strong> locati<strong>on</strong> associati<strong>on</strong> stage will not be able to c<strong>on</strong>tribute to <strong>the</strong><br />

selecti<strong>on</strong> process. The localisati<strong>on</strong> stimulus selecti<strong>on</strong> is a useful pre-selecti<strong>on</strong> process,<br />

which precedes <strong>the</strong> higher-level pattern recogniti<strong>on</strong>. Each of <strong>the</strong> two process<strong>in</strong>g stages<br />

discrim<strong>in</strong>ates <strong>the</strong> patterns accord<strong>in</strong>g to different characteristics that are <strong>in</strong>dependent of<br />

each o<strong>the</strong>r. The result<strong>in</strong>g resoluti<strong>on</strong> of <strong>the</strong> different patterns <strong>the</strong>n ensures that <strong>the</strong><br />

auditory system can discrim<strong>in</strong>ate <strong>in</strong>dividual auditory events. On <strong>the</strong>se grounds,<br />

c<strong>on</strong>centrat<strong>in</strong>g <strong>on</strong> <strong>on</strong>e auditory event could lead to an <strong>in</strong>creased resoluti<strong>on</strong> of a<br />

particular pattern as a result of guided associati<strong>on</strong> (associati<strong>on</strong> guidance by<br />

c<strong>on</strong>sciousness).<br />

Accord<strong>in</strong>g to this del<strong>in</strong>eati<strong>on</strong>, <strong>the</strong> localisati<strong>on</strong> process <strong>in</strong> <strong>the</strong> <strong>superimposed</strong> sound field<br />

is a two-stage process that performs <strong>the</strong> mapp<strong>in</strong>g of <strong>the</strong> auditory events because of<br />

auditory experience. A fundamental example of auditory experience is that <strong>the</strong><br />

received ear signals can be attributed to a certa<strong>in</strong> source locati<strong>on</strong> and to a certa<strong>in</strong><br />

source signal. These two source properties are <strong>in</strong>dependent of each o<strong>the</strong>r, but <strong>the</strong>y<br />

<strong>on</strong>ly occur <strong>in</strong> a pairwise fashi<strong>on</strong>. The associati<strong>on</strong> model takes this auditory experience<br />

<strong>in</strong>to account: <strong>the</strong> occurr<strong>in</strong>g auditory events can be traced back to <strong>the</strong> effect of a


55<br />

locati<strong>on</strong> and a gestalt associati<strong>on</strong> stage. The two stages work <strong>in</strong>dependently of each<br />

o<strong>the</strong>r; <strong>the</strong>y always determ<strong>in</strong>e <strong>the</strong> properties of <strong>the</strong> auditory events <strong>in</strong> a c<strong>on</strong>jo<strong>in</strong>t<br />

fashi<strong>on</strong>.<br />

The capabilities of our hear<strong>in</strong>g system are based <strong>on</strong> two elementary areas of auditory<br />

experience. The c<strong>on</strong>jo<strong>in</strong>t effect of <strong>the</strong>se areas with regard to spatial hear<strong>in</strong>g <strong>in</strong> <strong>the</strong><br />

<strong>superimposed</strong> sound field is especially well illustrated by <strong>the</strong> cocktail party effect.


56<br />

5. A c<strong>on</strong>sequence of <strong>the</strong> associati<strong>on</strong> model<br />

The categorical dist<strong>in</strong>cti<strong>on</strong> between a locati<strong>on</strong>- and a gestalt-determ<strong>in</strong><strong>in</strong>g process<strong>in</strong>g<br />

stage <strong>in</strong> <strong>the</strong> auditory system enables an enhanced understand<strong>in</strong>g of auditory<br />

phenomena occurr<strong>in</strong>g <strong>in</strong> <strong>the</strong> <strong>superimposed</strong> sound field. Particularly those phenomena<br />

that depend <strong>on</strong> <strong>the</strong> source signals’ relati<strong>on</strong>ship (phantom source, law of <strong>the</strong> first<br />

wavefr<strong>on</strong>t, cocktail party effect) can be expla<strong>in</strong>ed by <strong>the</strong> associati<strong>on</strong> model as be<strong>in</strong>g<br />

<strong>the</strong> result of this two-dimensi<strong>on</strong>al process<strong>in</strong>g. The locati<strong>on</strong> associati<strong>on</strong> stage<br />

discrim<strong>in</strong>ates <strong>in</strong>dividual source signals because of <strong>the</strong> available spatial <strong>in</strong>formati<strong>on</strong><br />

(see Secti<strong>on</strong> 3.1 and Chapter 4). The stimulus resp<strong>on</strong>ses of this stage are <strong>the</strong>n<br />

subjected to <strong>the</strong> gestalt-determ<strong>in</strong><strong>in</strong>g process<strong>in</strong>g carried out <strong>in</strong> <strong>the</strong> next stage. It is not<br />

until here that <strong>the</strong> relati<strong>on</strong>ship of <strong>the</strong> source signals takes effect. Provided <strong>the</strong> <strong>in</strong>volved<br />

sources give rise to discrim<strong>in</strong>able and simultaneous localisati<strong>on</strong> stimuli, <strong>the</strong><br />

regularities of <strong>the</strong> gestalt associati<strong>on</strong> stage can be <strong>in</strong>vestigated for <strong>the</strong> case of two<br />

fixed source locati<strong>on</strong>s by vary<strong>in</strong>g <strong>the</strong> source signal relati<strong>on</strong>ships, even if <strong>the</strong>se<br />

<strong>in</strong>fluence <strong>the</strong> locati<strong>on</strong> of <strong>the</strong> auditory event.<br />

The phantom source situati<strong>on</strong> <strong>in</strong> particular showed that <strong>the</strong> locati<strong>on</strong> of an auditory<br />

event (directi<strong>on</strong>, distance and elevati<strong>on</strong>) cannot be attributed to a process<strong>in</strong>g<br />

mechanism that amounts to <strong>the</strong> localisati<strong>on</strong> of a corresp<strong>on</strong>d<strong>in</strong>g substitute sound<br />

source. The associati<strong>on</strong> model is <strong>in</strong> agreement with this fact, s<strong>in</strong>ce <strong>the</strong> locati<strong>on</strong>determ<strong>in</strong><strong>in</strong>g<br />

process<strong>in</strong>g mechanism does not necessarily determ<strong>in</strong>e <strong>the</strong> auditory event<br />

locati<strong>on</strong>. Ra<strong>the</strong>r, <strong>in</strong> <strong>the</strong> model <strong>the</strong> locati<strong>on</strong> associati<strong>on</strong>s <strong>on</strong>ly lead to auditory events if<br />

<strong>the</strong>y are evaluated <strong>in</strong> c<strong>on</strong>juncti<strong>on</strong> with associated gestalt associati<strong>on</strong>s. Without such<br />

auditory event gestalts <strong>the</strong>re will be no auditory event locati<strong>on</strong>.<br />

Hence, different process<strong>in</strong>g mechanisms of <strong>the</strong> auditory system can, <strong>in</strong> pr<strong>in</strong>ciple, lead<br />

to identical auditory event locati<strong>on</strong>s. This depends <strong>on</strong> <strong>the</strong> ear signals and always<br />

happens if different locati<strong>on</strong> and gestalt associati<strong>on</strong>s lead to <strong>the</strong> same localisati<strong>on</strong>. For<br />

<strong>in</strong>stance, if driven with particular signals, two loudspeakers arranged <strong>in</strong> <strong>the</strong><br />

c<strong>on</strong>venti<strong>on</strong>al manner can produce exactly <strong>the</strong> same ear signals as a s<strong>in</strong>gle real sound<br />

source (e.g. TRADIS method, DAMASKE / MELLERT 1969/79). The auditory event<br />

locati<strong>on</strong> arises due to <strong>on</strong>e locati<strong>on</strong> associati<strong>on</strong>, <strong>the</strong> fictitious sound source be<strong>in</strong>g a<br />

substitute sound source. However, two different loudspeaker signals can also<br />

produce a sound field that, <strong>in</strong> accordance with <strong>the</strong> actual sound source locati<strong>on</strong>s, gives<br />

rise to two locati<strong>on</strong> associati<strong>on</strong>s whilst still lead<strong>in</strong>g to <strong>the</strong> same auditory event locati<strong>on</strong><br />

as <strong>in</strong> <strong>the</strong> first case. In this case, <strong>the</strong> fictitious sound source is a phantom source.<br />

This statement by <strong>the</strong> associati<strong>on</strong> model does not corresp<strong>on</strong>d to <strong>the</strong> literature’s<br />

understand<strong>in</strong>g of <strong>the</strong> functi<strong>on</strong><strong>in</strong>g of <strong>the</strong> auditory system with respect to spatial<br />

hear<strong>in</strong>g. Up to now, it was assumed that <strong>the</strong> extremely complex localisati<strong>on</strong> process<br />

should be unambiguously describable if at least <strong>the</strong> spatial properties of <strong>the</strong> auditory<br />

event have been clearly determ<strong>in</strong>ed. This view is <strong>in</strong>correct, as different ear signals can


57<br />

produce <strong>the</strong> same spatial properties as so<strong>on</strong> as more than <strong>on</strong>e sound source <strong>in</strong>fluences<br />

<strong>the</strong> formati<strong>on</strong> of <strong>the</strong> auditory event. It was fur<strong>the</strong>r assumed that <strong>the</strong> localisati<strong>on</strong><br />

process could be attributed to <strong>the</strong> effect of a locati<strong>on</strong>-determ<strong>in</strong><strong>in</strong>g process<strong>in</strong>g stage <strong>in</strong><br />

<strong>the</strong> auditory system. This view is not compell<strong>in</strong>g and seems unlikely, s<strong>in</strong>ce <strong>in</strong> this case<br />

<strong>the</strong> locati<strong>on</strong>-determ<strong>in</strong><strong>in</strong>g process<strong>in</strong>g stage would <strong>in</strong>terpret certa<strong>in</strong> ear signals<br />

differently.<br />

In c<strong>on</strong>trast, <strong>the</strong> associati<strong>on</strong> model specifies <strong>the</strong> follow<strong>in</strong>g relati<strong>on</strong>ships with regard to<br />

spatial hear<strong>in</strong>g:<br />

1. Under certa<strong>in</strong> c<strong>on</strong>diti<strong>on</strong>s, a s<strong>in</strong>gle sound source causes <strong>on</strong>e locati<strong>on</strong> associati<strong>on</strong><br />

<strong>in</strong> <strong>the</strong> locati<strong>on</strong>-determ<strong>in</strong><strong>in</strong>g stage, which completely determ<strong>in</strong>es <strong>the</strong> auditory<br />

event locati<strong>on</strong> <strong>on</strong> its own.<br />

2. Under certa<strong>in</strong> c<strong>on</strong>diti<strong>on</strong>s, two sound sources that are different and <strong>in</strong>dependent<br />

of each o<strong>the</strong>r <strong>in</strong> terms of <strong>the</strong>ir locati<strong>on</strong>s and signals cause two locati<strong>on</strong><br />

associati<strong>on</strong>s <strong>in</strong> <strong>the</strong> locati<strong>on</strong>-determ<strong>in</strong><strong>in</strong>g and two gestalt associati<strong>on</strong>s <strong>in</strong> <strong>the</strong><br />

gestalt-determ<strong>in</strong><strong>in</strong>g stage. Similar to <strong>the</strong> sound events, <strong>the</strong> auditory events are<br />

“de-coupled” with respect to <strong>the</strong>ir locati<strong>on</strong>s and gestalts, so that <strong>the</strong><br />

localisati<strong>on</strong> is <strong>on</strong>ly due to <strong>the</strong> effect of <strong>the</strong> locati<strong>on</strong> associati<strong>on</strong> stage.<br />

3. Under certa<strong>in</strong> c<strong>on</strong>diti<strong>on</strong>s, two sound sources that <strong>on</strong>ly differ <strong>in</strong> terms of <strong>the</strong>ir<br />

locati<strong>on</strong>s and that are coupled <strong>in</strong> terms of <strong>the</strong>ir signals still cause two locati<strong>on</strong><br />

associati<strong>on</strong>s <strong>in</strong> <strong>the</strong> locati<strong>on</strong>-determ<strong>in</strong><strong>in</strong>g stage. However, <strong>in</strong> <strong>the</strong> gestalt<br />

associati<strong>on</strong> stage no de-coupl<strong>in</strong>g of <strong>the</strong> coupled source signals can take place.<br />

S<strong>in</strong>ce an auditory event is always determ<strong>in</strong>ed by both process<strong>in</strong>g stages,<br />

coupled auditory events arise as a result of <strong>the</strong>ir comm<strong>on</strong> gestalt properties.<br />

Identical source signals <strong>the</strong>refore lead to a complete fus<strong>in</strong>g of <strong>the</strong> auditory<br />

events and thus also to a fusi<strong>on</strong> of <strong>the</strong> auditory event locati<strong>on</strong>s. In this case, <strong>the</strong><br />

localisati<strong>on</strong> can be traced back to <strong>the</strong> effects of <strong>the</strong> locati<strong>on</strong> as well as <strong>the</strong><br />

gestalt associati<strong>on</strong> stage.<br />

Generally speak<strong>in</strong>g, <strong>the</strong> localisati<strong>on</strong> process can <strong>on</strong>ly be expla<strong>in</strong>ed by means of <strong>the</strong><br />

functi<strong>on</strong> of a locati<strong>on</strong>-determ<strong>in</strong><strong>in</strong>g process<strong>in</strong>g stage if just <strong>on</strong>e localisati<strong>on</strong> stimulus<br />

c<strong>on</strong>tributes to <strong>the</strong> formati<strong>on</strong> of an auditory event. A localisati<strong>on</strong> stimulus will be<br />

available if sufficiently broadband b<strong>in</strong>aural ear signals are coupled to each o<strong>the</strong>r due<br />

to <strong>the</strong> effects of <strong>the</strong> head and p<strong>in</strong>nae <strong>in</strong> <strong>the</strong> sound field <strong>on</strong>ly.<br />

5.1 Lateralisati<strong>on</strong> – The loudspeaker distance zero<br />

B<strong>in</strong>aural ear signals or ear signal comp<strong>on</strong>ents that do not c<strong>on</strong>stitute a localisati<strong>on</strong><br />

stimulus but are coupled to each o<strong>the</strong>r <strong>in</strong> an arbitrary way are not subject to <strong>the</strong><br />

psychoacoustic regularities of a locati<strong>on</strong>-determ<strong>in</strong><strong>in</strong>g process<strong>in</strong>g stage. This fact is


58<br />

especially evident from lateralisati<strong>on</strong> experiments. Indeed, it can be illustrated even<br />

more clearly if <strong>the</strong> effects of <strong>the</strong> two process<strong>in</strong>g stages <strong>in</strong> <strong>the</strong> associati<strong>on</strong> model are<br />

scrut<strong>in</strong>ised.<br />

The locati<strong>on</strong> associati<strong>on</strong> stage precedes <strong>the</strong> gestalt associati<strong>on</strong> stage. This means that<br />

<strong>the</strong> auditory system is equipped with <strong>the</strong> ability to select (and discrim<strong>in</strong>ate)<br />

localisati<strong>on</strong> stimuli when presented with multiple different stimuli. In <strong>the</strong><br />

<strong>superimposed</strong> sound field, <strong>the</strong> localisati<strong>on</strong> stimulus selecti<strong>on</strong> acts as a filter that<br />

enables <strong>the</strong> discrim<strong>in</strong>ati<strong>on</strong> of <strong>in</strong>dividual source signals (see Chapter 4), so that a<br />

possible coupl<strong>in</strong>g of <strong>the</strong> source signals does not take place until <strong>the</strong> gestalt associati<strong>on</strong><br />

stage. In a phantom source situati<strong>on</strong>, for example, <strong>the</strong> locati<strong>on</strong> associati<strong>on</strong> stage<br />

prevents summ<strong>in</strong>g localisati<strong>on</strong>. The localisati<strong>on</strong> stimulus selecti<strong>on</strong> ensures that – <strong>in</strong><br />

spite of <strong>the</strong> superpositi<strong>on</strong> of <strong>the</strong> sound fields – <strong>the</strong> same signals are processed <strong>in</strong> <strong>the</strong><br />

gestalt associati<strong>on</strong> stage as <strong>in</strong> <strong>the</strong> case of headph<strong>on</strong>e reproducti<strong>on</strong>.<br />

Lateralisati<strong>on</strong> experiments can <strong>on</strong>ly provide <strong>in</strong>formati<strong>on</strong> about <strong>the</strong> functi<strong>on</strong> of <strong>the</strong><br />

gestalt associati<strong>on</strong> stage, because, <strong>in</strong>dependent of <strong>the</strong> source distances, <strong>the</strong> two source<br />

signals are discrim<strong>in</strong>ated and forwarded to <strong>the</strong> gestalt associati<strong>on</strong> stage separately.<br />

Hence, as a basic pr<strong>in</strong>ciple, lateralisati<strong>on</strong> experiments do not allow for any<br />

c<strong>on</strong>clusi<strong>on</strong>s to be drawn about <strong>the</strong> functi<strong>on</strong><strong>in</strong>g of <strong>the</strong> locati<strong>on</strong> associati<strong>on</strong> stage. They<br />

can <strong>on</strong>ly illustrate psychoacoustic regularities of <strong>the</strong> phantom source (“phantom<br />

source <strong>in</strong>side <strong>the</strong> head”). A “substitute sound source <strong>in</strong>side <strong>the</strong> head” does not exist.<br />

The relevance of lateralisati<strong>on</strong> experiments to spatial hear<strong>in</strong>g is hi<strong>the</strong>rto unknown. It is<br />

assumed that <strong>the</strong> localisati<strong>on</strong> process can be split <strong>in</strong>to sub-comp<strong>on</strong>ents, which can be<br />

scrut<strong>in</strong>ised <strong>in</strong>dividually us<strong>in</strong>g headph<strong>on</strong>es. In this c<strong>on</strong>text, <strong>the</strong> follow<strong>in</strong>g statement by<br />

BLAUERT 1974 (pp. 131) shall serve as a representative example of <strong>the</strong> currently<br />

accepted understand<strong>in</strong>g evident <strong>in</strong> <strong>the</strong> literature:<br />

“The formati<strong>on</strong> of lateral auditory events requires different ear signals. Specific<br />

types of ear signal differences are created due to diffracti<strong>on</strong>, shadow<strong>in</strong>g and<br />

res<strong>on</strong>ance effects occurr<strong>in</strong>g at <strong>the</strong> head and p<strong>in</strong>nae. These very subtle signal<br />

differences can be studied <strong>in</strong> terms of <strong>the</strong>ir “effective” comp<strong>on</strong>ents <strong>in</strong><br />

lateralisati<strong>on</strong> experiments us<strong>in</strong>g headph<strong>on</strong>es.”<br />

With regard to summ<strong>in</strong>g localisati<strong>on</strong>, it is stated (pp. 169):<br />

“It stands to reas<strong>on</strong> to study <strong>the</strong> <strong>in</strong>fluence of <strong>in</strong>dividual signal comp<strong>on</strong>ents <strong>on</strong>to<br />

<strong>the</strong> directi<strong>on</strong> of an auditory event <strong>in</strong> more detail. This is feasible by present<strong>in</strong>g<br />

syn<strong>the</strong>tically created impulse groups over headph<strong>on</strong>es, for example. The<br />

<strong>in</strong>dividual signal comp<strong>on</strong>ents can <strong>the</strong>n be varied at will.”<br />

It is presumed that <strong>the</strong> “evaluati<strong>on</strong> of different ear signals” (see Secti<strong>on</strong> 2.4 <strong>in</strong><br />

BLAUERT 1974), which <strong>the</strong> auditory system carries out as part of <strong>the</strong> localisati<strong>on</strong>


59<br />

process, can be <strong>in</strong>vestigated by means of two sound sources that are <strong>in</strong> sufficient<br />

proximity of <strong>the</strong> ears. Admittedly, <strong>the</strong> resultant <strong>in</strong>side- or near-<strong>the</strong>-head locatedness is<br />

c<strong>on</strong>sidered formally by describ<strong>in</strong>g <strong>the</strong> lateralisati<strong>on</strong> experiment as “an experiment<br />

with deficient distance percepti<strong>on</strong>”. Never<strong>the</strong>less, <strong>the</strong>re is no evidence for <strong>the</strong><br />

assumpti<strong>on</strong> prevail<strong>in</strong>g <strong>in</strong> <strong>the</strong> literature that <strong>the</strong> results from <strong>the</strong>se lateralisati<strong>on</strong><br />

experiments and hence <strong>the</strong> associated hypo<strong>the</strong>ses c<strong>on</strong>cern<strong>in</strong>g <strong>the</strong> formati<strong>on</strong> of lateral<br />

auditory events “can also be applied to spatial hear<strong>in</strong>g <strong>in</strong> a free sound field”<br />

(BLAUERT 1974).<br />

The associati<strong>on</strong> model expla<strong>in</strong>s <strong>the</strong> “deficient distance percepti<strong>on</strong>” <strong>in</strong> <strong>the</strong> case of<br />

lateralisati<strong>on</strong> experiments with <strong>the</strong> help of <strong>the</strong> “loudspeaker distance zero” 1 . The<br />

sound source locati<strong>on</strong>s “at <strong>the</strong> ears” also produce localisati<strong>on</strong> stimuli, which <strong>in</strong> turn<br />

cause two corresp<strong>on</strong>d<strong>in</strong>g locati<strong>on</strong> associati<strong>on</strong>s (see Secti<strong>on</strong> 4.2.1). Due to <strong>the</strong> miss<strong>in</strong>g<br />

sound field superpositi<strong>on</strong> this happens particularly easily (<strong>the</strong> ear signal <strong>in</strong> <strong>the</strong> case of<br />

m<strong>on</strong>otic presentati<strong>on</strong> is preserved <strong>in</strong> <strong>the</strong> case of dichotic presentati<strong>on</strong>).<br />

S<strong>in</strong>ce <strong>the</strong> signals are <strong>on</strong>ly fused when enter<strong>in</strong>g <strong>the</strong> gestalt associati<strong>on</strong> stage, <strong>the</strong> lateral<br />

displacements of auditory events result<strong>in</strong>g from level and time differences between<br />

<strong>the</strong> headph<strong>on</strong>e signals must not be compared with directi<strong>on</strong> hear<strong>in</strong>g relevant to <strong>the</strong><br />

localisati<strong>on</strong> of a s<strong>in</strong>gle real sound source.<br />

In general, <strong>the</strong> evaluati<strong>on</strong> of different ear signals, which <strong>the</strong> auditory system carries<br />

out when localis<strong>in</strong>g a s<strong>in</strong>gle sound source, can <strong>on</strong>ly be <strong>in</strong>vestigated under localisati<strong>on</strong><br />

c<strong>on</strong>diti<strong>on</strong>s.<br />

5.2 Time-<strong>in</strong>tensity equivalence <strong>in</strong> <strong>the</strong> case of artificial head signals<br />

The localisati<strong>on</strong> of a s<strong>in</strong>gle sound source takes place by means of an evaluati<strong>on</strong> of<br />

<strong>in</strong>teraural signal differences. Accord<strong>in</strong>g to BLAUERT 1974, <strong>on</strong>e can differentiate<br />

between two types of <strong>in</strong>teraural differences: <strong>in</strong>teraural time and level differences. As<br />

to <strong>the</strong> relative significance of <strong>the</strong>se two types of signal characteristics and <strong>the</strong>ir<br />

<strong>in</strong>termodal effect, <strong>the</strong> associati<strong>on</strong> model postulates that <strong>on</strong>ly localisati<strong>on</strong> experiments<br />

can provide relevant <strong>in</strong>formati<strong>on</strong> with respect to this issue.<br />

1<br />

Def<strong>in</strong>iti<strong>on</strong>: A sound or auditory event with a distance of zero is located at <strong>the</strong> head. In c<strong>on</strong>trast to<br />

LAWS 1972 and o<strong>the</strong>rs who measured <strong>the</strong> distance from <strong>the</strong> centre of <strong>the</strong> head (orig<strong>in</strong> of <strong>the</strong> coord<strong>in</strong>ate<br />

system), <strong>the</strong> associati<strong>on</strong> model stipulates that a distance of zero is <strong>on</strong>ly possible at <strong>the</strong><br />

receiver’s boundaries. A sound event <strong>in</strong>side <strong>the</strong> head does not exist. Hence, an auditory event<br />

<strong>in</strong>side <strong>the</strong> head cannot arise due to a localisati<strong>on</strong> process; it c<strong>on</strong>tradicts <strong>the</strong> auditory experience. An<br />

“auditory event without distance” is characteristic of <strong>in</strong>side-<strong>the</strong>-head locatedness..


60<br />

The lateralisati<strong>on</strong> experiments that have comm<strong>on</strong>ly been carried out to measure this<br />

time-level equivalence and that so far have utilised broadband signals and sound<br />

pressure levels <strong>in</strong>-between 40 and 80 dB, have led to an average equivalence factor of<br />

about 50 µs/dB ± 25 µs/dB (mean and standard deviati<strong>on</strong> accord<strong>in</strong>g to results published<br />

by V.BEKESY 1959, DEATHERAGE / HIRSCH 1959, DAVID / GUTTMAN / V.<br />

BERGEIJK 1959, HARRIS 1960, FRANSSEN 1960, HAFTER / JEFFRESS 1968).<br />

When compar<strong>in</strong>g this value with those for level- and time-based stereoph<strong>on</strong>y, <strong>the</strong>n<br />

based <strong>on</strong> measurements made by DE BOER 1940 (approx. 30 µs/dB), WENDT 1963<br />

(<strong>on</strong> average approx. 60 µs/dB) and this author (approx. 45 µs/dB) <strong>on</strong>e arrives at a mean<br />

value of 45 µs/dB. The two equivalence factors have a similar magnitude and <strong>the</strong>ir<br />

range is high. As already highlighted by WENDT 1963, this similarity also h<strong>in</strong>ts at <strong>the</strong><br />

possibility that for both modes of reproducti<strong>on</strong> <strong>the</strong> source signal relati<strong>on</strong>ships are<br />

perceptually salient because of <strong>the</strong> same process<strong>in</strong>g mechanisms.<br />

Yet, similar equivalence values obta<strong>in</strong>ed from both loudspeaker- and headph<strong>on</strong>ebased<br />

experiments so far do not c<strong>on</strong>firm <strong>the</strong> assumpti<strong>on</strong> that <strong>the</strong> localisati<strong>on</strong> process is<br />

liable to o<strong>the</strong>r psychoacoustic pr<strong>in</strong>ciples than those revealed by lateralisati<strong>on</strong><br />

experiments. If <strong>the</strong>se equivalence values are meant to shed some light <strong>on</strong> this issue,<br />

<strong>the</strong>y will have to be compared with <strong>the</strong> equivalence values that actually apply to <strong>the</strong><br />

localisati<strong>on</strong> of a real or substitute sound source. However, no such <strong>in</strong>formati<strong>on</strong> was<br />

found when search<strong>in</strong>g <strong>the</strong> literature. It seems that hi<strong>the</strong>rto equivalence values have not<br />

been determ<strong>in</strong>ed <strong>in</strong> localisati<strong>on</strong> experiments. Presumably, apart from experimental<br />

difficulties, <strong>the</strong> reas<strong>on</strong> for this is that <strong>the</strong> relevance of lateralisati<strong>on</strong> experiments to <strong>the</strong><br />

localisati<strong>on</strong> process has never been questi<strong>on</strong>ed.<br />

In view of <strong>the</strong>se f<strong>in</strong>d<strong>in</strong>gs, a listen<strong>in</strong>g test was c<strong>on</strong>ducted <strong>in</strong> order to determ<strong>in</strong>e <strong>the</strong><br />

equivalence value by means of artificial head signals. More specifically, <strong>the</strong> artificial<br />

head signals were presented over headph<strong>on</strong>es and <strong>the</strong> shift <strong>in</strong> auditory event directi<strong>on</strong><br />

as caused by delay<strong>in</strong>g or attenuat<strong>in</strong>g <strong>the</strong> level of <strong>on</strong>e ear signal was measured. These<br />

measurements were made for two artificial head signals:<br />

a) A speaker <strong>in</strong> an anechoic chamber at a distance of 2 m from<br />

<strong>the</strong> artificial head and at an angle of <strong>in</strong>cidence of Ω = 135°<br />

b) A speaker <strong>in</strong> an anechoic chamber at a distance of 2 m from<br />

<strong>the</strong> artificial head and at an angle of <strong>in</strong>cidence of Ω = 180°<br />

In both cases, <strong>the</strong> speaker was positi<strong>on</strong>ed beh<strong>in</strong>d <strong>the</strong> dummy head (NEUMANN),<br />

result<strong>in</strong>g <strong>in</strong> better localisati<strong>on</strong> compared to <strong>the</strong> fr<strong>on</strong>tal imag<strong>in</strong>g area. N<strong>on</strong>e<strong>the</strong>less, <strong>the</strong><br />

results can also be applied to <strong>the</strong> situati<strong>on</strong>s Ω = 45° and Ω = 0°. In <strong>the</strong> case of a), <strong>the</strong><br />

additi<strong>on</strong>ally <strong>in</strong>cluded ear signal differences were 0, 50, 100, 150 µs and 0, 1, 2, 3 dB,<br />

both at <strong>the</strong> c<strong>on</strong>tra- and ipsilateral ear. In <strong>the</strong> case of b), <strong>the</strong>y occurred at <strong>on</strong>e ear <strong>on</strong>ly.<br />

The test signals were presented <strong>in</strong> a random fashi<strong>on</strong>. A total of 20 subjects<br />

participated <strong>in</strong> <strong>the</strong> experiment. For each test signal, four subjects were asked to judge<br />

<strong>the</strong> directi<strong>on</strong> of <strong>the</strong> auditory event.


61<br />

level decrease<br />

signal delay<br />

signal delay<br />

level decrease<br />

at <strong>the</strong> c<strong>on</strong>tralateral ear<br />

at <strong>the</strong> ipsilateral ear<br />

signal delay<br />

level decrease<br />

Bild 22:<br />

Shift <strong>in</strong> auditory event directi<strong>on</strong> for <strong>the</strong> case of artificial head signals and <strong>the</strong><br />

delay or attenuati<strong>on</strong> of <strong>on</strong>e ear signal<br />

Above: Ω = 45° (135°), case a)<br />

Below: Ω = 0° (180°), case b)


62<br />

Figure 22 displays <strong>the</strong> arithmetic means of <strong>the</strong> shifts ∆ϕ <strong>in</strong> <strong>the</strong> auditory event<br />

directi<strong>on</strong>s. They have been plotted as a functi<strong>on</strong> of <strong>the</strong> time delay or level attenuati<strong>on</strong><br />

respectively, which were <strong>in</strong>serted <strong>in</strong>to <strong>on</strong>e ear signal. The standard deviati<strong>on</strong>s lie <strong>in</strong>between<br />

12° and 16° <strong>in</strong> <strong>the</strong> case of a) and <strong>in</strong>-between 2° and 5° <strong>in</strong> <strong>the</strong> case of b).<br />

The straight l<strong>in</strong>es that have been <strong>in</strong>cluded depict <strong>the</strong> average gradients of <strong>the</strong> curves.<br />

Based <strong>on</strong> <strong>the</strong>se results, <strong>the</strong> follow<strong>in</strong>g equivalence factors are obta<strong>in</strong>ed:<br />

10 µs/dB <strong>in</strong> <strong>the</strong> case of a)<br />

21 µs/dB <strong>in</strong> <strong>the</strong> case of b).<br />

Admittedly, this <strong>in</strong>vestigati<strong>on</strong> is problematic <strong>in</strong> that <strong>the</strong> <strong>in</strong>serti<strong>on</strong> of an additi<strong>on</strong>al ear<br />

signal difference may largely destroy an orig<strong>in</strong>al localisati<strong>on</strong> stimulus. For this reas<strong>on</strong>,<br />

<strong>the</strong> differences were chosen to be maximally 150 µs and 3 dB, respectively. Despite<br />

<strong>the</strong>se restricti<strong>on</strong>s, <strong>on</strong>e cannot be completely sure if and to what degree <strong>the</strong> localisati<strong>on</strong><br />

experiment turned <strong>in</strong>to a lateralisati<strong>on</strong> experiment. For <strong>the</strong> purpose of this<br />

<strong>in</strong>vestigati<strong>on</strong>, <strong>the</strong> employed artificial head system cannot ensure a sufficiently high<br />

degree of accuracy of <strong>the</strong> reproducti<strong>on</strong> of a speaker located <strong>in</strong> an anechoic chamber.<br />

The <strong>in</strong>ter-subject distance judgements vary too much and, <strong>on</strong> average, are too close to<br />

<strong>the</strong> head. However, <strong>the</strong>re is still no mean<strong>in</strong>gful and verifiable demarcati<strong>on</strong> of<br />

localisati<strong>on</strong> and lateralisati<strong>on</strong>. To make such a demarcati<strong>on</strong> possible, <strong>the</strong> nature of<br />

<strong>the</strong>se two processes needs to be specified <strong>in</strong> detail first.<br />

Never<strong>the</strong>less, it seems that based <strong>on</strong> <strong>the</strong> results of this experiment <strong>the</strong> follow<strong>in</strong>g<br />

c<strong>on</strong>clusi<strong>on</strong> can be drawn. The relative significance of <strong>the</strong> <strong>in</strong>teraural time and level<br />

differences to <strong>the</strong> localisati<strong>on</strong> of a sound source differs from <strong>the</strong> <strong>on</strong>e applicable to<br />

lateralisati<strong>on</strong>. Directi<strong>on</strong> hear<strong>in</strong>g occurs primarily due to an evaluati<strong>on</strong> of <strong>the</strong> temporal<br />

characteristics (<strong>in</strong> this case time differences). The lateral displacements of <strong>the</strong> auditory<br />

events <strong>in</strong> <strong>the</strong> case of lateralisati<strong>on</strong> are subject to different psychoacoustic regularities –<br />

at least from a quantitative po<strong>in</strong>t of view.<br />

For b) (sound source located <strong>in</strong> <strong>the</strong> median plane), however, <strong>the</strong> obta<strong>in</strong>ed equivalence<br />

factor is twice as large as for a) (sound source at Ω = 135°). This agrees with <strong>the</strong> fact<br />

that for artificial head signals <strong>the</strong> localisati<strong>on</strong> <strong>in</strong> <strong>the</strong> median plane is more difficult and<br />

unstable than <strong>the</strong> <strong>on</strong>e of a source signal hav<strong>in</strong>g a lateral angle of <strong>in</strong>cidence. The larger<br />

equivalence factor for b) can be expla<strong>in</strong>ed by means of a more severe disturbance of<br />

<strong>the</strong> localisati<strong>on</strong> stimulus as caused by <strong>the</strong> additi<strong>on</strong>ally <strong>in</strong>serted ear signal differences.<br />

A fur<strong>the</strong>r <strong>in</strong>crease <strong>in</strong> <strong>the</strong> <strong>in</strong>serted ear signal differences would <strong>the</strong>refore mean that <strong>the</strong><br />

regularities pert<strong>in</strong>ent to lateralisati<strong>on</strong> would become more and more relevant, i.e. that<br />

<strong>the</strong> equivalence factor would get bigger. However, <strong>the</strong> results of some <strong>in</strong>formal<br />

experiments cannot c<strong>on</strong>firm this unreservedly. In particular, fur<strong>the</strong>r attenuati<strong>on</strong> of <strong>the</strong><br />

level of <strong>on</strong>e ear signal caused <strong>the</strong> auditory event to split <strong>in</strong>to two parts <strong>in</strong> many cases.


63<br />

It seems that <strong>the</strong> first part was determ<strong>in</strong>ed by <strong>the</strong> temporal <strong>in</strong>formati<strong>on</strong>, i.e. whilst <strong>the</strong><br />

locati<strong>on</strong> of this auditory event could hardly be <strong>in</strong>fluenced by level changes, time delay<br />

variati<strong>on</strong>s had a large effect. The sec<strong>on</strong>d part was located at <strong>the</strong> ear that was presented<br />

with <strong>the</strong> signal hav<strong>in</strong>g an unnaturally high <strong>in</strong>tensity. This may <strong>in</strong>dicate an explanati<strong>on</strong><br />

for <strong>the</strong> occurrence of a “time image” and an “<strong>in</strong>tensity image” evident from many<br />

lateralisati<strong>on</strong> trad<strong>in</strong>g experiments (see WHITWORTH / JEFFRESS 1961, HAFTER /<br />

JEFFRESS 1968). It is worth not<strong>in</strong>g that <strong>the</strong> results published by <strong>the</strong>se authors lead to<br />

an average equivalence factor of 10 µs/dB for <strong>the</strong> “time image” and 50 µs/dB for <strong>the</strong><br />

“<strong>in</strong>tensity image”.


64<br />

6. Summary<br />

Accord<strong>in</strong>g to <strong>the</strong> associati<strong>on</strong> model presented <strong>in</strong> <strong>the</strong> preced<strong>in</strong>g chapters, <strong>the</strong><br />

functi<strong>on</strong><strong>in</strong>g of <strong>the</strong> auditory system with respect to spatial hear<strong>in</strong>g is due to two<br />

different process<strong>in</strong>g mechanisms. Each of <strong>the</strong>se two process<strong>in</strong>g mechanisms manifests<br />

itself <strong>in</strong> <strong>the</strong> form of an associatively guided pattern selecti<strong>on</strong>. A current stimulus<br />

stemm<strong>in</strong>g from a sufficiently broadband sound source gives rise to a locati<strong>on</strong><br />

associati<strong>on</strong> <strong>in</strong> <strong>the</strong> first and to a gestalt associati<strong>on</strong> <strong>in</strong> <strong>the</strong> sec<strong>on</strong>d, higher-level<br />

process<strong>in</strong>g stage because of auditory experience. Although <strong>the</strong> two stages work<br />

<strong>in</strong>dependently of each o<strong>the</strong>r, <strong>the</strong>y always determ<strong>in</strong>e <strong>the</strong> properties of <strong>on</strong>e or multiple<br />

simultaneous auditory events <strong>in</strong> a c<strong>on</strong>jo<strong>in</strong>t manner.<br />

The rigorous differentiati<strong>on</strong> of <strong>the</strong>se two stimulus evaluati<strong>on</strong> stages corresp<strong>on</strong>ds entirely<br />

to <strong>the</strong> two elementary areas of auditory experience. The received ear signals can be<br />

attributed to <strong>the</strong> two sound source characteristics of “locati<strong>on</strong>” and “signal”, which are<br />

<strong>in</strong>dependent of each o<strong>the</strong>r but always occur <strong>in</strong> a pairwise fashi<strong>on</strong>. Therefore, <strong>the</strong> presented<br />

associati<strong>on</strong> model is <strong>in</strong> agreement with many phenomena related to localisati<strong>on</strong> <strong>in</strong> <strong>the</strong><br />

<strong>superimposed</strong> sound field. It thus offers new approaches for <strong>the</strong> explanati<strong>on</strong> of some<br />

important auditory phenomena. These can be summarised as follows:<br />

1) In <strong>the</strong> case of stereoph<strong>on</strong>y, auditory events occur <strong>in</strong> <strong>the</strong> <strong>superimposed</strong> sound field<br />

that could equally be produced by means of certa<strong>in</strong> s<strong>in</strong>gle sound sources located <strong>in</strong><br />

a free sound field. Even though <strong>the</strong> auditory events will be identical <strong>in</strong> <strong>the</strong>se two<br />

cases, <strong>the</strong>ir respective ear signals can never be identical. There will be relatively<br />

large differences <strong>in</strong> <strong>the</strong> ear signals’ characteristics, both <strong>in</strong> terms of frequency<br />

spectrum and <strong>in</strong>teraural degree of coherence. This leads to <strong>the</strong> c<strong>on</strong>clusi<strong>on</strong> that<br />

summ<strong>in</strong>g localisati<strong>on</strong> does not take place. The “phantom source” cannot be<br />

<strong>in</strong>terpreted as a substitute sound source. Ra<strong>the</strong>r, it has to be assumed that due to<br />

different source locati<strong>on</strong>s <strong>the</strong> auditory system can discrim<strong>in</strong>ate <strong>the</strong> source signals<br />

(effect of <strong>the</strong> locati<strong>on</strong> associati<strong>on</strong> stage). After <strong>the</strong> spatial decod<strong>in</strong>g <strong>the</strong> stimuli are<br />

fused, because <strong>the</strong> loudspeakers radiate sufficiently similar signals (effect of <strong>the</strong><br />

gestalt associati<strong>on</strong> stage).<br />

2) The areas of validity of <strong>the</strong> “law of <strong>the</strong> first wavefr<strong>on</strong>t” and of “summ<strong>in</strong>g<br />

localisati<strong>on</strong>” are def<strong>in</strong>ed by different time delay regi<strong>on</strong>s. Both phenomena can be<br />

traced back to <strong>the</strong> time-dependent evaluati<strong>on</strong> of stimulus resp<strong>on</strong>ses of <strong>the</strong> locati<strong>on</strong><br />

associati<strong>on</strong> stage, which arrive at <strong>the</strong> gestalt associati<strong>on</strong> stage <strong>on</strong>e after <strong>the</strong> o<strong>the</strong>r. In<br />

<strong>the</strong> <strong>superimposed</strong> sound field, <strong>the</strong> locati<strong>on</strong> associati<strong>on</strong> stage acts as a filter enabl<strong>in</strong>g<br />

<strong>the</strong> discrim<strong>in</strong>ati<strong>on</strong> of <strong>the</strong> source signals, so that <strong>the</strong> source signal relati<strong>on</strong>ships are<br />

<strong>on</strong>ly evaluated <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g gestalt associati<strong>on</strong> stage. Two source signals<br />

exhibit<strong>in</strong>g different time delays result <strong>in</strong> two n<strong>on</strong>-simultaneous localisati<strong>on</strong> stimuli.<br />

All of <strong>the</strong> resultant regularities applicable to <strong>the</strong> mapped auditory event locati<strong>on</strong>s are<br />

summarised by <strong>the</strong> “law of <strong>the</strong> first localisati<strong>on</strong> stimulus”.


65<br />

3) The “cocktail party effect” implies that a target signal arriv<strong>in</strong>g from a certa<strong>in</strong><br />

directi<strong>on</strong> will be masked less by an <strong>in</strong>terfer<strong>in</strong>g signal arriv<strong>in</strong>g from a different<br />

directi<strong>on</strong> when listen<strong>in</strong>g b<strong>in</strong>aurally ra<strong>the</strong>r than m<strong>on</strong>aurally. This phenomen<strong>on</strong> can<br />

be traced back to <strong>the</strong> effect of <strong>the</strong> locati<strong>on</strong> associati<strong>on</strong> stage. Normally, two sound<br />

sources do not just give rise to two different locati<strong>on</strong> associati<strong>on</strong>s, but also to two<br />

different gestalt associati<strong>on</strong>s. The two resultant auditory events <strong>the</strong>refore occur<br />

after a two-stage selecti<strong>on</strong> from which <strong>the</strong> largest possible resoluti<strong>on</strong> derives.<br />

When listen<strong>in</strong>g m<strong>on</strong>aurally, <strong>the</strong> selecti<strong>on</strong> effect of <strong>the</strong> locati<strong>on</strong> associati<strong>on</strong> stage is<br />

lost at least partly, because <strong>the</strong> available stimulus patterns will be <strong>in</strong>complete. The<br />

c<strong>on</strong>jo<strong>in</strong>t effect of <strong>the</strong> two process<strong>in</strong>g stages, which are determ<strong>in</strong>ed by <strong>the</strong><br />

elementary areas of auditory experience, is especially well illustrated by <strong>the</strong><br />

cocktail party effect.<br />

4) Lateralisati<strong>on</strong> experiments provide <strong>in</strong>formati<strong>on</strong> about <strong>the</strong> evaluati<strong>on</strong> of <strong>in</strong>teraural<br />

signal differences. However, <strong>the</strong>y can <strong>on</strong>ly provide <strong>in</strong>formati<strong>on</strong> about <strong>the</strong> functi<strong>on</strong><br />

of <strong>the</strong> gestalt associati<strong>on</strong> stage, because, <strong>in</strong>dependent of <strong>the</strong> source distances, <strong>the</strong><br />

two source signals are discrim<strong>in</strong>ated and forwarded to <strong>the</strong> gestalt associati<strong>on</strong> stage<br />

separately. Hence, as a basic pr<strong>in</strong>ciple, lateralisati<strong>on</strong> experiments do not allow for<br />

any c<strong>on</strong>clusi<strong>on</strong>s to be drawn about <strong>the</strong> functi<strong>on</strong><strong>in</strong>g of <strong>the</strong> auditory system when<br />

localis<strong>in</strong>g a s<strong>in</strong>gle sound source. Ra<strong>the</strong>r, <strong>the</strong>y illustrate psychoacoustic regularities<br />

of a “phantom source <strong>in</strong>side <strong>the</strong> head” (loudspeaker distance zero). Assum<strong>in</strong>g an<br />

adapted hear<strong>in</strong>g system, a “substitute sound source <strong>in</strong>side <strong>the</strong> head” does not exist.<br />

In general, <strong>the</strong> evaluati<strong>on</strong> of different ear signals, which <strong>the</strong> auditory system<br />

carries out as part of <strong>the</strong> localisati<strong>on</strong> of a sound source, cannot be <strong>in</strong>vestigated by<br />

means of two sound sources that are <strong>in</strong> sufficient proximity of <strong>the</strong> ears.<br />

Headph<strong>on</strong>e-based listen<strong>in</strong>g tests are listen<strong>in</strong>g tests with two sound sources, except<br />

when artificial head signals are be<strong>in</strong>g presented (<strong>in</strong> which case a substitute sound<br />

source does exist).<br />

5) The functi<strong>on</strong><strong>in</strong>g of <strong>the</strong> hear<strong>in</strong>g system with respect to <strong>the</strong> localisati<strong>on</strong> of a sound<br />

source can <strong>on</strong>ly be <strong>in</strong>vestigated under localisati<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>s. A prerequisite for<br />

this is that <strong>the</strong> sound event exhibits a sufficiently broadband frequency spectrum.<br />

The perceptual process lead<strong>in</strong>g to <strong>the</strong> localisati<strong>on</strong> can <strong>on</strong>ly take place if <strong>the</strong><br />

spectral characteristics allow for a mapp<strong>in</strong>g of <strong>the</strong> auditory event distance.<br />

The associati<strong>on</strong> model traces localisati<strong>on</strong> to a process for <strong>the</strong> selecti<strong>on</strong> of a<br />

localisati<strong>on</strong> stimulus. A localisati<strong>on</strong> stimulus will exist if sufficiently broadband ear<br />

signals can be mapped to a s<strong>in</strong>gle sound event locati<strong>on</strong> <strong>in</strong> terms of <strong>the</strong>ir temporal and<br />

spectral properties. Under certa<strong>in</strong> c<strong>on</strong>diti<strong>on</strong>s, at least two localisati<strong>on</strong> stimuli can be<br />

discrim<strong>in</strong>ated simultaneously <strong>in</strong> <strong>the</strong> <strong>superimposed</strong> sound field. Two discrim<strong>in</strong>able<br />

localisati<strong>on</strong> stimuli will lead to a s<strong>in</strong>gle auditory event locati<strong>on</strong>, both <strong>in</strong> a phantom<br />

source situati<strong>on</strong> and <strong>in</strong> a lateralisati<strong>on</strong> experiment.


66<br />

Bibliography<br />

ALLEN, J.B., BERKLEY, D.A., BLAUERT, J. (1977): Multimicroph<strong>on</strong>e signalprocess<strong>in</strong>g<br />

technique to remove room reverberati<strong>on</strong> from speech signals. J. Acoust.<br />

Soc. Amer. 62, 912 - 915.<br />

BABKOFF, H., SUTTON, S. (1966): End po<strong>in</strong>t of lateralizati<strong>on</strong> of dichotic clicks.<br />

J. Acoust. Soc. Amer. 39, 87 - 102.<br />

v<strong>on</strong> BEKESY, G. (1930): Zur Theorie des Hörens : über das Richtungshören bei e<strong>in</strong>er<br />

Zeitdifferenz oder Lautstärkeungleichheit der beidseitigen Schalle<strong>in</strong>wirkungen. Phys.<br />

Z. 31, 824 -838 und 857 - 868.<br />

BLAUERT, J. (1969): Untersuchungen zum Richtungshören <strong>in</strong> der Medianeben bei<br />

fixiertem Kopf. Dissertati<strong>on</strong> Techn. Hochschule Aachen.<br />

BLAUERT, J. (1970): E<strong>in</strong> Versuch zum Richtungshören bei gleichzeitiger optischer<br />

Informati<strong>on</strong>. Acustica 23, 118 - 119.<br />

BLAUERT, J. (1970): Zur Trägheit des Richtungshörens bei Laufzeit- und Intensitätsstereof<strong>on</strong>ie.<br />

Acustica 23, 287 - 293.<br />

BLAUERT, J., LAWS, P. (1973): Verfahren zur orts- und klanggetreuen Simulati<strong>on</strong><br />

v<strong>on</strong> Lautsprecherbeschallungen mit Hilfe v<strong>on</strong> Kopfhörern. Acustica 29, 273 -277.<br />

BLAUERT, J. (1974): Räumliches Hören. Hirzel-Verlag Stuttgart.<br />

Blauert, J., COBBEN, W. (1978): Some c<strong>on</strong>siderati<strong>on</strong> of b<strong>in</strong>aural cross correlati<strong>on</strong><br />

analysis. Acustica 39, 96 - 103.<br />

BLAUERT, J., MELLERT, V., PLATTE, H.-J., LAWS, P., POULSEN, T.,<br />

GOTTLOB, D., PLENGE, G. (1978): Wissenschaftliche Grundlagen der kopfbezogenen<br />

Stereof<strong>on</strong>ie. Vorkolloquium zur DAGA, Bochum.<br />

Blauert, J. (1978): Neuere Ergebnisse zum räumlichen Hören. Vortrag vor der<br />

Rhe<strong>in</strong>isch-Westfälischen Akademie der Wissenschaften (im Druck).<br />

BLODGETT, H. C., WILBANKS, W. A., JEFFRESS, L. A. (1956): Effect of large<br />

<strong>in</strong>teraural time differences up<strong>on</strong> <strong>the</strong> judgement of sidedness. J. Acoust. Soc. Amer. 28,<br />

639 - 643.<br />

BLOOM, P.J. (1977): Creat<strong>in</strong>g source elevati<strong>on</strong> illusi<strong>on</strong>s by spectral manipulati<strong>on</strong>.<br />

J. Audio Eng. Soc. 25, 560 - 565.


67<br />

de BOER, K. (1940): Plastische Klangwiedergabe. Philips techn. Rdsch. 5, 107 -115.<br />

BOERGER, G. (1965): Die Lokalisati<strong>on</strong> v<strong>on</strong> Gaußtönen. Dissertati<strong>on</strong> Techn.<br />

Universität Berl<strong>in</strong>.<br />

BOHN, G. (1973): A structure for associative <strong>in</strong>forrnati<strong>on</strong> process<strong>in</strong>g. Biol. Cybernetics<br />

29, 193 -200.<br />

BOWER, J. S. (1975): The subjective effects of <strong>in</strong>terchannel phase-shifts <strong>on</strong> <strong>the</strong><br />

stereoph<strong>on</strong>ic image localizati<strong>on</strong> of wideband audio signals. BBC Research Department<br />

Report BBC RD 27.<br />

CASPERS, H. (1973): Zentralnervensystem. In : Kurzgefaßtes Lehrbuch der Physiologie,<br />

Hrsg. W. D. KEIDEL. Georg-Thieme-Verlag Stuttgart, 467 - 524.<br />

CHERRY, E.C. (1953): Some experiments <strong>on</strong> <strong>the</strong> recogniti<strong>on</strong> of speech with <strong>on</strong>e and<br />

with two ears. J. Acoust. Soc. Amer. 25, 975 - 979.<br />

CHERRY, E.C., TAYLOR, W.K. (1954): Some fur<strong>the</strong>r experiments up<strong>on</strong> recogniti<strong>on</strong><br />

of speech, with <strong>on</strong>e and with two ears. J. Acoust. Soc. Amer. 26, 554 - 559.<br />

CREMER, L. (1948): Die wissenschaftlichen Grundlagen der Raumakustik, Bd. 1.<br />

Hirzel-Verlag Stuttgart.<br />

DAMASKE, P. (1967/68): Subjektive Untersuchung v<strong>on</strong> Schallfeldern. Acustica 19,<br />

199 - 213.<br />

DAMASKE, P., MELLERT, V. (1969/70): E<strong>in</strong> Verfahren zur richtungstreuen<br />

Schallabbildung des oberen Halbraumes über zwei Lautsprecher. Acustica 22, 154 - 162.<br />

DAMASKE, P. (1969/70): Richtungsabhängigkeit v<strong>on</strong> Spektrum und Korrelati<strong>on</strong>sfunkti<strong>on</strong>en<br />

der an den Ohren empfangenen Signale. Acustica 22, 191 - 204.<br />

DANILENKO, L. (1967): B<strong>in</strong>aurales Hören im nichtstati<strong>on</strong>ären, diffusen Schallfeld.<br />

Dissertati<strong>on</strong> Techn. Hochschule Aachen.<br />

DANNENBRING, G.L., BREGMAN, A.S. (1978): Stream<strong>in</strong>g vs. fusi<strong>on</strong> of s<strong>in</strong>us<br />

oidal comp<strong>on</strong>ents of complex t<strong>on</strong>es. Percepti<strong>on</strong> & Psychophysics 24, 369 - 376.<br />

DAVID, E.E., GUTTMAN, N., van BERGEJK, W.A. (1959): B<strong>in</strong>aural <strong>in</strong>teracti<strong>on</strong> of<br />

high-frequency complex stimuli. J. Acoust. Soc. Amer. 31, 774 - 782.


68<br />

DEATHERAGE, B.H., HIRSCH, 1.J. (1959): Auditory localizati<strong>on</strong> of clicks. Journal<br />

Acoust. Soc. Amer. 31, 486 - 492.<br />

DEATHERAGE, B. H. (1966): Exam<strong>in</strong>ati<strong>on</strong> of b<strong>in</strong>aural <strong>in</strong>teracti<strong>on</strong>. J. Acoust. Soc.<br />

Amer. 39, 232 -249.<br />

DOMNITZ, R.H., COLBURN, H.S. (1976): Anaalysis of b<strong>in</strong>aural detecti<strong>on</strong> models<br />

for dependence <strong>on</strong> <strong>in</strong>teraural target parameter. J. Acoust. Soc. Amer. 59, 598 - 601<br />

DOMNITZ, R.H., COLBURN, H.S. (1977): Lateral positi<strong>on</strong> and <strong>in</strong>teraural discrim<strong>in</strong>ati<strong>on</strong>.<br />

J. Acoust. Soc. Amer. 61, 1586 - 1598.<br />

DUIFHUIS, H. (1972): Perceptual analysis of sound. Dissertati<strong>on</strong> Techn. Hochschule<br />

E<strong>in</strong>dhoven.<br />

DURLACH, N.I. (1963): Equalizati<strong>on</strong> and cancellati<strong>on</strong> <strong>the</strong>ory of b<strong>in</strong>aural mask<strong>in</strong>g<br />

level differences. J. Acoust. Soc. Amer. 35, 1206 - 1218.<br />

DURLACH, N.I. (1972): B<strong>in</strong>aural signal detecti<strong>on</strong> Equalizati<strong>on</strong> and cancellati<strong>on</strong><br />

<strong>the</strong>ory. In : TOBIAS, J. V. (Hrsg.) : Foundati<strong>on</strong> of modern auditory <strong>the</strong>ory. Academic<br />

Press, New York, Bd. 2, 369 - 462.<br />

ENGEL, W. (1966): E<strong>in</strong>e neue Methode zur Entkopplung mehrfach geregelter<br />

Systeme. Dissertati<strong>on</strong> Techn. Hochschule München.<br />

FLECHTNER, H.J. (1972): Grundbegriffe der Kybernetik. Hirzel-Verlag Stuttgart.<br />

FRANK, H. (1970): Kybernetik, Brücke zwischen den Wissenschaften. Umschau-<br />

Verlag Frankfurt.<br />

FRANSSEN, N.V. (1960): Some c<strong>on</strong>siderati<strong>on</strong>s of <strong>the</strong> mechanism of directi<strong>on</strong><br />

hear<strong>in</strong>g. Dissertati<strong>on</strong> Techn. Hochschule Delft<br />

FRANSSEN, N. V. (1963): Stereoph<strong>on</strong>ie. Philips techn. Bibl., E<strong>in</strong>dhoven.<br />

FUKUSHIMA, K. (1973): A model of associative memory <strong>in</strong> <strong>the</strong> bra<strong>in</strong>. Kybernetik<br />

12, 58 - 63.<br />

FUKUSHIMA, K., MIYAKE, S. (1978) : A self-organiz<strong>in</strong>g network with a functi<strong>on</strong><br />

of associative memory : Feedback-type cognitr<strong>on</strong>. Biol. Cybernetics 28, 201 208.<br />

GARDNER, M.B. (1969): Image fusi<strong>on</strong>, broaden<strong>in</strong>g and displacement <strong>in</strong> sound<br />

localizati<strong>on</strong>. J. Acoust. Soc. Amer. 46, 339 - 349.


69<br />

GARDNER, M. (1973): Some s<strong>in</strong>gle- and multiple-source localizati<strong>on</strong> effects. Journal<br />

Audio Eng. Soc. 21, 430 - 437.<br />

GRUBER, J. (1967): Hörversuche mit moduliertem Rauschen unterschiedlicher<br />

<strong>in</strong>terauraler Korrelati<strong>on</strong>. Dissertati<strong>on</strong> Technische Universität Berl<strong>in</strong>.<br />

HAFTER, E.R., JEFFRESS, L.A. (1968): Two image lateralizati<strong>on</strong>s of t<strong>on</strong>es and<br />

clicks. J. acoust. Soc. Amer. 44, 563- 569.<br />

HAFTER, E.R. (1977): Lateralizati<strong>on</strong> model and <strong>the</strong> role of time-<strong>in</strong>tensity trad<strong>in</strong>gs <strong>in</strong><br />

b<strong>in</strong>aural mask<strong>in</strong>g : Can <strong>the</strong> data be expla<strong>in</strong>ed by a time-<strong>on</strong>ly hypo<strong>the</strong>sis? J. Acoust.<br />

Soc. Amer. 62, 633 - 635.<br />

HAFTER, E.R., DYE, R.H., GILKEY, R.H. (1979): Lateralizati<strong>on</strong> of t<strong>on</strong>al signals<br />

which have nei<strong>the</strong>r <strong>on</strong>sets nor offsets. J. acoust. Soc. Amer. 65, 471 -477.<br />

HALL, J.L. (1964): M<strong>in</strong>imum detectable change <strong>in</strong> <strong>in</strong>teraural time or <strong>in</strong>tensity<br />

difference for brief impulsive stimuli. J. Acoust. Soc. Amer. 36, 2411 - 2413.<br />

HARRIS, G. G. (1960): B<strong>in</strong>aural <strong>in</strong>teracti<strong>on</strong> of impulse stimuli and pure t<strong>on</strong>es. J.<br />

acoust. Soc. Amer. 32, 685 - 692.<br />

HAWKINS, D. B., YOUNG, L. L., PARKER, C. A. (1978) : An <strong>in</strong>vestigati<strong>on</strong> of <strong>the</strong><br />

<strong>in</strong>teraural time difference threshold for speech. Percepti<strong>on</strong> & Physophysics 24, 168 -<br />

170.<br />

JEFFRESS, L.A., TAYLOR, R.W. (1961): Lateralisati<strong>on</strong> versus localizati<strong>on</strong>. Journal<br />

Acoust. Soc. Amer. 33, 482 - 483.<br />

JEFFRESS, L.A., BLODGETT, H.C., DEATHERAGE, B.H. (1962): Effect of<br />

<strong>in</strong>teraural correlati<strong>on</strong> <strong>on</strong> <strong>the</strong> precisi<strong>on</strong> of center<strong>in</strong>g a noise. J. Acoust. Soc. Amer. 34,<br />

1122 - 1123.<br />

KEIDEL, W.D. (1973) : Informati<strong>on</strong>sverarbeitung. In: Kurzgefaßtes Lehrbuch der<br />

Physiologie, Hrsg. W. D. KEIDEL. Georg-Thieme-Verlag Stuttgart.<br />

KLEMM, O. (1909): Lokalisati<strong>on</strong> v<strong>on</strong> S<strong>in</strong>nese<strong>in</strong>drücken bei disparaten Nebenreizen.<br />

Psychol. Stud. 5, 73 - 162.<br />

KLEMM, O. (1920): Untersuchungen über die Lokalisati<strong>on</strong> v<strong>on</strong> Schallreizen IV :<br />

Über den E<strong>in</strong>fluß des b<strong>in</strong>auralen Zeitunterschiedes auf die Lokalisati<strong>on</strong>. Arch. ges.<br />

Psychol. 40, 117 - 145.


70<br />

KOENIG, A.H., ALLEN, J.B., BERKLEY, D.A. (1977): Determ<strong>in</strong>ati<strong>on</strong> of mask<strong>in</strong>glevel<br />

differences <strong>in</strong> a reverberant envir<strong>on</strong>ment. J. Acoust. Soc. Amer. 61, 1374 - 1376.<br />

KOHONEN, T., REUKALA, E., MAEKISARA, K., VAINIO, L. (1976): Associative<br />

recall of images. Biol. Cybernetics 22, 159 - 168.<br />

KOHONEN, T., OJA, E. (1976): Fast adaptive formati<strong>on</strong> of orthog<strong>on</strong>aliz<strong>in</strong>g filters<br />

and associative memory <strong>in</strong> recurrent network of neur<strong>on</strong>-like elements. Biol. Cybernetics<br />

21, 85 - 95.<br />

KOHONEN, T. (1977): Associative memory. Berl<strong>in</strong> - Heidelberg - New York<br />

Spr<strong>in</strong>ger-Verlag.<br />

LAWS, P. (1972): Zum Problem des Entfernungshörens und der Im-Kopf-<br />

Lokalisier<strong>the</strong>it v<strong>on</strong> Hörereignissen. Dissertati<strong>on</strong> Technische Hochschule Aachen.<br />

LAWS, P., BLAUERT, J., PLATTE, H-J. (1976/1977): Anmerkungen zur stereof<strong>on</strong>en<br />

kopfbezogenen Übertragungstechnik. Acustica 36, 45 - 47.<br />

LEAKEY, D.M. (1959): Some measurement <strong>on</strong> <strong>the</strong> effects of <strong>in</strong>terchannel <strong>in</strong>tensity<br />

and time differences <strong>in</strong> two channel sound systems. J. Acoust. Soc. Amer. 31, 977 -<br />

986.<br />

LEHRINGER, F. (1979) : Ober die Bee<strong>in</strong>flussung der Hörereignisrichtung durch das<br />

Sehereignis bei der Pers<strong>on</strong>endarstellung <strong>in</strong> Telek<strong>on</strong>ferenzen. Acustica 42, 240 - 248.<br />

LICKLIDER, J.C.R. (1951): A duplex <strong>the</strong>ory of pitch percepti<strong>on</strong>. Experientia 7, 128 -<br />

134.<br />

LOY, P. (1978): Phantomschallquellenbildung bei zwei <strong>in</strong> der Phase gedrehten<br />

Signalen. Diplomarbeit Techn. Universität Berl<strong>in</strong>.<br />

MAKITA, Y. (1962): On <strong>the</strong> directi<strong>on</strong>al localizati<strong>on</strong> of sound <strong>in</strong> <strong>the</strong> stereoph<strong>on</strong>ic<br />

sound field. Europ. Broadcast<strong>in</strong>g Uni<strong>on</strong> Rev. Part A, 73, 102 - 108.<br />

MARKO, H. (1971): E<strong>in</strong> Funkti<strong>on</strong>smodell für die Aufnahme, Speicherung und<br />

Erzeugung v<strong>on</strong> Informati<strong>on</strong>en im Nervensystem. Röntgen-Blätter 24.<br />

MARKO, H. (1974): A biological approach to pattern recogniti<strong>on</strong>. IEEE Transacti<strong>on</strong>s<br />

<strong>on</strong> systems, man and cybernetics, vol. SMC - 4, 34 - 39.<br />

MARKO, H. (1978): Modelle der visuellen Wahrnehmung. NTG-Fachberichte 65, 19 - 29.


71<br />

MASSARO, D., WARNER, D. (1977): Divid<strong>in</strong>g attenti<strong>on</strong> between auditory and<br />

visual percepti<strong>on</strong>. Percepti<strong>on</strong> & Psychophysics 21, 569 - 573.<br />

MATSUDAIRA, T. K., FUKAMI, T. (1973): Phace difference and sound image<br />

localizati<strong>on</strong>. J. Audio Eng. Soc. 21, 792 - 797.<br />

MERTENS, H. (1965): Directi<strong>on</strong>al hear<strong>in</strong>g <strong>in</strong> stereoph<strong>on</strong>y <strong>the</strong>ory and experimental<br />

verificati<strong>on</strong>. Europ. Broadcast<strong>in</strong>g Uni<strong>on</strong> Rev. Part A, 92, 1 - 14.<br />

MILLS, A. W. (1972): "Auditory localizati<strong>on</strong>", Chapter 8 of : Foundati<strong>on</strong>s of modern<br />

auditory <strong>the</strong>ory (ed. J.V. TOBIAS) vol. II, Academic Press, New York.<br />

MURAKAMI, K., AKAISHI, S., AIBARA, T. (1978): On optimal associative recall<br />

by an <strong>in</strong>complete key. Biol. Cybernetics 30, 95 - 97.<br />

NAKAMURA, S., KOMORI, S., KOYASU, M. (1976): On <strong>the</strong> importance of <strong>the</strong><br />

<strong>in</strong>dividual shape of p<strong>in</strong>nae for <strong>the</strong> c<strong>on</strong>structi<strong>on</strong> of a record<strong>in</strong>g dummy head. J. Acoust.<br />

Soc. Japan 32, 618 - 620.<br />

ORTMEYER, W. (1966): Über die Lokalisierung v<strong>on</strong> Schallquellen bei Zweikanalstereoph<strong>on</strong>ie.<br />

Hochfrequenztechn. u. Elektroakustik 75, 77 - 87.<br />

ORTMEYER, W. (1966): Schallfelduntersuchungen bei Zweikanalstereoph<strong>on</strong>ie.<br />

Hochfrequenztechn. u. Elektroakustik 75, 137 - 145.<br />

OSMAN, E. (1971): A correlati<strong>on</strong> model of b<strong>in</strong>aural mask<strong>in</strong>g level differences. J.<br />

Acoust. Soc. Amer. 50, 1494 - 1511.<br />

PALEF, S. R., NICKERSON, R.B. (1978): Represent<strong>in</strong>g auditory space. Percepti<strong>on</strong> &<br />

Psychophysics 23, 445 - 450.<br />

PLENGE, G. (1972): über das Problem der Im-Kopf-Lokalisati<strong>on</strong>. Acustica 26, 241 - 252.<br />

PLENGE, G. (1973): über das Problem der <strong>in</strong>tracranialen Ortung v<strong>on</strong> Schallquellen<br />

bei der akustischen Wahrnehmung des Menschen. Habilitati<strong>on</strong>sschrift TU-Berl<strong>in</strong>.<br />

PLENGE, G. (1974): On <strong>the</strong> differences between localizati<strong>on</strong> and lateralizati<strong>on</strong>. J.<br />

Acoust. Soc. Amer. 56, 944 - 951.<br />

PLENGE, G., TILSE, U. (1975): Cocktail-Party-Effekt with and without c<strong>on</strong>flict<strong>in</strong>g<br />

visual cues. 50th AES-C<strong>on</strong>venti<strong>on</strong>, L<strong>on</strong>d<strong>on</strong>.


72<br />

POGIO, T. (1975): On optimal n<strong>on</strong>l<strong>in</strong>ear associative recall. Biol. Cybernetics 19, 201<br />

- 209.<br />

POLLACK, 1. (1977): C<strong>on</strong>t<strong>in</strong>utati<strong>on</strong> of auditory frequency gradients across temporal<br />

breaks : The auditory Poggendorff. Percepti<strong>on</strong> & Psychophysics 21, 563 - 568.<br />

RATLIFF, P. A. (1974): Properties of hear<strong>in</strong>g related to quadroph<strong>on</strong>ic reproducti<strong>on</strong>.<br />

BBC Research Department Report BBC RD 38.<br />

REICHARDT, W., HAUSTEIN, B.-G. (1968): Zur Ursache des Effektes der<br />

Im-Kopf-Lokalisati<strong>on</strong>. Hochfrequenztechn. u. Elektroakustik 77, 183 - 189.<br />

ROESER, D. (1965): Schallrichtungsbestimmung bei krankhaft verändertem Gehör.<br />

Dissertati<strong>on</strong> Techn. Hochschule Aachen.<br />

SAKAMOTO, N., GOTOH, T., SHIMBO, M., KOGURE, T. (1977): Some c<strong>on</strong>siderati<strong>on</strong>s<br />

of an advanced stereoph<strong>on</strong>ic reproduct<strong>in</strong>g system. 19th Intern. C<strong>on</strong>gr. <strong>on</strong><br />

Acoustics, Madrid.<br />

SANDEL, T.T., TEAS, D.C., FEDDERSEN, W.E., JEFFRESS, L.A. (1955):<br />

Localizati<strong>on</strong> of sound from s<strong>in</strong>gle and paired sources. J. Acoust. Soc. Amer. 27, 842 -<br />

852.<br />

McSAYERS, B.A. (1964): Acoustic-image lateralizati<strong>on</strong> judgement with b<strong>in</strong>aural<br />

t<strong>on</strong>es. J. Acoust. Soc. Amer. 36, 923 - 926.<br />

SCHENKEL, K.D. (1967): Accumulati<strong>on</strong> <strong>the</strong>ory of b<strong>in</strong>aural-masked thresholds. J.<br />

Acoust. Soc. Amer. 41, 20 - 30.<br />

SCHREIBER, L. (1965): Hör<strong>the</strong>orien im Spiegel elektrischer Analogien. Frequenz<br />

19, 255 - 261.<br />

SCHROEDER, M. (1975): Models of hear<strong>in</strong>g. Proc. of <strong>the</strong> IEEE 63, 1332 - 1350.<br />

TERHARDT, E. (1972): Zur T<strong>on</strong>höhenwahrnehmung v<strong>on</strong> Klängen I und II. Acustica<br />

26, 173 - 186 und 187 - 199.<br />

THEILE, G. (1975): Seitliche Phantomschallquellen. Diplomarbeit Technische<br />

Universität Berl<strong>in</strong>.<br />

THEILE, G., PLENGE, G. (1977): Localizati<strong>on</strong> of lateral phantom sources. 9. Audio<br />

Eng. Soc. 25, 196 - 200.


73<br />

THEILE, G. (1978): Weshalb ist der Kammfiltereffekt bei Summenlokalisati<strong>on</strong> nicht<br />

hörbar? Vortrag T<strong>on</strong>meistertagung Berl<strong>in</strong>.<br />

TOOLE, F.E., McSAYERS, B.A. (1965): Lateralizati<strong>on</strong> judgements and <strong>the</strong> nature of<br />

b<strong>in</strong>aural acoustic images. J. Acoust. Soc. Amer. 37, 319 - 324.<br />

WARNCKE, H. (1941): Die Grundlagen der raumbezüglichen stereoph<strong>on</strong>ischen<br />

Übertragung im T<strong>on</strong>film. Akust. Z. 6, 174 - 188.<br />

WENDT, K. (1963): Das Richtungshören bei der Überlagerung zweier Schallfelder<br />

bei Intensitätsund Laufzeitstereoph<strong>on</strong>ie. Dissertati<strong>on</strong> Techn. Hochschule Aachen.<br />

WENDT, K. (1964): Das Richtungshören bei Zweikanal-Stereoph<strong>on</strong>ie. Rundfunktechn.<br />

Mitt. 8, 171 179.<br />

WESS, 0., ROEDER, U. (1977): A holographic model for associativ memory cha<strong>in</strong>s.<br />

Bio. Cybernetics 27, 89 - 98<br />

WETTSCHUREK, R. (1976): Über die Abhängigkeit raumakustischer Wahrnehmungen<br />

v<strong>on</strong> der Lautstärke. Dissertati<strong>on</strong> Techn. Hochschule Berl<strong>in</strong>.<br />

WHITWORTH, R.H., JEFFRESS, L.A. (1961): Time versus <strong>in</strong>tensity <strong>in</strong> <strong>the</strong> lokalizati<strong>on</strong><br />

of t<strong>on</strong>es. J. Acoust. Soc. Amer. 33, 925 - 929.<br />

WIGSTROEM, H. (1974): A model of a neural-network with recurrent <strong>in</strong>hibiti<strong>on</strong><br />

Kybernetik 16, 103 -112.<br />

WILLWACHER, G. (1976): Fähigkeiten e<strong>in</strong>es assoziativen Speichersystems im<br />

Vergleich zu Gehirnfunkti<strong>on</strong>en. Biol. Cybernetics 24, 181 - 198.<br />

ZWICKER, E., FELDKELLER, R. (1967): Das Ohr als Nachrichtenempfänger.<br />

Hirzel-Verlag Stuttgart.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!