29.10.2012 Views

Main Memory Technology Direction - Micron

Main Memory Technology Direction - Micron

Main Memory Technology Direction - Micron

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Main</strong> <strong>Memory</strong> <strong>Technology</strong><br />

<strong>Direction</strong><br />

Kevin Kilbuck<br />

Senior Segment Marketing Manager<br />

Computing and Servers<br />

<strong>Micron</strong> <strong>Technology</strong>, Inc.<br />

©2007 <strong>Micron</strong> <strong>Technology</strong>, Inc. All rights reserved. Products are warranted only to meet <strong>Micron</strong>’s production data sheet specifications. Information, products<br />

and/or specifications are subject to change without notice. All information is provided on an “AS IS” basis without warranties of any kind. Dates are estimates<br />

only. Drawings not to scale. <strong>Micron</strong> and the <strong>Micron</strong> logo are trademarks of <strong>Micron</strong> <strong>Technology</strong>, Inc. All other trademarks are the property of their respective<br />

owners.


Agenda<br />

DRAM <strong>Technology</strong> Trends<br />

Computing Customer Requirements<br />

Introduction to DDR3


DRAM <strong>Technology</strong><br />

Trends


<strong>Main</strong> <strong>Memory</strong> Data Rate Trends<br />

Data Rate (MT/s)<br />

7000<br />

6000<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

0<br />

SDRAM<br />

DDR<br />

DDR2<br />

1995 2000 2005 2010<br />

Year<br />

• DRAM bandwidth requirements typically double<br />

every three years<br />

NGM Diff<br />

NGM SE<br />

DDR3


Unit Interval (Bit-Time) (Bit Time) Trends<br />

Unit Interval (ps)<br />

100000<br />

10000<br />

1000<br />

100<br />

SDRAM<br />

DDR<br />

DDR2<br />

• 30–40% of UI will be budgeted for RX circuits<br />

(jitter + S/H + static)<br />

DDR3<br />

NGM Diff<br />

1995 2000 2005 2010<br />

Year<br />

625ps<br />

NGM SE 313ps<br />

156ps


Die Size Impact<br />

Die Size<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

Die Size vs. <strong>Technology</strong><br />

115nm 95nm 78nm<br />

Process Node<br />

Triple Metal<br />

DDR<br />

DDR2<br />

DDR3<br />

GDDR4


IDD DD Impact IDD vs. <strong>Technology</strong><br />

Idd (mA)<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

400 Mb/s<br />

800 Mb/s<br />

DDR DDR2 DDR3 GDDR3 GDDR4<br />

X16<br />

1.33 Gb/s<br />

1.6 Gb/s<br />

X32<br />

2.5 Gb/s<br />

IDD4R<br />

IDD4W<br />

IDD7


Power Dissipation Trends<br />

Power<br />

900.0E-03<br />

800.0E-03<br />

700.0E-03<br />

600.0E-03<br />

500.0E-03<br />

400.0E-03<br />

300.0E-03<br />

200.0E-03<br />

100.0E-03<br />

000.0E+00<br />

256Mb SDRAM512Mb<br />

DDR 1Gb DDR2 333<br />

167 MHz 200 Mhz MHz<br />

• x16 devices at nominal VDD<br />

<strong>Technology</strong><br />

1Gb DDR3<br />

1333 MHz<br />

30.0E-03<br />

25.0E-03<br />

20.0E-03<br />

15.0E-03<br />

10.0E-03<br />

5.0E-03<br />

000.0E+00<br />

P_IDD4<br />

P_IDD2<br />

Linear (P_IDD2)<br />

Linear (P_IDD4)


Voltage Scaling<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

1990 1995 2000 2005 2010<br />

Historical<br />

Enthusiast


Historical DRAM Price-Per Price Per-Bit Bit<br />

Decline ~35%/year<br />

Price per Bit ( (Millicents Millicents)<br />

1<br />

1979<br />

1981<br />

1980<br />

1982<br />

1983<br />

1985<br />

Historical<br />

price-per price per-bit bit decline has<br />

averaged 35.5%<br />

(1978–2002)<br />

(1978 2002)<br />

100<br />

1984<br />

1986<br />

1987<br />

1988<br />

DRAM Market Price-per Price per-bit bit Decline<br />

(Normalized- (Normalized Millicent/bit)<br />

1989<br />

1990<br />

1991 1992<br />

1993<br />

10,000<br />

1994<br />

1995<br />

1996<br />

1998<br />

Cumulative Bit Volume (10 12 )<br />

1997<br />

1999<br />

2001<br />

2000<br />

2002<br />

1,000,000<br />

2003<br />

2005F<br />

2004F<br />

2006F<br />

2007F<br />

2008F<br />

100,000,000


Industry Analyst DRAM<br />

Interface Forecast<br />

100%<br />

90%<br />

80%<br />

70%<br />

60%<br />

50%<br />

40%<br />

30%<br />

20%<br />

10%<br />

0%<br />

2005 2006 2007 2008 2009 2010 2011<br />

Source: IDC, Isuppli, Gartner, <strong>Micron</strong> Q107<br />

2Gb<br />

1Gb<br />

512Mb<br />

256Mb<br />

128Mb<br />

64Mb


Industry Analyst DRAM<br />

Interface Forecast<br />

100%<br />

80%<br />

60%<br />

40%<br />

20%<br />

0%<br />

Source: IDC, iSuppli Q107<br />

DDR3 becomes<br />

mainstream in 2009<br />

2005 2006 2007 2008 2009 2010 2011<br />

DDR3<br />

DDR2<br />

DDR<br />

SDRAM


Computing Customer<br />

Requirements


You Can’t Can t Have It All<br />

Quality<br />

Cost Power<br />

DRAM Design &<br />

Process Constraints<br />

Density Bandwidth Latency<br />

Pick two (maybe three if you’re you re really<br />

lucky!)


What Computing<br />

Customers Care About<br />

What is Most Important?<br />

Mobile/Laptop Desktop Server<br />

Quality<br />

Cost<br />

Power<br />

Bandwidth<br />

Density<br />

Latency


What Computing<br />

Customers Care About<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

What is Most Important?<br />

Quality Cost Power Bandwidth Density Latency<br />

Mobile/Laptop<br />

Desktop<br />

Server


Microsoft’s Microsoft s Vista System<br />

Requirements<br />

CPU<br />

Minimum<br />

Minimum Recommended by SKU<br />

Supported Home Basic All Other SKUs<br />

An 800 MHz x86 or x64<br />

processor 3<br />

A 1 GHz x86 or x64 processor 3<br />

System memory 512MB 1GB<br />

GPU<br />

SVGA<br />

(800 x 600)<br />

DX9<br />

Capable<br />

Aero-capable<br />

Graphics memory 32MB 128MB<br />

HDD 20GB 40GB<br />

HDD free space 15GB<br />

Optical drive CD-ROM 4 DVD-ROM 4<br />

Networking Internet access-capable<br />

Audio Audio output capability<br />

1, 2


Density Matters<br />

“Give Give Vista as much memory as you can, and it will thank<br />

you by serving you quicker.” quicker.<br />

Tom’s Tom s Hardware, Windows Vista's SuperFetch and ReadyBoost<br />

Analyzed, January 31, 2007<br />

http://www.tomshardware.com/2007/01/31/windows-vista<br />

http://www.tomshardware.com/2007/01/31/windows vista-<br />

superfetch-and<br />

superfetch and-readyboostanalyzed/index.html<br />

readyboostanalyzed/index.html


Windows Vista RTM Test Results<br />

<strong>Memory</strong> utilization is<br />

minimized with more<br />

system memory<br />

installed<br />

SuperFetch exhausts<br />

DRAM memory<br />

before using NAND<br />

memory<br />

2GB appears to be<br />

optimal DRAM<br />

density for Vista<br />

Multiple programs running<br />

Percentage<br />

100.00%<br />

90.00%<br />

80.00%<br />

70.00%<br />

60.00%<br />

50.00%<br />

40.00%<br />

30.00%<br />

20.00%<br />

10.00%<br />

0.00%<br />

88.00%<br />

<strong>Memory</strong> Utilization Percentage<br />

65.00% 63.00%<br />

57.00%<br />

512MB 1GB 1.5GB 2GB<br />

<strong>Memory</strong> Specification<br />

Lower number means your system has more resources<br />

available for additional tasks<br />

Two Web browsers, Windows Media Player, Adobe Photoshop with 445MB 445MB<br />

file<br />

open, and Trend Virus Protection<br />

System<br />

Specifications<br />

Inspiron 6000<br />

Intel 915GM/PM<br />

Vista RC2<br />

Intel Pentium M 1.7 Ghz<br />

ATI Mobility Radeon X300<br />

80GB Fujitsu ATA


Vista Ready Boost C&P Lab Results<br />

With 2x CT3264AA667 512MB of DRAM installed:<br />

Ready Boost disabled Ready Boost enabled<br />

1:20.04 38.23 sec<br />

1:09.48 33.23 sec<br />

1:15.56 29.81 sec<br />

1:06.06 44.46 sec<br />

With 2x CT6464AA667 1024MB of DRAM installed:<br />

Ready Boost disabled Ready Boost enabled<br />

8.39 sec 7.43 sec<br />

8.18 sec 7.29 sec<br />

8.56 sec 6.50 sec<br />

7.81 sec 7.51 sec


Vista Ready Boost C&P Lab Results<br />

With 2x CT12864AA667 2048MB of DRAM installed:<br />

Ready Boost disabled Ready Boost enabled<br />

6.73 sec 5.57 sec<br />

5.93 sec 5.14 sec<br />

With 4x CT12864AA667 4096MB of DRAM installed:<br />

Ready Boost disabled Ready Boost enabled<br />

21.21 sec 7.07 sec<br />

5.48 sec 6.29 sec<br />

2GB DRAM achieves the peak performance gain for DRAM density<br />

in Vista systems using Ready Boost


DRAM Density Increases CPU Efficiency<br />

As memory density increases, memory utilization decreases<br />

As memory density increases, processor utilization goes up<br />

More memory drastically increases the efficiency of your processor processor<br />

System Specifications Motherboard: Evga NF68 Chipset: nVidia 680i SLI Processor: Intel Pentium 4 2.8GHZ Video: ATI Radeon X1900XTX<br />

PCIE 512MB Hard Drive:WD 80GB OS: Windows Vista Ultimate DRAM: Crucial DDR2 6400 Real World Test Processes running to generate<br />

utilization: Nero Recode, ADOBE WITH 445 MEG FILE OPEN, 2 WEBSITES OPEN


Dual-Die Dual Die Stacking <strong>Technology</strong><br />

Typical monolithic FBGA packages utilize BOC<br />

(board board-on on-chip chip) ) technology<br />

Typical dual-die dual die FBGA packages utilize COB<br />

(chip-on (chip on-board) board) technology<br />

1.2mm<br />

thick<br />

Supports<br />

DDR3 data<br />

rates


Dual-Die Dual Die Package Construction<br />

Maximum aximum Thickness = 1.35mm<br />

RDL = Redistribution layer; center wire bond<br />

pads are redistributed to perimeter of die<br />

through a metal layer to facilitate stacking<br />

Die<br />

Die<br />

Substrate<br />

Top view of a typical RDL layer<br />

Wire<br />

Bonds


Dual-Die Dual Die Photo<br />

Two die complete with wire bond prior to encapsulation


Power Consumption<br />

4X density increase with little to no power increase<br />

512Mb-based 1GB<br />

and 2GB RDIMMs<br />

Watts (per Slot)<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

High Speed RDIMMs<br />

DDR2-800 DDR2-667<br />

8GB (QR x4) - U48B<br />

4GB (DR x4) - U48B<br />

2GB (DR x4) - U37Y<br />

1GB (SR x4) - U37Y<br />

2GB (DR x8) - U48B<br />

1GB (SR x8) - U48B<br />

Power estimates reflect a maximum DRAM utilization of<br />

67% with a BL = 4 and register/PLL power of 1.5W<br />

Converting from 512Mb to 1Gbbased<br />

reduces power by over 50%


Estimated WC power<br />

Using (1Gb) Datasheet Values<br />

Watts per Slot<br />

25.00<br />

20.00<br />

15.00<br />

10.00<br />

5.00<br />

0.00<br />

QR x4<br />

DR x4 (DDR3)<br />

DR x4 (DDR2)<br />

SR x4<br />

DR x8<br />

SR x8<br />

DDR3 Power by R/C and Bandwidth<br />

DDR3-800 DDR3-1067 DDR3-1333<br />

DDR2-400 DDR2-533 DDR2-667 DDR2-800<br />

DDR3-1333 is slightly higher than DDR2-800 and<br />

about 2.2W more than DDR2-667<br />

Reflects a sustained channel bandwidth of 65% maximum DRAM, 2x READs to<br />

WRITEs distributed evenly through all ranks, closed page, single slot populated,<br />

PLL/register package included<br />

DDR3 (DR x4)<br />

DDR2 (DR x4)<br />

DDR3-1067 is about equal to DDR-667


Introduction to DDR3


DDR2 to DDR3 Comparison<br />

Standard Features<br />

Features/Options DDR2 DDR3 Comments<br />

Pin-out/Package<br />

Voltage<br />

60-ball; x4, x8<br />

84-ball; x16<br />

FBGA only<br />

1.8V<br />

1.8V I/O<br />

78-ball; x4, x8<br />

96-ball; x16<br />

FBGA only<br />

1.5V<br />

1.5V I/O<br />

Densities 256Mb–4Gb 512Mb–8Gb<br />

Internal banks<br />

Prefetch<br />

(MIN READ burst)<br />

4 (256Mb, 512Mb)<br />

8 (1Gb, 2Gb, 4Gb)<br />

4-bit<br />

(2 clocks)<br />

8 (512Mb, 1Gb, 2Gb,<br />

4Gb, 8Gb)<br />

8-bit<br />

(4 clocks)<br />

Independent pin-out for x4/x8<br />

and x16 (simplifies module<br />

design)<br />

Reduces memory system<br />

power demand<br />

High‐density components<br />

enable large capacity memory<br />

subsystems<br />

Larger density per monolithic<br />

package, 8 banks is standard<br />

Reduced core speed<br />

dependency for better yield<br />

t CK – DLL enabled 125 MHz to 400 MHz 300 MHz to 800 MHz Supports higher data rates


DDR2 to DDR3 Comparison<br />

Standard Features<br />

Features/Options DDR2 DDR3 Comments<br />

Burst length (BL) BL4, BL8 BC4, BL8<br />

Burst type Fixed, via LMR<br />

Speed (data pin)<br />

Additive Latency<br />

(AL)<br />

(Posted CAS)<br />

READ Latency<br />

400, 533,<br />

667, 800 Mb/s<br />

AL options<br />

(0, 1, 2, 3, 4)<br />

AL + CL<br />

CL = 3, 4, 5, 6<br />

WRITE Latency RL - 1<br />

(1) Fixed, via MRS<br />

(2) OTF, “on-the-fly”<br />

800, 1066,<br />

1333, 1600 Mb/s<br />

AL options<br />

0, CL - 1, CL - 2<br />

AL + CL<br />

CL = 5, 6, 7, 8, 9, 10<br />

AL + CWL<br />

CWL = 5, 6, 7, 8<br />

BC4 provides relief from some “BL8”<br />

requirements<br />

OTF allows switching between BC4<br />

and BL8 without MRS command<br />

Migration to higher‐speed I/O<br />

<strong>Main</strong>ly used in server applications to<br />

improve command bus efficiency<br />

800(-25E) 5-5-5 1333(-15F) 8-8-8<br />

800(-25) 6-6-6 1333(-15E) 9-9-9<br />

1066(-187E) 7-7-7 1600(-125E) 9-9-9<br />

1066(-187) 8-8-8 1600(-125) 10-10-10<br />

Reduces latency combinations, one<br />

latency per t CK range


DDR2 to DDR3 Comparison<br />

Standard Features<br />

Features/Options DDR2 DDR3 Comments<br />

Data strobes<br />

Data bus termination<br />

Rtt<br />

Single-ended or<br />

differential<br />

on­die termination<br />

(ODT)<br />

opt. on MB<br />

Rtt values 50, 75, 150 ohm<br />

Rtt allowed<br />

Read, writes,<br />

standby<br />

Differential only Reduce data strobe crosstalk<br />

on­die termination<br />

(ODT)<br />

opt. on MB<br />

120, 60, 40, 30,<br />

20 ohm<br />

Optimized for higher data rates<br />

Support higher data rates<br />

Writes, standby DDR3 does not allow during reads<br />

Dynamic ODT None 120, 60 ohm Supports 2-slot; writes only<br />

DQ driver impedance 18 ohm 34 ohm<br />

Driver/ODT<br />

calibration<br />

None External resistor<br />

Optimized for 2-slot and pt-to-pt<br />

systems<br />

Improves accuracy over voltage<br />

and temperature


DDR2 to DDR3 Comparison<br />

Standard Features<br />

Features/Options DDR2 DDR3 Comments<br />

Multi-purpose register<br />

(MPR)<br />

None<br />

Write leveling None<br />

Four registers – 2<br />

defined, 2 RFU<br />

DQS captures CK, DQ<br />

drives out CK’s state<br />

RESET# None Dedicated input<br />

Modules<br />

240-pin UDIMM,<br />

RDIMM, FBDIMM;<br />

200-pin SODIMM<br />

240-pin UDIMM; RDIMM<br />

and FBDIMM TBD;<br />

204-pin SODIMM<br />

Provides specialty<br />

readouts<br />

De-skews fly-by layout<br />

used by modules<br />

Disable outputs,<br />

resets DRAM<br />

Similar dimensions as<br />

DDR2


DDR2 to DDR3 Comparison<br />

Optional Features<br />

Features/Options DDR2 DDR3 Comments<br />

Automatic self refresh<br />

(ASR)<br />

t CK – DLL disabled<br />

ODTS, via MPR<br />

(On-die temp sensor)<br />

None Optional<br />

Undefined<br />

(optional)<br />

None<br />

128 kHz to 125 MHz<br />

(optional)<br />

2 readout points<br />

(3 states – 1X, 2X, >2X<br />

refresh rate), optional<br />

Automatically adjust<br />

refresh rate during self<br />

refresh mode<br />

Provides some guidance<br />

for DLL disabled mode, if<br />

supported<br />

ODTS to trip at refresh<br />

points, with 2C grace<br />

margin. 85C, 95C


DDR3 Performance Timeline<br />

DDR3 data rate and latency timeline<br />

Speed Latency t AA (ns) Speed Latency t AA (ns) Speed Latency t AA (ns)<br />

1067<br />

800<br />

2007<br />

2008<br />

CL7 13.125 CL8 12 1600 CL10 12.5<br />

1333<br />

CL8 15 CL9 13.5 CL8 12<br />

1333<br />

CL5 12.5 1067 CL7 13.125 CL9 13.5<br />

CL6 15 800 CL5 12.5 1067 CL7 13.125<br />

Fastest speed grade driven by high-end high end desktop<br />

<strong>Main</strong>stream will not pay for speed<br />

Notebook and server segments tend to follow<br />

mainstream desktop<br />

2009<br />

15ns latencies not expected to be required for 1333 and<br />

above


© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the<br />

U.S. and/or other countries. The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this<br />

presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot<br />

guarantee the accuracy of any information provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS<br />

TO THE INFORMATION IN THIS PRESENTATION.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!