07.01.2014 Views

PHYS08200605006 D.K. Hazra - Homi Bhabha National Institute

PHYS08200605006 D.K. Hazra - Homi Bhabha National Institute

PHYS08200605006 D.K. Hazra - Homi Bhabha National Institute

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

4.3. THE NUMERICAL COMPUTATION OF THE SCALAR BI-SPECTRUM<br />

grals<br />

G 1 (k 1 ,k 2 ,k 3 ) = 2i<br />

∫ ηe<br />

η i<br />

dηa 2 ǫ 2 1<br />

(<br />

f<br />

∗<br />

k1<br />

f k ′∗<br />

2<br />

f k ′∗<br />

3<br />

+two permutations ) ,<br />

(4.11a)<br />

G 2 (k 1 ,k 2 ,k 3 ) = −2i (k 1 ·k 2 +two permutations) dηa 2 ǫ 2 1fk ∗ 1<br />

fk ∗ 2<br />

fk ∗ 3<br />

, (4.11b)<br />

η i<br />

∫ [<br />

ηe<br />

(k1 )<br />

]<br />

G 3 (k 1 ,k 2 ,k 3 ) = −2i dηa 2 ǫ 2 ·k 2<br />

1 fk ∗ 1<br />

f k ′∗<br />

2<br />

f k ′∗<br />

3<br />

+five permutations , (4.11c)<br />

η i<br />

G 4 (k 1 ,k 2 ,k 3 ) = i<br />

G 5 (k 1 ,k 2 ,k 3 ) = i 2<br />

G 6 (k 1 ,k 2 ,k 3 ) = i 2<br />

∫ ηe<br />

k 2 2<br />

∫ ηe<br />

(<br />

f<br />

∗<br />

k1<br />

f ∗ k 2<br />

f ′∗<br />

k 3<br />

+two permutations ) ,<br />

dηa 2 ǫ 1 ǫ ′ 2<br />

η i<br />

∫ [<br />

ηe<br />

(k1 )<br />

dηa 2 ǫ 3 ·k 2<br />

1<br />

η i<br />

k2<br />

2<br />

∫ {<br />

ηe<br />

[k ]<br />

2<br />

1 (k 2 ·k 3 )<br />

η i<br />

dηa 2 ǫ 3 1<br />

k 2 2 k2 3<br />

f ∗ k 1<br />

f ′∗<br />

k 2<br />

f ′∗<br />

k 3<br />

+five permutations<br />

f ∗ k 1<br />

f ′∗<br />

k 2<br />

f ′∗<br />

k 3<br />

+two permutations<br />

]<br />

(4.11d)<br />

, (4.11e)<br />

}<br />

, (4.11f)<br />

whereǫ 2 is the second slow roll parameter that is defined with respect to the first through<br />

the expression (1.8). The lower limit of the above integrals, viz. η i , denotes a sufficiently<br />

early time when the initial conditions [say, the Bunch-Davies conditions (1.23)] are imposed<br />

on the modes f k . The additional, seventh term G 7 (k 1 ,k 2 ,k 3 ) arises due to a field<br />

redefinition (in this context, see, Refs. [49, 51, 53]), and its contribution to G(k 1 ,k 2 ,k 3 ) is<br />

given by<br />

G 7 (k 1 ,k 2 ,k 3 ) = ǫ 2(η e )<br />

2<br />

(<br />

|fk2 (η e )| 2 |f k3 (η e )| 2 +two permutations ) . (4.12)<br />

4.3 The numerical computation of the scalar bi-spectrum<br />

In this section, after illustrating that the super-Hubble contributions to the complete bispectrum<br />

during inflation proves to be negligible, we shall outline the methods that we<br />

adopt to numerically evolve the equations governing the background and the perturbations,<br />

and eventually evaluate the inflationary scalar power and bi-spectra. Also, we shall<br />

illustrate the extent of accuracy of the numerical methods by comparing them with the<br />

expected form of the bi-spectrum in the equilateral limit in power law inflation and the<br />

analytical results that are available in the case of the Starobinsky model [54, 55].<br />

4.3.1 The contributions to the bi-spectrum on super-Hubble scales<br />

It is clear from the above expressions that the evaluation of the bi-spectrum involves<br />

integrals over the mode f k and its derivative f ′ k as well as the slow roll parameters ǫ 1,<br />

65

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!