07.02.2014 Views

Flexoelectric rotation of polarization in ferroelectric thin films - Nature

Flexoelectric rotation of polarization in ferroelectric thin films - Nature

Flexoelectric rotation of polarization in ferroelectric thin films - Nature

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

NATURE MATERIALS DOI: 10.1038/NMAT3141<br />

ARTICLES<br />

a b c<br />

a doma<strong>in</strong><br />

c doma<strong>in</strong><br />

PbTiO 3<br />

c doma<strong>in</strong><br />

a doma<strong>in</strong><br />

0.6°<br />

0.9°<br />

0.7°<br />

0.7°<br />

0.5°<br />

0.15°<br />

0.4° 0.8°<br />

1°<br />

0.95°<br />

0.3°<br />

0.6°<br />

0.08<br />

0.09<br />

0.09<br />

0.07<br />

0.06<br />

0.055<br />

0.7<br />

0.065<br />

0.045<br />

0.035<br />

0.065<br />

¬0.015<br />

SrRuO 3<br />

20 nm DyScO 3<br />

0.0° (ref.) 20 nm 0.0 (ref.) 20 nm<br />

Figure 3 | Direct imag<strong>in</strong>g <strong>of</strong> stra<strong>in</strong> gradients. HAADF-STEM and GPA <strong>of</strong> the PbTiO 3 th<strong>in</strong> film grown on a SrRuO 3 buffer layer deposited on a DyScO 3<br />

substrate and studied <strong>in</strong> cross-section. a, HAADF image, show<strong>in</strong>g the structure. b, The map <strong>of</strong> lattice <strong>rotation</strong>s shows that the upper layers are more<br />

relaxed, and therefore more <strong>in</strong>cl<strong>in</strong>ed, than those close to the <strong>in</strong>terface. c, The out-<strong>of</strong>-plane stra<strong>in</strong> ε zz (relative to the DyScO 3 substrate, c = 3.95 Å) shows a<br />

higher tetragonality <strong>in</strong> the right-hand side <strong>of</strong> the c-doma<strong>in</strong> than <strong>in</strong> the left-hand side (obtuse). The difference arises from the local stress concentrations<br />

required to ‘flatten’ the <strong>in</strong>terface <strong>of</strong> the ferroelastic film onto the substrate, as shown <strong>in</strong> Fig. 5.<br />

and tw<strong>in</strong>n<strong>in</strong>g angle, <strong>in</strong> agreement with equation (1). This can also<br />

be observed <strong>in</strong> the out-<strong>of</strong>-plane diffraction maps around the 00L<br />

reflections (Fig. 2c).<br />

Further <strong>in</strong>sight can be ga<strong>in</strong>ed by probe-corrected high-angle<br />

annular dark-field scann<strong>in</strong>g transmission electron microscopy<br />

(HAADF-STEM) imag<strong>in</strong>g 39,40 , shown <strong>in</strong> Fig. 3. Quantitative<br />

analysis <strong>of</strong> the high-resolution HAADF-STEM images us<strong>in</strong>g<br />

geometric phase analysis (GPA; refs 41,42) and us<strong>in</strong>g the DyScO 3<br />

substrate as reference shows that there is a vertical gradient <strong>of</strong><br />

<strong>in</strong>cl<strong>in</strong>ations between the flatter bottom <strong>in</strong>terface and the more<br />

rumpled free surface, reflect<strong>in</strong>g the grow<strong>in</strong>g distance to the<br />

<strong>in</strong>terface, which is the source <strong>of</strong> stress. More unexpectedly, however,<br />

the <strong>films</strong> also show horizontal stra<strong>in</strong> gradients. The c doma<strong>in</strong>s,<br />

for example, reveal an <strong>in</strong>creased out-<strong>of</strong>-plane elongation <strong>in</strong> the<br />

acute wall–<strong>in</strong>terface corners, and a reduced tetragonality <strong>in</strong> the<br />

obtuse ones.<br />

This dist<strong>in</strong>ctive pattern can be understood by consideration <strong>of</strong><br />

the deformations that are required to attach a film with ferroelastic<br />

doma<strong>in</strong>s onto the flat surface <strong>of</strong> the substrate, as depicted <strong>in</strong> Fig. 4a.<br />

A useful analogy is to imag<strong>in</strong>e the forces needed to flatten an<br />

open book onto a photocopier. The concentration <strong>of</strong> stress at the<br />

corners <strong>of</strong> the doma<strong>in</strong>s leads to locally enhanced deformations,<br />

<strong>in</strong>clud<strong>in</strong>g bend<strong>in</strong>g <strong>of</strong> the doma<strong>in</strong> walls to preserve coherence, as<br />

observed. Yet another way to understand the stra<strong>in</strong> difference is to<br />

consider that, whereas the bottom <strong>in</strong>terface must be flat, the top<br />

<strong>in</strong>terface is freer to relax towards its natural ‘rumpled’ state with<br />

<strong>in</strong>cl<strong>in</strong>ed planes: the net result is that, for each doma<strong>in</strong>, one side is<br />

thicker than the other (see Fig. 4b), and thus there is a horizontal<br />

gradient <strong>of</strong> vertical expansion. This transverse gradient will generate<br />

a horizontal flexoelectricity, caus<strong>in</strong>g the vertical <strong>polarization</strong> to<br />

rotate towards the thicker side (Fig. 4b.)<br />

We can estimate the horizontal flexoelectricity and its effect<br />

on the spontaneous <strong>polarization</strong>. The transverse flexoelectric<br />

coefficient <strong>of</strong> lead zirconate–titanate (PZT) is f 13 ∼ 1 µC m −1<br />

(ref. 43). <strong>Flexoelectric</strong>ity is proportional to permittivity 7,10,12,17 ,<br />

which is ∼5 times smaller for pure PbTiO 3 than for PZT 44 , so the<br />

transverse flexoelectric coefficient <strong>of</strong> PbTiO 3 should be less than<br />

f 13 ≈ 200 nC m −1 . The out-<strong>of</strong>-plane stra<strong>in</strong> difference between the<br />

acute and obtuse corners <strong>of</strong> the c doma<strong>in</strong>s is ε 3 ≈ 0.03 (Fig. 3c),<br />

and the relaxation length is approximately the c-doma<strong>in</strong> width (w ≈<br />

40 nm). Therefore, the average horizontal flexoelectricity across the<br />

doma<strong>in</strong> should be around P x(flexo)<br />

∼ =f13 (ε 3 /w)≈15 µC cm −2 .<br />

This flexoelectric <strong>polarization</strong> is very large; it is <strong>in</strong> fact comparable<br />

to the spontaneous <strong>polarization</strong> <strong>of</strong> archetypal <strong>ferroelectric</strong>s,<br />

and will therefore have a strong effect on the <strong>ferroelectric</strong>ity. In<br />

b<br />

a<br />

a<br />

P ferro<br />

c<br />

Substrate<br />

P flexo<br />

Substrate<br />

Figure 4 | Sketch <strong>of</strong> stresses, stra<strong>in</strong> gradients and polar vectors <strong>in</strong> the<br />

tw<strong>in</strong>ned film. a, Schematic representation <strong>of</strong> the doma<strong>in</strong> structure <strong>in</strong> a film<br />

with a–c doma<strong>in</strong>s. The black arrows represent the stresses that must be<br />

applied to the tw<strong>in</strong>ned film to flatten it onto the substrate. b, The<br />

flexoelectric <strong>polarization</strong> (grey) <strong>in</strong>duces a <strong>rotation</strong> <strong>of</strong> the <strong>ferroelectric</strong><br />

<strong>polarization</strong> <strong>of</strong> the c doma<strong>in</strong> (blue).<br />

particular, the addition <strong>of</strong> the horizontal flexoelectricity to the<br />

vertical <strong>ferroelectric</strong>ity <strong>of</strong> the c doma<strong>in</strong>s will result <strong>in</strong> a rotated<br />

<strong>polarization</strong> (see Fig. 4b), with an angle, β, given by tan β =<br />

P flexo /P ferro . Us<strong>in</strong>g P flexo ∼ 15 µC cm −2 and P ferro = 40–60 µC cm −2 ,<br />

an average polar <strong>rotation</strong> <strong>of</strong> β ∼ 10 ◦ –15 ◦ is expected with respect to<br />

the normal direction.<br />

To test this prediction, accurate measurements <strong>of</strong> lattice<br />

distortions were carried out by <strong>in</strong>creas<strong>in</strong>g the STEM resolution<br />

and carry<strong>in</strong>g out dedicated model-based peak f<strong>in</strong>d<strong>in</strong>g to determ<strong>in</strong>e<br />

atomic column positions. Ow<strong>in</strong>g to the Z-dependent contrast,<br />

Pb and TiO columns can be easily dist<strong>in</strong>guished, whereas weakly<br />

scatter<strong>in</strong>g O columns are not visible (see Fig. 5a). On the basis<br />

<strong>of</strong> the determ<strong>in</strong>ed Pb and TiO column positions, both the stra<strong>in</strong><br />

tensor and the Pb–TiO distance vector (proportional to the<br />

electric <strong>polarization</strong> through the Born effective charge tensor 45 )<br />

are mapped unit-cell-wise (see Fig. 5b). Polarization mapp<strong>in</strong>g can<br />

also be done by other electron microscopy techniques 46 , although<br />

HAADF has the advantage that the samples need not be so th<strong>in</strong><br />

and the less aggressive sample preparation helps preserve the<br />

native doma<strong>in</strong> structure 40 .<br />

In agreement with the GPA shown <strong>in</strong> Fig. 3, we observe a<br />

large difference <strong>in</strong> out-<strong>of</strong>-plane stra<strong>in</strong>, tensile <strong>in</strong> the acute corners<br />

and compressive <strong>in</strong> the obtuse ones, lead<strong>in</strong>g to a horizontal<br />

a<br />

NATURE MATERIALS | VOL 10 | DECEMBER 2011 | www.nature.com/naturematerials 965<br />

© 2011 Macmillan Publishers Limited. All rights reserved

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!