07.02.2014 Views

Flexoelectric rotation of polarization in ferroelectric thin films - Nature

Flexoelectric rotation of polarization in ferroelectric thin films - Nature

Flexoelectric rotation of polarization in ferroelectric thin films - Nature

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

NATURE MATERIALS DOI: 10.1038/NMAT3141<br />

2. Pertsev, N. A., Zembilgotov, A. G. & Tagantsev, A. K. Effect <strong>of</strong> mechanical<br />

boundary conditions on phase diagrams <strong>of</strong> epitaxial <strong>ferroelectric</strong> th<strong>in</strong> <strong>films</strong>.<br />

Phys. Rev. Lett. 80, 1988–1991 (1998).<br />

3. Canedy, C. L. et al. Dielectric properties <strong>in</strong> heteroepitaxial Ba 0.6 Sr 0.4 TiO 3 th<strong>in</strong><br />

<strong>films</strong>: Effect <strong>of</strong> <strong>in</strong>ternal stresses and dislocation-type defects. Appl. Phys. Lett.<br />

77, 1695–1697 (2000).<br />

4. S<strong>in</strong>namon, L. J., Bowman, R. M. & Gregg, J. M. Thickness-<strong>in</strong>duced stabilization<br />

<strong>of</strong> <strong>ferroelectric</strong>ity <strong>in</strong> SrRuO 3 /Ba 0.5 Sr 0.5 TiO 3 /Au th<strong>in</strong> film capacitors.<br />

Appl. Phys. Lett. 81, 889–891 (2002).<br />

5. Choi, K. J. et al. Enhancement <strong>of</strong> <strong>ferroelectric</strong>ity <strong>in</strong> stra<strong>in</strong>ed BaTiO 3 th<strong>in</strong> <strong>films</strong>.<br />

Science 306, 1005–1009 (2004).<br />

6. Haeni, J. H. et al. Room-temperature <strong>ferroelectric</strong>ity <strong>in</strong> stra<strong>in</strong>ed SrTiO 3 . <strong>Nature</strong><br />

430, 758–761 (2004).<br />

7. Catalan, G., S<strong>in</strong>namon, L. J. & Gregg, J. M. The effect <strong>of</strong> flexoelectricity on<br />

the dielectric properties <strong>of</strong> <strong>in</strong>homogeneously stra<strong>in</strong>ed <strong>ferroelectric</strong> th<strong>in</strong> <strong>films</strong>.<br />

J. Phys. Condens. Matter 16, 2253–2264 (2004).<br />

8. Catalan, G., Noheda, B., McAneney, J., S<strong>in</strong>namon, L. J. & Gregg, J. M.<br />

Stra<strong>in</strong> gradients <strong>in</strong> epitaxial <strong>ferroelectric</strong>s. Phys. Rev. B 72, 020102 (2005).<br />

9. Majdoub, M. S., Maranganti, R. & Sharma, P. Understand<strong>in</strong>g the orig<strong>in</strong>s <strong>of</strong> the<br />

<strong>in</strong>tr<strong>in</strong>sic dead layer effect <strong>in</strong> nanocapacitors. Phys. Rev. B 79, 115412 (2009).<br />

10. Kogan, V. D. Piezoelectric effect dur<strong>in</strong>g <strong>in</strong>homogeneous deformation<br />

and acoustic scatter<strong>in</strong>g <strong>of</strong> carriers <strong>in</strong> crystals. Sov. Phys. Solid State 5,<br />

2069–2070 (1964).<br />

11. Bursian, E. V. & Zaikovskii, O. I. Changes <strong>in</strong> the curvature <strong>of</strong> a <strong>ferroelectric</strong><br />

film due to <strong>polarization</strong>. Sov. Phys. Solid State 10, 1121–1124 (1968).<br />

12. Cross, L. E. <strong>Flexoelectric</strong> effects: Charge separation <strong>in</strong> <strong>in</strong>sulat<strong>in</strong>g solids<br />

subjected to elastic stra<strong>in</strong> gradients. J. Mater. Sci. 41, 53–63 (2006).<br />

13. Zhu, W., Fu, J. Y., Li, N. & Cross, L. Piezoelectric composite based on the<br />

enhanced flexoelectric effects. Appl. Phys. Lett. 89, 192904 (2006).<br />

14. Ma, W. A study <strong>of</strong> flexoelectric coupl<strong>in</strong>g associated <strong>in</strong>ternal electric field and<br />

stress <strong>in</strong> th<strong>in</strong> film <strong>ferroelectric</strong>s. Phys. Status Solidi B 245, 761–768 (2008).<br />

15. Majdoub, M. S., Sharma, P. & Çağ<strong>in</strong>, T. Dramatic enhancement <strong>in</strong> energy<br />

harvest<strong>in</strong>g for a narrow range <strong>of</strong> dimensions <strong>in</strong> piezoelectric nanostructures.<br />

Phys. Rev. B 78, 121407 (2008).<br />

16. Tagantsev, A. K., Meunier, V. & Sharma, P. Novel electromechanical<br />

phenomena at the nanoscale: Phenomenological theory and atomistic<br />

model<strong>in</strong>g. MRS Bull. 34, 643–647 (2009).<br />

17. Zubko, P., Catalan, G., Welche, P. R. L., Buckley, A. & Scott, J. F.<br />

Stra<strong>in</strong>-gradient-<strong>in</strong>duced <strong>polarization</strong> <strong>in</strong> SrTiO 3 s<strong>in</strong>gle crystals.<br />

Phys. Rev. Lett. 99, 167601 (2007).<br />

18. Maranganti, R. & Sharma, P. Atomistic determ<strong>in</strong>ation <strong>of</strong> flexoelectric<br />

properties <strong>of</strong> crystall<strong>in</strong>e dielectrics. Phys. Rev. B 80, 054109 (2009).<br />

19. Hong, J., Catalan, G., Scott, J. F. & Artacho, E. The flexoelectricity <strong>of</strong> barium<br />

and strontium titanates from first pr<strong>in</strong>ciples. J. Phys. Condens. Matter 22,<br />

112201 (2010).<br />

20. Gruverman, A. et al. Mechanical stress effect on impr<strong>in</strong>t behavior <strong>of</strong> <strong>in</strong>tegrated<br />

<strong>ferroelectric</strong> capacitors. Appl. Phys. Lett. 83, 728–730 (2003).<br />

21. Tagantsev, A. K., Cross, L. E. & Fousek, J. Doma<strong>in</strong>s <strong>in</strong> Ferroelectric Crystals and<br />

Th<strong>in</strong> Films 637 (Spr<strong>in</strong>ger, 2010).<br />

22. Lee, D. et al. Giant flexoelectric effect <strong>in</strong> <strong>ferroelectric</strong> epitaxial th<strong>in</strong> <strong>films</strong>.<br />

Phys. Rev. Lett. 107, 057602 (2011).<br />

23. Vrejoiu, I. et al. Intr<strong>in</strong>sic <strong>ferroelectric</strong> properties <strong>of</strong> stra<strong>in</strong>ed tetragonal<br />

PbZr 0.2 Ti 0.8 O 3 obta<strong>in</strong>ed on layer-by-layer grown, defect-free s<strong>in</strong>gle-crystall<strong>in</strong>e<br />

<strong>films</strong>. Adv. Mater. 18, 1657–1661 (2006).<br />

24. Catalan, G. et al. Polar doma<strong>in</strong>s <strong>in</strong> lead titanate <strong>films</strong> under tensile stra<strong>in</strong>.<br />

Phys. Rev. Lett. 96, 127602 (2006).<br />

25. Pompe, W., Gong, X., Suo, Z. & Speck, J. S. Elastic energy release due to<br />

doma<strong>in</strong> formation <strong>in</strong> the stra<strong>in</strong>ed epitaxy <strong>of</strong> <strong>ferroelectric</strong> and ferroelastic <strong>films</strong>.<br />

J. Appl. Phys. 74, 6012–6019 (1993).<br />

26. Zeches, R. J. et al. A stra<strong>in</strong>-driven morphotropic phase boundary <strong>in</strong> BiFeO 3 .<br />

Science 326, 977–980 (2009).<br />

27. Qiu, Q. Y., Nagarajan, V. & Alpay, S. P. Film thickness versus misfit stra<strong>in</strong><br />

phase diagrams for epitaxial PbTiO 3 ultrath<strong>in</strong> <strong>ferroelectric</strong> <strong>films</strong>. Phys. Rev. B<br />

78, 064117 (2008).<br />

28. Bellaiche, L., Garcia, A. & Vanderbilt, D. F<strong>in</strong>ite-temperature properties<br />

<strong>of</strong> Pb(Zr 1−x Ti x )O 3 alloys from first pr<strong>in</strong>ciples. Phys. Rev. Lett. 84,<br />

5427–5430 (2000).<br />

29. Fu, H. & Cohen, R. E. Polarization <strong>rotation</strong> mechanism for ultrahigh<br />

electromechanical response <strong>in</strong> s<strong>in</strong>gle-crystal piezoelectrics. <strong>Nature</strong> 403,<br />

281–283 (2000).<br />

30. Guo, R. et al. Orig<strong>in</strong> <strong>of</strong> the high piezoelectric response <strong>in</strong> PbZr 1−x Ti x O 3 .<br />

Phys. Rev. Lett. 84, 5423–5426 (2000).<br />

31. Speck, J. S. & Pompe, W. Doma<strong>in</strong> configurations due to multiple misfit<br />

relaxation mechanisms <strong>in</strong> epitaxial <strong>ferroelectric</strong> th<strong>in</strong> <strong>films</strong>. I. Theory.<br />

J. Appl. Phys. 76, 466–476 (1994).<br />

ARTICLES<br />

32. Pertsev, N. A. & Zembilgotov, A. G. Energetics and geometry <strong>of</strong> 90 ◦ doma<strong>in</strong><br />

structures <strong>in</strong> epitaxial <strong>ferroelectric</strong> and ferroelastic <strong>films</strong>. J. Appl. Phys. 78,<br />

6170–6180 (1995).<br />

33. Vlooswijk, A. H. G. et al. Smallest 90 ◦ doma<strong>in</strong>s <strong>in</strong> epitaxial <strong>ferroelectric</strong> <strong>films</strong>.<br />

Appl. Phys. Lett 91, 112901 (2007).<br />

34. Kwak, B. S. et al. Stra<strong>in</strong> relaxation by doma<strong>in</strong> formation <strong>in</strong> epitaxial <strong>ferroelectric</strong><br />

th<strong>in</strong> <strong>films</strong>. Phys. Rev. Lett. 68, 3733–3736 (1992).<br />

35. Kwak, B. S. et al. Doma<strong>in</strong> formation and stra<strong>in</strong> relaxation <strong>in</strong> epitaxial<br />

<strong>ferroelectric</strong> heterostructures. Phys. Rev. B 49, 14865–14879 (1994).<br />

36. Ivry, Y., Chu, D. P. & Durkan, C. Bundles <strong>of</strong> polytw<strong>in</strong>s as meta-elastic doma<strong>in</strong>s<br />

<strong>in</strong> the th<strong>in</strong> polycrystall<strong>in</strong>e simple multi-ferroic system PZT. Nanotechnology<br />

21, 065702 (2010).<br />

37. Pietsch, U., Holy, V. & Baumbach, T. High-Resolution X-Ray Scatter<strong>in</strong>g: From<br />

Th<strong>in</strong> Films to Lateral Nanostructures (Spr<strong>in</strong>ger, 2004).<br />

38. Walker, D., Thomas, P. A. & Coll<strong>in</strong>s, S. R. A comprehensive <strong>in</strong>vestigation <strong>of</strong> the<br />

structural properties <strong>of</strong> <strong>ferroelectric</strong> PbZr 0.2 Ti 0.8 O 3 th<strong>in</strong> <strong>films</strong> grown by PLD.<br />

Phys. Status Solidi A 206, 1799–1803 (2009).<br />

39. Nellist, P. D. et al. Direct sub-angstrom imag<strong>in</strong>g <strong>of</strong> a crystal lattice. Science 305,<br />

1741 (2004).<br />

40. Nelson, C. T. et al. Spontaneous vortex nanodoma<strong>in</strong> arrays at <strong>ferroelectric</strong><br />

hetero<strong>in</strong>terfaces. Nano Lett. 11, 828–834 (2011).<br />

41. Hytch, M. J., Snoeck, E. & Kilaas, R. Quantitative measurement <strong>of</strong><br />

displacement and stra<strong>in</strong> fields from HREM micrographs. Ultramicroscopy 74,<br />

131–146 (1998).<br />

42. GPA Phase plug-<strong>in</strong> for DigitalMicrograph (Gatan) (HREM Research Inc.)<br />

available at: http://www.hremresearch.com.<br />

43. Ma, W. & Cross, L. E. Stra<strong>in</strong>-gradient-<strong>in</strong>duced electric <strong>polarization</strong> <strong>in</strong> lead<br />

zirconate titanate ceramics. Appl. Phys. Lett. 82, 3293–3295 (2003).<br />

44. Hellwege, K-H. & Hellwege, A. M. (eds) Landolt–Bornste<strong>in</strong>: Numerical Data<br />

and Functional Relationships <strong>in</strong> Science and Technology (New Series—Group<br />

III, Vol. 16a, Spr<strong>in</strong>ger, 1981).<br />

45. Cohen, R. E. Orig<strong>in</strong> <strong>of</strong> <strong>ferroelectric</strong>ity <strong>in</strong> perovskite oxides. <strong>Nature</strong> 358,<br />

136–138 (1992).<br />

46. Jia, C-L. et al. Unit-cell scalemapp<strong>in</strong>g <strong>of</strong> <strong>ferroelectric</strong>ity and tetragonality <strong>in</strong><br />

epitaxial ultrath<strong>in</strong> <strong>ferroelectric</strong> <strong>films</strong>. <strong>Nature</strong> Mater. 6, 64–69 (2007).<br />

47. Muralt, P. The emancipation <strong>of</strong> <strong>ferroelectric</strong>ity. <strong>Nature</strong> Mater. 6, 8–9 (2007).<br />

48. Rossetti, G. A. Jr, Zhang, W. & Khachaturyan, A. G. Phase coexistence near the<br />

morphotropic phase boundary <strong>in</strong> lead zirconate titanate (PbZrO 3 –PbTiO 3 )<br />

solid solutions. Appl. Phys. Lett. 88, 072912 (2006).<br />

49. Noheda, B. & Cox, D. E. Bridg<strong>in</strong>g phases at the morphotropic boundaries <strong>of</strong><br />

lead oxide solid solutions. Phase Transit. 79, 5–20 (2006).<br />

50. Davis, M. Pictur<strong>in</strong>g the elephant: Giant piezoelectric activity and the<br />

monocl<strong>in</strong>ic phases <strong>of</strong> relaxor-<strong>ferroelectric</strong> s<strong>in</strong>gle crystals. J. Electroceramics 19,<br />

23–45 (2007).<br />

51. Ahn, S. J., Kim, J-J., Kim, J-H. & Choo, W-K. Orig<strong>in</strong> <strong>of</strong> polar doma<strong>in</strong>s <strong>in</strong><br />

<strong>ferroelectric</strong> relaxors. J. Korea Phys. Soc. 42, S1009–S1011 (2003).<br />

52. Nagarajan, V. et al. Dynamics <strong>of</strong> ferroelastic doma<strong>in</strong>s <strong>in</strong> <strong>ferroelectric</strong> th<strong>in</strong> <strong>films</strong>.<br />

<strong>Nature</strong> Mater. 2, 43–47 (2003).<br />

53. Koster, G., Kropman, B. L., Rijnders, G. J. H. M., Blank, D. H. A. & Rogalla, H.<br />

Quasi-ideal strontium titanate crystal surfaces through formation <strong>of</strong> strontium<br />

hydroxide. Appl. Phys. Lett. 73, 2920–2922 (1998).<br />

Acknowledgements<br />

W. Caliebe is gratefully acknowledged for his help at the W1 beaml<strong>in</strong>e. This work is<br />

part <strong>of</strong> research programme 04PR2359 <strong>of</strong> the Foundation for Fundamental Research on<br />

Matter (FOM), which is part <strong>of</strong> the Netherlands Organisation for Scientific Research<br />

(NWO). G.C., A.H.G.V. and B.N. also acknowledge f<strong>in</strong>ancial support from the<br />

NWO-Vidi grant 700.54.426, and from the Explora grant MAT2010-10067-E (G.C.).<br />

A.L. and E.S. acknowledge f<strong>in</strong>ancial support from the European Union under the<br />

Framework 6 program under a contract for an Integrated Infrastructure Initiative.<br />

Reference 026019 ESTEEM.<br />

Author contributions<br />

G.C. and B.N. have devised, designed and organized the work; A.H.G.V. and A.J. have<br />

grown the <strong>films</strong> under the supervision <strong>of</strong> G.R. and D.H.A.B.; A.H.G.V., G.C., G.R. and<br />

B.N. have carried out the X-ray experiments and analysed the X-ray data; A.L., E.S. and<br />

C.M. have designed, carried out and organized the electron microscopy experiments and<br />

analysed the data. All the authors have contributed to the discussions.<br />

Additional <strong>in</strong>formation<br />

The authors declare no compet<strong>in</strong>g f<strong>in</strong>ancial <strong>in</strong>terests. Repr<strong>in</strong>ts and permissions<br />

<strong>in</strong>formation is available onl<strong>in</strong>e at http://www.nature.com/repr<strong>in</strong>ts. Correspondence and<br />

requests for materials should be addressed to G.C. or B.N.<br />

NATURE MATERIALS | VOL 10 | DECEMBER 2011 | www.nature.com/naturematerials 967<br />

© 2011 Macmillan Publishers Limited. All rights reserved

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!