03.02.2014 Views

(b) (a)

(b) (a)

(b) (a)

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Initial shape and final flow fluctuations in<br />

event-by-event hydrodynamics for RHIC and LHC ∗<br />

Ulrich Heinz, The Ohio State University<br />

Exploring QCD Frontiers: From RHIC and LHC to EIC<br />

Stellenbosch, Jan. 30 - Feb. 3, 2012<br />

with Zhi Qiu, Chun Shen & Huichao Song<br />

∗ Work supported by the U.S. Department of Energy


Probing thelandscapeof QCD matter: The future is now<br />

Probes:<br />

• Collective flow<br />

• Jet modification<br />

and quenching<br />

• Thermal electromagnetic<br />

radiation<br />

• Critical fluctuations<br />

• . . .<br />

Ulrich Heinz CPTEIC, 31 Jan. 2012 1(43)


PbPb@LHC: Bjorken boost-invariance finally observed!<br />

CMS (J. Velkovska) Quark Matter 2011<br />

Small narrow bump near η=0 due to Jacobian dN<br />

dη = ∫<br />

(dip in dN/dη corresponds to bump in v 2 (η))<br />

d 2 p T<br />

p T coshη dN<br />

√<br />

m 2 + p 2 T cosh2 η<br />

dyd 2 p T<br />

Ulrich Heinz CPTEIC, 31 Jan. 2012 2(43)


Panta rhei: “soft ridge”=“Mach cone”=flow!<br />

ATLAS (J. Jia), Quark Matter 2011<br />

ALICE (J. Grosse-Oetringhaus), QM11<br />

• anisotropic flow coefficients v n and flow angles ψ n correlated over large rapidity range!<br />

M.Luzum, PLB 696 (2011) 499: All long-range rapidity correlations seen at RHIC are consistent with being entirely<br />

generated by hydrodynamic flow.<br />

• in the 1% most central collisions v 3 >v 2<br />

=⇒ prominent “Mach cone”-like structure!<br />

=⇒ event-by-event eccentricity fluctuations dominate!<br />

Ulrich Heinz CPTEIC, 31 Jan. 2012 3(43)


Event-by-event shape and flow fluctuations rule!<br />

(Alver and Roland, PRC81 (2010) 054905)<br />

• Each event has a different initial shape and density distribution, characterized by different set of<br />

harmonic eccentricity coefficients ε n<br />

• Each event develops its individual hydrodynamic flow, characterized by a set of harmonic flow<br />

coefficients v n and flow angles ψ n<br />

• At small impact parameters fluctuations (“hot spots”) dominate over geometric overlap effects<br />

(Alver & Roland, PRC81 (2010) 054905; Qin, Petersen, Bass, Müller, PRC82 (2010) 064903)<br />

Ulrich Heinz CPTEIC, 31 Jan. 2012 4(43)


Event-by-event shape and flow fluctuations rule!<br />

ALICE (A. Bilandzic) Quark Matter 2011<br />

• in the 1% most central collisions v 3 >v 2 =⇒ prominent “Mach cone”-like structure!<br />

• triangular flow angle uncorrelated with reaction plane and elliptic flow angles<br />

=⇒ due to event-by-event eccentricity fluctuations which dominate the anisotropic flows in the<br />

most central collisions<br />

Ulrich Heinz CPTEIC, 31 Jan. 2012 5(43)


Fluctuation-driven anisotropic flow is indeed collective!<br />

ALICE (J. Grosse-Oetringhaus) Quark Matter 2011<br />

n = 2 0-10%<br />

fit<br />

v a n )<br />

0.015<br />

t<br />

n<br />

〈cos(n∆φ)〉, (v<br />

0.01<br />

0.005<br />

0<br />

Pb-Pb 2.76 TeV<br />

Stat. error only<br />

〈cos(n∆φ)〉<br />

fit<br />

v a n )<br />

t<br />

n<br />

(v<br />

1.6<br />

1.4<br />

1.2<br />

0.8 1<br />

0.6<br />

0.4<br />

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54<br />

1 1 1 2 1 2 1 2 3 1 2 34 1 2 346 1 2 3468<br />

1 1.5 2 2.5 3 4 6 8 15<br />

assoc. p<br />

T<br />

[GeV/c]<br />

trigger p<br />

T<br />

• Two-particle Fourier coefficients factorize (v n∆ (p T1 ,p T2 ) = v n (p T1 )v n (p T2 )) as required<br />

• Factorization shown to work for n=2,3,4,5 as long as both p T1 ,p T2


Initial-state shape fluctuations<br />

Ulrich Heinz CPTEIC, 31 Jan. 2012 7(43)


Smearing effects from nucleon growth at high energies<br />

6<br />

4<br />

2<br />

x (fm) 0<br />

-2<br />

-4<br />

-6<br />

6<br />

4<br />

2<br />

x (fm) 0<br />

-2<br />

-4<br />

-6<br />

6<br />

4<br />

2<br />

x (fm) 0<br />

-2<br />

-4<br />

-6<br />

200 GeV Disk<br />

-6 -4 -2 0 2 4 6<br />

y (fm)<br />

200 GeV Gauss<br />

-6 -4 -2 0 2 4 6<br />

y (fm)<br />

2.76 TeV Gauss<br />

-6 -4 -2 0 2 4 6<br />

y (fm)<br />

UH & Scott Moreland, PRC84 (2011) 054905<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

y (fm)<br />

y (fm)<br />

8<br />

6<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

-6<br />

-8<br />

23.5 GeV<br />

2.76 TeV<br />

8<br />

6<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

-6<br />

-8<br />

-8 -6 -4 -2 0 2 4 6 8<br />

x (fm)<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

200 GeV<br />

7 TeV<br />

-8 -6 -4 -2 0 2 4 6 8<br />

x (fm)<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

120<br />

100<br />

Between √ s = 23.5 and 7,000GeV, nucleon area grows<br />

by factor O(2) =⇒ significant smoothing of event-by-event<br />

density fluctuations from RHIC to LHC<br />

Ulrich Heinz CPTEIC, 31 Jan. 2012 8(43)<br />

80<br />

60<br />

40<br />

20<br />

0


Eccentricity definitions:<br />

Define event average {...}, ensemble average 〈...〉<br />

Two choices for weight function in event average: (i) Energy density e(x ⊥ ;b)<br />

(ii) Entropy density s(x ⊥ ;b)<br />

Define σ 2 x = {x 2 }−{x} 2 , σ xy = {xy}−{x}{y}, etc.,<br />

where x,y are reaction-plane coordinates (e x ‖ b)<br />

1. Standard eccentricity: ε s ≡ ¯ε RP = 〈σ2 y −σ2 x 〉<br />

2. Average reaction-plane eccentricity: 〈ε RP 〉 =<br />

〈σ 2 y +σ2 x 〉 (calculated from RP-averaged 〈e〉 or 〈s〉)<br />

〈<br />

σ 2 y −σ2 x<br />

σ 2 y +σ2 x<br />

3. Eccentricity of the participant-plane averaged source: ¯ε part = 〈√ (σy 2−σ2 x )2 +4σxy〉<br />

2<br />

〈σy 2+σ2 x<br />

〈√ 〉<br />

〉<br />

(σ 2<br />

4. Average participant-plane eccentricity: 〈ε part 〉 = y −σx 2)2 +4σxy<br />

2<br />

σy 2+σ2 x<br />

√<br />

5. r.m.s. part.-plane eccentricity: ε part {2} ≡ 〈ε 2 part〉 (= √ 〈ε part 〉 2 +σε 2 /2 for Gauss. fl.)<br />

6. 4thcumulanteccentricity: ε part {4} ≡ [ 〈ε 2 part〉 2 −(〈ε 4 part〉−〈ε 2 part〉 2 ) ] 1/4<br />

〉<br />

(= √ 〈ε part 〉 2 −σε 2 /2 for Gauss. fl.)<br />

Ulrich Heinz CPTEIC, 31 Jan. 2012 9(43)


MC-Glauber eccentricities (e-weighted):<br />

0.6<br />

0.5<br />

0.4<br />

〈ǫ part 〉<br />

ǫ part {2}<br />

ǫ part {4}<br />

〈ǫ RP 〉<br />

¯ǫ part<br />

¯ǫ RP<br />

ǫ<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0 5 10<br />

Impact parameter b (fm)<br />

Ulrich Heinz CPTEIC, 31 Jan. 2012 10(43)


MC-KLN eccentricities (e-weighted):<br />

0.6<br />

0.5<br />

0.4<br />

〈ǫ part 〉<br />

ǫ part {2}<br />

ǫ part {4}<br />

〈ǫ RP 〉<br />

¯ǫ part<br />

¯ǫ RP<br />

ǫ<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0 5 10<br />

Impact parameter b (fm)<br />

Ulrich Heinz CPTEIC, 31 Jan. 2012 11(43)


Initial eccentricities ε n (n=2−5) vs. impact parameter<br />

Zhi Qiu, UH, PRC84 (2011) 024911<br />

ε3<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

〈ε 3 (e)〉 (MC-KLN)<br />

〈ε 3 (s)〉 (MC-KLN)<br />

〈ε 3 (e)〉 (MC-Glb)<br />

〈ε 3 (s)〉 (MC-Glb)<br />

(b)<br />

0<br />

0 5 10 15<br />

b (fm)<br />

0.8<br />

0.7<br />

0.6<br />

〈ε 4 (e)〉 (MC-KLN)<br />

〈ε 4 (s)〉 (MC-KLN)<br />

〈ε 4 (e)〉 (MC-Glb)<br />

〈ε 4 (s)〉 (MC-Glb)<br />

(c)<br />

0.8<br />

0.7<br />

0.6<br />

〈ε 5 (e)〉 (MC-KLN)<br />

〈ε 5 (s)〉 (MC-KLN)<br />

〈ε 5 (e)〉 (MC-Glb)<br />

〈ε 5 (s)〉 (MC-Glb)<br />

(d)<br />

0.5<br />

0.5<br />

ε4<br />

0.4<br />

ε5<br />

0.4<br />

0.3<br />

0.3<br />

0.2<br />

0.2<br />

0.1<br />

0.1<br />

• Contours: e(r,φ) = e 0 exp<br />

0<br />

0 5 10 15<br />

[ b (fm)<br />

(<br />

− r2<br />

2ρ 2<br />

1+ε n cos(n(φ−ψ n ))) ] where ε n e inψn = −<br />

0<br />

0 5 10 15<br />

b (fm)<br />

∫ rdrdφr<br />

2 e<br />

inφ e(r,φ)<br />

∫<br />

rdrdφr 2 e(r,φ)<br />

• MC-KLN has larger ε 2 and ε 4 , but similar ε 5 and almost identical ε 3 as MC-Glauber (ε 3,5 are purely fluctuation-driven!)<br />

Ulrich Heinz CPTEIC, 31 Jan. 2012 12(43)


Flow fluctuations in<br />

event-by-event hydro<br />

Ulrich Heinz CPTEIC, 31 Jan. 2012 13(43)


Flow angle distributions (0–60% centrality):<br />

d(Number of events)/dΨ<br />

10000<br />

8000<br />

6000<br />

4000<br />

2000<br />

Ψ P P<br />

2<br />

Ψ P P<br />

3<br />

Ψ P P<br />

4<br />

Ψ P P<br />

5<br />

d(Number of events)/dΨ<br />

10000<br />

8000<br />

6000<br />

4000<br />

2000<br />

Ψ EP<br />

2<br />

Ψ EP<br />

3<br />

Ψ EP<br />

4<br />

Ψ EP<br />

5<br />

0<br />

−1 0 1<br />

Ψ P P − Ψ RP<br />

0<br />

−1 0 1<br />

Ψ EP − Ψ RP<br />

ε n e inψPP n = −∫<br />

rdrdφr<br />

2 e<br />

inφ e(r,φ)<br />

∫<br />

rdrdφr 2 e(r,φ)<br />

v n e inψEP n =<br />

∫<br />

dφp e inφp (dN/dφ p )<br />

∫<br />

dφp (dN/dφ p )<br />

• Angles of ε 3,5 and v 3,5 uncorrelated with reaction plane (Qin et al., PRC 82 (2010) 064903)<br />

• v 4 -angle ψ EP<br />

4 lies (on average) in the reaction plane even though ε 4 -angle ψ PP<br />

4 points<br />

at ± π 4 = ±45◦ =⇒ v 4 driven mostly by elliptic deformation ε 2 , not ε 4 .<br />

Ulrich Heinz CPTEIC, 31 Jan. 2012 14(43)


Correlation between flow and eccentricity angles:<br />

ψ2 EP −ψ2 PP mod π 2<br />

2 x 104 Ψ EP<br />

d(Number of events)/d(Ψ)<br />

1.5<br />

1<br />

0.5<br />

2 )<br />

σ(Ψ EP<br />

2 − Ψ P P<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

0 10 20 30 40 50 60<br />

Centrality (%)<br />

50−60%<br />

30−40%<br />

20−30%<br />

15−20%<br />

0−5%<br />

b=0<br />

0<br />

0 0.2 0.4 0.6 0.8 1<br />

2 − Ψ P 2<br />

P<br />

Strong angular correlation between elliptic flow and eccentricity, except near b=0.<br />

Ulrich Heinz CPTEIC, 31 Jan. 2012 15(43)


Correlation between flow and eccentricity angles:<br />

ψ3 EP −ψ3 PP mod π 3<br />

d(Number of events)/d(Ψ)<br />

8000<br />

7000<br />

6000<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

σ(Ψ EP<br />

3 − Ψ P 3 P )<br />

0.35<br />

0.3<br />

0.25<br />

0.2<br />

0 10 20 30 40 50 60<br />

Centrality (%)<br />

50−60%<br />

30−40%<br />

20−30%<br />

15−20%<br />

0−5%<br />

b=0<br />

0<br />

0 0.2 0.4 0.6 0.8 1<br />

Ψ EP<br />

3 − Ψ P 3<br />

P<br />

Four times weaker angular correlation between triangular flow and triangularity<br />

than for 2nd harmonic.<br />

Ulrich Heinz CPTEIC, 31 Jan. 2012 16(43)


Correlation between flow and eccentricity angles:<br />

ψ4 EP −ψ4 PP mod π 4<br />

d(Number of events)/d(Ψ)<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

σ(Ψ EP<br />

4 − Ψ P 4 P )<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0 20 40 60<br />

Centrality (%)<br />

50−60%<br />

30−40%<br />

20−30%<br />

15−20%<br />

0−5%<br />

b=0<br />

0<br />

0 0.2 0.4 0.6 0.8<br />

Ψ EP<br />

4 − Ψ P 4<br />

P<br />

• Near-central collisions: ψ EP<br />

4<br />

(weakly) correlated with ψ PP<br />

4<br />

⇐⇒ v 4 driven by ε 4<br />

• Peripheral collisions: ψ EP<br />

4<br />

(weakly) anti-correlated with ψ PP<br />

4<br />

⇐⇒ v 4 driven by ε 2<br />

• Mid-central to mid-peripheral: no correlation between ψ EP<br />

4<br />

and ψ PP<br />

4<br />

Ulrich Heinz CPTEIC, 31 Jan. 2012 17(43)


Correlation between flow and eccentricity angles:<br />

ψ5 EP −ψ5 PP mod π 5<br />

d(Number of events)/d(Ψ)<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

σ(Ψ EP<br />

5 − Ψ P 5 P )<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0 20 40 60<br />

Centrality (%)<br />

50−60%<br />

30−40%<br />

20−30%<br />

15−20%<br />

0−5%<br />

b=0<br />

0<br />

0 0.2 0.4 0.6 0.8<br />

Ψ EP<br />

5 − Ψ P 5<br />

P<br />

• Near-central collisions: ψ EP<br />

5<br />

(weakly) correlated with ψ PP<br />

5<br />

⇐⇒ v 5 driven by ε 5<br />

• Peripheral collisions: ψ EP<br />

5<br />

(weakly) anti-correlated with ψ PP<br />

5<br />

⇐⇒ v 5 strongly influenced by ε n≠5<br />

• Mid-central to mid-peripheral: no correlation between ψ EP<br />

5<br />

and ψ PP<br />

5<br />

Ulrich Heinz CPTEIC, 31 Jan. 2012 18(43)


Higher harmonic flows and associated eccentricities:<br />

v 2 vs. ε 2 (MC-KLN, e-weighted)<br />

0.25<br />

v2<br />

0.2<br />

0.15<br />

0.1<br />

50−60%<br />

30−40%<br />

20−30%<br />

15−20%<br />

0−5%<br />

b=0<br />

0.05<br />

0<br />

0 0.2 0.4 0.6 0.8 1<br />

• Slightly non-linear dependence of v 2 on ε 2 , especially in central and very peripheral collisions<br />

• In the most peripheral centrality classes, slope of v 2 (ε 2 ) decreases<br />

ǫ 2<br />

Ulrich Heinz CPTEIC, 31 Jan. 2012 19(43)


Higher harmonic flows and associated eccentricities:<br />

v 3 vs. ε 3 (MC-KLN, e-weighted)<br />

0.12<br />

0.1<br />

0.08<br />

v3<br />

0.06<br />

50−60%<br />

0.04<br />

30−40%<br />

20−30%<br />

0.02<br />

15−20%<br />

0−5%<br />

b=0<br />

0<br />

0 0.2 0.4 0.6 0.8<br />

• Slope of v 3 (ε 3 ) and value of v 3 /ε 3 depend on centrality class<br />

• Non-zero triangular flow v 3 ∼ 1−2% even for zero triangularity ε 3<br />

=⇒ other (odd) harmonic eccentricity coefficients feed into v 3<br />

Ulrich Heinz CPTEIC, 31 Jan. 2012 20(43)<br />

ǫ 3


Higher harmonic flows and associated eccentricities:<br />

v 4 vs. ε 4 (MC-KLN, e-weighted)<br />

v4<br />

0.045<br />

0.04<br />

0.035<br />

0.03<br />

0.025<br />

0.02<br />

50−60%<br />

30−40%<br />

0.015<br />

20−30%<br />

15−20%<br />

0.01<br />

0−5%<br />

b=0<br />

0.005<br />

0 0.2 0.4 0.6 0.8<br />

• Correlation between v 4 and ε 4 strongly centrality dependent<br />

• In mid-central and peripheral collisions, v 4 is mostly generated by ε n≠4 , in particular ε 2<br />

• Even in central collisions, other ε n≠4 feed into v 4 , generating non-zero v 4 for zero ε 4<br />

ǫ 4<br />

Ulrich Heinz CPTEIC, 31 Jan. 2012 21(43)


Higher harmonic flows and associated eccentricities:<br />

v 5 vs. ε 5 (MC-KLN, e-weighted)<br />

v5<br />

0.035<br />

0.03<br />

0.025<br />

0.02<br />

0.015<br />

50−60%<br />

30−40%<br />

0.01<br />

20−30%<br />

15−20%<br />

0.005<br />

0−5%<br />

b=0<br />

0<br />

0 0.2 0.4 0.6 0.8<br />

• Correlation between v 5 and ε 5 strongly centrality dependent<br />

• In mid-central and peripheral collisions, v 5 is mostly generated by ε n≠5<br />

• Even in central collisions, other ε n≠5 feed into v 5 , generating non-zero v 5 for zero ε 5<br />

ǫ 5<br />

Ulrich Heinz CPTEIC, 31 Jan. 2012 22(43)


Event-by-event vs.<br />

single-shot hydro<br />

Ulrich Heinz CPTEIC, 31 Jan. 2012 23(43)


Eccentricity-scaled v 2,3 flow from e-by-e and single-shot hydro<br />

v2/ε2 (π)<br />

v3/ε3 (π)<br />

0.25<br />

0.2<br />

MC-KLN<br />

ideal hydro<br />

0.15 ¯v 2 /¯ε part (e)<br />

〈v 2 〉/〈ε 2 (e)〉<br />

v 2 {2}/ε 2 {2}(e)<br />

0.1<br />

0<br />

v 2 {4}/ε 2 {4}(e)<br />

5<br />

b (fm)<br />

10<br />

0.25<br />

0.2<br />

0.15 MC-KLN<br />

ideal hydro<br />

0.1<br />

¯v 3 /¯ε part (e)<br />

0.05<br />

〈v 3 〉/〈ε 3 (e)〉<br />

v 3 {2}/ε 3 {2}(e)<br />

0<br />

0<br />

v 3 {4}/ε 3 {4}(e)<br />

5<br />

b (fm)<br />

10<br />

Zhi Qiu, UH, in preparation<br />

(a)<br />

(c)<br />

v2/ε2 (π)<br />

v3/ε3 (π)<br />

0.15<br />

0.1<br />

0.05<br />

0.1<br />

0.08<br />

0.06<br />

MC-KLN<br />

η/s = 0.2<br />

¯v 2 /¯ε part (e)<br />

〈v 2 〉/〈ε 2 (e)〉<br />

v 2 {2}/ε 2 {2}(e)<br />

v 2 {4}/ε 2 {4}(e)<br />

0 5 10<br />

b (fm)<br />

MC-KLN<br />

η/s = 0.2<br />

0.04 ¯v 3 /¯ε part (e)<br />

〈v 3 〉/〈ε 3 (e)〉<br />

0.02 v 3 {2}/ε 3 {2}(e)<br />

0<br />

0<br />

v 3 {4}/ε 3 {4}(e)<br />

5<br />

b (fm)<br />

10<br />

• For most centralities, eccentricity-scaled v 2,3 from e-by-e and single-shot hydro agree within 5-10%<br />

• Agreement between 〈v 2,3 〉/〈ε 2,3 〉 and v 2,3 {2}/ε 2,3 {2} is excellent at all centralities<br />

• Agreement between v 2 {2}/ε 2 {2} and v 2 {4}/ε 2 {4} is good over most of the centrality range, but the analog relation<br />

for triangular flow does not work (note, however, limited statistics)<br />

• =⇒ Can use single-shot hydro to compute 〈v 2,3 〉/〈ε 2,3 〉 = v 2,3 {2}/ε 2,3 {2}<br />

(b)<br />

(d)<br />

Ulrich Heinz CPTEIC, 31 Jan. 2012 24(43)


(η/s) QGP<br />

Ulrich Heinz CPTEIC, 31 Jan. 2012 25(43)


How to use elliptic flow for measuring (η/s) QGP<br />

Hydrodynamics converts<br />

spatial deformation of initial state =⇒<br />

momentum anisotropy of final state,<br />

through anisotropic pressure gradients<br />

0.16<br />

0.14<br />

0.12<br />

0.10<br />

Au+Au RHIC<br />

20~30%<br />

Shear viscosity degrades conversion efficiency<br />

ε x = 〈〈y2 −x 2 〉〉<br />

〈〈y 2 +x 2 〉〉 =⇒ ε p= 〈Txx −T yy 〉<br />

〈T xx +T yy 〉<br />

of the fluid; the suppression of ε p is monotonically<br />

related to η/s. 0 1 2 3 4 5 6<br />

0.00<br />

7<br />

p<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

(fm/c)<br />

ideal<br />

/s = 0.08<br />

/s = 0.16<br />

/s = 0.24<br />

The observable that is most directly related to the total hydrodynamic momentum<br />

anisotropy ε p is the total (p T -integrated) charged hadron elliptic flow v ch<br />

2 :<br />

∑<br />

ε p = 〈Txx −T yy 〉<br />

〈T xx +T yy 〉 ⇐⇒<br />

i∫ pT dp ∫ T dφp p2 T cos(2φp)<br />

∑ ∫<br />

i∫<br />

pT dp T dφp p 2 T<br />

dN i<br />

dyp T dp T dφ p<br />

dN i<br />

dyp T dp T dφ p<br />

⇐⇒ v ch<br />

2<br />

Ulrich Heinz CPTEIC, 31 Jan. 2012 26(43)


How to use elliptic flow for measuring (η/s) QGP (contd.)<br />

• If ε p saturates before hadronization (e.g. in PbPb@LHC (?))<br />

⇒ v ch<br />

2 ≈ not affected by details of hadronic rescattering below T c<br />

but: v (i)<br />

2 (p dN<br />

T), i<br />

change during hadronic phase (addl. radial flow!), and these<br />

dyd 2 p T<br />

changes depend on details of the hadronic dynamics (chemical composition etc.)<br />

⇒ v 2 (p T ) of a single particle species not a good starting point for extracting η/s<br />

• If ε p does not saturate before hadronization (e.g. AuAu@RHIC), dissipative hadronic<br />

dynamics affects not only the distribution of ε p over hadronic species and in p T , but<br />

even the final value of ε p itself (from which we want to get η/s)<br />

⇒ need hybrid code that couples viscous hydrodynamic evolution of QGP to realistic<br />

microscopic dynamics of late-stage hadron gas phase<br />

⇒ VISHNU (“Viscous Israel-Steward Hydrodynamics ’n’ UrQMD”)<br />

(Song, Bass, UH, PRC83 (2011) 024912) Note: this paper shows that UrQMD ≠ viscous hydro!<br />

Ulrich Heinz CPTEIC, 31 Jan. 2012 27(43)


Extraction of (η/s) QGP from AuAu@RHIC<br />

v 2<br />

/ε<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

hydro (η/s)+UrQMD<br />

0 10 20 30 40<br />

(1/S) dN ch<br />

/dy (fm -2 )<br />

H. Song, S.A. Bass, UH, T. Hirano, C. Shen, PRL106 (2011) 192301<br />

η/s<br />

0.0<br />

0.08<br />

0.16<br />

0.24<br />

(fm/c) max.<br />

η/s τ 0<br />

dN/dy<br />

Glauber / KLN<br />

0.0 . 0.4 810<br />

0.08 . 0.6 810<br />

0.16 0.9 . 810<br />

0.24 . 1.2 0.9 810<br />

v 2<br />

/ε<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

MC-KLN<br />

(a)<br />

hydro (η/s) + UrQMD<br />

v 2<br />

{2} / 〈ε 2 part 〉1/2 KLN<br />

〈v 2<br />

〉 / 〈ε part<br />

〉 KLN<br />

0 10 20 30<br />

(1/S) dN ch<br />

/dy (fm -2 )<br />

η/s<br />

0.0<br />

0.08<br />

0.16<br />

0.24<br />

MC-Glauber<br />

(b)<br />

hydro (η/s) + UrQMD<br />

v 2<br />

{2} / 〈ε 2 part 〉1/2 Gl<br />

〈v 2<br />

〉 / 〈ε part<br />

〉 Gl<br />

η/s<br />

0.0<br />

0.08<br />

0.16<br />

0.24<br />

0 10 20 30 40<br />

(1/S) dN ch<br />

/dy (fm -2 )<br />

1 < 4π(η/s) QGP < 2.5<br />

• All shown theoretical curves correspond to parameter sets that correctly<br />

describe centrality dependence of charged hadron production as well as<br />

p T -spectra of charged hadrons, pions and protons at all centralities<br />

• v2 ch /ε x vs. (1/S)(dN ch /dy) is “universal”, i.e. depends only on<br />

η/s but (in good approximation) not on initial-state model (Glauber<br />

vs. KLN, optical vs. MC, RP vs. PP average, etc.)<br />

• dominant source of uncertainty: ε Gl<br />

x vs. εKLN x −→<br />

• smaller effects: early flow → increases v 2 ε<br />

by ∼few% → larger η/s<br />

bulk viscosity → affects v ch<br />

2 (p T), but ≈ not v ch<br />

2<br />

Zhi Qiu, UH, PRC84 (2011) 024911<br />

Ulrich Heinz CPTEIC, 31 Jan. 2012 28(43)


dN/(2 dy p T<br />

dp T<br />

) (GeV -2 )<br />

Global description of AuAu@RHIC spectra and v 2<br />

VISHNU (H. Song, S.A. Bass, UH, T. Hirano, C. Shen, PRC83 (2011) 054910)<br />

+<br />

10 3 MC-Glauber initialization<br />

2<br />

0%~10%*10 p<br />

200 A GeV Au+Au charged hadrons<br />

2<br />

10 2<br />

1.8 s = 0.08<br />

s = 0.16<br />

s = 0.16<br />

s = 0.24<br />

10 1 10%~20%*10<br />

1.6<br />

10 0 20%~40%<br />

1.4<br />

1.2<br />

10 -1<br />

40%~60%/10<br />

1<br />

10 -2<br />

0.8<br />

10 -3 60%~80%/10 2<br />

0.6<br />

10 -4<br />

/s = 0.0<br />

0.4<br />

(ideal hydro)<br />

10 -5 /s = 0.08<br />

0.2<br />

/s = 0.16<br />

/s = 0.24 (b)<br />

(a)<br />

0.0 0.5 1.0 1.5 2.0<br />

10 5<br />

5%~10%*10 2<br />

10%~15%*10<br />

10 3<br />

15%~20%*1<br />

20%~30%/10<br />

10 1<br />

30%~40%/10 2<br />

10 -1 40%~50%/10 3<br />

50%~60%/10 4<br />

10 -3<br />

60%~70%/10 5<br />

10 -5 70%~80%/10 6<br />

10 -7<br />

10 -9<br />

PHENIX<br />

STAR<br />

MC-KLN<br />

MC-Glauber<br />

0%~5%*10 3<br />

0.0 0.5 1.0 1.5 2.0<br />

10 -6<br />

10 7<br />

10 -11<br />

p T<br />

(GeV)<br />

dN/(2 dy p T<br />

dp T<br />

) (GeV -2 )<br />

p T<br />

(GeV)<br />

v 2<br />

/<br />

0<br />

0.0 0.4 0.8 1.2 1.6<br />

p T<br />

(GeV)<br />

MC-KLN initialization<br />

0.0 0.4 0.8 1.2 1.6 2.0<br />

p T<br />

(GeV)<br />

VISHNU PHENIX v 2<br />

{EP}<br />

(0-5%)+1.2<br />

(5-10%)+1.0<br />

(10-20%)+0.8<br />

(20-30%)+0.6<br />

(30-40%)+0.4<br />

(40-50%)+0.2<br />

(50-60%)<br />

• (η/s) QGP = 0.08 for MC-Glauber and (η/s) QGP = 0.16 for MC-KLN work well<br />

for charged hadron, pion and proton spectra and v 2 (p T ) at all collision centralities<br />

• Note: T chem =165MeV reproduces the proton spectra from STAR, but not from<br />

PHENIX! =⇒ Slightly incorrect chemical composition in hadronic phase? Not enough<br />

p¯p annihilation in UrQMD?<br />

Ulrich Heinz CPTEIC, 31 Jan. 2012 29(43)


dN/(2 dy p T<br />

dp T<br />

) (GeV -2 )<br />

Global description of AuAu@RHIC spectra and v 2<br />

VISHNU (H. Song, S.A. Bass, UH, T. Hirano, C. Shen, PRC83 (2011) 054910)<br />

10 3 1.2<br />

+<br />

s = 0.08<br />

0%~10%*10 p<br />

2<br />

1.0 /s = 0.16<br />

VISHNU STAR v 2 {2} p<br />

10 2<br />

(5-10%)+0.6<br />

(20-30%)+0.4<br />

0.8<br />

(30-40%)+0.2<br />

10 1 10%~20%*10<br />

(40-50%)<br />

0.6<br />

0.4<br />

10 0 20%~40%<br />

0.2<br />

10 -1<br />

0.0<br />

MC-Glauber initialization<br />

40%~60%/10<br />

MC-Glauber initialization<br />

10 -2<br />

s = 0.16<br />

1.0<br />

Au + Au 200 A GeV p<br />

/s = 0.24<br />

0.8<br />

10 -3 60%~80%/10 2<br />

0.6<br />

10 -4<br />

/s = 0.0<br />

0.4<br />

(ideal hydro)<br />

10 -5 /s = 0.08<br />

0.2<br />

/s = 0.16<br />

/s = 0.24 (b)<br />

0.0 MC-KLN initialization<br />

MC-KLN initialization<br />

10 -6<br />

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6<br />

(a)<br />

0.0 0.5 1.0 1.5 2.0<br />

10 5<br />

5%~10%*10 2<br />

10%~15%*10<br />

10 3<br />

15%~20%*1<br />

20%~30%/10<br />

10 1<br />

30%~40%/10 2<br />

10 -1 40%~50%/10 3<br />

50%~60%/10 4<br />

10 -3<br />

60%~70%/10 5<br />

10 -5 70%~80%/10 6<br />

10 -7<br />

10 -9<br />

PHENIX<br />

STAR<br />

MC-KLN<br />

MC-Glauber<br />

0%~5%*10 3<br />

0.0 0.5 1.0 1.5 2.0<br />

10 7<br />

10 -11<br />

p T<br />

(GeV)<br />

dN/(2 dy p T<br />

dp T<br />

) (GeV -2 )<br />

p T<br />

(GeV)<br />

v 2<br />

/<br />

v 2<br />

/<br />

p T<br />

(GeV)<br />

p T<br />

(GeV)<br />

• (η/s) QGP = 0.08 for MC-Glauber and (η/s) QGP = 0.16 for MC-KLN work well for charged hadron, pion and proton<br />

spectra and v 2 (p T ) at all collision centralities<br />

• A purely hydrodynamic model (without UrQMD afterburner) with the same values of η/s does almost as well (except for<br />

centrality dependence of proton v 2 (p T )) (C. Shen et al., PRC84 (2011) 044903)<br />

Main difference: VISHNU develops more radial flow in the hadronic phase (larger shear viscosity), pure viscous hydro must<br />

start earlier than VISHNU (τ 0 = 0.6 instead of 1.05fm/c), otherwise proton spectra are too steep<br />

• These η/s values agree with Luzum & Romatschke, PRC78 (2008), even though they used EOS with incorrect hadronic<br />

chemical composition =⇒ shows robustness of extracting η/s from total charged hadron v 2<br />

Ulrich Heinz CPTEIC, 31 Jan. 2012 30(43)


(dN ch /dη)/(N part /2)<br />

8<br />

6<br />

4<br />

2<br />

Pb+Pb 2.76 A TeV: ALICE<br />

Au+Au 200 A GeV: STAR<br />

Au+Au 200 A GeV: PHOBOS<br />

MC-KLN<br />

reaction plane<br />

0<br />

0 100 200 300 400<br />

N part<br />

Pre- and postdictions for PbPb@LHC<br />

LHC: η/s=0.16<br />

LHC: η/s=0.20<br />

LHC:η/s=0.24<br />

RHIC: η/s=0.16<br />

VISHNU with MC-KLN (Song, Bass, UH, PRC83 (2011) 054912)<br />

(b)<br />

STAR<br />

10-20% 0.1<br />

v +0.3<br />

0.4 ALICE 2<br />

{4}<br />

v 2<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

MC-KLN<br />

reaction plane<br />

VISHNU<br />

RHIC: η/s=0.16<br />

LHC: η/s=0.16<br />

LHC: η/s=0.20<br />

LHC: η/s=0.24<br />

0 0.5 1 1.5 2<br />

p T<br />

(GeV)<br />

20-30%<br />

+0.2<br />

30-40%<br />

+0.1<br />

40-50%<br />

v 2<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

STAR<br />

ALICE v 2 {4}<br />

MC-KLN<br />

Reaction Plane<br />

RHIC: η/s=0.16<br />

LHC: η/s=0.16<br />

LHC: η/s=0.20<br />

LHC: η/s=0.24<br />

0<br />

0 20 40 60 80<br />

centrality<br />

• After normalization in 0-5% centrality collisions, MC-KLN + VISHNU (w/o running coupling, but<br />

including viscous entropy production!) reproduces centrality dependence of dN ch /dη well in both<br />

AuAu@RHIC and PbPb@LHC<br />

• (η/s) QGP = 0.16 for MC-KLN works well for charged hadron v 2 (p T ) and integrated v 2 in<br />

AuAu@RHIC, but overpredicts both by about 10-15% in PbPb@LHC<br />

• Similar results from predictions based on pure viscous hydro (C. Shen et al., PRC84 (2011) 044903)<br />

• but: At LHC significant sensitivity of v 2 to initialization of viscous pressure tensor π µν (Navier-Stokes<br />

or zero) =⇒ need pre-equilibrium model.<br />

=⇒ QGP at LHC not much more viscous than at RHIC!<br />

Ulrich Heinz CPTEIC, 31 Jan. 2012 31(43)


Why is v ch<br />

2 (p T ) the same at RHIC and LHC?<br />

Answer: Pure accident! (Kestin & Heinz EPJC61 (2009) 545)<br />

v 2<br />

0.20<br />

0.18<br />

0.16<br />

0.14<br />

0.12<br />

0.10<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

0.00<br />

C. Shen, UH, P. Huovinen, H. Song, PRC84 (2011) 044903<br />

AuAu@ PbPb@ MC-KLN, /s = 0.20<br />

RHIC LHC<br />

+<br />

p<br />

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00<br />

p T<br />

(GeV)<br />

20~30%<br />

v π 2 (p T) increases a bit from RHIC to LHC, for heavier hadrons v 2 (p T ) at fixed p T decreases<br />

(radial flow pushes momentum anisotropy of heavy hadrons to larger p T )<br />

This is a hard prediction of hydrodynamics! (See also Nagle, Bearden, Zajc, NJP13 (2011) 075004)<br />

Ulrich Heinz CPTEIC, 31 Jan. 2012 32(43)


Confirmation of increased mass splitting at LHC<br />

Data: ALICE @ LHC, Quark Matter 2011 (symbols), PHENIX @ RHIC (shaded)<br />

Lines: Shen et al., PRC84 (2011) 044903 (VISH2+1 + MC-KLN, η/s=0.2)<br />

• Qualitative features of data agree with VISH2+1 predictions<br />

• VISH2+1 does not push proton v 2 strongly enough to higher p T , both at RHIC and LHC<br />

• At RHIC we know that this is fixed when using VISHNU – is the same true at LHC?<br />

Ulrich Heinz CPTEIC, 31 Jan. 2012 33(43)


Successful prediction of v 2 (p T ) for identified hadrons in<br />

PbPb@LHC<br />

Data: ALICE, Quark Matter 2011<br />

Prediction: Shen et al., PRC84 (2011) 044903 (VISH2+1)<br />

Perfect fit in semi-peripheral collisions!<br />

The problem with insufficient proton radial flow exists only in more central collisions<br />

Adding the hadronic cascade (VISHNU) helps:<br />

Ulrich Heinz CPTEIC, 31 Jan. 2012 34(43)


v 2 (p T ) in PbPb@LHC: ALICE vs. VISHNU<br />

v2<br />

Data: ALICE, preliminary (Snellings, Krzewicki, Quark Matter 2011)<br />

Dashed lines: Shen et al., PRC84 (2011) 044903 (VISH2+1, MC-KLN, (η/s) QGP =0.2)<br />

Solid lines: Song, Shen, UH 2011 (VISHNU, MC-KLN, (η/s) QGP =0.16)<br />

0.3<br />

0.2<br />

0.1<br />

π +<br />

K +<br />

p<br />

ALICE Preliminary<br />

VISHNU<br />

(η/s) QGP = 0.16<br />

VISH2+1<br />

η/s = 0.20<br />

0<br />

5−10%<br />

10−20%<br />

20−30%<br />

0.2<br />

v2<br />

0.1<br />

30−40%<br />

40−50%<br />

50−60%<br />

0<br />

0 1.0 2.0 0 1.0 2.0 0 1.0 2.0 3.0<br />

p T (GeV) p T (GeV) p T (GeV)<br />

VISHNU yields correct magnitude and centrality dependence of v 2 (p T ) for pions, kaons and protons!<br />

Same (η/s) QGP =0.16 (for MC-KLN) at RHIC and LHC!<br />

Ulrich Heinz CPTEIC, 31 Jan. 2012 35(43)


PbPb@LHC p T -spectra: ALICE vs. VISH2+1 and VISHNU:<br />

dN/(dydpT)<br />

dN/(dydpT)<br />

10 3 0~5%<br />

10 2<br />

10 1<br />

10 0<br />

10 −1<br />

10 2<br />

10 1<br />

10 0<br />

10 −1<br />

ALICE Preliminary<br />

π +<br />

K +<br />

p<br />

10 3 30~40%<br />

5~10%<br />

(η/s) QGP = 0.16<br />

VISHNU<br />

40~50%<br />

10~20%<br />

η/s = 0.20<br />

VISH2+1<br />

50~60%<br />

20~30%<br />

60~70%<br />

0 1.0 2.0 0 1.0 2.0 0 1.0 2.0 0 1.0 2.0 3.0<br />

p T (GeV) p T (GeV) p T (GeV) p T (GeV)<br />

• Good description also of identified hadron spectra for centralities


The new “proton anomaly”: disagreement with the thermal model<br />

Data: ALICE, preliminary (A. Kalweit, Strange Quark Matter 2011)<br />

Model: A. Andronic et al., PLB673 (2009) 142; similar: S. Wheaton et al. (THERMUS), Comp. Phys. Comm. 180 (2009) 84<br />

• “Standard” T chem =164MeV reproduces strange hadrons but overpredicts (anti-)protons by 50%!<br />

• p¯p annihilation in UrQMD not strong enough to repair this<br />

• Similar problem already seen at RHIC but not taken seriously (STAR/PHENIX disagreement)<br />

???<br />

Ulrich Heinz CPTEIC, 31 Jan. 2012 37(43)


Back to the<br />

“elephant in the room”:<br />

How to eliminate the large<br />

model uncertainty<br />

in the initial eccentricity?<br />

Ulrich Heinz CPTEIC, 31 Jan. 2012 38(43)


Two observations:<br />

I. Shear viscosity suppresses higher flow harmonics more strongly<br />

v n /ε n<br />

Alver et al., PRC82 (2010) 034913<br />

(averaged initial conditions)<br />

0.3<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

v 2 /ε 2<br />

v 3 /ε 3<br />

v 4 /ε 4<br />

v 5 /ε 5<br />

v n (viscous)/v n (ideal)<br />

1.4<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

Schenke et al., arXiv:1109.6289<br />

(event-by-event hydro)<br />

v n (η/s=0.08)/v n (ideal)<br />

v n (η/s=0.16)/v n (ideal)<br />

20-30%<br />

0<br />

0 0.08 0.16<br />

η/s<br />

0<br />

1 2 3 4 5 6<br />

n<br />

=⇒ Idea: Use simultaneous analysis of elliptic and triangular flow to constrain initial state models<br />

(see also Bhalerao, Luzum Ollitrault, PRC 84 (2011) 034910)<br />

II. ε 3 is ≈ model independent<br />

While v 4 and v 5 have mode-coupling contributions from ε 2 , v 3 is almost pure response to ε 3 and<br />

v 3 /ε 3 ≈const. over a wide range of centralities<br />

=⇒ Idea: Use total charged hadron v ch<br />

3 to determine (η/s) QGP,<br />

then check v ch<br />

2<br />

to distinguish between MC-KLN and MC-Glauber!<br />

Ulrich Heinz CPTEIC, 31 Jan. 2012 39(43)


Glauber in, KLN out!<br />

Zhi Qiu, C. Shen, UH, arXiv:1110.3033 (VISH2+1)<br />

v2/ε2<br />

v3/ε3<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0.3<br />

0.2<br />

ALICE v 2 {2}/ε 2 {2}<br />

ALICE v 2 {4}/ε 2 {4}<br />

MC-KLN v 2 /¯ε 2<br />

(a)<br />

ALICE v 3 {2}/ε 3 {2}<br />

0<br />

0.3<br />

MC-KLN v 3 /¯ε 3<br />

0.1<br />

MC-KLN η/s = 0.20<br />

(b)<br />

0<br />

0 10 20 30 40<br />

Centrality (%)<br />

50 60 70<br />

v3/ε3<br />

v2/ε20.4<br />

0.2<br />

0.2<br />

ALICE v 2 {2}/ε 2 {2}<br />

ALICE v 2 {4}/ε 2 {4}<br />

MC-Glb. v 2 /¯ε 2<br />

(c)<br />

ALICE v 3 {2}/ε 3 {2}<br />

MC-Glb. v 3 /¯ε 3<br />

0.1<br />

MC-Glb. η/s = 0.08<br />

(d)<br />

0<br />

0 10 20 30 40<br />

Centrality (%)<br />

50 60 70<br />

• Both MC-KLN with η/s=0.2 and MC-Glauber with η/s=0.08 give very good<br />

description of v 2 /ε 2 at all centralities.<br />

• Only MC-Glauber initial conditions with η/s=0.08 describe v 3 /ε 3<br />

PHENIX, comparing to calculations by Alver et al. (PRC82 (2010) 034913), come to similar conclusions at RHIC energies<br />

(Adare et al., arXiv:1105.3928, and Lacey et al., arXiv:1108.0457)<br />

• Large v 3 measured at RHIC and LHC requires small (η/s) QGP ≃1/(4π) unless<br />

the fluctuations predicted by both models are completely wrong and ε 3 is really 50%<br />

larger than we presently believe!<br />

Ulrich Heinz CPTEIC, 31 Jan. 2012 40(43)


Conclusions<br />

• We have come a long way over the last couple of years:<br />

I believe that the issue of the QGP shear viscosity at RHIC and LHC energies is now settled:<br />

(η/s) QGP (T c


Outlook: A beautiful analogy with the Big Bang:<br />

The fluctuation “power spectrum” of the Little Bang<br />

Mishra, Mohapatra, Saumia, Srivastava, PRC77 (2008) 064902 and C81 (2010) 034903<br />

Mocsy & Sorensen, NPA855 (2011) 241, PLB705 (2011) 71<br />

Ulrich Heinz CPTEIC, 31 Jan. 2012 42(43)


The fluctuation “power spectrum” of the Little Bang<br />

Staig & Shuryak, arXiv:1106.3243<br />

• Relating the measured “anisotropic flow power spectrum” (i.e. v n vs. n) to the “initial fluctuation<br />

power spectrum” (i.e. ε n vs. n) provides access to the QGP transport coefficients (likely not only η/s,<br />

but also ζ/s, τ π , τ Π ...)<br />

• Power spectrum of initial fluctuations (in particular its √ s dependence) can (probably) be calculated<br />

from first principles via CGC effective theory (Dusling, Gelis, Venugopalan, arXiv:1106.3927)<br />

• Collisions between different species, at different collision centralities, and at different √ s create<br />

Little Bangs with characteristically different power spectra<br />

−→ The Concordance Model of Little Bang Cosmology!<br />

Ulrich Heinz CPTEIC, 31 Jan. 2012 43(43)


Supplements<br />

Ulrich Heinz CPTEIC, 31 Jan. 2012 44(43)


dN/(2 dy p T<br />

dp T<br />

) (GeV -2 )<br />

Global description of AuAu@RHIC spectra and v 2<br />

VISHNU (H. Song, S.A. Bass, U. Heinz, T. Hirano, C. Shen, PRC, arXiv:1101.4638)<br />

10 3 2.4<br />

MC-Glauber initialization MC-KLN initialization<br />

200 A GeV Au+Au charged hadrons<br />

+<br />

0%~10%*10 p<br />

2<br />

10 2<br />

2.2 s = 0.08<br />

VISHNU STAR v<br />

s = 0.16<br />

2<br />

{EP}<br />

s = 0.16<br />

s = 0.24<br />

(0-5%)+1.6<br />

10 1 10%~20%*10<br />

2.0<br />

1.8<br />

(5-10%)+1.4<br />

10 0 20%~40%<br />

1.6<br />

(10-20%)+1.2<br />

1.4<br />

(20-30%)+1.0<br />

10 -1<br />

40%~60%/10<br />

1.2<br />

(30-40%)+0.8<br />

10 -2<br />

1.0<br />

(40-50%)+0.6<br />

10 -3 60%~80%/10 2<br />

0.8<br />

0.6<br />

(50-60%)+0.4<br />

/s = 0.0<br />

(60-70%)+0.2<br />

PHENIX<br />

(ideal hydro)<br />

STAR<br />

10 -5 /s = 0.08<br />

(70-80%)<br />

MC-KLN<br />

0.2<br />

/s = 0.16<br />

MC-Glauber<br />

/s = 0.24 (b)<br />

0.0<br />

10 -6<br />

0.0 0.4 0.8 1.2 1.6 0.0 0.4 0.8 1.2 1.6 2.0<br />

10 -4<br />

0.4<br />

0%~5%*10 3 0.0 0.5 1.0 1.5 2.0<br />

10 5<br />

5%~10%*10 2<br />

10%~15%*10<br />

10 3<br />

15%~20%*1<br />

20%~30%/10<br />

10 1<br />

30%~40%/10 2<br />

10 -1 40%~50%/10 3<br />

50%~60%/10 4<br />

10 -3<br />

60%~70%/10 5<br />

10 -5 70%~80%/10 6<br />

10 -7<br />

10 -9<br />

(a)<br />

0.0 0.5 1.0 1.5 2.0<br />

10 7<br />

10 -11<br />

p T<br />

(GeV)<br />

dN/(2 dy p T<br />

dp T<br />

) (GeV -2 )<br />

p T<br />

(GeV)<br />

v 2<br />

/<br />

p T<br />

(GeV)<br />

p T<br />

(GeV)<br />

• (η/s) QGP = 0.08 for MC-Glauber and (η/s) QGP = 0.16 for MC-KLN works well for<br />

charged hadron, pion and proton spectra and v 2 (p T ) at all collision centralities<br />

Ulrich Heinz CPTEIC, 31 Jan. 2012 45(43)


Comparison of ALICE PbPb@LHC v 2 data with<br />

VISH2+1<br />

v 2<br />

v 2<br />

0.30<br />

0.25<br />

0.20<br />

0.15<br />

0.10<br />

0.05<br />

0.00<br />

0.30<br />

0.25<br />

Data: ALICE, preliminary (Snellings, Krzewicki, Quark Matter 2011)<br />

Prediction: C. Shen et al., PRC84 (2011) 044903 (VISH2+1, MC-KLN, η/s=0.2)<br />

Pb+Pb @ 2.76 A TeV<br />

5%~10%<br />

30%~40%<br />

0.20<br />

0.15<br />

0.10<br />

0.05<br />

0.00<br />

0.0 0.5 1.0 1.5 2.0 2.5 3.0<br />

p T<br />

(GeV)<br />

data: ALICE Preliminary<br />

10%~20%<br />

40%~50%<br />

20%~30%<br />

pion<br />

kaon<br />

anti-proton<br />

VISH2+1<br />

( /s = 0.20)<br />

0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5<br />

p T<br />

(GeV)<br />

50%~60%<br />

p T<br />

(GeV)<br />

Ulrich Heinz CPTEIC, 31 Jan. 2012 46(43)


PbPb@LHC p T -spectra: Glauber vs. KLN<br />

dN/(dydpT)<br />

dN/(dydpT)<br />

10 3 0~5%<br />

10 2<br />

10 1<br />

10 0<br />

10 −1<br />

10 2<br />

10 1<br />

10 0<br />

10 −1<br />

PbPb@2.76A TeV<br />

ALICE Preliminary<br />

π +<br />

K +<br />

p<br />

10 3 30~40%<br />

5~10%<br />

MC−KLN<br />

η/s = 0.20<br />

40~50%<br />

10~20%<br />

MC−Glb<br />

η/s = 0.08<br />

50~60%<br />

20~30%<br />

60~70%<br />

0 1.0 2.0 0 1.0 2.0 0 1.0 2.0 0 1.0 2.0 3.0<br />

p T (GeV) p T (GeV) p T (GeV) p T (GeV)<br />

• In central collisions no difference between the models.<br />

• In peripheral collisions p T -spectra from MC-Glauber IC too steep!<br />

This is an artifact of single-shot hydro with averaged initial profile; for small η/s=0.08 (but not<br />

for η/s=0.2!), e-by-e hydro gives flatter p T -spectra in peripheral collisions, due to hot spots<br />

Ulrich Heinz CPTEIC, 31 Jan. 2012 47(43)


s95p-PCE: A realistic, lattice-QCD-based EOS<br />

Huovinen, Petreczky, NPA 837 (2010) 26<br />

Shen, Heinz, Huovinen, Song, PRC 82 (2010) 054904<br />

1.6<br />

p (GeV/fm 3 )<br />

c 2 S<br />

1.4<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

0.35<br />

0.30<br />

0.25<br />

0.20<br />

0.15<br />

0.10<br />

s95p-PCE<br />

SM-EOS Q<br />

EOS L<br />

High T: Lattice QCD (latest<br />

hotQCD results)<br />

Low T: Chemically frozen HRG<br />

(T chem = 165MeV)<br />

No softest point!<br />

0.05<br />

0.00<br />

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0<br />

e (GeV/fm 3 )<br />

Ulrich Heinz CPTEIC, 31 Jan. 2012 48(43)


s95p-PCE: A realistic, lattice-QCD-based EOS<br />

1/2 *dN/(dyp T<br />

dp T<br />

)<br />

v 2<br />

1000<br />

100<br />

10<br />

1<br />

0.1<br />

0.01<br />

1E-3<br />

1E-4<br />

0.22<br />

0.20<br />

0.18<br />

0.16<br />

0.14<br />

0.12<br />

0.10<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

p/10<br />

Huovinen, Petreczky, NPA 837 (2010) 26<br />

Shen, Heinz, Huovinen, Song, PRC 82 (2010) 054904<br />

PHENIX data<br />

s95p-PCE<br />

SM-EOS Q<br />

EOS L<br />

central Au+Au<br />

(b = 2.33 fm)<br />

Au+Au 20~30% (b = 7.5 fm)<br />

charged hadrons<br />

/s = 0.16<br />

T dec<br />

= 140 MeV<br />

0<br />

= 0.4 fm/c<br />

CGC initialization<br />

0.00<br />

0.0 0.5 1.0 1.5 2.0 2.5 3.0<br />

p T<br />

(GeV)<br />

v 2<br />

v 2<br />

0.28<br />

0.24<br />

0.20<br />

0.16<br />

0.12<br />

0.08<br />

0.04<br />

0.00<br />

0.28<br />

0.24<br />

0.20<br />

0.16<br />

0.12<br />

0.08<br />

0.04<br />

p<br />

Au+Au 20~30% (b = 7.5 fm)<br />

Au+Au 20~30% (b = 7.5 fm)<br />

s95p-PCE without f<br />

SM-EOS Q without f<br />

EOS L without f<br />

0.00<br />

0.0 0.5 1.0 1.5 2.0 2.5 3.0<br />

p T<br />

(GeV)<br />

Generates less radial<br />

flow than SM-EOS Q<br />

and EOS L but larger<br />

momentum anisotropy<br />

Smooth transition leads to<br />

smaller δf at freeze-out<br />

=⇒ larger v 2<br />

Ulrich Heinz CPTEIC, 31 Jan. 2012 49(43)


H 2 O: Hydro-to-OSCAR converter<br />

Monte-Carlo interface that samples hydrodynamic Cooper-Frye spectra (including viscous<br />

correction δf) on conversion surface to generate particles at positions x µ i with momenta<br />

p µ i for subsequent propagation in UrQMD (or any other OSCAR-compatible hadron cascade<br />

afterburner)<br />

Song, Bass, Heinz, PRC 83 (2011) 024912<br />

200 AGeV Au+Au, b = 0<br />

200 AGeV Au+Au, b = 7fm<br />

15<br />

T dec<br />

= 130 MeV<br />

η/s = 0.08<br />

0.2<br />

VISH2+1: hydrodynamic results<br />

H 2<br />

O: statistical results for 500000 events<br />

80<br />

VISH2+1: hydro results<br />

H 2<br />

O: statistical results<br />

0.15<br />

τ (fm/c)<br />

10<br />

dN/dτ<br />

60<br />

40<br />

v 2<br />

0.1<br />

η/s = 0.08<br />

5<br />

0<br />

20<br />

0<br />

0 5 10 15<br />

τ (fm/c)<br />

0 2 4 6 8 10<br />

r (fm)<br />

0.05<br />

π K p<br />

Au+Au, b = 7 fm; SM-EOSQ<br />

T dec<br />

= 130 MeV<br />

0<br />

0 0.5 1 1.5 2<br />

p T<br />

(GeV)<br />

(b)<br />

Ulrich Heinz CPTEIC, 31 Jan. 2012 50(43)


VISHNU: hydro (VISH2+1) + cascade (UrQMD) hybrid<br />

Sensitivity to H 2 O switching temperature:<br />

With chemically frozen EOS (s95p-PCE),<br />

p T -spectra show very little sensitivity to T sw (Teaney, 2000):<br />

Song, Bass, Heinz, PRC 83 (2011) 024912<br />

200 AGeV Au+Au, b = 7fm<br />

dN/dyp T<br />

dp T<br />

(GeV -2 )<br />

100<br />

1<br />

0.01<br />

π<br />

p X0.2<br />

(a)<br />

hydro + UrQMD; T sw<br />

η/s = 0.08 165 MeV<br />

140 MeV<br />

120 MeV<br />

100 MeV<br />

s95p-PCE<br />

0 0.5 1 1.5 2<br />

p T<br />

(GeV)<br />

Ulrich Heinz CPTEIC, 31 Jan. 2012 51(43)


VISHNU: hydro (VISH2+1) + cascade (UrQMD) hybrid<br />

Sensitivity to H 2 O switching temperature:<br />

With chemically frozen EOS (s95p-PCE),<br />

p T -spectra show very little sensitivity to T sw<br />

Song, Bass, Heinz, PRC 83 (2011) 024912<br />

but v 2 does:<br />

200 AGeV Au+Au, b = 7fm<br />

200 AGeV Au+Au, b = 7fm<br />

dN/dyp T<br />

dp T<br />

(GeV -2 )<br />

100<br />

1<br />

0.01<br />

π<br />

p<br />

(a)<br />

hydro + UrQMD; T sw<br />

η/s = 0.08 165 MeV π<br />

140 MeV<br />

120 MeV<br />

100 MeV<br />

X0.2 p X0.2<br />

s95p-PCE<br />

0 0.5 1 1.5 2<br />

p T<br />

(GeV)<br />

(b)<br />

s95p-PCE<br />

hydro + UrQMD; T sw<br />

(1)<br />

(η/s) (T) 165 MeV<br />

140 MeV<br />

120 MeV<br />

100 MeV<br />

0 0.5 1 1.5 2 2.5<br />

p T<br />

(GeV)<br />

0.05<br />

0.045<br />

0.04<br />

v 2<br />

Glauber initialization 0.4 (a)<br />

(1)<br />

Au+Au, b=7 fm 0.32 (η/s) (T)<br />

s95p-PCE 0.24<br />

0.16<br />

(a)<br />

(b) η/s=0.08<br />

0.08<br />

0<br />

120 140 160 180<br />

T sw<br />

(MeV)<br />

Hydro(η/s) + UrQMD<br />

with different T sw<br />

(b)<br />

100 120 140 160<br />

T sw<br />

(MeV)<br />

Viscous hydro with fixed η/s = 0.08 generates more v 2 below T c than does UrQMD<br />

=⇒ UrQMD is more dissipative<br />

VISH2+1 simulation of UrQMD dynamics requires T-dependent (η/s)(T) that increases<br />

towards lower temperature<br />

Ulrich Heinz CPTEIC, 31 Jan. 2012 52(43)


Is there a switching window in which UrQMD can be simulated by<br />

viscous hydro?<br />

Unfortunately NO!<br />

Song, Bass, Heinz, PRC 83 (2011) 2011<br />

0.4<br />

0.32<br />

HRG QGP<br />

(1)<br />

( η/s) (T)<br />

(2)<br />

( η/s) (T)<br />

(3)<br />

( η/s) (T)<br />

η/s<br />

0.24<br />

0.16<br />

0.08<br />

0<br />

100 120 140 160 180 200 220<br />

T (MeV)<br />

(η/s)(T) extracted by trying to reproduce v 2 independent of switching temperature<br />

depends on δ f input into UrQMD from hadronizing QGP<br />

=⇒ δf relaxes too slowly in UrQMD to be describable by viscous Israel-Stewart hydro<br />

=⇒ extracted (η/s)(T) not a proper UrQMD transport coefficient<br />

=⇒ UrQMD dynamics can’t be described by viscous Israel-Stewart hydrodynamics<br />

Ulrich Heinz CPTEIC, 31 Jan. 2012 53(43)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!