07.03.2014 Views

Predictive Control of Three Phase AC/DC Converters

Predictive Control of Three Phase AC/DC Converters

Predictive Control of Three Phase AC/DC Converters

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

WARSAW UNIVERSITY<br />

OF TECHNOLOGY<br />

Faculty <strong>of</strong> Electrical Engineering<br />

Ph.D. THESIS<br />

Patrycjusz Antoniewicz M.Sc.<br />

<strong>Predictive</strong> <strong>Control</strong> <strong>of</strong> <strong>Three</strong> <strong>Phase</strong> <strong>AC</strong>/<strong>DC</strong> <strong>Converters</strong><br />

Supervisor<br />

Pr<strong>of</strong>essor Marian P. Kazmierkowski, Ph.D., D.Sc.<br />

Warsaw, 2009


Abstract<br />

The dissertation proposes several <strong>Predictive</strong> Direct Power <strong>Control</strong> methods<br />

for two level <strong>AC</strong>/<strong>DC</strong> converters. Different versions <strong>of</strong> predictive methods<br />

have been presented, with variable and constant switching frequency as<br />

well. Both approaches guarantee high dynamic in transient states and low<br />

T HD factor <strong>of</strong> line currents. Proposed methods have been compared with<br />

well known methods: Switching Table based Direct Power <strong>Control</strong> – ST-<br />

DPC and Direct Power <strong>Control</strong> with Space Vector Modulator – DPC-SVM.<br />

Several simulation and experimental results show that the predictive control<br />

methods improve transient response and reduce higher harmonics distortion,<br />

even for low switching frequency. Moreover, due to virtual flux approach it<br />

is possible to work without line voltage sensor, even under distorted and unbalanced<br />

voltages.<br />

Streszczenie<br />

W pracy przedstawiono kilka metod predykcyjnego bezpośredniego sterowania<br />

mocą (ang. <strong>Predictive</strong> Direct Power <strong>Control</strong> – P-DPC) dla dwupoziomowych<br />

przekształtników <strong>AC</strong>/<strong>DC</strong>. Metody predykcyjne zostały podzielone<br />

na dwie grupy, pracujące ze zmienną i stałą częstotliwością łączeń.<br />

Oba rozwiązania charakteryzują się bardzo dobrymi właściwościami dynamicznymi<br />

i niskim współczynnikiem T HD prądów sieciowych. Przedstawione<br />

metody zostały porównane z klasycznymi rozwiązaniami: bezpośrednim<br />

sterowaniem mocą z tablicą przełączęń (ang. Switching Table based<br />

Direct Power <strong>Control</strong> – ST-DPC) i bezpośrednim sterowaniem mocą z modulatorem<br />

wektorowym (ang. Direct Power <strong>Control</strong> with Space Vector Modulator<br />

– DPC-SVM). Na podstawie szeregu badań symulacyjnych i laboratoryjnych<br />

stwierdzono, że metody predykcyjne osiągają lepsze wyniki<br />

w stanach przejściowych oraz niższe współczynniki zawartości wyższych harmonicznych,<br />

nawet w przypadku pracy z niskimi częstotliwościami łączeń.<br />

Dodatkowo, dzięki zastosowaniu koncepcji wirtualnego strumienia, możliwa<br />

jest praca bez czujników pomiaru napięcia fazowego, nawet w warunkach<br />

zniekształconego i niezrównoważonego napięcia.


Contents<br />

Contents<br />

i<br />

1 Introduction 1<br />

2 Voltage Source Converter 7<br />

2.1 Space Vector Based Description <strong>of</strong> VSC . . . . . . . . . . . . . . . 8<br />

2.2 Mathematical Model <strong>of</strong> VSC . . . . . . . . . . . . . . . . . . . . . 8<br />

2.2.1 VSC Model in Natural Coordinates . . . . . . . . . . . . . . 11<br />

2.2.2 VSC Model in Stationary Coordinates . . . . . . . . . . . . 13<br />

2.2.3 VSC Model in Rotating Coordinates . . . . . . . . . . . . . 14<br />

2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15<br />

3 <strong>Control</strong> Strategies for VSC 17<br />

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17<br />

3.2 Voltage Oriented <strong>Control</strong> . . . . . . . . . . . . . . . . . . . . . . . 17<br />

3.3 Switching Table based Direct Power <strong>Control</strong> . . . . . . . . . . . . . 21<br />

3.4 Direct Power <strong>Control</strong> with Space Vector Modulator . . . . . . . . . 25<br />

3.5 Virtual Flux Based <strong>Control</strong> . . . . . . . . . . . . . . . . . . . . . . 28<br />

3.6 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 32<br />

3.6.1 Steady State Operation . . . . . . . . . . . . . . . . . . . . 32<br />

3.6.2 Transient Operation . . . . . . . . . . . . . . . . . . . . . . 36<br />

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39<br />

4 <strong>Predictive</strong> Direct Power <strong>Control</strong> 41<br />

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41<br />

4.2 Principles <strong>of</strong> Model Based <strong>Predictive</strong> <strong>Control</strong> . . . . . . . . . . . . 41<br />

4.3 Variable Switching Frequency <strong>Predictive</strong> Direct Power <strong>Control</strong> . . 42<br />

4.4 Current Harmonics Spectrum <strong>Control</strong> . . . . . . . . . . . . . . . . 46<br />

4.5 <strong>Predictive</strong> Direct Power <strong>Control</strong> with Reduced Switching Frequency 49<br />

4.6 Constant Switching Frequency <strong>Predictive</strong> Direct Power <strong>Control</strong> . . 50<br />

i


ii<br />

CONTENTS<br />

4.6.1 <strong>Predictive</strong> Model <strong>of</strong> the Instantaneous Power Behavior . . . 50<br />

4.6.2 Voltage Vectors Sequence . . . . . . . . . . . . . . . . . . . 52<br />

4.6.3 Voltage Vector Selection . . . . . . . . . . . . . . . . . . . . 53<br />

4.6.4 Voltage Vectors Application Times . . . . . . . . . . . . . . 54<br />

4.6.5 <strong>Control</strong> Scheme <strong>of</strong> CSF-P-DPC . . . . . . . . . . . . . . . . 57<br />

4.7 VF Based CSF - <strong>Predictive</strong> Direct Power <strong>Control</strong> . . . . . . . . . . 58<br />

4.7.1 VF Based <strong>Predictive</strong> Model <strong>of</strong> the Instantaneous Power . . 58<br />

4.7.2 Voltage Vector Selection . . . . . . . . . . . . . . . . . . . . 59<br />

4.7.3 <strong>Control</strong> Scheme <strong>of</strong> VF-CSF-P-DPC . . . . . . . . . . . . . . 59<br />

4.8 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 62<br />

4.8.1 Steady State Operation . . . . . . . . . . . . . . . . . . . . 62<br />

4.8.2 Transient Operation . . . . . . . . . . . . . . . . . . . . . . 67<br />

4.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74<br />

5 Investigations <strong>of</strong> <strong>Control</strong> Methods Performance 77<br />

5.1 Robustness to Parameters Mismatch . . . . . . . . . . . . . . . . . 77<br />

5.1.1 Filter‘s Inductance Variations . . . . . . . . . . . . . . . . . 77<br />

5.1.2 Filter‘s Resistance Variations . . . . . . . . . . . . . . . . . 79<br />

5.2 On-line Choke Inductance Estimator . . . . . . . . . . . . . . . . . 80<br />

5.3 Experimental Verification <strong>of</strong> On-line Choke Inductance Estimator . 82<br />

5.4 Line Voltage Disturbances . . . . . . . . . . . . . . . . . . . . . . . 83<br />

5.4.1 Influence <strong>of</strong> Line Voltage Harmonics . . . . . . . . . . . . . 83<br />

5.4.2 Influence <strong>of</strong> Line Voltage Sags . . . . . . . . . . . . . . . . . 86<br />

6 Experimental Study 89<br />

6.1 Steady State Operation . . . . . . . . . . . . . . . . . . . . . . . . 89<br />

6.2 Transient Operation . . . . . . . . . . . . . . . . . . . . . . . . . . 94<br />

6.3 Operation with Low Switching Frequency . . . . . . . . . . . . . . 101<br />

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106<br />

7 Summary and Final Conclusions 109<br />

Bibliography 111<br />

A Coordinate transformations 121<br />

A.1 Stationary system . . . . . . . . . . . . . . . . . . . . . . . . . . . 121<br />

A.2 Rotating system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123<br />

B <strong>Predictive</strong> Current <strong>Control</strong> 125<br />

B.1 <strong>Predictive</strong> Current <strong>Control</strong> in stationary system . . . . . . . . . . . 125<br />

B.2 <strong>Predictive</strong> Current <strong>Control</strong> in rotating system . . . . . . . . . . . . 127<br />

C <strong>Predictive</strong> Direct Power <strong>Control</strong> 131


CONTENTS<br />

iii<br />

List <strong>of</strong> Symbols and Abbreviations 135<br />

List <strong>of</strong> Figures 139<br />

List <strong>of</strong> Tables 142<br />

Index 145


Acknowledgements<br />

The research work presented in this thesis has been carried out during my Ph.D.<br />

study at the Institute <strong>of</strong> <strong>Control</strong> and Industrial Electronics, Warsaw University<br />

<strong>of</strong> Technology in the period 2004-2008. Some part <strong>of</strong> the work was performed in<br />

cooperation with the Technical University <strong>of</strong> Federico Santa Maria, Valparaiso,<br />

Chile (Pr<strong>of</strong>. Jose Rodriguez and Dr Patricio Cortes) during my stay in Chile<br />

(October 2006) and visits <strong>of</strong> Pr<strong>of</strong>. Jose Rodriguez (September 2005 and November<br />

2006) as well as Dr Patricio Cortes (March 2007) at the Institute <strong>of</strong> <strong>Control</strong><br />

and Industrial Electronics. Also, part <strong>of</strong> the work has been financially supported<br />

by the European Union FP6 (contract no. 019983 Wave Dragon MW).<br />

First <strong>of</strong> all, I would like to thank Pr<strong>of</strong>. Marian P. Kaźmierkowski for support<br />

and help. His precious advice and numerous discussions enhanced my knowledge<br />

and scientific inspiration.<br />

I am grateful to Pr<strong>of</strong>. Teresa Orłowska-Kowalska from the Wrocław University<br />

<strong>of</strong> Technology and Pr<strong>of</strong>. Lech M. Grzesiak from the Warsaw University <strong>of</strong><br />

Technology for their interest in this work and holding the post <strong>of</strong> referee.<br />

Furthermore, I thank my colleagues from the Intelligent <strong>Control</strong> Group in<br />

Power Electronics for their support and friendly atmosphere. Especially, to<br />

Dr Marek Jasiński, Dr Mariusz Malinowski, Wojciech Kołomyjski and Sebastian<br />

Styński.<br />

Finally, I would like to thank to my whole family for patience and faith over<br />

the years.<br />

v


Chapter 1<br />

Introduction<br />

<strong>AC</strong>/<strong>DC</strong> Voltage Source <strong>Converters</strong> (VSC) are widely used in industrial <strong>AC</strong><br />

drives as Active Front End (AFE), <strong>DC</strong>-power supply, power quality improvement<br />

and harmonic compensation (active filter) equipments [1], [2], [3]. Lately,<br />

the <strong>AC</strong>/<strong>DC</strong> converters become very important part <strong>of</strong> an <strong>AC</strong>/<strong>DC</strong>/<strong>AC</strong> line interfacing<br />

converters in renewable and distorted energy systems. This popularity,<br />

VSC owes due to following main features:<br />

• bi-directional power flow,<br />

• nearly sinusoidal input current,<br />

• high input power factor including unity power factor operation,<br />

• low harmonic distortion <strong>of</strong> line current (THD 5%),<br />

• adjustment and stabilization <strong>of</strong> the <strong>DC</strong>-link voltage,<br />

• reduced size <strong>of</strong> line inductor,<br />

• operation under line voltage distortion (harmonics, sags, notching, etc.).<br />

Several control methods have been developed for VSC [1], [4]. Appropriate<br />

control can provide VSC performance improvements and reduction <strong>of</strong> losses<br />

and passive components. The basic control methods can be divided as follow<br />

(Fig. 1.1):<br />

• Voltage Oriented <strong>Control</strong> (VOC) [5],<br />

• Direct Power <strong>Control</strong> (DPC) [6],<br />

• Direct Power <strong>Control</strong> with Space Vector Modulation (DPC-SVM) [7].<br />

1


2 CHAPTER 1. INTRODUCTION<br />

Vector Based<br />

<strong>Control</strong>lers<br />

Scalar Based<br />

<strong>Control</strong>lers<br />

VOC DPC DPC-SVM<br />

<strong>Predictive</strong><br />

<strong>Control</strong><br />

VFOC<br />

VF-DPC<br />

VF-DPC-SVM<br />

Figure 1.1: <strong>Predictive</strong> control implementation in conjunction with main control<br />

methods used for VSC<br />

Most popular control method is VOC [1], [2], [3], [4], [5], [8]. It gives high<br />

dynamic and static performance via internal current control loops. All equations<br />

are transformed into new, rotating synchronously with line voltage space vector<br />

coordinates, which allows to fully use advantages <strong>of</strong> linear PI controllers. To improve<br />

robustness on line voltage distortions, a Virtual Flux (VF) [9], [10] was<br />

introduced.<br />

Another method, which was adopted from induction motor controls is DPC<br />

(Direct Power <strong>Control</strong>) [1], [6], [9], [11]. This control does not use any coordinate<br />

transformations, because it operates directly on instantaneous active and reactive<br />

powers. High dynamic is guaranteed by hysteresis controllers and look-up table.<br />

However, high sampling frequency requirement and variable switching frequency<br />

are the main drawbacks <strong>of</strong> the look-up table based DPC method.<br />

Therefore, to overcome that disadvantages, a Space Vector Modulator (SVM)<br />

was introduced to DPC structure, giving new method called Direct Power <strong>Control</strong><br />

with Space Vector Modulator [12], [13]. DPC-SVM joins important advantages<br />

<strong>of</strong> SVM [14] (e.g. constant switching frequency, unipolar voltage switchings, low<br />

current distortions) with DPC features (e.g. simple and robust structure, lack <strong>of</strong><br />

internal current control loops, good dynamics, etc.). However, in spite <strong>of</strong> mentioned<br />

advantages DPC-SVM dynamic still depends on the quality <strong>of</strong> the applied<br />

PI controller design algorithms. Table 1.1 presents main features <strong>of</strong> described<br />

<strong>AC</strong> voltage sensorless control methods.<br />

Another group <strong>of</strong> VSC controls is predictive control. It is very wide class<br />

<strong>of</strong> controllers, that have been adopted for power electronics. The main characteristic<br />

<strong>of</strong> predictive control is use <strong>of</strong> model <strong>of</strong> the system for the prediction <strong>of</strong><br />

the controlled variables. Next, predefined optimization criterion selects appropriate<br />

control set. The proposed classification for different control methods is<br />

shown in Fig. 1.2.


Based Trajectory Based Deadbeat <strong>Control</strong> Hysteresis<br />

<strong>Predictive</strong> <strong>Control</strong> (MPC) Model<br />

3<br />

Feature VOC DPC DPC-SVM<br />

VFOC VF-DPC VF-DPC-SVM<br />

Switching Constant Variable Constant<br />

frequency<br />

SVM blocks Yes No Yes<br />

Coord. trans. Yes (two) No Yes (one)<br />

Direct control <strong>of</strong>: Line currents Line powers Line powers<br />

Estimation <strong>of</strong>: Virtual Flux Virtual Flux Virtual Flux<br />

and Powers and Powers<br />

Current ripple Low High Low<br />

Sampling Low High Low<br />

frequency<br />

Line voltage Yes Yes Yes<br />

sensorless<br />

Table 1.1: Comparison <strong>of</strong> classical <strong>AC</strong> voltage sensorless control methods<br />

<strong>Predictive</strong><br />

<strong>Control</strong><br />

with control MPC finite<br />

Figure 1.2: Classification <strong>of</strong> predictive control methods used in power electronics<br />

set control with set continous MPC<br />

Hysteresis based predictive control tries to keep controlled variables between<br />

hysteresis bands. Using predictive current control, switching instants can be<br />

determined by error boundaries. When referenced vector touches the controller<br />

band then prediction and optimization <strong>of</strong> next switching state occurs [15].<br />

The principle <strong>of</strong> trajectory based predictive control is to force the system’s<br />

variables onto precalculated trajectories. For example direct self control [16],<br />

direct mean torque control [17], direct torque control [18] may be included to this<br />

category.<br />

A well known type <strong>of</strong> predictive controller is the deadbeat controller. It uses<br />

the model <strong>of</strong> the system to calculate reference voltage vector, in order to set the<br />

controlled variable error to zero within one sampling time. Next, the referenced<br />

voltage vector is realized by modulator. It has been applied for current con-


4 CHAPTER 1. INTRODUCTION<br />

trol in three phase inverters [19], [20], [21], [22], [23], [24], [25], [26], [27], [28],<br />

rectifiers [29], [30], active filters [31], [32], power factor correctors [33], power<br />

factor preregulators [34], [35], uninterruptible power supplies [36], [37], [38], <strong>DC</strong>-<br />

<strong>DC</strong> converters [39] and torque control <strong>of</strong> induction machines [40]. This method<br />

is being used, when a fast dynamic response is required. However, parameters<br />

mismatch, unmodeled delays, and other errors in the model deteriorate control<br />

performance.<br />

Model <strong>Predictive</strong> <strong>Control</strong> (MPC) has been successfully used in practical applications<br />

in recent decades. Theoretical results and applications have been presented<br />

in many books and survey papers [41], [42], [43], [44], [45], [46], [47], [48].<br />

The MPC can be divided into two main groups: with continuous control sets,<br />

where modulator realizes switching states, and finite control set MPC, which<br />

directly controls power converter switches.<br />

Feature VSF CSF<br />

Switching Variable Constant<br />

frequency<br />

SVM blocks No No<br />

Coord. trans. No No<br />

Direct control <strong>of</strong>: Line powers Line powers<br />

Estimation <strong>of</strong>: Virtual Flux Virtual Flux<br />

and Powers and Powers<br />

Current ripple High Low<br />

Sampling High Low<br />

frequency<br />

Line voltage Yes Yes<br />

sensorless<br />

Table 1.2: Comparison <strong>of</strong> predictive control methods<br />

The finite control set method (FS-MPC) meets very well discrete nature <strong>of</strong><br />

power converters. Taking into account the finite set <strong>of</strong> possible switching states<br />

<strong>of</strong> the power converter, which depends on the possible combinations <strong>of</strong> the “on”<br />

and “<strong>of</strong>f ” switching states <strong>of</strong> the power switches, the optimization problem is<br />

reduced to the evaluation <strong>of</strong> all possible states, and selection <strong>of</strong> the one which<br />

minimizes value <strong>of</strong> the defined cost function. In view <strong>of</strong> switching frequency the<br />

FS-MPC methods can be divided into two groups: Variable Switching Frequency<br />

(VSF) and Constant Switching Frequency (CSF). Both approaches have been<br />

briefly compared in Tab. 1.2. Although, one advantage <strong>of</strong> predictive control<br />

is that its concepts are very simple and intuitive. Using predictive control it is<br />

possible to avoid the cascaded structure, which is typically used in a linear control<br />

scheme. However, power converters are nonlinear systems. Additionally, the<br />

dynamic <strong>of</strong> cascade structure is limited because <strong>of</strong> use conventional PI controllers,


5<br />

which properties are deteriorated for low sampling frequencies.<br />

Therefore, the following thesis can be formulated: “using predictive control<br />

<strong>of</strong> VSC, provides very high dynamics <strong>of</strong> active and reactive power<br />

control, even for low switching frequency”.<br />

In order to pro<strong>of</strong> the above thesis, author has used an analytical and simulation<br />

based approach, as well as experimental verification on the laboratory set-up<br />

with 5 kVA <strong>AC</strong>/<strong>DC</strong> converter.<br />

The thesis consists <strong>of</strong> seven chapters. Chapter 1 is an introduction and thesis<br />

formulation. Chapter 2 is devoted to presentation <strong>of</strong> the Voltage Source <strong>Converters</strong><br />

(VSC) mathematical models in different coordinate systems. Chapter 3<br />

reviews VSC control methods: VOC, DPC, DPC-SVM. Also, analysis and synthesis<br />

<strong>of</strong> the controllers is given. Chapter 4 presents analysis and synthesis <strong>of</strong><br />

<strong>Predictive</strong> Direct Power <strong>Control</strong> methods. Two approaches with variable and<br />

constant switching frequencies have been investigated. Chapter 5 shows investigations<br />

<strong>of</strong> predictive control methods performance under choke parameters mismatch<br />

and line voltage disturbances. Chapter 6 contains experimental results<br />

and its study. Finally, Chapter 7 presents summary and conclusions. The thesis<br />

is supplemented by Appendices consisted <strong>of</strong>; coordinate transformations used in<br />

the thesis (App. A), predictive current control (App. B), investigations <strong>of</strong> cost<br />

function value minimization in CSF predictive control (App. C).<br />

In the author opinion the following parts <strong>of</strong> the thesis are his main<br />

contributions:<br />

• Development <strong>of</strong> MATLAB simulation models for basic predictive control<br />

methods for <strong>AC</strong>/<strong>DC</strong> Voltage Source <strong>Converters</strong>:<br />

– Variable Switching Frequency <strong>Predictive</strong> Direct Power <strong>Control</strong> (VSF-<br />

P-DPC) – Section 4.3,<br />

– Variable Switching Frequency <strong>Predictive</strong> Direct Power <strong>Control</strong> with<br />

Current Harmonics control (HC-VSF-P-DPC) – Section 4.4,<br />

– Variable Switching Frequency <strong>Predictive</strong> Direct Power <strong>Control</strong> with<br />

reduced switchings (FL-VSF-P-DPC) – Section 4.5,<br />

– Constant Switching Frequency <strong>Predictive</strong> Direct Power <strong>Control</strong> (CSF-<br />

P-DPC) – Section 4.6,<br />

– Virtual Flux based Constant Switching Frequency <strong>Predictive</strong> Direct<br />

Power <strong>Control</strong> (VF-CSF-P-DPC) – Section 4.7.<br />

• Comparative simulation study <strong>of</strong> following control methods: DPC-SVM,<br />

ST-DPC, VSF-P-DPC, HC-VSF-P-DPC, FL-VSF-P-DPC, CSF-P-DPC,<br />

VF-CSF-P-DPC – Section 3.6 and Section 4.8,<br />

• Proposal <strong>of</strong> Virtual Flux based Constant Switching Frequency <strong>Predictive</strong><br />

Direct Power <strong>Control</strong> VF-CSF-P-DPC method – Section 4.7,


6 CHAPTER 1. INTRODUCTION<br />

• Proposal <strong>of</strong> “on-line” <strong>AC</strong>-side choke inductance estimation algorithm – Section<br />

5.2,<br />

• Experimental verification <strong>of</strong> all investigated control methods on the laboratory<br />

set-up with 5 kVA <strong>AC</strong>/<strong>DC</strong> converter – Chapter 6.


Chapter 2<br />

Voltage Source Converter<br />

Main part <strong>of</strong> the Voltage Source Converter (VSC) is three phase IGBT module,<br />

which consists <strong>of</strong> six transistors and parallel connected freewheeling diodes. To<br />

design control system and simulation model, it is necessary to define mathematical<br />

model. However, it is difficult to include all nonlinearities <strong>of</strong> IGBT module,<br />

and therefore following assumptions have been taken into considerations:<br />

• transistors are assumed to be ideal switches (“on” resistance is zero, “<strong>of</strong>f ”<br />

resistance is infinity),<br />

• time delay between control signals and IGBT module is neglected,<br />

• transistor switching <strong>of</strong>f time delay is zero (no dead time),<br />

• no switching loses.<br />

Also, <strong>AC</strong>-side has been simplified as follows:<br />

• symmetrical line voltages (three sinusoidal voltage supplies with equal amplitudes<br />

and phase shift 120 ◦ ),<br />

• internal resistance <strong>of</strong> voltage supplies and wires resistance is zero,<br />

• negligible small supply inductance (related to VSC input choke inductance),<br />

• ideal VSC input choke (without saturation effect and impedance coupling).<br />

In this Chapter basic mathematical models <strong>of</strong> VSC in different coordinate systems<br />

as well as its operation principals will be presented.<br />

7


1.5 k a2kc(t)<br />

Most <strong>of</strong> the mathematical descriptions <strong>of</strong> electrical circuits are based on time<br />

domain equations, where quantities like phase voltages and currents are used.<br />

To describe three phase system, large number <strong>of</strong> equations is needed. However,<br />

circuits without neutral wire give possibility to introduce space vector theory.<br />

Figure 2.1 shows graphical construction <strong>of</strong> space vector according to (2.1) definia<br />

akb(t)<br />

1<br />

8 CHAPTER 2. VOLTAGE SOURCE CONVERTER<br />

2.1 Space Vector Based Description <strong>of</strong> VSC<br />

1ka(t)<br />

Figure 2.1: Construction <strong>of</strong> space vector<br />

k<br />

tion.<br />

a2<br />

k = 2 3 (1k a(t) + ak<br />

a<br />

b (t) + a 2 k c (t)) (2.1)<br />

c<br />

where: 2 3 - normalization factor, 1, a, a2 - complex unity vectors, k<br />

b<br />

a (t), k b (t),<br />

k c (t) - phase quantities which fulfill following condition:<br />

k a (t) + k b (t) + k c (t) = 0 (2.2)<br />

Due to space vector theory, three phase circuits without neutral wire, can<br />

be described in various coordinate systems like stationary, or rotating. It is<br />

powerful mathematical tool which reduces number <strong>of</strong> equations, and simplifies<br />

control system.<br />

2.2 Mathematical Model <strong>of</strong> VSC<br />

Main circuit <strong>of</strong> VSC has been shown in Fig. 2.2. An <strong>AC</strong>-side block consists <strong>of</strong><br />

supply voltage u L and inductor, which inductance and resistance are denoted


(Sa=1, Sc=0) UP2 (Sa=1, UP1 Sb=1, Sb=0, Sc=0) UP3 (Sa=0, Sb=1, Sc=0) 1 1 1<br />

UP5 (Sa=0, Sb=0, Sc=1) UP6 (Sa=1, Sb=0, Sc=1) 0 0 0 A B C 1 1 1<br />

0 0 0 A B C A B C 1 1 1<br />

0 0 0<br />

1 1 1 A B C 1 1 1 A B C 1 1 1 Sc=1) Sb=1, (Sa=0, UP4<br />

0<br />

(Sa=0, Sb=0, Sc=0) 0 0 0 UP0<br />

(Sa=1, Sb=1, Sc=1) 0 0 0 0 0 A B C<br />

UP7<br />

2.2. MATHEMATICAL MODEL OF VSC 9<br />

as L and R respectively. Six IGBT transistors with parallel placed freewheeling<br />

L<br />

Ra uPa iLa uLb uLa Lb La iLb iLc Rb Rc uPb uPc U<strong>DC</strong> A<br />

C B + I<strong>DC</strong> ic iload<br />

Lc uLc<br />

O<br />

A<br />

D<br />

Figure 2.2: Scheme <strong>of</strong> VSC<br />

-<br />

Voltage Source Converter <strong>DC</strong>-side<br />

diodes create VSC module. There are two transistors connected in series per leg.<br />

Transistor is “on” when gate signal is “1 ” and “<strong>of</strong>f ” when gate signal is “0 ”. Such<br />

<strong>AC</strong>-side<br />

a topology gives 64 possible states <strong>of</strong> the converter, however only 8 are permitted<br />

and generates voltage vectors U P . Figure 2.3 shows permitted states <strong>of</strong> the<br />

converter. It gives 6 active voltage vectors and 2 zero vectors. The converter<br />

1 1 1 A B C 1 1 1<br />

0 0 0 A B C<br />

Figure 2.3: Switching states <strong>of</strong> VSC<br />

0 0 0


010UP3<br />

β<br />

23<br />

Figure 2.4: Representation <strong>of</strong> VSC <strong>AC</strong>-side voltage as space vector<br />

111<br />

110<br />

10 CHAPTER 2. VOLTAGE SOURCE CONVERTER<br />

<strong>AC</strong>-side voltage can be described as a complex space vector (2.3).<br />

U P (i) =<br />

{<br />

2<br />

3 U <strong>DC</strong> e j(i−1) π 3 for i = 1 . . . 6<br />

0 for i = 0, 7<br />

(2.3)<br />

Active vectors correspond to phase voltage in relation 1 3 and 2 3<br />

to the <strong>DC</strong>-link<br />

voltage U <strong>DC</strong> . Zero vectors apply zero voltage at the <strong>AC</strong>-side <strong>of</strong> converter, because<br />

all three branches are connected to positive or negative <strong>DC</strong>-link bus.<br />

011<br />

UP1 U<strong>DC</strong> UP4 α UP6 UP0,7 100 000<br />

UP5<br />

001<br />

Voltage Source Converter (VSC) can be represented in different coordinate<br />

systems. Figure 2.5 shows single phase representation <strong>of</strong> VSC where: U L is space<br />

vector <strong>of</strong> line voltage, I L is space vector <strong>of</strong> line current, U<br />

101<br />

P is space vector <strong>of</strong> VSC<br />

input voltage. The U P voltage is controllable, and depends on applied voltage<br />

vector (see (2.3) and Fig. 2.4). Due to changes <strong>of</strong> U P magnitude and phase,<br />

line current can be controlled by voltage drop on the input choke. As it can be<br />

noticed, input choke is essential part <strong>of</strong> the converter, because it brings current<br />

source character, and provides boost feature <strong>of</strong> converter.<br />

Figure 2.5: Single phase representation <strong>of</strong> VSC<br />

R<br />

IL UP<br />

Figure 2.6 presents general phasor diagrams for rectification and inverting mode<br />

with and without unity power factor operation.<br />

ULL


IL<br />

UL jωLIL<br />

UL jωLIL<br />

2.2. MATHEMATICAL MODEL OF VSC 11<br />

(a)<br />

(b)<br />

ILUP RIL<br />

RIL<br />

(c)<br />

UP<br />

(d)<br />

Figure 2.6: Phasor diagrams <strong>of</strong> VSC, on the left rectification mode, on the right<br />

inverting mode: (a), (b) non unity power factor, (c), (d) unity power factor<br />

jωLIL IL UP RIL UL<br />

jωLIL IL UPUL RIL<br />

2.2.1 VSC Model in Natural Coordinates<br />

The line voltage u L equations for balanced three phase system without neutral<br />

wire can be written as:<br />

u La = u m sin(ω L t)<br />

u Lb = u m sin(ω L t + 2π 3 ) (2.4)<br />

u Lc = u m sin(ω L t − 2π 3 )<br />

According to Fig. 2.2, and assuming ideal power switches, VSC can be described<br />

as:<br />

where U i is a voltage drop on VSC choke, defined as:<br />

U L = U i + U P (2.5)<br />

U i = L dI L<br />

dt + RI L (2.6)<br />

Taking into considerations (2.3), and switching states S a , S b , S c <strong>of</strong> the converter,<br />

<strong>AC</strong>-side VSC voltage can be described:<br />

U P = U <strong>DC</strong> (S k − 1 3<br />

c∑<br />

S k ) (2.7)<br />

k=a


iLa sL+RSa uLa 1 -<br />

iLb U<strong>DC</strong> uPa<br />

- sL+R 1 uLb<br />

U<strong>DC</strong><br />

uPb<br />

Sb<br />

-<br />

-<br />

I<strong>DC</strong> 1 sC U<strong>DC</strong> - iload ic<br />

13<br />

12 CHAPTER 2. VOLTAGE SOURCE CONVERTER<br />

<strong>DC</strong>-link current I <strong>DC</strong> can be calculated as a sum <strong>of</strong> products <strong>of</strong> line currents<br />

and appropriate switching states:<br />

I <strong>DC</strong> = i La S a + i Lb S b + i Lc S c (2.8)<br />

Next, <strong>DC</strong>-link capacitor current i c , can be calculated (2.9).<br />

1 iLc Sc - uLc uPc<br />

Figure<br />

sL+R<br />

2.7: Block scheme <strong>of</strong> VSC in natural coordinates<br />

- U<strong>DC</strong><br />

i c = I <strong>DC</strong> − i load (2.9)<br />

where i load is VSC load current (Fig. 2.2).<br />

Hence, <strong>DC</strong>-link voltage U <strong>DC</strong> , with assumption <strong>of</strong> zero initial conditions can be<br />

calculated from:<br />

U <strong>DC</strong> = 1 C<br />

∫ τ<br />

−∞<br />

i c (τ)dτ (2.10)<br />

Taking into account all above equations, the overall system <strong>of</strong> three phase


ILα 1 sL+RSα - ULα<br />

32I<strong>DC</strong> 1 sCU<strong>DC</strong> U<strong>DC</strong> UPα<br />

- -<br />

iload ic<br />

Figure 2.8: Block scheme <strong>of</strong> VSC in stationary coordinates<br />

2.2. MATHEMATICAL MODEL OF VSC 13<br />

VSC can be described as follows:<br />

u La = Ri La + L d dt i La + u P a<br />

u Lb = Ri Lb + L d dt i Lb + u P b (2.11)<br />

u Lc = Ri Lc + L d dt i Lc + u P c<br />

C dU <strong>DC</strong><br />

= S a i La + S b i Lb + S c i Lc − i load (2.12)<br />

dt<br />

Figure 2.7 presents basic block diagram <strong>of</strong> VSC (2.11), (2.12).<br />

2.2.2 VSC Model in Stationary Coordinates<br />

Space vector theory allows to reduce number <strong>of</strong> equations what is useful in every<br />

control system. After transformation (2.11) and (2.12) into αβ coordinates<br />

(App. A.1), VSC can be described as follow:<br />

U Lαβ = L dI Lαβ<br />

dt<br />

+ RI Lαβ + U P αβ (2.13)<br />

C dU <strong>DC</strong><br />

= 3 dt 2 R ( I Lαβ S ∗ αβ)<br />

− iload (2.14)<br />

where: U Lαβ , I Lαβ , U P αβ , S αβ are space vectors in stationary coordinates.<br />

1 sL+R ILβ ULβ<br />

U<strong>DC</strong> UPβ<br />

After decomposition <strong>of</strong> space vectors into α and β components, one obtains:<br />

Sβ<br />

U Lα = L dI Lα<br />

dt<br />

+ RI Lα + U P α (2.15)


ILd 1 sL+RSd - U<strong>DC</strong>UPd ULd<br />

iload ic<br />

14 CHAPTER 2. VOLTAGE SOURCE CONVERTER<br />

U Lβ = L dI Lβ<br />

dt<br />

+ RI Lβ + U P β (2.16)<br />

C dU <strong>DC</strong><br />

= 3 dt 2 (I LαS α + I Lβ S β ) − i load (2.17)<br />

Equations (2.15)–(2.17) can be represented as a block diagram in stationary<br />

coordinates as shown in Fig. 2.8.<br />

2.2.3 VSC Model in Rotating Coordinates<br />

Model in stationary coordinates presented in previous subsection, can be transformed<br />

into a two phase model in synchronously rotating dq (App. A.2) coordinates.<br />

After transformation, VSC model can be described as:<br />

U Ldq = L dI Ldq<br />

dt<br />

+ RI Ldq + U P dq + jω L LI Ldq (2.18)<br />

C dU <strong>DC</strong><br />

= 3 dt 2 R ( I Ldq S ∗ dq)<br />

− iload (2.19)<br />

where: U Ldq , I Ldq , U P dq , S dq are space vectors in rotating dq coordinates. Note<br />

that, after transformation additional block appears in (2.18), where ω L is angular<br />

frequency <strong>of</strong> line voltage.<br />

After decomposition <strong>of</strong> space vectors into d and q components, one obtains:<br />

1 sL+R ILq - U<strong>DC</strong>UPq ULq<br />

1 sCU<strong>DC</strong> - ωLL -<br />

Figure 2.9: Block scheme <strong>of</strong> VSC in rotating dq coordinates<br />

32I<strong>DC</strong><br />

U Ld<br />

+ RI Ld + U P d − ω L LI Lq<br />

= L dI Lq<br />

dt<br />

+ RI Lq + U P q + ω L LI Ld<br />

(2.20)<br />

dt<br />

= I Ld S d + I Lq S q − i load<br />

U Lq<br />

C dU <strong>DC</strong><br />

= L dI Ld<br />

dt<br />

Sq<br />

Figure 2.9 presents block scheme <strong>of</strong> VSC in rotating dq coordinates.


2.3. SUMMARY 15<br />

2.3 Summary<br />

In this chapter mathematical models <strong>of</strong> the Voltage Source Converter (VSC)<br />

have been presented. On the basis <strong>of</strong> mathematical description simulation models<br />

could be created, which simplify research on control system. To reduce number <strong>of</strong><br />

equations, space vector theory has been introduced. It allows to present VSC in<br />

stationary and rotating coordinate systems. An important advantage <strong>of</strong> rotating<br />

coordinate system is representation three phase <strong>AC</strong> signals as a <strong>DC</strong> signals.<br />

Chapter 2 presents basic knowledge about three phase, two level converter,<br />

which allows further analysis <strong>of</strong> control methods.


Chapter 3<br />

<strong>Control</strong> Strategies for VSC<br />

3.1 Overview<br />

Several control methods for VSC has been proposed. According to [1] and [4]<br />

these methods can be divided as follow:<br />

• Voltage Oriented <strong>Control</strong> (VOC),<br />

• Direct Power <strong>Control</strong> (DPC),<br />

• Direct Power <strong>Control</strong> with Space Vector Modulator (DPC-SVM).<br />

For line voltage sensorless operation, also concept <strong>of</strong> Virtual Flux has been presented<br />

[9], [10].<br />

In this Chapter these three groups will be described and characterized.<br />

3.2 Voltage Oriented <strong>Control</strong><br />

Voltage Oriented <strong>Control</strong> - VOC, due to high dynamic and static performance, via<br />

internal current control loops, became very popular, and has been permanently<br />

improved.<br />

The goal <strong>of</strong> the control system (Fig. 3.1) is to regulate <strong>DC</strong>-link voltage U <strong>DC</strong><br />

to follow reference value U <strong>DC</strong>ref , while line current should be sinusoidal shape<br />

and in phase with line voltage. VOC uses line currents i Labc , line voltages u Labc ,<br />

and <strong>DC</strong>-link voltage U <strong>DC</strong> measurements. On the basis <strong>of</strong> <strong>DC</strong>-link voltage error<br />

U <strong>DC</strong>err , PI controller generates reference value <strong>of</strong> current in d axis I dref . To fulfill<br />

unity power factor condition, referenced value <strong>of</strong> I qref current is equal to zero.<br />

Next, current errors are delivered to PI controllers that generate commanded<br />

VSC voltages U P dqref . After transformation into αβ coordinates, U P αβref are<br />

17


Iqref<br />

Idref<br />

ILq ILd<br />

ILq<br />

φ<br />

uLab<br />

U<strong>DC</strong><br />

Sabc<br />

18 CHAPTER 3. CONTROL STRATEGIES FOR VSC<br />

delivered to modulator which generates switching signals S abc for VSC. Note that,<br />

due to Virtual Flux approach (see Section 3.5), line voltage measurement can be<br />

avoided.<br />

-<br />

PI<br />

dq<br />

γ<br />

Line Voltage<br />

and Current<br />

Measurement<br />

or<br />

Virtual Flux<br />

Estimator<br />

-<br />

PI<br />

αβ<br />

SVM<br />

Sabc iLab<br />

VSC<br />

PI<br />

-<br />

LOAD<br />

Figure 3.1: Basic block scheme <strong>of</strong> VOC<br />

U<strong>DC</strong>ref U<strong>DC</strong><br />

q<br />

d<br />

Figure 3.2: Vector diagram <strong>of</strong> VOC<br />

ωL<br />

ILdq<br />

ILd<br />

The most important part <strong>of</strong> the control system are internal PI current controllers.<br />

Design procedures <strong>of</strong> current controllers have been presented in [9]<br />

and [49]. It uses symmetry optimum (SO), because its good disturbance (U<br />

ULd<br />

Ldist )


3.2. VOLTAGE ORIENTED CONTROL 19<br />

rejection performance in transient states. Equations (3.1) and (3.2) describe PI<br />

controller proportional gain K C and its time constant T IC :<br />

K C =<br />

T RL<br />

2τ t K RL<br />

(3.1)<br />

T IC = 4τ t (3.2)<br />

where: T RL = L R , K RL = 1 R<br />

is time constant and gain <strong>of</strong> choke mathematical<br />

model respectively, and τ t is sum <strong>of</strong> the small time constants defined as:<br />

τ t = T s + T P W M (3.3)<br />

where: T s is sampling time, and T P W M = 1 2 T s is PWM generation time delay.<br />

Figure 3.3 shows block diagram <strong>of</strong> active current control loop, where τ 0 is<br />

transistors dead time.<br />

U Ldist<br />

I dref<br />

I dreff I Lderr K C (sT IC +1) U dref K VSC e -sτ 0<br />

1<br />

K RL I Ld<br />

sT fC +1<br />

Prefilter<br />

-<br />

I Ld<br />

sT IC<br />

sτ t +1<br />

sT RL +1<br />

PI S&H, VSC Input Choke<br />

-<br />

Figure 3.3: Block diagram <strong>of</strong> active current I Ld control loop in synchronous<br />

rotating reference coordinates with prefilter<br />

(a)<br />

Step Response<br />

(b)<br />

Step Response<br />

1.5<br />

From: I dref<br />

To: I d<br />

1.5<br />

From: I dref<br />

To: I d<br />

System: dq_PI_c_1<br />

I/O: I_{dref} to I_{d}<br />

Peak amplitude: 1.41<br />

Overshoot (%): 41.1<br />

At time (sec): 0.000849<br />

System: dq_PI_c_1<br />

I/O: I_{dref} to I_{d}<br />

Peak amplitude: 1.07<br />

Overshoot (%): 7.19<br />

At time (sec): 0.00148<br />

1<br />

1<br />

Amplitude<br />

0.5<br />

System: dq_PI_c_1<br />

I/O: I_{dref} to I_{d}<br />

Rise Time (sec): 0.000316<br />

System: dq_PI_c_1<br />

I/O: I_{dref} to I_{d}<br />

Settling Time (sec): 0.00247<br />

Amplitude<br />

0.5<br />

System: dq_PI_c_1<br />

I/O: I_{dref} to I_{d}<br />

Rise Time (sec): 0.000699<br />

System: dq_PI_c_1<br />

I/O: I_{dref} to I_{d}<br />

Settling Time (sec): 0.00201<br />

0<br />

0 0.5 1 1.5 2 2.5 3 3.5<br />

Time (sec)<br />

x 10 −3<br />

0<br />

0 0.5 1 1.5 2 2.5 3 3.5<br />

Time (sec)<br />

x 10 −3<br />

Figure 3.4: Step response <strong>of</strong> active current control loop in VOC: (a) without<br />

prefilter, (b) with prefilter<br />

However, symmetry optimum design method gives 43% overshoot <strong>of</strong> tracking<br />

error (Fig. 3.4 (a)), so an additional block with prefilter T fC on referenced current<br />

value is used.<br />

T fC = 4τ t (3.4)


U<strong>DC</strong> Filter<br />

20 CHAPTER 3. CONTROL STRATEGIES FOR VSC<br />

(a)<br />

(b)<br />

1.5<br />

Discretized Step Response From:I dref<br />

to I d<br />

1.5<br />

Discretized Step Response From:I dref<br />

to I d<br />

1<br />

1<br />

Amplitude<br />

Amplitude<br />

0.5<br />

0.5<br />

0<br />

1 1.0005 1.001 1.0015 1.002 1.0025 1.003 1.0035<br />

Time (sec)<br />

0<br />

1 1.0005 1.001 1.0015 1.002 1.0025 1.003 1.0035<br />

Time (sec)<br />

Figure 3.5: Step response <strong>of</strong> discretized active current control loop in VOC:<br />

(a) without prefilter, (b) with prefilter<br />

Figures 3.4 and 3.5 show step response <strong>of</strong> active current control loop without<br />

and with prefilter.<br />

For <strong>DC</strong>-link voltage controller design, inner current control loop can be represented<br />

as a first order transfer function where Voltage Source Converter time<br />

constant T I depends on inner current control loop.<br />

T I = 4τ t (3.5)<br />

Practical control implementation requires additional low pass filter (LPF) T fU<strong>DC</strong><br />

on measured <strong>DC</strong>-link voltage, which reduces voltage pulsations caused by transistors<br />

switching.<br />

T fU<strong>DC</strong> = 0.003[s] (3.6)<br />

<strong>Control</strong> loop can be modeled as shown in Fig. 3.6.<br />

1<br />

+1 sTfU<br />

-<br />

KPU(sTIU+1)<br />

U<strong>DC</strong>ref U<strong>DC</strong>reff U<strong>DC</strong>err Idref iload U<strong>DC</strong><br />

sTIU<br />

1<br />

sTIC+1<br />

-<br />

1<br />

sC<br />

Prefilter<br />

PI VSC & Filter <strong>DC</strong>-link<br />

Capacitor<br />

1<br />

sTfU<strong>DC</strong>+1<br />

I<strong>DC</strong> ic<br />

Figure 3.6: Block diagram <strong>of</strong> <strong>DC</strong>-link voltage control loop in VOC<br />

U<strong>DC</strong>f<br />

Symmetry optimum (SO) design method has been used for controller parameters<br />

calculation, which gives:<br />

K P U =<br />

C<br />

2(T I + T fU<strong>DC</strong> )<br />

(3.7)


3.3. SWITCHING TABLE BASED DIRECT POWER CONTROL 21<br />

T IU = 4(T I + T fU<strong>DC</strong> ) (3.8)<br />

where: K P U and T IU are <strong>DC</strong>-link voltage controller proportional gain and time<br />

constant respectively, and C is value <strong>of</strong> <strong>DC</strong>-link capacitance. Also, in this case<br />

additional prefilter, with T fU time constant has been added in order to reduce<br />

tracking overshoot.<br />

T fU = 4(T I + T fU<strong>DC</strong> ) (3.9)<br />

(a)<br />

1.5<br />

Step Response<br />

From: Udc ref<br />

To: Udc<br />

System: VOC_Udc_PI_1<br />

I/O: Udc_{ref} to Udc<br />

Peak amplitude: 1.49<br />

Overshoot (%): 49.5<br />

At time (sec): 0.0169<br />

(b)<br />

1.5<br />

Step Response<br />

From: Udc ref<br />

To: Udc<br />

System: VOC_Udc_PI_1<br />

I/O: Udc_{ref} to Udc<br />

Peak amplitude: 1.09<br />

Overshoot (%): 8.75<br />

At time (sec): 0.0309<br />

1<br />

1<br />

Amplitude<br />

0.5<br />

System: VOC_Udc_PI_1<br />

I/O: Udc_{ref} to Udc<br />

Rise Time (sec): 0.00565<br />

System: VOC_Udc_PI_1<br />

I/O: Udc_{ref} to Udc<br />

Settling Time (sec): 0.0547<br />

Amplitude<br />

0.5<br />

System: VOC_Udc_PI_1<br />

I/O: Udc_{ref} to Udc<br />

Rise Time (sec): 0.0148<br />

System: VOC_Udc_PI_1<br />

I/O: Udc_{ref} to Udc<br />

Settling Time (sec): 0.0436<br />

0<br />

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08<br />

Time (sec)<br />

0<br />

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08<br />

Time (sec)<br />

Figure 3.7: Step response <strong>of</strong> <strong>DC</strong> voltage control loop in VOC: (a) without prefilter,<br />

(b) with prefilter<br />

Figure 3.7 shows step response <strong>of</strong> <strong>DC</strong>-link voltage control loop.<br />

3.3 Switching Table based Direct Power <strong>Control</strong><br />

Main idea <strong>of</strong> Switching Table based Direct Power <strong>Control</strong> (ST-DPC) was proposed<br />

in [6]. Referenced active power P ref , delivered from outer PI <strong>DC</strong>-link<br />

voltage controller, and reactive power Q ref , set to zero for unity power factor,<br />

are compared in hysteresis controllers with estimated P and Q values (Fig. 3.8).<br />

The active power digital hysteresis controller can be described as:<br />

{<br />

1 for P < P<br />

d P =<br />

ref − H P<br />

(3.10)<br />

0 for P > P ref + H P<br />

and similarly for reactive power controller:<br />

{<br />

1 for Q < Q<br />

d Q =<br />

ref − H Q<br />

(3.11)<br />

0 for Q > Q ref + H Q<br />

where: H P and H Q are hysteresis widths.<br />

On the basis <strong>of</strong> controller digitized outputs d P , d Q and line voltage (or estimated<br />

virtual flux) vector position γ, look-up table selects appropriate space<br />

vector <strong>of</strong> VSC input voltage U P (see Tab. 3.1 and Tab. 3.2).


Qref<br />

dP dQ<br />

uLab<br />

U<strong>DC</strong><br />

Sabc<br />

22 CHAPTER 3. CONTROL STRATEGIES FOR VSC<br />

P<br />

Q<br />

γ<br />

Line Voltage<br />

and Current<br />

Measurement<br />

or<br />

Virtual Flux<br />

Estimator<br />

-<br />

-<br />

Switching<br />

Table<br />

iLab<br />

Sabc<br />

VSC<br />

PI<br />

-<br />

LOAD<br />

Figure 3.8: Block scheme <strong>of</strong> ST-DPC<br />

U<strong>DC</strong><br />

Pref<br />

States<br />

d P d Q 1 2 3 4 5 6 7 8 9 10 11 12<br />

0 0 1 1 2 2 3 3 4 4 5 5 6 6<br />

0 1 2 2 3 3 4 4 5 5 6 6 1 1<br />

1 0 6 0 1 7 2 0 3 7 4 0 5 7<br />

1 1 7 0 0 7 7 0 0 7 7 0 0 7<br />

Sector(γ UL )/Voltage Vector U P (n)<br />

U<strong>DC</strong>ref<br />

Table 3.1: Switching table related to line voltage vector position γ UL<br />

The αβ plane is divided into twelve sectors, as shown in Fig. 3.9. Relation<br />

between sectors and space vector position γ can be expressed as:<br />

{<br />

γ ∈ ⟨n π<br />

sector n =<br />

6 ; (n + 1) π 6<br />

) for line voltage space vector<br />

γ ∈ ⟨n π 6 + 3π 2 ; (n + 1) π 6 + 3π 2<br />

) for virtual flux space vector(3.12)<br />

Sampling frequency has to be about ten times higher than average switching<br />

frequency. It allows to control instantaneous active and reactive power with errors<br />

limited to the hysteresis controllers band. Note that transformation into rotating<br />

coordinate system is not needed, which makes control algorithm implementation<br />

very easy.


4 Sector 5Sector Sector 2<br />

7 Sector 8Sector Sector 5<br />

3.3. SWITCHING TABLE BASED DIRECT POWER CONTROL 23<br />

States Sector(γ ΨL )/Voltage Vector U P (n)<br />

d P d Q 1 2 3 4 5 6 7 8 9 10 11 12<br />

0 0 5 6 6 1 1 2 2 3 3 4 4 5<br />

0 1 6 1 1 2 2 3 3 4 4 5 5 6<br />

1 0 0 5 7 6 0 1 7 2 0 3 7 4<br />

1 1 0 0 7 7 0 0 7 7 0 0 7 7<br />

Table 3.2: Switching table related to virtual flux vector position γ ΨL<br />

(a)<br />

β<br />

(010)<br />

UP3<br />

Sector 3<br />

(b)<br />

β<br />

(110)<br />

UP2<br />

(010)<br />

UP3<br />

Sector 6<br />

(110)<br />

UP2<br />

α<br />

α<br />

(011)<br />

UP4<br />

(100)<br />

UP4 UP1<br />

(011)<br />

(100)<br />

UP1<br />

(001)<br />

6 Sector 7<br />

UP5<br />

(101)<br />

1 Sector 12<br />

UP6<br />

Sector 8Sector 9 Sector 10Sector 11<br />

(001)<br />

9 Sector 10<br />

UP5<br />

Sector 11Sector 12Sector 1Sector 2<br />

(101)<br />

4 Sector 3<br />

UP6<br />

Figure 3.9: Sector selection for: (a) ST-DPC, (b) VF-ST-DPC<br />

Instantaneous active and reactive power can be calculated from measured line<br />

currents i Labc and:<br />

• measured line voltages (3.13), (3.14),<br />

• estimated line voltages (3.17), (3.18),<br />

• estimated virtual flux (3.20), (3.21).<br />

Basic active P and reactive Q power equations are given as:<br />

P = 3 2 R(U LI ∗ L) = 3 2 (U LαI Lα + U Lβ I Lβ ) (3.13)<br />

Q = 3 2 I(U LI ∗ L) = 3 2 (U LβI Lα − U Lα I Lβ ) (3.14)<br />

Taking into consideration VSC mathematical model (2.13), (2.14) line voltage<br />

U L can be calculated as:<br />

where U P is given as:<br />

U Lαβ = L dI Lαβ<br />

dt<br />

+ RI Lαβ + U P αβ (3.15)<br />

U P αβ = U <strong>DC</strong> S αβ (3.16)


24 CHAPTER 3. CONTROL STRATEGIES FOR VSC<br />

If we assume that voltage drop on choke internal resistance RI Lαβ is small in<br />

relation to voltage drop on choke inductance, active and reactive power can be<br />

calculated by substituting (3.15), (3.16) into (3.13) and (3.14) :<br />

P = 3 ( (<br />

dILα<br />

L<br />

2 dt I Lα + dI )<br />

)<br />

Lβ<br />

dt I Lβ + U <strong>DC</strong> (S α I Lα + S β I Lβ ) (3.17)<br />

Q = 3 2<br />

( (<br />

dILβ<br />

L<br />

dt I Lα − dI )<br />

)<br />

Lα<br />

dt I Lβ + U <strong>DC</strong> (S β I Lα − S α I Lβ )<br />

(3.18)<br />

Unfortunately, such calculation causes difficulties in DSP implementation.<br />

The differential operations <strong>of</strong> line currents are performed with finite differences<br />

and gives noisy signals. Moreover, calculation <strong>of</strong> the current differences should<br />

be accurate (about ten times per switching period) and should be avoided at<br />

switching instants [50].<br />

To avoid this problem a concept <strong>of</strong> virtual flux was introduced in [9], [51], [10].<br />

The relation between line voltage and virtual flux (see Section 3.5 for details) is<br />

expressed as:<br />

∫<br />

Ψ Lαβ = Ψ Lαβ0 + U Lαβ dt (3.19)<br />

With the virtual flux approach active and reactive power can be calculated<br />

from:<br />

P = 3 2 ω L (Ψ Lα I Lβ − Ψ Lβ I Lα ) (3.20)<br />

Q = 3 2 ω L (Ψ Lα I Lα + Ψ Lβ I Lβ ) (3.21)<br />

Note that estimation method is based on instantaneous variables, and it allows<br />

to estimate also harmonic components. The ST-DPC becomes very interesting<br />

control algorithm because <strong>of</strong> advantages:<br />

• high dynamic performance <strong>of</strong> power control,<br />

• no current control loops,<br />

• no coordinate transformations,<br />

• no pulse width modulator (PWM).<br />

However, it has also following disadvantages:<br />

• high sampling frequency requirement (about ten times higher than average<br />

switching frequency),<br />

• variable switching frequency (it depends on hysteresis controllers bands,<br />

input choke L, <strong>DC</strong>-link voltage and load),<br />

• difficulties in LC input filter design,


3.4. DIRECT POWER CONTROL WITH SP<strong>AC</strong>E VECTOR MODULATOR 25<br />

• high input choke inductance requirement,<br />

• bipolar voltage switchings (higher switching loses).<br />

The above mentioned difficulties have forced researchers to improve ST-DPC.<br />

For instance by different definition <strong>of</strong> switching table, use <strong>of</strong> three level hysteresis<br />

controllers, use <strong>of</strong> virtual flux instead <strong>of</strong> line voltage. An approach was proposed<br />

in [13] called Direct Power <strong>Control</strong> with Space Vector Modulator, which combines<br />

advantages <strong>of</strong> ST-DPC concept and constant switching frequency.<br />

3.4 Direct Power <strong>Control</strong> with Space Vector Modulator<br />

Direct Power <strong>Control</strong> with Space Vector Modulator (DPC-SVM) [13], [49] joins<br />

advantages <strong>of</strong> well known switching table based DPC and VOC (Voltage Oriented<br />

<strong>Control</strong>), or VFOC (Virtual Flux Oriented <strong>Control</strong>). In DPC-SVM active<br />

and reactive powers are used as control variables (Fig. 3.10). However, instead<br />

<strong>of</strong> hysteresis controllers and switching table, it uses PI power controllers in internal<br />

control loops and space vector modulator (SVM), which guarantees constant<br />

switching frequency. The referenced active power P ref is generated by outer <strong>DC</strong>link<br />

voltage controller. To fulfill unity power factor condition reactive power Q ref<br />

is set to zero. These values are compared with estimated instantaneous powers<br />

P and Q, calculated from:<br />

• measured line voltages (3.13), (3.14),<br />

• estimated line voltages (3.17), (3.18),<br />

• estimated virtual flux (3.20), (3.21).<br />

Next, power errors are delivered to PI controllers, which generates referenced<br />

voltages in pq coordinates, and after transformation into αβ coordinates are used<br />

for switching signals generation by SVM block.<br />

The most important part <strong>of</strong> the control system are internal PI power controllers.<br />

Design procedure <strong>of</strong> power controllers have been presented in [9] and [49].<br />

It uses symmetry optimum (SO), because its good disturbance (U Ldist ) rejection<br />

performance in transient states. Equations (3.22) and (3.23) describe PI controller<br />

gain and time constant:<br />

K P =<br />

T RL<br />

2τ t K RL<br />

2<br />

3|U L |<br />

(3.22)<br />

T I = 4τ t (3.23)<br />

where: K P and T I are power controller proportional gain and time constant<br />

respectively, T RL = L R and K RL = 1 R<br />

is time constant and gain <strong>of</strong> choke mathematical<br />

model respectively, U L is line voltage, and τ t is sum <strong>of</strong> the small time


Qref<br />

Pref<br />

uLab<br />

U<strong>DC</strong><br />

Sabc<br />

26 CHAPTER 3. CONTROL STRATEGIES FOR VSC<br />

-<br />

P<br />

Q<br />

PI<br />

pq<br />

γ<br />

Line Voltage<br />

and Current<br />

Measurement<br />

or<br />

Virtual Flux<br />

Estimator<br />

-<br />

PI<br />

αβ<br />

SVM<br />

Sabc iLab<br />

VSC<br />

PI<br />

-<br />

LOAD<br />

Figure 3.10: Block scheme <strong>of</strong> DPC-SVM<br />

U<strong>DC</strong><br />

constants defined as:<br />

τ<br />

U<strong>DC</strong>ref<br />

t = T s + T P W M (3.24)<br />

where: T s is sampling time, and T P W M = 1 2 T s is PWM generation time delay.<br />

Figure 3.11 shows block diagram <strong>of</strong> active power control loop, where τ 0 is<br />

transistors dead time.<br />

U Ldist<br />

P -<br />

ref P reff P err K P (sT I +1) U pref K VSC e -sτ 0<br />

1<br />

K RL I Lp 3 P |UL|<br />

sT fP +1 - sT I<br />

sτ t+1<br />

sT RL+1 2<br />

P<br />

Prefilter<br />

PI S&H, VSC Input Choke<br />

Figure 3.11: Block diagram <strong>of</strong> active power control loop in synchronous rotating<br />

reference frame with prefilter<br />

However, symmetry optimum design method gives 43% overshoot <strong>of</strong> tracking<br />

error (Fig. 3.12 (a)), so additional block with prefilter T fP on referenced value is<br />

used.<br />

T fP = 4τ t (3.25)<br />

Figures 3.12 and 3.13 show step response <strong>of</strong> active power control loop without<br />

and with prefilter.


3.4. DIRECT POWER CONTROL WITH SP<strong>AC</strong>E VECTOR MODULATOR 27<br />

(a)<br />

1.5<br />

From: P ref<br />

To: P 0<br />

System: PQ_PI<br />

I/O: P{ref} to P0<br />

Peak amplitude: 1.41<br />

Overshoot (%): 41.1<br />

At time (sec): 0.000849<br />

(b)<br />

1.5<br />

System: PQ_PI<br />

I/O: P{ref} to P0<br />

Peak amplitude: 1.07<br />

Overshoot (%): 7.19<br />

At time (sec): 0.00148<br />

From: P ref<br />

To: P 0<br />

1<br />

1<br />

0.5<br />

System: PQ_PI<br />

I/O: P{ref} to P0<br />

Rise Time (sec): 0.000316<br />

System: PQ_PI<br />

I/O: P{ref} to P0<br />

Settling Time (sec): 0.00247<br />

0.5<br />

System: PQ_PI<br />

I/O: P{ref} to P0<br />

Rise Time (sec): 0.000699<br />

System: PQ_PI<br />

I/O: P{ref} to P0<br />

Settling Time (sec): 0.00201<br />

0<br />

0 0.5 1 1.5 2 2.5 3 3.5<br />

x 10 −3<br />

0<br />

0 0.5 1 1.5 2 2.5 3 3.5<br />

x 10 −3<br />

Figure 3.12: Step response <strong>of</strong> active power control loop in DPC-SVM: (a) without<br />

prefilter, (b) with prefilter<br />

(a)<br />

1.5<br />

Discretized Step Response From:P ref<br />

to P 0<br />

(b)<br />

1.5<br />

Discretized Step Response From:P ref<br />

to P 0<br />

1<br />

1<br />

0.5<br />

0.5<br />

0<br />

1 1.0005 1.001 1.0015 1.002 1.0025 1.003 1.0035<br />

Time (sec)<br />

0<br />

1 1.0005 1.001 1.0015 1.002 1.0025 1.003 1.0035<br />

Time (sec)<br />

Figure 3.13: Step response <strong>of</strong> discretized active power control loop in DPC-SVM:<br />

(a) without prefilter, (b) with prefilter<br />

For <strong>DC</strong>-link voltage controller design, inner active power control loop can be<br />

represented as a first order transfer function where VSC time constant T I depends<br />

on inner power control loop.<br />

T I = 4τ t (3.26)<br />

Practical control implementation requires additional low pass filter T fU<strong>DC</strong> on<br />

measured <strong>DC</strong>-link voltage, which reduces voltage pulsations caused by transistors<br />

switching.<br />

T fU<strong>DC</strong> = 0.003[s] (3.27)<br />

<strong>Control</strong> loop can be modeled as shown in Fig. 3.14. Symmetry optimum (SO)<br />

design method has been used for controller parameters calculation, which gives:<br />

K P U =<br />

C<br />

2(T I + T fU<strong>DC</strong> )<br />

(3.28)


U<strong>DC</strong> Filter<br />

28 CHAPTER 3. CONTROL STRATEGIES FOR VSC<br />

1<br />

+1 sTfU<br />

-<br />

1<br />

sTI+1<br />

-<br />

1<br />

Prefilter<br />

PI VSC & Filter <strong>DC</strong>-link<br />

Capacitor<br />

1<br />

sTfU<strong>DC</strong>+1<br />

U<strong>DC</strong>ref U<strong>DC</strong>reff U<strong>DC</strong>err Pref PLOAD U<strong>DC</strong><br />

KPU(sTIU+1)U<strong>DC</strong>ref<br />

PVSR PC<br />

sCU<strong>DC</strong>ref<br />

Figure 3.14: Block diagram <strong>of</strong> <strong>DC</strong>-link voltage control loop in DPC-SVM<br />

U<strong>DC</strong>f<br />

T IU = 4(T I + T fU<strong>DC</strong> ) (3.29)<br />

where: K P U and T IU are <strong>DC</strong>-link voltage controller proportional gain and time<br />

constant respectively, and C is value <strong>of</strong> <strong>DC</strong>-link capacitance. Also, in this case<br />

additional prefilter, with T fU time constant has been added in order to reduce<br />

tracking overshoot.<br />

T fU = 4(T I + T fU<strong>DC</strong> ) (3.30)<br />

Figure 3.15 shows step response <strong>of</strong> <strong>DC</strong>-link voltage control loop.<br />

1.5<br />

(a)<br />

From: Udc ref<br />

To: Udc<br />

1.5<br />

(b)<br />

From: Udc ref<br />

To: Udc<br />

System: Udc_PI<br />

I/O: Udc_{ref} to Udc<br />

Peak amplitude: 1.49<br />

Overshoot (%): 49.5<br />

At time (sec): 0.0169<br />

System: Udc_PI<br />

I/O: Udc_{ref} to Udc<br />

Peak amplitude: 1.09<br />

Overshoot (%): 8.75<br />

At time (sec): 0.0309<br />

1<br />

1<br />

System: Udc_PI<br />

I/O: Udc_{ref} to Udc<br />

Rise Time (sec): 0.00565<br />

System: Udc_PI<br />

I/O: Udc_{ref} to Udc<br />

Settling Time (sec): 0.0547<br />

System: Udc_PI<br />

I/O: Udc_{ref} to Udc<br />

Rise Time (sec): 0.0148<br />

System: Udc_PI<br />

I/O: Udc_{ref} to Udc<br />

Settling Time (sec): 0.0436<br />

0.5<br />

0.5<br />

0<br />

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08<br />

0<br />

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08<br />

Figure 3.15: Step response <strong>of</strong> <strong>DC</strong> voltage control loop in DPC-SVM: (a) without<br />

prefilter, (b) with prefilter<br />

3.5 Virtual Flux Based <strong>Control</strong><br />

The concept <strong>of</strong> Virtual Flux (VF) based approach has been proposed to improve<br />

the VOC scheme [10], and further developed for <strong>AC</strong> voltage sensorless instantaneous<br />

active and reactive power estimation [4], [7], and [52]. This concept allows<br />

replacing <strong>AC</strong>-side voltage sensors with a virtual flux estimator, which gives advantages<br />

like:<br />

• natural filtering <strong>of</strong> line voltage harmonics (∼ 1 n ),


3.5. VIRTUAL FLUX BASED CONTROL 29<br />

• system simplification,<br />

• <strong>AC</strong>-side voltage sensorless operation,<br />

• isolation between control and power circuit part,<br />

• higher reliability,<br />

• cost reduction.<br />

The VF principle is based on assumption that line voltage and VSC input<br />

choke equations (Fig. 3.16), can be considered as quantities describing virtual<br />

<strong>AC</strong> motor. Choke resistance R and inductance L represents stator resistance<br />

and stator leakage inductance respectively. <strong>Phase</strong> to phase voltages U L(ph−ph) can<br />

be considered as induced by virtual flux. Hence, integration <strong>of</strong> the voltages leads<br />

to virtual flux space vector Ψ L in stationary αβ coordinates. With definition <strong>of</strong><br />

the virtual flux vector:<br />

∫<br />

Ψ Lαβ = Ψ Lαβ0 + U Lαβ dt (3.31)<br />

and line voltage U Lαβ given by:<br />

U Lαβ = U P αβ + U Iαβ (3.32)<br />

where: U P αβ is VSC input voltage, and U Iαβ is choke voltage vector defined as:<br />

U Iαβ = L dI Lαβ<br />

dt<br />

+ RI Lαβ (3.33)<br />

If we assume that in (3.33) voltage drop on choke resistance is small in relation<br />

to voltage drop on choke inductance, line voltage U Lαβ space vector can be<br />

calculated from:<br />

U Lαβ = L dI Lαβ<br />

+ U P αβ (3.34)<br />

dt<br />

After substituting (3.34) into (3.31), and assuming that initial conditions Ψ Lαβ0<br />

are equal to zero, yields:<br />

∫<br />

Ψ Lαβ = LI Lαβ + U P αβ dt (3.35)<br />

Converter input voltage U P αβ depends on <strong>DC</strong>-link voltage U <strong>DC</strong> value and switching<br />

states S a , S b , and S c , generated by control system. This relation can be<br />

expressed as:<br />

U P αβ = U <strong>DC</strong> S αβ (3.36)<br />

or by:<br />

U P α = 2 3 U <strong>DC</strong><br />

(<br />

S a − 1 )<br />

2 (S b + S c )<br />

(3.37)


ILq<br />

φ<br />

ωL<br />

30 CHAPTER 3. CONTROL STRATEGIES FOR VSC<br />

L<br />

Ra uPa iLa uLb uLa Lb La iLb iLc Rb Rc uPb uPc U<strong>DC</strong> A<br />

C B +<br />

Lc uLc<br />

Virtual <strong>AC</strong> Motor<br />

Figure 3.16: Scheme <strong>of</strong> VSC with <strong>AC</strong> side presented as a virtual <strong>AC</strong> motor<br />

-<br />

O<br />

A<br />

D<br />

U P β =<br />

√<br />

3<br />

3 U <strong>DC</strong> (S b − S c ) (3.38)<br />

Voltage Source Converter <strong>DC</strong>-side<br />

Finally, virtual flux Ψ<br />

<strong>AC</strong>-side<br />

Lαβ can be expressed by:<br />

Ψ Lα = 2 3<br />

∫<br />

U <strong>DC</strong><br />

(S a − 1 )<br />

2 (S b + S c ) dt + LI Lα (3.39)<br />

√ ∫ 3<br />

Ψ Lβ =<br />

3<br />

U <strong>DC</strong> (S b − S c ) dt + LI Lβ (3.40)<br />

Note that virtual flux is shifted 90 ◦ in relation to line voltage, which causes<br />

different space vectors orientation (Fig. 3.17).<br />

(a)<br />

q<br />

(b)<br />

q<br />

ULq<br />

φ<br />

ILdILq<br />

ILdq<br />

ILdq ωL ULd<br />

d<br />

Figure 3.17: Relation between line voltage and virtual flux coordinates transformation:<br />

(a) line voltage U Ldq oriented reference coordinates and space vectors,<br />

(b) virtual flux Ψ L oriented reference coordinates and space vectors<br />

Ld<br />

ILd<br />

d


UPα<br />

Lα<br />

Lα<br />

3.5. VIRTUAL FLUX BASED CONTROL 31<br />

On the basis <strong>of</strong> (3.39) and (3.40) virtual flux estimator with ideal integration<br />

part has been built Fig. 3.18 (a).<br />

(a)<br />

UPα<br />

(b)<br />

I<br />

200<br />

0<br />

ILαL<br />

−200<br />

(c)<br />

2<br />

1<br />

0<br />

I<br />

−1<br />

−2<br />

0 0.1 0.2 0.3 0.4 0.5 0.6<br />

ILβ<br />

Figure 3.18: Virtual flux estimator with ideal integration: (a) block scheme,<br />

(b) estimated line voltage U Lα [V], (c) estimated virtual flux Ψ Lα [Wb]<br />

Lβ<br />

UPβ<br />

As it can be seen in Fig. 3.18 (c), ideal integration produce dc <strong>of</strong>fset, because<br />

it depends on unknown initial conditions Ψ Lαβ0 .<br />

(a)<br />

(b)<br />

-<br />

I<br />

200<br />

0<br />

LPF<br />

−200<br />

ILαL<br />

LPF<br />

(c)<br />

2<br />

1<br />

-<br />

I<br />

0<br />

−1<br />

−2<br />

0 1 2 3 4 5 6<br />

ILβ<br />

Figure 3.19: Virtual flux estimator with low pass filter: (a) block scheme, (b) estimated<br />

line voltage U Lα [V], (c) estimated virtual flux Ψ Lα [Wb]<br />

Lβ<br />

UPβ<br />

To avoid initial condition problem, a low pass filter (LPF) has been implemented<br />

in feedback loop as shown in Fig. 3.19 (a). In this case, even if initial<br />

conditions <strong>of</strong> integral part are wrong, virtual flux dc <strong>of</strong>fset is being removed after<br />

about 3 seconds Fig. 3.19 (c). To speed up this process, an additional gain part<br />

has been introduced into estimator Fig. 3.20 (a). In this case, dc <strong>of</strong>fset removal<br />

process takes about 300 ms Fig. 3.20 (c).


Lα<br />

32 CHAPTER 3. CONTROL STRATEGIES FOR VSC<br />

(a)<br />

UPα<br />

(b)<br />

-<br />

KI<br />

200<br />

0<br />

K 1 K 1<br />

LPF<br />

−200<br />

ILαL<br />

-<br />

LPF<br />

KI<br />

(c)<br />

2<br />

1<br />

0<br />

−1<br />

−2<br />

0 0.1 0.2 0.3 0.4 0.5 0.6<br />

Figure 3.20:<br />

UPβ<br />

ILβ<br />

Virtual flux estimator with low pass filter and additional gain<br />

Lβ<br />

part K: (a) block scheme, (b) estimated line voltage U Lα [V], (c) estimated<br />

virtual flux Ψ Lα [Wb]<br />

3.6 Simulation Results<br />

Several simulations have been done in order to evaluate described control methods.<br />

Simulations have been focused on properties <strong>of</strong> Direct Power <strong>Control</strong> with<br />

Space Vector Modulator DPC-SVM, and Switching Table based Direct Power<br />

<strong>Control</strong> ST-DPC in steady states as well as in transients.<br />

Quantity<br />

Value<br />

Nominal Power S 0 [kVA] 5<br />

Fundamental Frequency F L [Hz] 50<br />

Supply Voltage u L(RMS) [V] 120<br />

Input Filter Inductance L [mH] 10<br />

Input Filter Resistance R [mΩ] 100<br />

<strong>DC</strong>-link Capacitance C [µF] 470<br />

Table 3.3: Main data <strong>of</strong> simulation model<br />

The simulation models have been done in MATLAB - SimPowerTollbox. Table<br />

3.3 shows basic informations about modeled power circuit.<br />

3.6.1 Steady State Operation<br />

Proposed control methods have been compared under steady state operation.<br />

To avoid influence <strong>of</strong> <strong>DC</strong>-link voltage control loop, all tests have been carried out<br />

with open loop, and under unity power factor condition Q ref = 0. The reference<br />

value <strong>of</strong> active power P ref has been set to 2 kW, and the <strong>DC</strong> side load resistance


3.6. SIMULATION RESULTS 33<br />

has been set to 100 Ω. Table 3.4 summarizes sampling frequencies F s used in<br />

both methods, and achieved line current T HD factors.<br />

<strong>Control</strong> Method F sw F swAV F swMax F s T HD i<br />

per cycle [kHz] [kHz] [kHz] [%]<br />

DPC-SVM fixed 5 5 5 3.21<br />

ST-DPC var. 4.5 40 40 5.42<br />

Table 3.4: Sampling and switching frequencies <strong>of</strong> tested control methods<br />

Note that, ST-DPC requires higher sampling frequency than DPC-SVM scheme.<br />

Figures 3.21 and 3.22 show steady state operation. Both controls fulfill unity<br />

power factor condition, and line current i La is in phase with line voltage u la .<br />

Figure 3.24 shows converter voltage measured between converter phase a input<br />

and negative <strong>DC</strong> bus u P a<strong>DC</strong>− as well as related number <strong>of</strong> transistor “on“<br />

and “<strong>of</strong>f “ switchings N Sa per one cycle. For DPC-SVM constant number <strong>of</strong><br />

switchings is ensured by Space Vector Modulator, and it is equal to the sampling<br />

frequency.<br />

200<br />

150<br />

100<br />

50<br />

(a)<br />

500<br />

400<br />

300<br />

200<br />

100<br />

(c)<br />

u P a<br />

u La<br />

0.1 0.105 0.11 0.115 0.12<br />

0<br />

−50<br />

−100<br />

−150<br />

0<br />

−100<br />

−200<br />

−300<br />

−400<br />

−200<br />

0.1 0.105 0.11 0.115 0.12<br />

15<br />

10<br />

(b)<br />

−500<br />

2500<br />

2000<br />

(d)<br />

P Q<br />

i La<br />

0.1 0.105 0.11 0.115 0.12<br />

5<br />

1500<br />

0<br />

1000<br />

−5<br />

500<br />

−10<br />

0<br />

−15<br />

0.1 0.105 0.11 0.115 0.12<br />

−500<br />

Figure 3.21: Steady state operation <strong>of</strong> DPC-SVM: (a) line voltage u La [V], (b) line<br />

current i La [A], (c) VSC input voltage u P a [V], (d) referenced and measured<br />

active P [W] and reactive power Q [var]


34 CHAPTER 3. CONTROL STRATEGIES FOR VSC<br />

200<br />

150<br />

100<br />

50<br />

(a)<br />

500<br />

400<br />

300<br />

200<br />

100<br />

(c)<br />

u P a<br />

u La<br />

0.1 0.105 0.11 0.115 0.12<br />

0<br />

−50<br />

−100<br />

−150<br />

0<br />

−100<br />

−200<br />

−300<br />

−400<br />

−200<br />

0.1 0.105 0.11 0.115 0.12<br />

15<br />

10<br />

(b)<br />

−500<br />

2500<br />

2000<br />

(d)<br />

P Q<br />

i La<br />

0.1 0.102 0.104 0.106 0.108 0.11 0.112<br />

5<br />

1500<br />

0<br />

1000<br />

−5<br />

500<br />

−10<br />

0<br />

−15<br />

0.1 0.105 0.11 0.115 0.12<br />

−500<br />

Figure 3.22: Steady state operation <strong>of</strong> ST-DPC: (a) line voltage u La [V], (b) line<br />

current i La [A], (c) VSC input voltage u P a [V], (d) referenced and measured<br />

active P [W] and reactive power Q [var]<br />

5<br />

DPC-SVM<br />

Fundamental (50Hz) = 7.873 , THD= 3.21%<br />

5<br />

ST-DPC<br />

Fundamental (50Hz) = 7.926 , THD= 5.42%<br />

4.5<br />

4.5<br />

4<br />

4<br />

Mag (% <strong>of</strong> Fundamental)<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

Mag (% <strong>of</strong> Fundamental)<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

1<br />

0.5<br />

0.5<br />

0<br />

0 50 100 150 200 250 300 350 400<br />

Harmonic order<br />

0<br />

0 50 100 150 200 250 300 350 400<br />

Harmonic order<br />

Figure 3.23: Line current harmonics spectrum<br />

In case <strong>of</strong> ST-DPC, switching frequency depends on switching table construction,<br />

sampling frequency, hysteresis controllers band, <strong>DC</strong>-link voltage, and converter<br />

load. For ST-DPC switching table has been designed in order to avoid<br />

transistor switchings under maximum current conduction (Fig. 3.24 (b)).<br />

Figure 3.23 shows line current i L harmonic spectrum up to 20 kHz. In case<br />

<strong>of</strong> DPC-SVM harmonic spectrum is concentrated around multiple <strong>of</strong> sampling<br />

frequency. For ST-DPC harmonic spectrum is spread over wide range <strong>of</strong> frequen-


3.6. SIMULATION RESULTS 35<br />

500<br />

450<br />

DPC-SVM<br />

(a)<br />

500<br />

450<br />

u P a<strong>DC</strong>−<br />

ST-DPC<br />

u P a<strong>DC</strong>−<br />

0.1 0.105 0.11 0.115 0.12<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

0.1 0.105 0.11 0.115 0.12<br />

250<br />

(b)<br />

0<br />

250<br />

N Sa<br />

N Sa<br />

0.1 0.105 0.11 0.115 0.12<br />

200<br />

200<br />

150<br />

150<br />

100<br />

100<br />

50<br />

50<br />

0<br />

0.1 0.105 0.11 0.115 0.12<br />

0<br />

Figure 3.24: Switchings number <strong>of</strong> phase a transistor “on” and “<strong>of</strong>f ” switchings<br />

in DPC-SVM and ST-DPC methods: (a) voltage measured between converter<br />

input and negative <strong>DC</strong> bus u P a<strong>DC</strong>− [V], (b) number <strong>of</strong> switchings N Sa in phase a<br />

cies what is caused by variable switching frequency.


36 CHAPTER 3. CONTROL STRATEGIES FOR VSC<br />

3.6.2 Transient Operation<br />

Behavior <strong>of</strong> discussed control methods have been compared under transient states.<br />

The first test was response to the step change <strong>of</strong> referenced active power P ref<br />

from 1 to 2 kW, and has been carried out with open <strong>DC</strong>-link voltage control<br />

loop (Fig. 3.25 – 3.26). As it can be seen, DPC-SVM is about seven times slower<br />

than ST-DPC (see Fig. 3.27). It is caused by higher sampling frequency, which<br />

corresponds to faster response. Also, in case <strong>of</strong> DPC-SVM coupling between<br />

active and reactive powers can be observed.<br />

200<br />

150<br />

100<br />

50<br />

(a)<br />

500<br />

400<br />

300<br />

200<br />

100<br />

(c)<br />

u P a<br />

u La<br />

0.095 0.1 0.105 0.11 0.115 0.12 0.125 0.13 0.135<br />

0<br />

−50<br />

−100<br />

−150<br />

0<br />

−100<br />

−200<br />

−300<br />

−400<br />

−200<br />

0.095 0.1 0.105 0.11 0.115 0.12 0.125 0.13 0.135<br />

15<br />

10<br />

(b)<br />

−500<br />

(d)<br />

2500<br />

P Q<br />

2000<br />

i La<br />

0.095 0.1 0.105 0.11 0.115 0.12 0.125 0.13 0.135<br />

5<br />

1500<br />

0<br />

1000<br />

−5<br />

500<br />

−10<br />

0<br />

−15<br />

0.095 0.1 0.105 0.11 0.115 0.12 0.125 0.13 0.135<br />

−500<br />

Figure 3.25: Transient operation <strong>of</strong> DPC-SVM power step change from 1 kW to<br />

2 kW: (a) line voltage u La [V], (b) line current i La [A], (c) VSC input voltage<br />

u P a [V], (d) referenced and measured active P [W] and reactive power Q [var]<br />

Figure 3.28 presents second test, which was response to the step change <strong>of</strong><br />

<strong>DC</strong>-link voltage reference value U <strong>DC</strong>ref from 300 V to 600 V. The <strong>DC</strong>-link voltage<br />

PI controller has been tuned for each method according to the rules presented in<br />

Section 3.4. For DPC-SVM U <strong>DC</strong> overshoot was 8 %, and 4 % for ST-DPC. Also,<br />

regulation time was about 30 ms longer than in switching table approach.


3.6. SIMULATION RESULTS 37<br />

200<br />

150<br />

100<br />

50<br />

(a)<br />

500<br />

400<br />

300<br />

200<br />

100<br />

(c)<br />

u P a<br />

u La<br />

0.095 0.1 0.105 0.11 0.115 0.12 0.125 0.13 0.135<br />

0<br />

−50<br />

−100<br />

−150<br />

0<br />

−100<br />

−200<br />

−300<br />

−400<br />

−200<br />

0.095 0.1 0.105 0.11 0.115 0.12 0.125 0.13 0.135<br />

15<br />

10<br />

(b)<br />

−500<br />

(d)<br />

2500<br />

P Q<br />

2000<br />

i La<br />

0.095 0.1 0.105 0.11 0.115 0.12 0.125 0.13 0.135<br />

5<br />

1500<br />

0<br />

1000<br />

−5<br />

500<br />

−10<br />

0<br />

−15<br />

0.095 0.1 0.105 0.11 0.115 0.12 0.125 0.13 0.135<br />

−500<br />

Figure 3.26: Transient operation <strong>of</strong> ST-DPC power step change from 1 kW to<br />

2 kW: (a) line voltage u La [V], (b) line current i La [A], (c) VSC input voltage<br />

u P a [V], (d) referenced and measured active P [W] and reactive power Q [var]<br />

2500 (a)<br />

P Q<br />

2000<br />

2500 (b)<br />

2000<br />

500 (c)<br />

400<br />

300<br />

u P a<br />

P Q DPC-SVM 0.105 0.106 0.107 0.108 0.109 0.11 0.111 0.112 0.113 0.114<br />

1500<br />

1000<br />

500<br />

0<br />

1500<br />

1000<br />

500<br />

0<br />

200<br />

100<br />

0<br />

−100<br />

−200<br />

−300<br />

−400<br />

−500<br />

−500<br />

0.105 0.106 0.107 0.108 0.109 0.11 0.111 0.112 0.113 0.114<br />

2500<br />

0.105 0.106 0.107 0.108 0.109 0.11 0.111 0.112 0.113 0.114<br />

2500<br />

ST-DPC<br />

−500<br />

500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

400<br />

300<br />

200<br />

100<br />

0<br />

−100<br />

−200<br />

−300<br />

−400<br />

−500<br />

0.105 0.106 0.107 0.108 0.109 0.11 0.111 0.112 0.113 0.114<br />

−500<br />

−500<br />

0.105 0.106 0.107 0.108 0.109 0.11 0.111 0.112 0.113 0.114 0.105 0.106 0.107 0.108 0.109 0.11 0.111 0.112 0.113 0.114<br />

Figure 3.27: Transient operation <strong>of</strong> DPC methods step change <strong>of</strong> referenced<br />

active power P ref from 1 kW to 2 kW in zoom: (a) referenced and measured<br />

active P [W] and reactive power Q [var], (b) sampled referenced and measured<br />

active P [W] and reactive power Q [var], (c) VSC input voltage u P a [V]


38 CHAPTER 3. CONTROL STRATEGIES FOR VSC<br />

650<br />

600<br />

DPC-SVM<br />

200<br />

u La i La 20 (b)<br />

550<br />

10<br />

500<br />

450<br />

0<br />

0<br />

400<br />

350<br />

(a) U <strong>DC</strong><br />

0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24<br />

−10<br />

300<br />

−20<br />

250<br />

500<br />

400<br />

−200<br />

0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24<br />

8000<br />

7000<br />

0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24<br />

P Q<br />

(d)<br />

300<br />

6000<br />

200<br />

100<br />

5000<br />

0<br />

4000<br />

−100<br />

3000<br />

−200<br />

2000<br />

−300<br />

1000<br />

−400<br />

(c) u P a<br />

0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24<br />

0<br />

−500<br />

650<br />

600<br />

0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24<br />

ST-DPC<br />

(a) U <strong>DC</strong><br />

0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24<br />

200<br />

u La<br />

i La<br />

25<br />

20<br />

(b)<br />

550<br />

15<br />

10<br />

500<br />

5<br />

450<br />

400<br />

350<br />

300<br />

250<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

−200<br />

0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24<br />

8000<br />

0<br />

7000<br />

6000<br />

5000<br />

4000<br />

0<br />

−5<br />

−10<br />

−15<br />

−20<br />

0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24 −25<br />

P Q<br />

(d)<br />

(c) u P a<br />

0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24<br />

−100<br />

−200<br />

−300<br />

−400<br />

−500<br />

3000<br />

2000<br />

1000<br />

0<br />

0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24<br />

Figure 3.28: Transient operation <strong>of</strong> DPC-SVM and ST-DPC, step change <strong>of</strong><br />

referenced <strong>DC</strong> voltage U <strong>DC</strong>ref from 300 V to 600 V: (a) referenced and measured<br />

<strong>DC</strong> voltage U <strong>DC</strong> [V], (b) line voltage u La [V] and line current i La [A], (c) VSC<br />

input voltage u P a [V], (d) referenced and measured active P [W] and reactive<br />

power Q [var]


3.7. SUMMARY 39<br />

3.7 Summary<br />

Principles <strong>of</strong> three most known grid connected VSC control methods as well as<br />

basics <strong>of</strong> virtual flux approach have been presented in this Chapter.<br />

The first method is VOC strategy, which uses current control loops with PI<br />

controllers and Space Vector Modulator. The second one is Switching Table<br />

based Direct Power <strong>Control</strong> (ST-DPC) where modulator and PI controllers have<br />

been replaced by switching table and hysteresis controllers respectively. However,<br />

high sampling frequency requirement, and variable switching frequency make<br />

difficulties in hardware implementation.<br />

Finally, DPC-SVM which combines advantages <strong>of</strong> VOC and ST-DPC structure<br />

has been presented. It uses PI internal power controllers and SVM block,<br />

which guarantees constant switching frequency. However, system dynamic is<br />

lower than in ST-DPC case, as shown in Tab. 3.5 and Tab. 3.6.<br />

<strong>Control</strong> Method t set [µs] t r [µs]<br />

DPC-SVM 3500 900<br />

ST-DPC 500 200<br />

Table 3.5: Dynamic properties <strong>of</strong> DPC methods for P ref step change<br />

<strong>Control</strong> Method t set [ms] t r [ms] Overshot [%]<br />

DPC-SVM 80 16 8<br />

ST-DPC 45 14 4<br />

Table 3.6: Dynamic properties <strong>of</strong> DPC methods for U <strong>DC</strong>ref step change


Chapter 4<br />

<strong>Predictive</strong> Direct Power <strong>Control</strong><br />

4.1 Overview<br />

This Chapter presents the main aim <strong>of</strong> this Thesis, the <strong>Predictive</strong> Direct Power<br />

<strong>Control</strong> (P-DPC), a new control where well known Direct Power <strong>Control</strong> approach<br />

is combined with predictive vectors selection. Different types <strong>of</strong> P-DPC have been<br />

developed, which differ on converter vector U P selection, and their application<br />

times. Presented algorithms can be divided into two main groups:<br />

• Variable Switching Frequency - VSF<br />

• Constant Switching Frequency - CSF<br />

In the first case, control applies only one voltage vector U P per sampling period.<br />

The appropriate vector is chosen by minimization <strong>of</strong> the cost function value,<br />

which describes behavior <strong>of</strong> the system.<br />

In the second case, control selects two active and one zero voltage vectors.<br />

The goal <strong>of</strong> the predictive control is to calculate optimal vector application times,<br />

in order to minimize cost function value.<br />

Cost function approach makes overall system features change very easy, which<br />

will be shown on current spectrum control, and reduced switching frequency examples.<br />

Also, <strong>AC</strong>-side voltage sensorless operation will be presented.<br />

4.2 Principles <strong>of</strong> Model Based <strong>Predictive</strong> <strong>Control</strong><br />

Various control strategies have been proposed in recent works on the Voltage<br />

Source <strong>Converters</strong>. Although, these control strategies can achieve the same main<br />

goals as low harmonic distorted grid current waveforms and high power factor,<br />

their principles differ. A most popular methods <strong>of</strong> direct active and reactive power<br />

41


42 CHAPTER 4. PREDICTIVE DIRECT POWER CONTROL<br />

control (DPC) as well as current control (VOC) have been presented in previous<br />

Chapter.<br />

An important group <strong>of</strong> control strategies based on Model <strong>Predictive</strong> <strong>Control</strong><br />

(MPC) becomes very popular and has been constantly developed and improved<br />

[47]. Especially, MPC with finite states which meets very well discrete<br />

nature <strong>of</strong> power converter with digital signal processing (DSP) used for control<br />

algorithm, are widely applied [1] for current [28], [29], [53], and power [54], [55],<br />

[56], [57] control. MPC does not use modulator, and it can be used to control <strong>of</strong><br />

any type <strong>of</strong> converter for example: multilevel Neutral Point Clamped (NPC) [58],<br />

[59], [60], [61], [62], H-bridge converter [63], buck converter [64], [65], or matrix<br />

converter [66], [67], [68], [69].<br />

Due to minimization <strong>of</strong> cost function value, which defines behavior <strong>of</strong> the system,<br />

most effective voltage vector is selected for next sampling period. However,<br />

in such a system switching frequency is variable, and depends on sampling frequency,<br />

converter load and parameters variations. To avoid above disadvantages<br />

predictive control with DPC, which operates with constant switching frequency<br />

has been developed [70], [71], [72].<br />

4.3 Variable Switching Frequency <strong>Predictive</strong> Direct Power<br />

<strong>Control</strong><br />

<strong>Predictive</strong> Direct Power <strong>Control</strong> with Variable Switching Frequency VSF-P-DPC<br />

is based on mathematical model <strong>of</strong> the converter. Equations (3.13), (3.14) can<br />

be used for active and reactive power derivative calculation.<br />

dP<br />

dt = 3 (<br />

dI Lα<br />

U Lα<br />

2 dt<br />

+ dU Lα dI Lβ<br />

I Lα + U Lβ<br />

dt<br />

dt<br />

+ dU )<br />

Lβ<br />

I Lβ<br />

dt<br />

(4.1)<br />

dQ<br />

dt = 3 (<br />

dI Lα<br />

U Lβ<br />

2 dt<br />

+ dU Lβ dI Lβ<br />

I Lα − U Lα<br />

dt<br />

dt<br />

− dU )<br />

Lα<br />

I Lβ<br />

dt<br />

(4.2)<br />

Equation (2.13) can be rewritten as:<br />

dI Lαβ<br />

dt<br />

= 1 L (U Lαβ − U P αβ − RI Lαβ ) (4.3)<br />

If we consider sinusoidal and balanced line voltage, following expressions can be<br />

taken into account:<br />

dU Lα<br />

= −ω L U Lβ (4.4)<br />

dt<br />

dU Lβ<br />

dt<br />

= ω L U Lα (4.5)


4.3. VARIABLE SWITCHING FREQUENCY PREDICTIVE DIRECT POWER<br />

CONTROL 43<br />

Replacing (4.3), (4.4) and (4.5) in (4.1) and (4.2) it is possible to get functions<br />

describing instantaneous active and reactive power time derivatives.<br />

dP<br />

dt = 3 ( )<br />

1<br />

2 U Lα<br />

L (U Lα − U P α − RI Lα ) + ω L I Lβ +<br />

( )<br />

3 1<br />

2 U Lβ<br />

L (U Lβ − U P β − RI Lβ ) − ω L I Lα (4.6)<br />

dQ<br />

dt = 3 (<br />

2 U Lα ω L I Lα − 1 )<br />

L (U Lβ − U P β − RI Lβ )<br />

3<br />

2 U Lβ<br />

+<br />

( )<br />

1<br />

L (U Lα − U P α − RI Lα ) + ω L I Lβ<br />

or it might be rewritten as difference equation:<br />

(P + ∆P ) − P<br />

= 3 ( )<br />

1<br />

∆t 2 U Lα<br />

L (U Lα − U P α − RI Lα ) + ω L I Lβ +<br />

( )<br />

3 1<br />

2 U Lβ<br />

L (U Lβ − U P β − RI Lβ ) − ω L I Lα<br />

(4.7)<br />

(4.8)<br />

(Q + ∆Q) − Q<br />

∆t<br />

= 3 (<br />

2 U Lα ω L I Lα − 1 )<br />

L (U Lβ − U P β − RI Lβ ) +<br />

( )<br />

3 1<br />

2 U Lβ<br />

L (U Lα − U P α − RI Lα ) + ω L I Lβ<br />

(4.9)<br />

where: P , Q are active and reactive power, ∆P , ∆Q are power differentials,<br />

and sum <strong>of</strong> this components gives P P (4.10) and Q P (4.11) predicted active<br />

and reactive power, ∆t is time difference and can be noted as a sampling time<br />

(4.12).<br />

P + ∆P = P P (4.10)<br />

Q + ∆Q = Q P (4.11)<br />

∆t = T s (4.12)<br />

The predicted power values can be expressed as:<br />

P P = 3 ( )<br />

1<br />

2 T s<br />

[U Lα<br />

L (U Lα − U P α − RI Lα ) + ω L I Lβ +<br />

U Lβ<br />

( 1<br />

L (U Lβ − U P β − RI Lβ ) − ω L I Lα<br />

) ]<br />

+ P (4.13)<br />

Q P = 3 (<br />

2 T s<br />

[U Lα ω L I Lα − 1 )<br />

L (U Lβ − U P β − RI Lβ ) +<br />

( ) ] 1<br />

U Lβ<br />

L (U Lα − U P α − RI Lα ) + ω L I Lβ + Q (4.14)


44 CHAPTER 4. PREDICTIVE DIRECT POWER CONTROL<br />

(a)<br />

(b)<br />

0<br />

∆ P 0<br />

∆ P 7<br />

∆ P 6<br />

∆ P 1<br />

∆ P 2 ∆ P 3<br />

∆ P 4<br />

∆ P 5<br />

0<br />

∆ Q 7<br />

∆ Q 0<br />

∆ Q 4<br />

∆ Q 5<br />

∆ Q 6<br />

∆ Q 1<br />

∆ Q 2<br />

∆ Q 3<br />

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02<br />

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02<br />

Figure 4.1: Active (a) and reactive (b) power derivatives behavior under different<br />

U P voltage vectors application<br />

The power derivatives depend on the grid variables, line side inductive filter<br />

parameters and on the converter switching states. Fig. 4.1 shows active ∆P<br />

and reactive ∆Q power derivatives behavior related to different voltage vectors<br />

U P , under unity power factor and steady state operation.<br />

As it was mentioned in Section 2.2, VSC has eight permitted states, which<br />

correspond to eight possible voltage vectors U P . The goal <strong>of</strong> the VSF-P-DPC<br />

is to calculate powers behavior P , Q for all possible states U P . Voltage vector,<br />

which minimizes cost function value J, defined as:<br />

√<br />

J = (P ref − P P ) 2 + (Q ref − Q P ) 2 (4.15)<br />

is selected for next sampling period.<br />

U Lαβ 200e j45 V P 600 W<br />

I Lαβ 2.82e j90 A Q −600 var<br />

U <strong>DC</strong> 600 V P ref 600 W<br />

L 0.01 H Q ref 0 var<br />

R 0.1 Ω T s 50 µs<br />

Table 4.1: An example operating conditions <strong>of</strong> VSF-P-DPC


UPdqU<strong>DC</strong><br />

Qref<br />

U<strong>DC</strong>Sabc<br />

uLab<br />

iLab<br />

4.3. VARIABLE SWITCHING FREQUENCY PREDICTIVE DIRECT POWER<br />

CONTROL 45<br />

7<br />

P<br />

PQ<br />

Q<br />

Power Model<br />

<strong>Predictive</strong> <strong>Control</strong><br />

ULαβ ILαβ<br />

(PQ)<br />

αβ<br />

abc<br />

PPQP7<br />

Cost Function<br />

Minimization<br />

VSC<br />

PI<br />

-<br />

LOAD<br />

Pref<br />

Figure 4.2: <strong>Control</strong> scheme <strong>of</strong> Variable Switching Frequency <strong>Predictive</strong> Direct<br />

Power <strong>Control</strong> VSF-P-DPC<br />

U<strong>DC</strong>ref<br />

U P P P [W] Q P [var] P err [W] Q err [var] J [VA]<br />

U P 1 484.8 -1015.1 115.1 1015.1 1021.6<br />

U P 2 329.5 -435.5 270.4 435.5 512.7<br />

U P 3 753.8 -11.3 -153.8 11.3 154.2<br />

U P 4 1333.3 -166.6 -733.3 166.6 752<br />

U P 5 1488.6 -746.1 -888.6 746.1 1160.3<br />

U P 6 1064.4 -1170.4 -464.4 1170.4 1259.2<br />

U P 0 909.12 -590.8 -309.1 590.8 666.8<br />

Table 4.2: An example operation <strong>of</strong> VSF-P-DPC<br />

Lets consider VSF-P-DPC operation under conditions listed in Tab. 4.1. On<br />

the basis <strong>of</strong> (4.13) and (4.14) values <strong>of</strong> predicted powers P P , Q P are calculated<br />

for every voltage vector. Table 4.2 summarizes results. As it can be seen, the<br />

minimum value <strong>of</strong> cost function J is achieved by U P 3 voltage vector, and this<br />

vector is selected for next sampling period. Figure 4.3 shows vector diagram <strong>of</strong><br />

predicted power in pq coordinates.


Pref, Qref<br />

∆PP2, ∆PP1, ∆QP2<br />

∆QP1<br />

∆PP3, ∆QP3<br />

∆PP0, ∆QP0<br />

∆PP6, ∆QP6<br />

∆PP4, ∆QP4<br />

∆PP5, ∆QP5<br />

46 CHAPTER 4. PREDICTIVE DIRECT POWER CONTROL<br />

q<br />

p<br />

P,Q<br />

Figure 4.3: Vector diagram <strong>of</strong> predicted powers in VSF-P-DPC<br />

4.4 Current Harmonics Spectrum <strong>Control</strong><br />

Previous subsection described control algorithm where switching state <strong>of</strong> the converter<br />

is calculated in every sampling period. However, the optimal switching<br />

state is applied during a whole sampling period, which leads to variable switching<br />

frequency, because the same converter state can be optimal for few sampling<br />

periods. The current spectrum is spread over a wide range <strong>of</strong> frequencies, which<br />

is not advisable in some applications e.g., switching frequency and loses limiting,<br />

input filter design and others. In paper [73] authors presented a predictive current<br />

control with modified cost function. In order to control load current spectrum<br />

a digital filter has been added into cost function. This idea has been adopted into<br />

Variable Switching Frequency <strong>Predictive</strong> Direct Power <strong>Control</strong> (VSF-P-DPC)<br />

[55], to achieve fixed line current harmonics spectrum, giving HC-VSF-P-DPC.<br />

Figure 4.4 presents general scheme <strong>of</strong> proposed control. The prediction procedure<br />

is exactly the same as described in Section 4.3, however cost function is<br />

modified by an additional filter.<br />

√ (<br />

J = F (P ref − P P ) 2) (<br />

+ F (Q ref − Q P ) 2) (4.16)


UPdqU<strong>DC</strong><br />

U<strong>DC</strong>Sabc<br />

uLab<br />

iLab<br />

4.4. CURRENT HARMONICS SPECTRUM CONTROL 47<br />

7<br />

P<br />

PQ<br />

Q<br />

Power Model<br />

<strong>Predictive</strong> <strong>Control</strong><br />

ULαβ ILαβ<br />

(PQ)<br />

αβ<br />

abc<br />

PPQP7<br />

Qref Pref<br />

Filter and<br />

Cost Function<br />

Minimization<br />

VSC<br />

PI<br />

-<br />

LOAD<br />

Figure 4.4: <strong>Control</strong> scheme <strong>of</strong> Variable Switching Frequency <strong>Predictive</strong> Direct<br />

Power <strong>Control</strong> with Current Spectrum Harmonics <strong>Control</strong> VSF-P-DPC<br />

U<strong>DC</strong>ref<br />

where F is digital filter defined as:<br />

F (z) = b 0z 0 + b 1 z 1 + . . . + b n z n<br />

a 0 z 0 + a 1 z 1 + . . . + a n z n (4.17)<br />

where n is filter order.<br />

If we introduce band stop filter, the desired frequencies will be removed from<br />

the cost function. It means that cost function will have lover value and control<br />

will select more <strong>of</strong>ten vectors which produce desired frequencies. So, in order<br />

to concentrate current spectrum at specified frequency an additional band stop<br />

digital filter has to be introduced into the cost function. Figure 4.5 (a) shows<br />

Bode diagram <strong>of</strong> band stop filter designed for 4 kHz.<br />

On the contrary, to avoid specified frequency a band pass filter (see Fig. 4.5 (b))<br />

has to be introduced into the cost function. In this situation cost function will<br />

have higher value for desired frequency, so control will rarely select vectors, which<br />

will generate that frequency. The cost function has to be modified as follow:<br />

J = √ P 2 err + Q 2 err + K F BP [F (P 2 err) + F (Q 2 err)] (4.18)<br />

where F is filter given by (4.17), K F BP is gain factor and P err , Q err are power


48 CHAPTER 4. PREDICTIVE DIRECT POWER CONTROL<br />

0<br />

(a)<br />

Bode Diagram<br />

From: Input Point1 To: Output Point1<br />

−50<br />

−100<br />

Magnitude (dB)<br />

−150<br />

−200<br />

System: Band Stop Filter<br />

I/O: Input to Output<br />

Frequency (Hz): 4.02e+003<br />

Magnitude (dB): −266<br />

−250<br />

−300<br />

0<br />

−45<br />

−90<br />

−135<br />

<strong>Phase</strong> (deg)<br />

−180<br />

−225<br />

System: Band Stop Filter<br />

I/O: Input to Output<br />

Frequency (Hz): 4.02e+003<br />

<strong>Phase</strong> (deg): −181<br />

−270<br />

−315<br />

−360<br />

10 2 10 3 10 4<br />

Frequency (Hz)<br />

0<br />

(b)<br />

Bode Diagram<br />

From: Input Point To: Output Point<br />

−50<br />

−100<br />

Magnitude (dB)<br />

−150<br />

−200<br />

−250<br />

System: Band Pass Filter<br />

I/O: Input to Output<br />

Frequency (Hz): 4e+003<br />

Magnitude (dB): −0.022<br />

−300<br />

−350<br />

180<br />

135<br />

<strong>Phase</strong> (deg)<br />

90<br />

45<br />

0<br />

−45<br />

System: Band Pass Filter<br />

I/O: Input to Output<br />

Frequency (Hz): 4e+003<br />

<strong>Phase</strong> (deg): 2.61<br />

−90<br />

−135<br />

−180<br />

10 2 10 3 10 4<br />

Frequency (Hz)<br />

Figure 4.5: Bode diagrams <strong>of</strong> cost function digital filters: (a) band stop filter<br />

4 kHz, (b) band pass filter 4 kHz<br />

errors defined as:<br />

P err = P ref − P P (4.19)<br />

Q err = Q ref − Q P (4.20)<br />

However, additional K F BP factor has to be set up individually for different<br />

frequencies what is major drawback <strong>of</strong> this method. Also, it is difficult to use<br />

it for low frequencies removal, because filter pass band window has to be very<br />

narrow, which leads to high order <strong>of</strong> the designed filter.


UPdqU<strong>DC</strong><br />

Qref Pref<br />

U<strong>DC</strong>Sabc<br />

uLab<br />

iLab<br />

4.5. PREDICTIVE DIRECT POWER CONTROL WITH REDUCED SWITCHING<br />

FREQUENCY 49<br />

Proposed strategy allows to effectively fix the spectrum within a narrow frequency<br />

band. It does not mean that switching frequency is fixed, but it is possible<br />

to form harmonics spectrum if necessary.<br />

Presented algorithm opens new possibilities to control and mix different quantities<br />

like: power, current harmonics spectrum, <strong>DC</strong>-link voltage, switching frequency,<br />

within single cost function.<br />

4.5 <strong>Predictive</strong> Direct Power <strong>Control</strong> with Reduced Switching<br />

Frequency<br />

All described predictive controls work with variable switching frequency, which<br />

depends on sampling frequency, load changes, parameters mismatch. This subsection<br />

will present another type <strong>of</strong> VSF-P-DPC with reduced switching frequency<br />

FL-VSF-P-DPC.<br />

7<br />

P<br />

PQ<br />

Q<br />

Power Model<br />

<strong>Predictive</strong> <strong>Control</strong><br />

ULαβ ILαβ<br />

(PQ)<br />

αβ<br />

abc<br />

PPQP7<br />

Cost Function<br />

Minimization<br />

PKsw<br />

VSC<br />

PI<br />

-<br />

LOAD<br />

Figure 4.6: <strong>Control</strong> scheme <strong>of</strong> VSF-P-DPC with Reduced Switching Frequency<br />

FL-VSF-P-DPC<br />

U<strong>DC</strong>ref<br />

In order to reduce switching frequency cost function J has been modified by<br />

additional coefficient K sw related with VSC switching states. The most privileged<br />

voltage vectors are those, which provide zero or only one transistor switching<br />

(the previous one, or neighbor). The worst case is when all three branches have


50 CHAPTER 4. PREDICTIVE DIRECT POWER CONTROL<br />

to be switched. Table 4.3 describes relation between the new one and previous<br />

voltage vector.<br />

Vector 0 1 2 3 4 5 6 7<br />

0 0 1 2 1 2 1 2 3<br />

1 1 0 1 2 3 2 1 2<br />

2 2 1 0 1 2 3 2 1<br />

3 1 2 1 0 1 2 3 2<br />

4 2 3 2 1 0 1 2 1<br />

5 1 2 3 2 1 0 1 2<br />

6 2 1 2 3 2 1 0 1<br />

7 3 2 1 2 1 2 1 0<br />

Table 4.3: Number <strong>of</strong> switchings N S<br />

K sw =<br />

{<br />

0 for N S 1<br />

1 for N S 2<br />

(4.21)<br />

The K sw coefficient can take value zero for no, or one transistor switching, or one,<br />

for other cases (4.21). Figure 4.6 presents general scheme <strong>of</strong> proposed method.<br />

The prediction procedure is exactly the same as described in Section 4.3.<br />

Therefore, the cost function has been modified by:<br />

J =<br />

√<br />

(P ref − P P ) 2 + (Q ref − Q P ) 2 + K sw P (4.22)<br />

4.6 Constant Switching Frequency <strong>Predictive</strong> Direct Power<br />

<strong>Control</strong><br />

Main drawback <strong>of</strong> previously presented systems was variable switching frequency,<br />

which depends on sampling frequency, system load and parameters variations. As<br />

it was shown, cost function modification has wide control possibilities, and can be<br />

used to limit or gain selected current spectrum harmonics. However, the switching<br />

frequency still is not constant. Therefore, this Section presents a control method<br />

which combines advantages <strong>of</strong> predictive control with DPC and operates with<br />

constant switching frequency [48], [71].<br />

4.6.1 <strong>Predictive</strong> Model <strong>of</strong> the Instantaneous Power Behavior<br />

The Constant Switching Frequency <strong>Predictive</strong> Direct Power <strong>Control</strong> CSF-P-DPC<br />

is based on predictive model <strong>of</strong> the instantaneous active P and reactive Q powers,


4.6. CONSTANT SWITCHING FREQUENCY PREDICTIVE DIRECT POWER<br />

CONTROL 51<br />

which has been explained in Section 4.3. Lets rewrite power derivative equations<br />

for two level VSC with inductive filter.<br />

dP<br />

dt = 3 ( )<br />

1<br />

2 U Lα<br />

L (U Lα − U P α − RI Lα ) + ω L I Lβ +<br />

( )<br />

3 1<br />

2 U Lβ<br />

L (U Lβ − U P β − RI Lβ ) − ω L I Lα<br />

(4.23)<br />

dQ<br />

dt = 3 (<br />

2 U Lα ω L I Lα − 1 )<br />

L (U Lβ − U P β − RI Lβ )<br />

3<br />

2 U Lβ<br />

+<br />

( )<br />

1<br />

L (U Lα − U P α − RI Lα ) + ω L I Lβ<br />

(4.24)<br />

If we take into consideration following assumptions:<br />

• VSC input voltage is kept constant during U P vector application,<br />

• line voltage vector U L does not change during that time period,<br />

• current variations are small,<br />

active and reactive power increments can be considered as a constant for applied<br />

vector U P . These assumptions allow to analysis powers behavior for few applied<br />

vectors U P during single sampling time.<br />

Active and reactive power increments f pi , f qi caused, by voltage vector U P<br />

application, are defined as follow:<br />

f pi = dP<br />

dt<br />

f qi = dQ<br />

dt<br />

where i is number <strong>of</strong> applied voltage vector.<br />

∥ (4.25)<br />

UP =U P i<br />

∥ (4.26)<br />

UP =U P i<br />

The relation between power behavior, voltage vector and application time can<br />

be expressed as:<br />

P P i = P + f pi t i (4.27)<br />

Q P i = Q + f qi t i (4.28)<br />

where P P i and Q P i are predicted powers for specified t i application time <strong>of</strong> voltage<br />

vector U P i .


PP1<br />

fp1 fp2 fp3<br />

PP2 t3<br />

t2 t1<br />

QP2 QP3<br />

fq1 fq2 fq3<br />

QP1<br />

PP3<br />

52 CHAPTER 4. PREDICTIVE DIRECT POWER CONTROL<br />

4.6.2 Voltage Vectors Sequence<br />

Lets consider situation when three voltage vectors are selected within sampling<br />

time, then (4.27), (4.28) can be rewritten:<br />

P P 1 = P + f p1 t 1<br />

P P 2 = P P 1 + f p2 t 2<br />

P P 3 = P P 2 + f p3 t 3<br />

(4.29)<br />

Q P 1 = Q + f q1 t 1<br />

Q P 2 = Q P 1 + f q2 t 2<br />

Q P 3 = Q P 2 + f q3 t 3<br />

(4.30)<br />

T s = t 1 + t 2 + t 3 (4.31)<br />

where t 1 , t 2 , t 3 are voltage vectors application times. Figure 4.7 shows graphical<br />

representation <strong>of</strong> (4.29), (4.30) and (4.31). Relations (4.29) – (4.31) can be<br />

P<br />

(a)<br />

P<br />

Q<br />

(b)<br />

Q<br />

Figure 4.7: Active (a) and reactive (b) power changes under three U P i voltage<br />

vectors application during one sampling time T s<br />

t2 t3<br />

Ts<br />

t1<br />

simplified to:<br />

P P 3 = P + f p1 t 1 + f p2 t 2 + f p3 t 3<br />

Q P 3 = Q + f q1 t 1 + f q2 t 2 + f q3 t 3<br />

T s = t 1 + t 2 + t 3<br />

(4.32)


PP1<br />

fq1 fq2<br />

PP4<br />

PP5 PP6<br />

PP3 fp3 fp3 PP2 fp2 fp1<br />

t2<br />

t3<br />

t1<br />

fq2 fq1 QP5 QP2 fq3QP3<br />

QP6<br />

4.6. CONSTANT SWITCHING FREQUENCY PREDICTIVE DIRECT POWER<br />

CONTROL 53<br />

To achieve symmetrical vectors application within one sampling time (4.29) –<br />

(4.31) change into:<br />

P P 1 = P + f p1 t 1 P P 4 = P P 3 + f p3 t 3<br />

P P 2 = P P 1 + f p2 t 2 P P 5 = P P 4 + f p2 t 2<br />

(4.33)<br />

P P 3 = P P 2 + f p3 t 3 P P 6 = P P 5 + f p1 t 1<br />

Q P 1 = Q + f q1 t 1 Q P 4 = Q P 3 + f q3 t 3<br />

Q P 2 = Q P 1 + f q2 t 2 Q P 5 = Q P 4 + f q2 t 2<br />

(4.34)<br />

Q P 3 = Q P 2 + f q3 t 3 Q P 6 = Q P 5 + f q1 t 1<br />

T s = 2 (t 1 + t 2 + t 3 ) (4.35)<br />

Figure 4.8 shows graphical representation <strong>of</strong> (4.33), (4.34), (4.35). Set <strong>of</strong> (4.33),<br />

P<br />

(a)<br />

P<br />

Q<br />

(b)<br />

fp1 fp2<br />

t3<br />

t2 t1<br />

Q<br />

Figure 4.8: Active (a) and reactive (b) power changes under symmetrical application<br />

<strong>of</strong> three voltage vectors U P i during one sampling time T s<br />

Ts<br />

QP1<br />

t2 t3<br />

t1<br />

fq3QP4<br />

t1<br />

t2 t3<br />

(4.34), (4.35) can be simplified to:<br />

P P 6 = P + 2f p1 t 1 + 2f p2 t 2 + 2f p3 t 3<br />

Q P 6 = Q + 2f q1 t 1 + 2f q2 t 2 + 2f q3 t 3<br />

T s = 2 (t 1 + t 2 + t 3 )<br />

(4.36)<br />

4.6.3 Voltage Vector Selection<br />

The converter voltage vectors should be selected in order to minimize line current<br />

ripples. It can be achieved by applying voltage vectors, which are nearest located<br />

to the line voltage space vector U L . So, selection <strong>of</strong> the applied U P depends on


Sector 2<br />

54 CHAPTER 4. PREDICTIVE DIRECT POWER CONTROL<br />

line voltage space vector position. The voltage plane is divided into twelve subsectors,<br />

exactly the same as in case <strong>of</strong> ST-DPC, see Fig. 3.9. The smallest current<br />

ripples can be achieved by application sequence <strong>of</strong> neighboring VSC vectors.<br />

Figure 4.9 shows an example <strong>of</strong> vector selection. Line voltage space vector<br />

is located in the first sector, so the switching sequence <strong>of</strong> U P is set to {1, 2, 7}.<br />

Table 4.4 summarizes U P sequences for all sectors.<br />

β<br />

Sector 3<br />

(110)<br />

UP2<br />

(000)<br />

UP0<br />

(111)<br />

UP7<br />

α<br />

UL<br />

(100)<br />

UP1<br />

(101)<br />

1<br />

Sector 11 Sector 12<br />

UP6<br />

Figure 4.9: Converter voltage vector U P selection in 1st sector<br />

Figure 4.10 shows graphical representation <strong>of</strong> U P sequences for all sectors.<br />

As it can be seen in Fig. 4.10, switching table (Tab. 4.4) has been constructed in<br />

order to reduce transistors switching loses. Note that, the U P sequence has been<br />

chosen in such way that VSC leg switchings do not happen during maximum line<br />

current conduction, and there are only two switchings per sampling time T s .<br />

4.6.4 Voltage Vectors Application Times<br />

Taking into account (4.36) and constant switching frequency requirement, control<br />

method has to determine t 1 , t 2 and t 3 voltage vectors application times.<br />

The predicted power values at the end <strong>of</strong> sampling time P P 6 , Q P 6 are considered<br />

as a referenced ones P ref , Q ref .<br />

P ref = P P 6<br />

Q ref = Q P 6<br />

(4.37)


Sb Sc Sa<br />

Sb Sa<br />

Sc<br />

Sb Sa<br />

4.6. CONSTANT SWITCHING FREQUENCY PREDICTIVE DIRECT POWER<br />

CONTROL 55<br />

Sector U P sequence<br />

1 1 2 7 7 2 1<br />

2 0 1 2 2 1 0<br />

3 0 3 2 2 3 0<br />

4 3 2 7 7 2 3<br />

5 3 4 7 7 4 3<br />

6 0 3 4 4 3 0<br />

7 0 5 4 4 5 0<br />

8 5 4 7 7 4 5<br />

9 5 6 7 7 6 5<br />

10 0 5 6 6 5 0<br />

11 0 1 6 6 1 0<br />

12 1 6 7 7 6 1<br />

Table 4.4: Switching table related to line voltage vector position γ UL<br />

1 2 7 7 2 1<br />

0 1 2 2 1 0<br />

0 3 2 2 3 0<br />

Sector 1 Sector 2 Sector 3<br />

Sb Sc Sa<br />

Sb Sc Sa<br />

3 2 7 7 2 3<br />

3 4 7 7 4 3<br />

0 3 4 4 3 0<br />

Sector 4 Sector 5 Sector 6<br />

Sb Sc Sa<br />

Sb Sc Sa<br />

0 5 4 4 5 0<br />

5 4 7 7 4 5<br />

5 6 7 7 6 5<br />

0 5 6 6 5 0<br />

0 1 6 6 1 0<br />

1 6 7 7 6 1<br />

Sector 7 Sector 8 Sector 9<br />

Sb Sc Sa<br />

Sb Sc Sa<br />

Sc<br />

Sector 10 Sector 11 Sector 12<br />

Figure 4.10: Graphical representation <strong>of</strong> converter voltage vector U P selection<br />

Sb Sa<br />

Sb Sa<br />

Sb Sa<br />

Sc<br />

Sc<br />

Active P err and reactive Q err power errors have been expressed as follow:<br />

Sc<br />

( ))<br />

1<br />

P err = P ref − P − 2<br />

(f p1 t 1 + f p2 t 2 + f p3<br />

2 T s − t 1 − t 2 (4.38)


56 CHAPTER 4. PREDICTIVE DIRECT POWER CONTROL<br />

( ))<br />

1<br />

Q err = Q ref − Q − 2<br />

(f q1 t 1 + f q2 t 2 + f q3<br />

2 T s − t 1 − t 2<br />

(4.39)<br />

To minimize power errors, least square optimization method has been introduced.<br />

The cost function J has been defined as a sum <strong>of</strong> squared errors:<br />

and after replacing (4.38) and (4.39) into (4.40):<br />

J = P 2 err + Q 2 err (4.40)<br />

J = [ P ref − P − 2 ( f p1 t 1 + f p2 t 2 + f p3<br />

( 1<br />

2 T s − t 1 − t 2<br />

))] 2<br />

+ [ Q ref − Q − 2 ( f q1 t 1 + f q2 t 2 + f q3<br />

( 1<br />

2 T s − t 1 − t 2<br />

))] 2 (4.41)<br />

The optimal application times t 1 , t 2 , t 3 , which minimize cost function value J,<br />

during sampling time T s , satisfies minimum value condition:<br />

⎧<br />

⎪⎨<br />

⎪⎩<br />

∂J<br />

∂t 1<br />

= 0<br />

∂J<br />

∂t 2<br />

= 0<br />

(4.42)<br />

Partial differences <strong>of</strong> J function are expressed as:<br />

∂J<br />

∂t 1<br />

= 4 [ (P ref − P − f p3 T s ) (f p3 − f p1 ) + (Q ref − Q − f q3 T s ) (f q3 − f q1 ) ]<br />

+ 8 [ (f p3 − f p1 ) 2 + (f q3 − f q1 ) 2] t 1<br />

+ 8 [ (f p3 − f p2 )(f p3 − f p1 ) + (f q3 − f q2 )(f q3 − f q1 ) ] (4.43)<br />

t 2<br />

∂J<br />

∂t 2<br />

= 4 [(P ref − P − f p3 T s ) (f p3 − f p2 ) + (Q ref − Q − f q3 T s ) (f q3 − f q2 )]<br />

+ 8 [(f p3 − f p1 )(f p3 − f p2 ) + (f q3 − f q1 )(f q3 − f q2 )] t 1<br />

+ 8 [ (4.44)<br />

(f p3 − f p2 ) 2 + (f q3 − f q2 ) 2] t 2<br />

The J gets minimum value when (4.43), (4.44) are equal to zero (4.42). The solution<br />

<strong>of</strong> sets <strong>of</strong> conditions are application times given by:<br />

[<br />

t 1 = (P ref − P )(f q2 − f q3 ) + (Q ref − Q)(f p3 − f p2 )<br />

+ (f p2 f q3 − f p3 f q2 )T s<br />

]/<br />

[<br />

]<br />

2((f q2 − f q3 )f p1 + (f q3 − f q1 )f p2 + (f q1 − f q2 )f p3 )<br />

(4.45)<br />

t 2 =<br />

[<br />

(P ref − P )(f q3 − f q1 ) + (Q ref − Q)(f p1 − f p3 )<br />

+ (f q1 f p3 − f q3 f p1 )T s<br />

]/<br />

[<br />

]<br />

2((f q2 − f q3 )f p1 + (f q3 − f q1 )f p2 + (f q1 − f q2 )f p3 )<br />

(4.46)<br />

t 3 = 1 2 T s − t 1 − t 2 (4.47)<br />

Appendix C shows an example operation <strong>of</strong> presented control method for<br />

specified conditions.


fqi fpi<br />

Qref<br />

Sabc<br />

4.6. CONSTANT SWITCHING FREQUENCY PREDICTIVE DIRECT POWER<br />

CONTROL 57<br />

4.6.5 <strong>Control</strong> Scheme <strong>of</strong> CSF-P-DPC<br />

<strong>Control</strong> scheme <strong>of</strong> proposed method has been presented in Fig. 4.11. System uses<br />

linear PI controller in outer <strong>DC</strong>-link voltage stabilization loop. Instantaneous<br />

active P and reactive Q powers are calculated on the basis <strong>of</strong> line voltages U L ,<br />

and line currents I L measurement (3.13), (3.14). Also, line voltage space vector<br />

U Lαβ is delivered to switching table (Tab. 4.4), which selects sequence <strong>of</strong> VSC<br />

input vectors (Fig. 4.10).<br />

Next, the power predictive model, calculates power time derivatives f pi , f qi<br />

(4.25), (4.26) for appropriate voltage vectors U P . The goal <strong>of</strong> the control is to<br />

determine U P application times t 1 , t 2 and t 3 (4.45) – (4.47) in order to minimize<br />

cost function value J defined as a sum <strong>of</strong> squared instantaneous power errors<br />

(4.40).<br />

αβ<br />

uLab<br />

ULαβ<br />

abc<br />

Active & Reactive<br />

Power Calculation<br />

ILαβ<br />

iLab<br />

Q<br />

P<br />

Switching<br />

Table<br />

ULαβ<br />

Cost Function<br />

Minimization<br />

Criteria<br />

Power <strong>Predictive</strong><br />

Model<br />

VSC<br />

PI<br />

-<br />

LOAD<br />

Figure 4.11: <strong>Control</strong> scheme <strong>of</strong> Constant Switching Frequency <strong>Predictive</strong> Direct<br />

Power <strong>Control</strong> CSF-P-DPC<br />

Pref<br />

U<strong>DC</strong> U<strong>DC</strong>ref


58 CHAPTER 4. PREDICTIVE DIRECT POWER CONTROL<br />

4.7 Virtual Flux Based Constant Switching Frequency <strong>Predictive</strong><br />

Direct Power <strong>Control</strong><br />

This part <strong>of</strong> dissertation will be focused on implementation <strong>of</strong> Virtual Flux approach<br />

into Constant Switching Frequency <strong>Predictive</strong> Direct Power <strong>Control</strong> (VF-<br />

CSF-P-DPC) [48], [52].<br />

4.7.1 Virtual Flux Based <strong>Predictive</strong> Model <strong>of</strong> the Instantaneous Power<br />

Behavior<br />

Principles <strong>of</strong> Virtual Flux concept have been presented in Section 3.5. For sinusoidal<br />

and balanced voltage, neglecting grid side choke resistance R = 0, the instantaneous<br />

power can be computed as (3.20), (3.21):<br />

P = 3 2 ω L (Ψ Lα I Lβ − Ψ Lβ I Lα ) (4.48)<br />

Q = 3 2 ω L (Ψ Lα I Lα + Ψ Lβ I Lβ ) (4.49)<br />

The VF-CSF-P-DPC is based on instantaneous power time derivatives behavior<br />

prediction. Variations <strong>of</strong> active and reactive power can be calculated from<br />

following equations:<br />

dP<br />

dt = 3ω (<br />

L dI Lβ<br />

Ψ Lα<br />

2 dt<br />

dQ<br />

dt = 3ω L<br />

2<br />

(<br />

Ψ Lα<br />

dI Lα<br />

dt<br />

+ dΨ Lα<br />

d<br />

I dI Lα<br />

Lβ − Ψ Lβ<br />

dt<br />

+ dΨ Lα<br />

d<br />

I dI Lβ<br />

Lα + Ψ Lβ<br />

dt<br />

− dΨ )<br />

Lβ<br />

d<br />

I Lα<br />

)<br />

+ dΨ Lβ<br />

d<br />

I Lβ<br />

(4.50)<br />

(4.51)<br />

where dI Lαβ<br />

dt<br />

is defined by (4.3).<br />

If we consider sinusoidal and balanced line voltage, following expressions can<br />

be taken into account:<br />

Ψ Lα = U Lβ<br />

ω L<br />

(4.52)<br />

Ψ Lβ = − U Lα<br />

ω L<br />

(4.53)<br />

dΨ Lα<br />

= −ω L Ψ Lβ (4.54)<br />

dt<br />

dΨ Lβ<br />

= ω L Ψ Lα (4.55)<br />

dt<br />

Replacing (4.3), (4.52) – (4.55) into (4.50), (4.51) power derivatives can be<br />

expressed as:<br />

(<br />

)<br />

dP<br />

dt<br />

= 3 2 ω 1<br />

L Ψ Lα L (U Lβ − U P β − RI Lβ ) − ω L Ψ Lβ I Lβ<br />

(<br />

)<br />

− 3 2 ω 1<br />

L Ψ Lβ L (U (4.56)<br />

Lα − U P α − RI Lα ) + ω L Ψ Lα I Lα


4.7. VF BASED CSF - PREDICTIVE DIRECT POWER CONTROL 59<br />

dQ<br />

dt<br />

(<br />

)<br />

= 3 2 ω 1<br />

L Ψ Lα L (U Lα − U P α − RI Lα ) − ω L Ψ Lβ I Lα<br />

(<br />

)<br />

+ 3 2 ω 1<br />

L Ψ Lβ L (U (4.57)<br />

Lβ − U P β − RI Lβ ) + ω L Ψ Lα I Lβ<br />

dP<br />

dt<br />

= −ω L Q + 3ω L<br />

2<br />

[Ψ Lα (Ψ Lα ω L − U P β − RI Lβ ) −<br />

]<br />

− Ψ Lβ (−ω L Ψ Lβ − U P α − RI Lα ) =<br />

[<br />

)<br />

]<br />

= −ω L Q + 3ω L<br />

2<br />

ω L<br />

(Ψ (4.58)<br />

2 Lα + Ψ2 Lβ<br />

− I (U P Ψ ∗ L ) − IR (I LΨ ∗ L )<br />

dQ<br />

dt<br />

= ω L P 3ω L<br />

2<br />

[Ψ Lα (−ω L Ψ Lβ − U P α − RI Lα ) +<br />

]<br />

+ Ψ Lβ (ω L Ψ Lα − U P β − RI Lβ ) =<br />

[<br />

]<br />

= ω L P − 3ω L<br />

2<br />

R (U P Ψ ∗ L ) + RR (I LΨ ∗ L )<br />

(4.59)<br />

If we assume that choke resistance value is negligible small R = 0 then (4.58),<br />

(4.59) can be expressed as:<br />

[<br />

) ]<br />

dP<br />

dt<br />

= −ω L Q + 3ω L<br />

2<br />

ω L<br />

(Ψ 2 Lα + Ψ2 Lβ<br />

− I (U P Ψ ∗ L )<br />

dQ<br />

dt<br />

[ ]<br />

= ω L P − 3ω L<br />

2<br />

R (U P Ψ ∗ L ) (4.60)<br />

Active and reactive power increments f pi , f qi caused by voltage vector U P<br />

application are defined as in (4.25), (4.26).<br />

4.7.2 Voltage Vector Selection<br />

As it was explained in Section 3.5, control system synchronization with Virtual<br />

Flux reference frame causes 90 ◦ shifting <strong>of</strong> space vectors in relation to the line<br />

voltage (see Fig. 3.17).<br />

It leads with different sectors definition, as shown in Fig. 4.12.<br />

Also, switching table has to be changed:<br />

4.7.3 <strong>Control</strong> Scheme <strong>of</strong> VF-CSF-P-DPC<br />

Virtual Flux approach is very universal, because it allows to remove line voltage<br />

measurement, without additional hardware changes (Fig. 4.13).


Sector 5<br />

1<br />

Figure 4.12: Converter voltage vector U P selection<br />

ΨL Sector<br />

60 CHAPTER 4. PREDICTIVE DIRECT POWER CONTROL<br />

β<br />

Sector 6<br />

(110)<br />

UP2<br />

(000)<br />

UP0<br />

(111)<br />

UP7<br />

α<br />

UL<br />

(100)<br />

UP1<br />

(101)<br />

4<br />

Sector 2 Sector 3<br />

UP6<br />

Sector U P sequence<br />

1 0 5 6 6 5 0<br />

2 0 1 6 6 1 0<br />

3 1 6 7 7 6 1<br />

4 1 2 7 7 2 1<br />

5 0 1 2 2 1 0<br />

6 0 3 2 2 3 0<br />

7 3 2 7 7 2 3<br />

8 3 4 7 7 4 3<br />

9 0 3 4 4 3 0<br />

10 0 5 4 4 5 0<br />

11 5 4 7 7 4 5<br />

12 5 6 7 7 6 5<br />

Table 4.5: Switching table related to virtual flux vector position γ ΨL<br />

<strong>Control</strong> system uses common with CSF-P-DPC blocks like:<br />

• <strong>DC</strong>-link stabilization loop,<br />

• coordinates transformations (A.2),<br />

• cost function minimization criteria (4.45) – (4.47).<br />

The differences come from:


Qref<br />

fpi<br />

Sabc<br />

iLab<br />

4.7. VF BASED CSF - PREDICTIVE DIRECT POWER CONTROL 61<br />

Virtual Flux<br />

Estimator<br />

ΨLαβ<br />

Active & Reactive<br />

Power Calculation<br />

U<strong>DC</strong> Sabc ILαβ<br />

αβ<br />

abc<br />

Q<br />

P<br />

Switching<br />

Table<br />

Cost Function<br />

Minimization<br />

Criteria<br />

Power <strong>Predictive</strong><br />

Model<br />

ILαβ<br />

VSC<br />

PI<br />

LOAD<br />

U<strong>DC</strong>ref U<strong>DC</strong><br />

Pref fqi<br />

Figure 4.13: <strong>Control</strong> scheme <strong>of</strong> Virtual Flux Based Constant Switching Frequency<br />

<strong>Predictive</strong> Direct Power <strong>Control</strong> VF-CSF-P-DPC<br />

-<br />

• power calculations (3.13), (3.14) and (3.20), (3.21),<br />

• switching table and sectors definition Tab. 4.4 and Tab. 4.5,<br />

• power predictive model (4.23), (4.24) and (4.60).


62 CHAPTER 4. PREDICTIVE DIRECT POWER CONTROL<br />

4.8 Simulation Results<br />

In order to verify developed control methods, several simulations have been carried<br />

out. <strong>Control</strong> strategies have been tested under steady state and transient<br />

conditions. The basic simulation parameters have been listed in Tab. 4.6.<br />

Quantity<br />

Value<br />

Nominal Power S 0 [kVA] 5<br />

Fundamental Frequency F L [Hz] 50<br />

Supply Voltage u L(RMS) [V] 120<br />

Input Filter Inductance L [mH] 10<br />

Input Filter Resistance R [mΩ] 100<br />

<strong>DC</strong>-link Capacitance C [µF] 470<br />

Table 4.6: Main data <strong>of</strong> simulation model<br />

4.8.1 Steady State Operation<br />

Proposed control methods have been compared under steady state operation.<br />

To avoid <strong>DC</strong> voltage control loop influence, all tests have been carried out with<br />

open loop, and under unity power factor condition Q ref = 0. The reference<br />

value <strong>of</strong> active power P ref has been set to 2 kW, and the <strong>DC</strong> side load resistance<br />

has been set to 100 Ω. Table 4.7 summarizes sampling frequencies F s used in<br />

every method and achieved line current T HD factors. Note that variable switch-<br />

<strong>Control</strong> Method F sw F swAV F swMax F s T HD i<br />

per cycle [kHz] [kHz] [kHz] [%]<br />

VSF-P-DPC var. 4.5 20 20 5.41<br />

HC-VSF-P-DPC var. 8.1 40 40 3.57<br />

FL-VSF-P-DPC var. 3.75 20 20 5.97<br />

CSF-P-DPC fixed 5 7.5 7.5 3.59<br />

VF-CSF-P-DPC fixed 5 7.5 7.5 3.53<br />

Table 4.7: Sampling and switching frequencies <strong>of</strong> tested control methods<br />

ing frequency (VSF) methods require higher sampling frequency than the CSF<br />

methods.<br />

Figures 4.14 – 4.18 show steady state operation. All controls fulfill unity power<br />

factor condition, and line current i La is in phase with line voltage u la . However, it<br />

can be seen that VSF methods allow bipolar switchings (Fig. 4.14 (c) – 4.16 (c)),<br />

because converter voltage vector U P selection is not limited by switching table,<br />

like in CSF methods.


4.8. SIMULATION RESULTS 63<br />

200<br />

150<br />

100<br />

50<br />

(a)<br />

500<br />

400<br />

300<br />

200<br />

100<br />

(c)<br />

u P a<br />

u La<br />

0.1 0.105 0.11 0.115 0.12<br />

0<br />

−50<br />

−100<br />

−150<br />

0<br />

−100<br />

−200<br />

−300<br />

−400<br />

−200<br />

0.1 0.105 0.11 0.115 0.12<br />

15<br />

10<br />

(b)<br />

−500<br />

2500<br />

2000<br />

(d)<br />

P Q<br />

i La<br />

0.1 0.105 0.11 0.115 0.12<br />

5<br />

1500<br />

0<br />

1000<br />

−5<br />

500<br />

−10<br />

0<br />

−15<br />

0.1 0.105 0.11 0.115 0.12<br />

−500<br />

Figure 4.14: Steady state operation <strong>of</strong> VSF-P-DPC: (a) line voltage u La [V],<br />

(b) line current i La [A], (c) VSC input voltage u P a [V], (d) referenced and measured<br />

active P [W] and reactive power Q [var]<br />

200<br />

150<br />

100<br />

50<br />

(a)<br />

500<br />

400<br />

300<br />

200<br />

100<br />

(c)<br />

u P a<br />

u La<br />

0.1 0.105 0.11 0.115 0.12<br />

0<br />

−50<br />

−100<br />

−150<br />

0<br />

−100<br />

−200<br />

−300<br />

−400<br />

−200<br />

0.1 0.105 0.11 0.115 0.12<br />

15<br />

10<br />

(b)<br />

−500<br />

2500<br />

2000<br />

(d)<br />

P Q<br />

i La<br />

0.1 0.105 0.11 0.115 0.12<br />

5<br />

1500<br />

0<br />

1000<br />

−5<br />

500<br />

−10<br />

0<br />

−15<br />

0.1 0.105 0.11 0.115 0.12<br />

−500<br />

0.1 0.102 0.104 0.106 0.108 0.11 0.112 0.114 0.116 0.118<br />

Figure 4.15: Steady state operation <strong>of</strong> HC-VSF-P-DPC: (a) line voltage u La [V],<br />

(b) line current i La [A], (c) VSC input voltage u P a [V], (d) referenced and measured<br />

active P [W] and reactive power Q [var]


64 CHAPTER 4. PREDICTIVE DIRECT POWER CONTROL<br />

(a)<br />

200<br />

150<br />

100<br />

50<br />

(c)<br />

500<br />

400<br />

300<br />

200<br />

100<br />

u P a<br />

u La<br />

0.1 0.105 0.11 0.115 0.12<br />

0<br />

−50<br />

−100<br />

−150<br />

0<br />

−100<br />

−200<br />

−300<br />

−400<br />

−200<br />

0.1 0.105 0.11 0.115 0.12<br />

15<br />

10<br />

(b)<br />

−500<br />

2500<br />

2000<br />

(d)<br />

P Q<br />

i La<br />

0.1 0.105 0.11 0.115 0.12<br />

5<br />

1500<br />

0<br />

1000<br />

−5<br />

500<br />

−10<br />

0<br />

−15<br />

0.1 0.105 0.11 0.115 0.12<br />

Figure 4.16: Steady state operation <strong>of</strong> FL-VSF-P-DPC: (a) line voltage u La [V],<br />

(b) line current i La [A], (c) VSC input voltage u P a [V], (d) referenced and measured<br />

active P [W] and reactive power Q [var]<br />

−500<br />

200<br />

150<br />

100<br />

50<br />

(a)<br />

500<br />

400<br />

300<br />

200<br />

100<br />

(c)<br />

u P a<br />

u La<br />

0.1 0.105 0.11 0.115 0.12<br />

0<br />

−50<br />

−100<br />

−150<br />

0<br />

−100<br />

−200<br />

−300<br />

−400<br />

−200<br />

0.1 0.105 0.11 0.115 0.12<br />

15<br />

10<br />

(b)<br />

−500<br />

2500<br />

2000<br />

(d)<br />

P Q<br />

i La<br />

0.1 0.105 0.11 0.115 0.12<br />

5<br />

1500<br />

0<br />

1000<br />

−5<br />

500<br />

−10<br />

0<br />

−15<br />

0.1 0.105 0.11 0.115 0.12<br />

−500<br />

Figure 4.17: Steady state operation <strong>of</strong> CSF-P-DPC: (a) line voltage u La [V],<br />

(b) line current i La [A], (c) VSC input voltage u P a [V], (d) referenced and measured<br />

active P [W] and reactive power Q [var]


4.8. SIMULATION RESULTS 65<br />

200<br />

150<br />

100<br />

50<br />

(a)<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

500<br />

400<br />

300<br />

200<br />

100<br />

(c)<br />

u P a<br />

u La ψ La<br />

0.2 0.205 0.21 0.215 0.22<br />

0<br />

0<br />

0<br />

−50<br />

−100<br />

−150<br />

−100<br />

−0.2<br />

−200<br />

−0.4<br />

−300<br />

−0.6<br />

−400<br />

−200<br />

0.2 0.205 0.21 0.215 0.22 −0.8<br />

−500<br />

0.2 0.205 0.21 0.215 0.22<br />

15<br />

10<br />

(b)<br />

2500<br />

2000<br />

(d)<br />

P Q<br />

i La<br />

0.2 0.205 0.21 0.215 0.22<br />

5<br />

1500<br />

0<br />

1000<br />

−5<br />

500<br />

−10<br />

0<br />

−15<br />

0.2 0.205 0.21 0.215 0.22<br />

−500<br />

Figure 4.18: Steady state operation <strong>of</strong> VF-CSF-P-DPC: (a) line voltage u La [V]<br />

and estimated virtual flux ψ La [Wb], (b) line current i La [A], (c) VSC input voltage<br />

u P a [V], (d) referenced and measured active P [W] and reactive power Q [var]<br />

Figure 4.19 shows converter voltage, measured between converter phase a input,<br />

and negative <strong>DC</strong> bus u P a<strong>DC</strong>− as well as related number <strong>of</strong> transistor “on“<br />

and “<strong>of</strong>f “ switchings N Sa , per one cycle.<br />

For VSF-P-DPC and FL-VSF-P-DPC, N Sa goes around 180 and 150 switchings<br />

respectively, and in case <strong>of</strong> HC-VSF-P-DPC is about 325 what is caused by<br />

two times higher sampling frequency F s .<br />

Figure 4.19 shows also u P a<strong>DC</strong>− and N Sa for constant switching frequency<br />

approach. It can be seen that there is no transistor switchings under maximum<br />

current conduction. It allows to significantly reduce transistors commutation<br />

loses.<br />

Figure 4.20 shows line current i L harmonic spectrum up to 20 kHz. In case <strong>of</strong><br />

VSF-P-DPC and FL-VSF-P-DPC harmonic spectrum is spread over wide range <strong>of</strong><br />

frequencies. The HC-VSF-P-DPC allows to concentrate spectrum within desired<br />

frequency (in presented case around 4 kHz Fig. 4.5 (a)). For constant switching<br />

approach current spectrum is concentrated around maximum switching frequency<br />

F swMax , which leads to sampling F s .<br />

Table 4.7 summarizes T HD i factors. As it can been seen, the lowest T HD i<br />

is achieved by CSF approach (around 3.5% – 3.6%), also HC-VSF-P-DPC has<br />

low T HD i , however it is occupied by higher switching and sampling frequencies.


66 CHAPTER 4. PREDICTIVE DIRECT POWER CONTROL<br />

500<br />

450<br />

(a)<br />

VSF-P-DPC<br />

250<br />

N Sa<br />

u P a<strong>DC</strong>−<br />

0.1 0.105 0.11 0.115 0.12<br />

(b)<br />

400<br />

200<br />

350<br />

300<br />

150<br />

250<br />

200<br />

100<br />

150<br />

100<br />

50<br />

50<br />

0<br />

0.1 0.105 0.11 0.115 0.12<br />

500<br />

250<br />

450<br />

0<br />

FL-VSF-P-DPC<br />

400<br />

200<br />

350<br />

300<br />

150<br />

250<br />

200<br />

100<br />

150<br />

100<br />

50<br />

50<br />

500<br />

0<br />

0.1 0.105 0.11 0.115 0.12<br />

350<br />

0<br />

0.1 0.105 0.11 0.115 0.12<br />

HC-VSF-P-DPC<br />

450<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

500<br />

450<br />

0<br />

0.1 0.105 0.11 0.115 0.12<br />

CSF-P-DPC<br />

250<br />

0<br />

0.1 0.105 0.11 0.115 0.12<br />

400<br />

200<br />

350<br />

300<br />

150<br />

250<br />

200<br />

100<br />

150<br />

100<br />

50<br />

50<br />

500<br />

450<br />

0<br />

0.1 0.105 0.11 0.115 0.12<br />

VF-CSF-P-DPC<br />

250<br />

0<br />

0.1 0.105 0.11 0.115 0.12<br />

400<br />

200<br />

350<br />

300<br />

150<br />

250<br />

200<br />

100<br />

150<br />

100<br />

50<br />

50<br />

0<br />

0.2 0.205 0.21 0.215 0.22<br />

0<br />

0.2 0.205 0.21 0.215 0.22<br />

Figure 4.19: Number <strong>of</strong> phase a transistor on and <strong>of</strong>f switchings in predictive<br />

methods (a) voltage measured between converter input and negative <strong>DC</strong> bus<br />

u P a<strong>DC</strong>− [V], (b) number <strong>of</strong> switchings N Sa in phase a


4.8. SIMULATION RESULTS 67<br />

Mag (% <strong>of</strong> Fundamental)<br />

5<br />

4.5<br />

4<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

5<br />

4.5<br />

4<br />

VSF-P-DPC<br />

Fundamental (50Hz) = 7.903 , THD= 5.41%<br />

0 50 100 150 200 250 300 350 400<br />

Harmonic order<br />

HC-VSF-P-DPC<br />

Fundamental (50Hz) = 7.882 , THD= 3.57%<br />

Mag (% <strong>of</strong> Fundamental)<br />

5<br />

4.5<br />

4<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

5<br />

4.5<br />

4<br />

FL-VSF-P-DPC<br />

Fundamental (50Hz) = 7.848 , THD= 5.97%<br />

0 50 100 150 200 250 300 350 400<br />

Harmonic order<br />

CSF-P-DPC<br />

Fundamental (50Hz) = 7.875 , THD= 3.59%<br />

Mag (% <strong>of</strong> Fundamental)<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

Mag (% <strong>of</strong> Fundamental)<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

1<br />

0.5<br />

0.5<br />

0<br />

0<br />

0 50 100 150 200 250 300 350 400<br />

Harmonic order<br />

VF-CSF-P-DPC<br />

Fundamental (50Hz) = 8.019 , THD= 3.53%<br />

5<br />

0 50 100 150 200 250 300 350 400<br />

Harmonic order<br />

4.5<br />

4<br />

Mag (% <strong>of</strong> Fundamental)<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

0 50 100 150 200 250 300 350 400<br />

Harmonic order<br />

Figure 4.20: Line current harmonics spectrum<br />

4.8.2 Transient Operation<br />

Behavior <strong>of</strong> presented control methods have been compared under transient states.<br />

The first test was step change <strong>of</strong> referenced active power P ref from 1 kW<br />

to 2 kW, and has been carried out with open <strong>DC</strong>-link voltage control loop<br />

(Fig. 4.21 – 4.23). The active and reactive powers follow referenced values. For<br />

all methods power responses are comparable to each other (see Fig. 4.24). In case<br />

<strong>of</strong> VSF responses are about three times faster than CSF approach. However, it<br />

is occupied by bipolar transistors switching and higher sampling frequency.


68 CHAPTER 4. PREDICTIVE DIRECT POWER CONTROL<br />

200<br />

150<br />

100<br />

50<br />

VSF-P-DPC<br />

500<br />

400<br />

300<br />

200<br />

100<br />

u P a<br />

(c)<br />

(a) u La<br />

0.095 0.1 0.105 0.11 0.115 0.12 0.125 0.13 0.135<br />

0<br />

−50<br />

−100<br />

−150<br />

0<br />

−100<br />

−200<br />

−300<br />

−400<br />

−200<br />

−500<br />

0.095 0.1 0.105 0.11 0.115 0.12 0.125 0.13 0.135<br />

15<br />

2500<br />

10<br />

2000<br />

P Q<br />

(d)<br />

(b) i La<br />

0.095 0.1 0.105 0.11 0.115 0.12 0.125 0.13 0.135<br />

5<br />

1500<br />

0<br />

1000<br />

−5<br />

500<br />

−10<br />

0<br />

−15<br />

−500<br />

0.095 0.1 0.105 0.11 0.115 0.12 0.125 0.13 0.135<br />

200<br />

150<br />

100<br />

50<br />

HC-VSF-P-DPC<br />

500<br />

400<br />

300<br />

200<br />

100<br />

u P a<br />

(c)<br />

(a) u La<br />

0.095 0.1 0.105 0.11 0.115 0.12 0.125 0.13 0.135<br />

0<br />

−50<br />

−100<br />

−150<br />

0<br />

−100<br />

−200<br />

−300<br />

−400<br />

−200<br />

−500<br />

0.095 0.1 0.105 0.11 0.115 0.12 0.125 0.13 0.135<br />

15<br />

2500<br />

10<br />

2000<br />

P Q<br />

(d)<br />

(b) i La<br />

0.095 0.1 0.105 0.11 0.115 0.12 0.125 0.13 0.135<br />

5<br />

1500<br />

0<br />

1000<br />

−5<br />

500<br />

−10<br />

0<br />

−15<br />

−500<br />

0.095 0.1 0.105 0.11 0.115 0.12 0.125 0.13 0.135<br />

Figure 4.21: Transient operation <strong>of</strong> VSF-P-DPC and HC-VSF-P-DPC power<br />

step change from 1 kW to 2 kW: (a) line voltage u La [V], (b) line current i La [A],<br />

(c) VSC input voltage u P a [V], (d) referenced and measured active P [W] and reactive<br />

power Q [var]


4.8. SIMULATION RESULTS 69<br />

200<br />

150<br />

100<br />

50<br />

FL-VSF-P-DPC<br />

500<br />

400<br />

300<br />

200<br />

100<br />

u P a<br />

(c)<br />

(a) u La<br />

0.095 0.1 0.105 0.11 0.115 0.12 0.125 0.13 0.135<br />

0<br />

−50<br />

−100<br />

−150<br />

0<br />

−100<br />

−200<br />

−300<br />

−400<br />

−200<br />

0.095 0.1 0.105 0.11 0.115 0.12 0.125 0.13<br />

−500<br />

0.135<br />

15<br />

2500<br />

10<br />

2000<br />

P Q<br />

(d)<br />

(b) i La<br />

0.095 0.1 0.105 0.11 0.115 0.12 0.125 0.13 0.135<br />

5<br />

1500<br />

0<br />

1000<br />

−5<br />

500<br />

−10<br />

0<br />

−15<br />

−500<br />

0.095 0.1 0.105 0.11 0.115 0.12 0.125 0.13 0.135<br />

200<br />

150<br />

100<br />

50<br />

CSF-P-DPC<br />

500<br />

400<br />

300<br />

200<br />

100<br />

u P a<br />

(c)<br />

(a) u La<br />

0.095 0.1 0.105 0.11 0.115 0.12 0.125 0.13 0.135<br />

0<br />

−50<br />

−100<br />

−150<br />

0<br />

−100<br />

−200<br />

−300<br />

−400<br />

−200<br />

0.095 0.1 0.105 0.11 0.115 0.12 0.125 0.13 0.135<br />

−500<br />

0.095 0.1 0.105 0.11 0.115 0.12 0.125 0.13 0.135<br />

15<br />

2500<br />

10<br />

2000<br />

P Q<br />

(d)<br />

(b) i La<br />

0.095 0.1 0.105 0.11 0.115 0.12 0.125 0.13 0.135<br />

5<br />

1500<br />

0<br />

1000<br />

−5<br />

500<br />

−10<br />

0<br />

−15<br />

−500<br />

0.095 0.1 0.105 0.11 0.115 0.12 0.125 0.13 0.135<br />

Figure 4.22: Transient operation <strong>of</strong> FL-VSF-P-DPC and CSF-P-DPC power step<br />

change from 1 kW to 2 kW: (a) line voltage u La [V], (b) line current i La [A],<br />

(c) VSC input voltage u P a [V], (d) referenced and measured active P [W] and reactive<br />

power Q [var]


70 CHAPTER 4. PREDICTIVE DIRECT POWER CONTROL<br />

Figures 4.25 – 4.27 present second test, which was step change <strong>of</strong> <strong>DC</strong>-link<br />

voltage reference value U <strong>DC</strong>ref from 300 V to 600 V. The <strong>DC</strong>-link voltage PI<br />

controller has been tuned for each method according to the rules presented in<br />

Section 3.4. On the basis <strong>of</strong> <strong>DC</strong>-link voltage error, PI controller assigns referenced<br />

value <strong>of</strong> active power P ref Fig. 4.25 (d) – 4.27 (d). For all controls U <strong>DC</strong> overshoot<br />

is between 3% – 5%. However, in case <strong>of</strong> VSF methods regulation time was 9 ms<br />

shorter than in case <strong>of</strong> CSF what is caused by higher sampling frequency.<br />

200<br />

150<br />

100<br />

50<br />

VF-CSF-P-DPC<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

500<br />

400<br />

300<br />

200<br />

100<br />

u P a<br />

(c)<br />

(a) u La ψ La<br />

0.195 0.2 0.205 0.21 0.215 0.22 0.225 0.23 0.235<br />

0<br />

0<br />

0<br />

−50<br />

−100<br />

−150<br />

−100<br />

−0.2<br />

−200<br />

−0.4<br />

−300<br />

−0.6<br />

−400<br />

−200<br />

0.195 0.2 0.205 0.21 0.215 0.22 0.225 0.23 0.235<br />

−0.8 −500<br />

15<br />

2500<br />

10<br />

2000<br />

P Q<br />

(d)<br />

(b) i La<br />

0.195 0.2 0.205 0.21 0.215 0.22 0.225 0.23 0.235<br />

5<br />

1500<br />

0<br />

1000<br />

−5<br />

500<br />

−10<br />

0<br />

−15<br />

−500<br />

0.195 0.2 0.205 0.21 0.215 0.22 0.225 0.23 0.235<br />

Figure 4.23: Transient operation <strong>of</strong> VF-CSF-P-DPC power step change from<br />

1 kW to 2 kW: (a) line voltage u La [V] and estimated virtual flux ψ La [Wb],<br />

(b) line current i La [A], (c) VSC input voltage u P a [V], (d) referenced and measured<br />

active P [W] and reactive power Q [var]


4.8. SIMULATION RESULTS 71<br />

2500<br />

2000<br />

(a)<br />

P Q<br />

2500<br />

2000<br />

(b)<br />

P Q<br />

VSF-P-DPC<br />

500<br />

400<br />

300<br />

(c)<br />

u P a<br />

1500<br />

1500<br />

200<br />

100<br />

1000<br />

1000<br />

0<br />

−100<br />

500<br />

500<br />

−200<br />

0<br />

0<br />

−300<br />

−400<br />

−500<br />

0.1044 0.1046 0.1048 0.105 0.1052 0.1054 0.1056 0.1058 0.106 0.1062<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

−500<br />

0.1044 0.1046 0.1048 0.105 0.1052 0.1054 0.1056 0.1058 0.106 0.1062<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

−500<br />

0.1044 0.1046 0.1048 0.105 0.1052 0.1054 0.1056 0.1058 0.106 0.1062<br />

2500<br />

FL-VSF-P-DPC<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

−500<br />

0.1044 0.1046 0.1048 0.105 0.1052 0.1054 0.1056 0.1058 0.106 0.1062<br />

2500<br />

HC-VSF-P-DPC<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

−500<br />

0.1044 0.1046 0.1048 0.105 0.1052 0.1054 0.1056 0.1058 0.106 0.1062<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

−100<br />

−200<br />

−300<br />

−400<br />

−500<br />

0.1044 0.1046 0.1048 0.105 0.1052 0.1054 0.1056 0.1058 0.106 0.1062<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

−100<br />

−200<br />

−300<br />

−400<br />

−500<br />

0.1044 0.1046 0.1048 0.105 0.1052 0.1054 0.1056 0.1058 0.106 0.1062<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

−500<br />

0.1044 0.1046 0.1048 0.105 0.1052 0.1054 0.1056 0.1058 0.106 0.1062<br />

2500<br />

CSF-P-DPC<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

−500<br />

0.1044 0.1046 0.1048 0.105 0.1052 0.1054 0.1056 0.1058 0.106 0.1062<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

−100<br />

−200<br />

−300<br />

−400<br />

−500<br />

0.1044 0.1046 0.1048 0.105 0.1052 0.1054 0.1056 0.1058 0.106 0.1062<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

−500<br />

0.2045 0.205 0.2055 0.206<br />

−500<br />

0.1044 0.1046 0.1048 0.105 0.1052 0.1054 0.1056 0.1058 0.106 0.1062<br />

2500<br />

VF-CSF-P-DPC<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

−500<br />

0.2045 0.205 0.2055 0.206<br />

−500<br />

0.1044 0.1046 0.1048 0.105 0.1052 0.1054 0.1056 0.1058 0.106 0.1062<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

−100<br />

−200<br />

−300<br />

−400<br />

−500<br />

0.2045 0.205 0.2055 0.206<br />

Figure 4.24: Transient operation, step change <strong>of</strong> referenced active power P ref<br />

from 1 kW to 2 kW in zoom: (a) referenced and measured active and reactive<br />

power, (b) sampled referenced and measured active and reactive power, (c) VSC<br />

input voltage u P a


72 CHAPTER 4. PREDICTIVE DIRECT POWER CONTROL<br />

650<br />

600<br />

VSF-P-DPC<br />

200<br />

u La i La 20 (b)<br />

550<br />

500<br />

450<br />

0<br />

0<br />

400<br />

350<br />

300<br />

(a) U <strong>DC</strong><br />

0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24<br />

−20<br />

250<br />

500<br />

400<br />

−200<br />

0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24<br />

8000<br />

(c) u P a<br />

0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24<br />

7000<br />

0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24<br />

P Q<br />

(d)<br />

300<br />

6000<br />

200<br />

100<br />

5000<br />

0<br />

4000<br />

−100<br />

−200<br />

−300<br />

−400<br />

−500<br />

650<br />

600<br />

0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24<br />

3000<br />

2000<br />

1000<br />

0<br />

HC-VSF-P-DPC<br />

200<br />

u La i La 20 (b)<br />

550<br />

500<br />

450<br />

0<br />

0<br />

400<br />

350<br />

300<br />

(a) U <strong>DC</strong><br />

0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24<br />

−20<br />

250<br />

500<br />

400<br />

−200<br />

0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24<br />

8000<br />

7000<br />

0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24<br />

P Q<br />

(d)<br />

300<br />

6000<br />

200<br />

100<br />

(c) u P a<br />

0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24<br />

5000<br />

0<br />

4000<br />

−100<br />

−200<br />

−300<br />

−400<br />

−500<br />

3000<br />

2000<br />

1000<br />

0<br />

0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24<br />

Figure 4.25: Transient operation <strong>of</strong> VSF-P-DPC and HC-VSF-P-DPC, step<br />

change <strong>of</strong> referenced <strong>DC</strong> voltage U <strong>DC</strong>ref from 300 V to 600 V: (a) referenced<br />

and measured <strong>DC</strong> voltage U <strong>DC</strong> [V], (b) line voltage u La [V] and line current<br />

i La [A], (c) VSC input voltage u P a [V], (d) referenced and measured active P [W]<br />

and reactive power Q [var]


4.8. SIMULATION RESULTS 73<br />

650<br />

600<br />

FL-VSF-P-DPC<br />

200<br />

u La i La 20 (b)<br />

550<br />

500<br />

450<br />

0<br />

0<br />

400<br />

350<br />

300<br />

−20<br />

250<br />

500<br />

400<br />

(a) U <strong>DC</strong><br />

0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24<br />

−200<br />

0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24<br />

8000<br />

(c) u P a<br />

0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24<br />

7000<br />

0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24<br />

P Q<br />

(d)<br />

300<br />

6000<br />

200<br />

100<br />

5000<br />

0<br />

4000<br />

−100<br />

−200<br />

−300<br />

−400<br />

−500<br />

650<br />

600<br />

0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24<br />

3000<br />

2000<br />

1000<br />

0<br />

CSF-P-DPC<br />

200<br />

u La i La 20 (b)<br />

550<br />

500<br />

450<br />

0<br />

0<br />

400<br />

350<br />

300<br />

(a) U <strong>DC</strong><br />

0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24<br />

−20<br />

250<br />

500<br />

400<br />

−200<br />

0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24<br />

8000<br />

(c) u P a<br />

0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24<br />

7000<br />

0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24<br />

P Q<br />

(d)<br />

300<br />

6000<br />

200<br />

100<br />

5000<br />

0<br />

4000<br />

−100<br />

−200<br />

−300<br />

−400<br />

−500<br />

3000<br />

2000<br />

1000<br />

0<br />

0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24<br />

Figure 4.26: Transient operation <strong>of</strong> FL-VSF-P-DPC and CSF-P-DPC, step<br />

change <strong>of</strong> referenced <strong>DC</strong> voltage U <strong>DC</strong>ref from 300 V to 600 V: (a) referenced<br />

and measured <strong>DC</strong> voltage U <strong>DC</strong> [V], (b) line voltage u La [V] and line current<br />

i La [A], (c) VSC input voltage u P a [V], (d) referenced and measured active P [W]<br />

and reactive power Q [var]


74 CHAPTER 4. PREDICTIVE DIRECT POWER CONTROL<br />

650<br />

600<br />

VF-CSF-P-DPC<br />

200<br />

u La i La 20 (b)<br />

(a) U <strong>DC</strong><br />

0.24 0.26 0.28 0.3 0.32 0.34<br />

550<br />

ψ La<br />

500<br />

450<br />

0<br />

0<br />

400<br />

350<br />

300<br />

−20<br />

250<br />

0.24 0.26 0.28 0.3 0.32 0.34<br />

−200 0.24 0.26 0.28 0.3 0.32 0.34<br />

500<br />

8000<br />

400<br />

300<br />

200<br />

100<br />

0<br />

7000<br />

6000<br />

5000<br />

4000<br />

P Q<br />

(d)<br />

(c) u P a<br />

0.24 0.25 0.26 0.27 0.28 0.29 0.3 0.31 0.32 0.33<br />

−100<br />

−200<br />

3000<br />

2000<br />

−300<br />

−400<br />

−500<br />

0.24 0.26 0.28 0.3 0.32 0.34<br />

Figure 4.27: Transient operation <strong>of</strong> VF-CSF-P-DPC, step change <strong>of</strong> referenced<br />

<strong>DC</strong> voltage U <strong>DC</strong>ref from 300 V to 600 V: (a) referenced and measured <strong>DC</strong> voltage<br />

U <strong>DC</strong> [V], (b) line voltage u La [V], estimated virtual flux ψ La [Wb] and line<br />

current i La [A], (c) VSC input voltage u P a [V], (d) referenced and measured<br />

active P [W]and reactive power Q [var]<br />

1000<br />

0<br />

4.9 Summary<br />

Principles <strong>of</strong> Model <strong>Predictive</strong> <strong>Control</strong> with Finite control Sets (FS-MPC) as well<br />

as Virtual Flux approach for CSF-P-DPC have been presented in this Chapter.<br />

In view <strong>of</strong> switching frequency, control methods have been divided into variable<br />

(VSF) and constant switching frequency (CSF) approaches.<br />

<strong>Control</strong> Method t set [µs] t r [µs]<br />

VSF-P-DPC 300 125<br />

HC-VSF-P-DPC 300 125<br />

FL-VSF-P-DPC 300 200<br />

CSF-P-DPC 300 250<br />

VF-CSF-P-DPC 300 250<br />

Table 4.8: Dynamic properties <strong>of</strong> P-DPC methods for P ref step change<br />

The VSF based methods have following advantages:


4.9. SUMMARY 75<br />

<strong>Control</strong> Method t set [ms] t r [ms] Overshot [%]<br />

VSF-P-DPC 45 13 4.5<br />

HC-VSF-P-DPC 43 13 5<br />

FL-VSF-P-DPC 45 13 4.5<br />

CSF-P-DPC 54 17 3.3<br />

VF-CSF-P-DPC 54 17 3.3<br />

Table 4.9: Dynamic properties <strong>of</strong> P-DPC methods for U <strong>DC</strong>ref step change<br />

• very high dynamics in transient states,<br />

• simple and intuitive control scheme,<br />

• control flexibility due to cost function approach.<br />

However, the main disadvantages are:<br />

• variable switching frequency,<br />

• high sampling frequency requirement,<br />

• sensitivity on system parameters mismatch (see Section 5.1),<br />

• bipolar transistor switchings.<br />

Some <strong>of</strong> above drawbacks can be eliminated by cost function modifications, like<br />

in HC-VSF-P-DPC (Section 4.4), or FL-VSF-P-DPC (Section 4.5). Also, these<br />

problems can be naturally omitted by fixing switching frequency, like in CSF-P-<br />

DPC (Section 4.6).<br />

The CSF approach has following advantages:<br />

• constant switching frequency,<br />

• very high dynamics in transient states (comparative to VSF methods),<br />

• work with low sampling frequency ability,<br />

• <strong>AC</strong>-side voltage sensorless operation,<br />

• unipolar transistor switchings.<br />

This method also is based on mathematical model <strong>of</strong> the system, and has following<br />

drawbacks:<br />

• more complicated control scheme,<br />

• sensitivity to system parameters mismatch, which has been overcome by<br />

introducing an on-line <strong>AC</strong>-side choke inductance estimation algorithm (see<br />

Section 5.2).


76 CHAPTER 4. PREDICTIVE DIRECT POWER CONTROL<br />

As it can be seen in Tab. 4.8 and Tab. 4.9, the dynamic <strong>of</strong> presented methods<br />

is comparable. However, the CSF approach gives lower line current T HD factor<br />

(see Tab. 4.7).


Chapter 5<br />

Investigations <strong>of</strong> <strong>Control</strong><br />

Methods Performance<br />

5.1 Robustness to Parameters Mismatch<br />

Model <strong>Predictive</strong> <strong>Control</strong> bases on mathematical description <strong>of</strong> the grid and converter.<br />

Algorithm works correct as long as the parameters used in model are<br />

correct. In this Chapter influence <strong>of</strong> model parameters mismatch: choke inductance<br />

L and resistance R, will be investigated for VSF and CSF control methods.<br />

Furthermore, on-line choke inductance estimator will be presented. Also, selected<br />

control methods will be tested under line voltage distortions. Investigations have<br />

been performed on the basis <strong>of</strong> simulation models and experimental tests on<br />

laboratory set-up as well.<br />

5.1.1 Filter‘s Inductance Variations<br />

Figure 5.1 shows average switching frequency F swAV in VSF-P-DPC method for<br />

1 and 2 kW <strong>of</strong> load versus choke inductance value mismatch, used in predictive<br />

model L C . Choke inductance mismatch ∆L is defined as:<br />

∆L = L C − L<br />

100[%] (5.1)<br />

L<br />

where L C is inductance used in control method, and L is real value. Figure 5.2<br />

shows calculated power error ∆S defined as:<br />

∆S =<br />

√<br />

(Pref − P ) 2 + (Q ref − Q) 2<br />

√<br />

P 2 ref + Q2 ref<br />

(5.2)<br />

versus ∆L whereas, Fig. 5.3 shows T HD i factor variation under L mismatch.<br />

77


78 CHAPTER 5. INVESTIGATIONS OF CONTROL METHODS PERFORMANCE<br />

5<br />

4.5<br />

4<br />

3.5<br />

F swAV<br />

[kHz]<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

2 kW<br />

1 kW<br />

0<br />

−100 −50 0 50 100<br />

∆ L [%]<br />

Figure 5.1: Average switching frequency F swAV versus line choke inductance<br />

value mismatch ∆L in VSF-P-DPC<br />

25<br />

(a)<br />

2 kW<br />

1 kW<br />

25<br />

(b)<br />

2 kW<br />

1 kW<br />

20<br />

20<br />

∆ S [%]<br />

15<br />

∆ S [%]<br />

15<br />

10<br />

10<br />

5<br />

5<br />

0<br />

−100 −50 0 50 100<br />

∆ L [%]<br />

0<br />

−100 −50 0 50 100<br />

∆ L [%]<br />

Figure 5.2: Power error ∆S versus line choke inductance value mismatch ∆L in:<br />

(a) VSF-P-DPC, (b) CSF-P-DPC<br />

(a)<br />

(b)<br />

15<br />

2 kW<br />

1 kW<br />

15<br />

2 kW<br />

1 kW<br />

10<br />

10<br />

THD i400<br />

[%]<br />

THD i400<br />

[%]<br />

5<br />

5<br />

0<br />

−100 −50 0 50 100<br />

∆ L [%]<br />

0<br />

−100 −50 0 50 100<br />

∆ L [%]<br />

Figure 5.3: Line current T HD i factor versus line choke inductance value mismatch<br />

∆L in: (a) VSF-P-DPC, (b) CSF-P-DPC<br />

When L C inductance, used in VSF-P-DPC predictive model, is too low (∆L < 0),<br />

switching frequency decreases Fig. 5.1. The line current T HD i factor depends


5.1. ROBUSTNESS TO PARAMETERS MISMATCH 79<br />

mainly on switching frequency and load value (Fig. 5.3), however large error in<br />

power ∆S could be observed (Fig. 5.2). In opposite case, when the L C value is<br />

too high (∆L > 0) the current ripples increase. It is caused by higher converter<br />

voltage generated by predictive controller, which tries to reduce voltage drop on<br />

oversized inductance L C . As it can be seen, in all cases CSF approach is more<br />

robust to L mismatch than variable switching frequency.<br />

5.1.2 Filter‘s Resistance Variations<br />

Figure 5.4 shows average switching frequency F swAV in VSF-P-DPC method for<br />

1 and 2 kW <strong>of</strong> load versus choke resistance value mismatch, used in predictive<br />

model R C . Choke resistance mismatch ∆R is defined as:<br />

∆R = R C − R<br />

100[%] (5.3)<br />

R<br />

where R C is resistance used in predictive algorithm, and R is real value. Figure 5.5<br />

shows calculated power error ∆S (eq. 5.2) versus ∆L whereas, Fig. 5.6 shows<br />

T HD i factor variation under R mismatch.<br />

5<br />

4.5<br />

4<br />

3.5<br />

F swAV<br />

[kHz]<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

2 kW<br />

1 kW<br />

0.5<br />

0<br />

−100 −50 0 50 100<br />

∆ R [%]<br />

Figure 5.4: Average switching frequency F swAV versus line choke resistance value<br />

mismatch ∆R in VSF-P-DPC<br />

As it can be seen in Fig. 5.4 – 5.6, R mismatch does not have influence<br />

on control performance. The voltage drop on choke resistance is much less than<br />

voltage drop on choke inductance. Therefore, for further investigations R changes<br />

will not be performed.


80 CHAPTER 5. INVESTIGATIONS OF CONTROL METHODS PERFORMANCE<br />

15<br />

(a)<br />

15<br />

(b)<br />

2 kW<br />

1 kW<br />

10<br />

10<br />

∆ S [%]<br />

∆ S [%]<br />

5<br />

5<br />

2 kW<br />

1 kW<br />

0<br />

−100 −50 0 50 100<br />

∆ R [%]<br />

0<br />

−100 −50 0 50 100<br />

∆ R [%]<br />

Figure 5.5: Power error ∆S versus line choke resistance value mismatch ∆R in:<br />

(a) VSF-P-DPC, (b) CSF-P-DPC<br />

10<br />

9<br />

8<br />

7<br />

(a)<br />

10<br />

9<br />

8<br />

7<br />

(b)<br />

2 kW<br />

1 kW<br />

THD i400<br />

[%]<br />

6<br />

5<br />

4<br />

THD i400<br />

[%]<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

2 kW<br />

1 kW<br />

3<br />

2<br />

1<br />

0<br />

−100 −50 0 50 100<br />

∆ R [%]<br />

0<br />

−100 −50 0 50 100<br />

∆ R [%]<br />

Figure 5.6: Line current T HD i factor versus line choke resistance value mismatch<br />

∆R in: (a) VSF-P-DPC, (b) CSF-P-DPC<br />

5.2 On-line Choke Inductance Estimator<br />

As shown in Section 5.1.1 and 5.1.2 the P-DPC algorithm is mainly sensitive to<br />

mismatch <strong>of</strong> <strong>AC</strong>-side filter inductance L. Therefore, on-line choke estimation has<br />

been introduced to improve accuracy and stability <strong>of</strong> the control.<br />

Based on the input quantities (<strong>DC</strong>-link voltage U <strong>DC</strong> and transistor duty cycles<br />

S a , S b and S c ), the converter <strong>AC</strong>-side voltage estimator (3.37), (3.38) calculates<br />

U P αβ components, and next transforms into dq coordinates. The transformation<br />

can be performed either with line voltage U L (Fig. 5.7 (b)) or with virtual flux<br />

space vector Ψ L (Fig. 5.8 (b)). The measured line current vector I L is delivered<br />

to the block, which computes its module |I L |. Signals U P q (or U P d ) and |I L |<br />

after filtering in low-pass filter (LPF) blocks are delivered to the divider, which<br />

calculates the actual value <strong>of</strong> choke inductance L est (Fig. 5.7 (a) and Fig. 5.8 (a)).<br />

The estimated value is further used in VF estimator and predictive model. Note<br />

that inductance is calculated under assumption <strong>of</strong> unity power factor condition


Sabc U<strong>DC</strong><br />

UPαβ<br />

UPαβ<br />

Lest<br />

Lest<br />

UPdq<br />

5.2. ON-LINE CHOKE INDUCTANCE ESTIMATOR 81<br />

(a)<br />

(b)<br />

d<br />

Estimator<br />

UP<br />

αβ<br />

dq<br />

|UPq|<br />

LPF<br />

R=0<br />

ωL<br />

αβ<br />

|A|<br />

γUL<br />

|IL|<br />

LPF<br />

ω L<br />

q<br />

ULd<br />

φ=0<br />

ILdq<br />

Figure 5.7: On-line choke inductance estimator related to γ UL angle: (a) estimator<br />

scheme, (b) related vector diagram<br />

ILαβ<br />

UPq<br />

from (5.4) or (5.5).<br />

L est = |U P q|<br />

ω L |I L |<br />

(5.4)<br />

(a)<br />

Sabc U<strong>DC</strong><br />

Estimator<br />

UP<br />

αβ<br />

dq<br />

|UPd|<br />

LPF<br />

(b)<br />

q<br />

UPdq<br />

γ<br />

VF<br />

Estimator<br />

L<br />

R=0<br />

ULq<br />

φ=0<br />

ILdq<br />

αβ<br />

|A|<br />

|IL|<br />

LPF<br />

Lαβ<br />

ω L<br />

ωL<br />

Ψ Ld<br />

d<br />

Figure 5.8: On-line choke inductance estimator related to the γ ΨL<br />

ILαβ<br />

angle: (a) estimator<br />

scheme, (b) related vector diagram<br />

UPd<br />

L est = |U P d|<br />

ω L |I L |<br />

(5.5)<br />

However, for no-load operation, denominators in (5.4) and (5.5) are approaching<br />

zero, and therefore, estimator has to be blocked.<br />

To guarantee stable operation <strong>of</strong> the inductance estimator, second-order digital<br />

filters (LPF) have been designed with very narrow band pass and high damping<br />

factor.


82 CHAPTER 5. INVESTIGATIONS OF CONTROL METHODS PERFORMANCE<br />

5.3 Experimental Verification <strong>of</strong> On-line Choke Inductance<br />

Estimator<br />

In order to verify operation <strong>of</strong> presented estimator an experimental tests have<br />

been carried out. The estimator has been tested in VF-CSF-P-DPC control<br />

method under conditions listed in Tab. 6.1. The performance <strong>of</strong> the developed online<br />

<strong>AC</strong>-side choke inductance estimator has been shown in Fig. 5.9 and Fig. 5.10.<br />

Fig. 5.9 (a) shows situation when the inductance L C used in predictive model is<br />

90% lower as the real value. When the estimator is switched on, the estimated<br />

inductance L est , after some dynamic process (about 2 s), achieves an actual value<br />

<strong>of</strong> 10 mH.<br />

P<br />

(a)<br />

(b)<br />

Q<br />

L est<br />

u L<br />

i L<br />

L est<br />

L C<br />

L C<br />

Figure 5.9: On-line choke estimator operation with −90% L C mismatch: (a) active<br />

P power (500 W/div), reactive Q power (500 var/div), estimated inductance<br />

value L est (2 mH/div), and inductance value used in control algorithm L C<br />

(2 mH/div), (b) steady-state operation: line voltage u La (100 V/div), line current<br />

i La (5 A/div), estimated inductance value L est (2 mH/div), and inductance<br />

value used in control algorithm L C (2 mH/div)<br />

Furthermore, this value is used in the predictive model. Note that before the<br />

estimator is switched on, the predictive controller operates with a wrong value<br />

<strong>of</strong> L C . As a result, the active and reactive powers have wrong values. However,<br />

grid current ripples have low values as shown in Fig. 5.9 (b).<br />

On the contrary, Fig. 5.10 (a) shows situation when inductance L C used in<br />

predictive model is 200% higher than the actual value. In this case, the active<br />

and reactive powers are estimated almost correctly, but the current ripples are<br />

higher Fig. 5.10 (b).


5.4. LINE VOLTAGE DISTURBANCES 83<br />

(a)<br />

L C<br />

L est<br />

P<br />

Q<br />

(b)<br />

u L<br />

i L<br />

L C<br />

L est<br />

Figure 5.10: On-line choke estimator operation with +200% L C mismatch: (a) inductance<br />

value used in control algorithm L C (10 mH/div), estimated inductance<br />

value L est (10 mH/div), active P power (500 W/div), and reactive Q power<br />

(500 var/div), (b) steady-state operation: line voltage u La (100 V/div), line current<br />

i La (5 A/div), inductance value used in control algorithm L C (10 mH/div),<br />

and estimated inductance value L est (10 mH/div)<br />

5.4 Line Voltage Disturbances<br />

<strong>Predictive</strong> control methods are based on simplified mathematical models (see<br />

Chapter 2). One <strong>of</strong> the assumptions is that, the line voltage is sinusoidal and balanced.<br />

However, in real systems, line voltage can be temporary, or permanently<br />

distorted by faults, short circuits, connections and disconnections <strong>of</strong> large loads,<br />

nonlinear loads, etc.. Usually, it leads to present <strong>of</strong> line voltage harmonics<br />

and voltage sags. Therefore, two control methods: CSF-P-DPC and VF-CSF-P-<br />

DPC will be tested for some <strong>of</strong> these perturbations.<br />

5.4.1 Influence <strong>of</strong> Line Voltage Harmonics<br />

Line voltage is frequently distorted by higher harmonics what is caused by nonlinear<br />

loads operation in the system. The converter control method should be<br />

able to work under such a conditions. The predictive control methods have been<br />

evaluated under line voltage disturbances listed in Tab. 5.1. Note that, line voltage<br />

waveforms have been generated by controllable power supply, so converter<br />

operation influence on supply voltage can be omitted.<br />

As it can be seen in Fig. 5.11 – 5.14 in all cases, controls are able to operate<br />

under distorted voltage. In CSF-P-DPC, control method tries to keep constant<br />

values <strong>of</strong> instantaneous powers, which leads to generation <strong>of</strong> line current shape<br />

waveforms, the same as line voltage. Of course line current T HD i factor, in such<br />

a situation, is close to the line voltage T HD u .


84 CHAPTER 5. INVESTIGATIONS OF CONTROL METHODS PERFORMANCE<br />

(a) (b) CSF-P-DPC<br />

(c)<br />

VF-CSF-P-DPC<br />

Figure 5.11: Experimental steady state system operation under 5% <strong>of</strong> fifth harmonic<br />

distorted line voltage: (a) line voltage u La , line current i La , (b) line voltage<br />

u Lph−ph T HD u factor, (c) line current T HD i factor<br />

(a) (b) CSF-P-DPC<br />

(c)<br />

VF-CSF-P-DPC<br />

Figure 5.12: Experimental steady state system operation under 3% <strong>of</strong> fifth, 3% <strong>of</strong><br />

seventh and 1% <strong>of</strong> eleventh harmonics distorted line voltage: (a) line voltage u La ,<br />

line current i La , (b) line voltage u Lph−ph T HD u factor, (c) line current T HD i<br />

factor


5.4. LINE VOLTAGE DISTURBANCES 85<br />

(a) (b) CSF-P-DPC<br />

(c)<br />

VF-CSF-P-DPC<br />

Figure 5.13: Experimental steady state system operation under 12% <strong>of</strong> fifth<br />

and 12% <strong>of</strong> seventh harmonics distorted line voltage: (a) line voltage u La , line<br />

current i La , (b) line voltage u Lph−ph T HD u factor, (c) line current T HD i factor<br />

(a) (b) CSF-P-DPC<br />

(c)<br />

VF-CSF-P-DPC<br />

Figure 5.14: Experimental steady state system operation under 2% <strong>of</strong> seventh,<br />

8.5% <strong>of</strong> eleventh and 1.3% <strong>of</strong> thirteenth harmonics distorted line voltage: (a) line<br />

voltage u La , line current i La , (b) line voltage u Lph−ph T HD u factor, (c) line<br />

current T HD i factor<br />

In case <strong>of</strong> VF approach, control tries to keep constant values <strong>of</strong> instantaneous<br />

powers, which are related to the fundamental frequency. Due to virtual flux<br />

features (like natural filtering <strong>of</strong> higher harmonics) it is possible to achieve nearly<br />

sinusoidal shape <strong>of</strong> the line currents, even under distorted line voltages.


86 CHAPTER 5. INVESTIGATIONS OF CONTROL METHODS PERFORMANCE<br />

Line voltage CSF-P-DPC VF-CSF-P-DPC<br />

distortion T HD u F sw 5 kHz F sw 5 kHz<br />

5% (Fig. 5.11) 4.4 1.7<br />

4.5% (Fig. 5.12) 5.7 1.6<br />

17.4% (Fig. 5.13) 17.6 5.5<br />

10.6% (Fig. 5.14) 7.1 3.6<br />

Table 5.1: Summarized line current T HD i factors<br />

5.4.2 Influence <strong>of</strong> Line Voltage Sags<br />

Connections and disconnections <strong>of</strong> large loads, and short circuits in the system<br />

can cause line voltage sags (sudden drop <strong>of</strong> line voltage value). In this subsection,<br />

operation <strong>of</strong> CSF-P-DPC and VF approach under single and two phase voltage<br />

sags will be investigated.<br />

u La<br />

u Lb<br />

u Lc<br />

CSF-P-DPC<br />

(a)<br />

VF-CSF-P-DPC<br />

i La<br />

(b)<br />

u La<br />

U <strong>DC</strong><br />

i La<br />

P ref<br />

Figure 5.15: Operation under single phase voltage sag: (a) line voltages u La , u Lb ,<br />

u Lc (100 V/div), line current i La (10 A/div), (b) line voltage u La (200 V/div),<br />

U <strong>DC</strong> voltage (100 V/div), line current i La (10 A/div), referenced active power<br />

P ref (1 kW/div)<br />

Figure 5.15 shows operation under single phase sag. As it can be seen, line


5.4. LINE VOLTAGE DISTURBANCES 87<br />

CSF-P-DPC<br />

(a)<br />

VF-CSF-P-DPC<br />

u La<br />

u Lb<br />

u Lc<br />

i La<br />

(b)<br />

u La<br />

U <strong>DC</strong><br />

i La<br />

P ref<br />

Figure 5.16: Operation under two phase voltage sag: (a) line voltages u La , u Lb ,<br />

u Lc (100 V/div), line current i La (10 A/div), (b) line voltage u La (200 V/div),<br />

U <strong>DC</strong> voltage (100 V/div), line current i La (10 A/div), referenced active power<br />

P ref (1 kW/div)<br />

25<br />

(a)<br />

25<br />

(b)<br />

20<br />

THD ILa<br />

THD ILb<br />

THD ILc<br />

20<br />

CSF-P-DPC<br />

THD ILa<br />

THD ILb<br />

THD ILc<br />

THD [%]<br />

15<br />

10<br />

CSF-P-DPC<br />

THD [%]<br />

15<br />

10<br />

5<br />

VF-CSF-P-DPC<br />

5<br />

VF-CSF-P-DPC<br />

0<br />

50 60 70 80 90 100<br />

U [%] L<br />

0<br />

50 60 70 80 90 100<br />

U [%] L<br />

Figure 5.17: Current T HD factor in presence <strong>of</strong>: (a) single phase voltage sag,<br />

(b) two phase voltage sag<br />

voltage sag u La , causes <strong>DC</strong>-link voltage drop U <strong>DC</strong> . Next, <strong>DC</strong>-link voltage controller,<br />

trying to keep constant U <strong>DC</strong> , assigns higher value <strong>of</strong> active power P ref


88 CHAPTER 5. INVESTIGATIONS OF CONTROL METHODS PERFORMANCE<br />

u La<br />

u Lb<br />

u Lc<br />

(a)<br />

VF-CSF-P-DPC<br />

i La<br />

(b)<br />

u La<br />

U <strong>DC</strong><br />

i La<br />

P ref<br />

Figure 5.18: Operation under two phase voltage sag: (a) line voltages u La , u Lb ,<br />

u Lc (100 V/div), line current i La (10 A/div), (b) line voltage u La (200 V/div),<br />

U <strong>DC</strong> voltage (100 V/div), line current i La (10 A/div), referenced active power<br />

P ref (1 kW/div)<br />

(see Fig. 4.11), which increases line current value. For both controls, the operational<br />

limit is set to the maximum allowable converter input current. When<br />

the current limit is exceeded, the converter is being shut down. The converter<br />

operates in similar way in case <strong>of</strong> two phase voltage sag.<br />

Figure 5.17 shows line current T HD factor in presence <strong>of</strong> single and two phase<br />

voltage sags. In both cases, the VF-CSF-P-DPC is more robust to disturbances,<br />

than control with direct line voltage measurements.


Chapter 6<br />

Experimental Study<br />

Experimental studies were performed on the laboratory set-up, which consists <strong>of</strong><br />

an <strong>AC</strong>/<strong>DC</strong> voltage source converter (Danfoss VLT 5005 5 kVA), <strong>AC</strong>-side choke,<br />

and control system implemented on dSP<strong>AC</strong>E 1103 board. Main data <strong>of</strong> the power<br />

circuit are summarized in Tab. 6.1. As a supply, a programmable power simulator<br />

has been used, which guarantees sinusoidal voltage waveforms. Note that all tests<br />

have been carried out with reduced line voltage amplitude.<br />

Quantity<br />

Value<br />

Fundamental Frequency F L [Hz] 50<br />

Supply Voltage u L(RMS) [V] 120<br />

VSC max. current i L(RMS) [A] 8<br />

Input Filter Inductance L [mH] 10<br />

Input Filter Resistance R [mΩ] 100<br />

<strong>DC</strong>-link Capacitance C [µF] 470<br />

Table 6.1: Main data <strong>of</strong> laboratory set-up<br />

6.1 Steady State Operation<br />

Presented control methods have been divided into two main groups: with variable<br />

(like: ST-DPC and VSF), and constant or fixed switching frequency (like: DPC-<br />

SVM and CSF), and further compared under steady state operation. To avoid<br />

<strong>DC</strong> voltage control loop influence, all tests have been carried out with open loop,<br />

and under unity power factor condition Q ref = 0. The reference value <strong>of</strong> active<br />

power P ref has been set to 2 kW, and the <strong>DC</strong> side load resistance has been set to<br />

100 Ω. Table 6.2 summarizes sampling frequencies F s , and achieved line current<br />

T HD factors for investigated methods.<br />

89


90 CHAPTER 6. EXPERIMENTAL STUDY<br />

(a) ST-DPC (b)<br />

u La<br />

i La<br />

u P a<br />

P<br />

Q<br />

VSF-P-DPC<br />

HC-VSF-P-DPC<br />

FL-VSF-P-DPC<br />

Figure 6.1: Experimental steady state operation <strong>of</strong>: ST-DPC, VSF-P-DPC, HC-<br />

VSF-P-DPC and FL-VSF-P-DPC under 2 kW <strong>of</strong> load.<br />

From the top: (a) line voltage u La (200 V/div), line current i La (10 A/div), VSC<br />

input voltage u P a (200 V/div), (b) referenced P ref and measured P active powers<br />

(500 W/div), and referenced Q ref and measured Q reactive powers (500 var/div)


6.1. STEADY STATE OPERATION 91<br />

(a)<br />

DPC-SVM (b)<br />

u La<br />

i La<br />

u P a<br />

P<br />

Q<br />

CSF-P-DPC<br />

VF-CSF-P-DPC<br />

Figure 6.2: Experimental steady state operation <strong>of</strong>: DPC-SVM, CSF-P-DPC<br />

and VF-CSF-P-DPC under 2 kW <strong>of</strong> load. From the top: (a) line voltage<br />

u La (200 V/div), line current i La (10 A/div), VSC input voltage u P a (200 V/div),<br />

(b) referenced P ref and measured P active powers (500 W/div), and referenced<br />

Q ref and measured Q reactive powers (500 var/div)


92 CHAPTER 6. EXPERIMENTAL STUDY<br />

(a) (b) ST-DPC (c)<br />

VSF-P-DPC<br />

HC-VSF-P-DPC<br />

FL-VSF-P-DPC<br />

Figure 6.3: Line current T HD factors and spectrum in: ST-DPC, VSF-P-DPC,<br />

HC-VSF-P-DPC and FL-VSF-P-DPC, (a) T HD factor measured up to 2.5 kHz,<br />

(b) harmonics spectrum up to 2.5 kHz, (c) harmonics spectrum up to 12.5 kHz<br />

Note that ST-DPC and predictive control methods with variable switching<br />

frequency require higher sampling frequency than DPC-SVM and CSF methods.<br />

Figures 6.1 – 6.2 show steady state operation. All controls fulfill unity power<br />

factor condition, and line current i La is in phase with line voltage u la . The<br />

lowest active and reactive powers variations have been achieved by DPC-SVM,<br />

CSF-P-DPC and VF-CSF-P-DPC.<br />

Figures 6.3 (a) – 6.4 (a) show line current T HD factors for tested methods,<br />

as well as line current spectrum up to 2.5 kHz (Fig. 6.3 (b) – 6.4 (b)) and up<br />

to 12.5 kHz (Fig. 6.3 (c) – 6.4 (c)). As it can be seen the lowest T HD factors<br />

have been achieved by CFS-P-DPC and VF-CSF-P-DPC methods.


6.1. STEADY STATE OPERATION 93<br />

<strong>Control</strong> F sw F swAV F swMax F s T HD<br />

Method per cycle [kHz] [kHz] [kHz] [%]<br />

ST-DPC var. 3.6 40 40 3.6<br />

VSF-P-DPC var. 3.7 20 20 2.7<br />

HC-VSF-P-DPC var. 3.7 20 20 5.6<br />

FL-VSF-P-DPC var. 3 20 20 4.4<br />

DPC-SVM fixed 5 5 5 2.1<br />

CSF-P-DPC fixed 5 7.5 7.5 0.7<br />

VF-CSF-P-DPC fixed 5 7.5 7.5 0.8<br />

Table 6.2: Sampling and switching frequencies <strong>of</strong> tested control methods and<br />

achieved T HD factors<br />

(a) (b) DPC-SVM (c)<br />

CSF-P-DPC<br />

VF-CSF-P-DPC<br />

Figure 6.4: Line current T HD factors and spectrum in: DPC-SVM, CSF-P-DPC<br />

and VF-CSF-P-DPC, (a) T HD factor measured up to 2.5 kHz, (b) harmonics<br />

spectrum up to 2.5 kHz, (c) harmonics spectrum up to 12.5 kHz<br />

For fixed switching frequency approaches (see Tab. 6.2) line current spectrum<br />

is concentrated around switching frequency (Fig. 6.4 (c)). In other cases the<br />

spectrum is spread over wide range <strong>of</strong> frequencies. The exception is HC-VSF-P-<br />

DPC, which allows to concentrate current spectrum within desired frequency (in<br />

presented case around 4 kHz, Fig. 6.3 (c)). However, it generates also low order


94 CHAPTER 6. EXPERIMENTAL STUDY<br />

harmonics what results in the highest line current T HD factor.<br />

6.2 Transient Operation<br />

Behavior <strong>of</strong> presented control methods have been compared under transient states.<br />

The first test was step change <strong>of</strong> referenced active power P ref from 1 kW<br />

to 2 kW. To fully show control methods performance on active power step change,<br />

test has been carried out with open <strong>DC</strong>-link voltage control loop. Figure 6.5<br />

and Fig. 6.6 show experimental results.<br />

The step responses <strong>of</strong> ST-DPC and VSF methods are comparable to each<br />

other, see Fig. 6.7. However, its about one and half times faster than DPC-SVM<br />

and CSF approaches, see Fig. 6.8. Higher transient response is achieved by high<br />

sampling frequency, and ability <strong>of</strong> immediately applying opposite voltage vectors<br />

(VSF-P-DPC and HC-VSF-P-DPC), as it has been shown in Fig. 6.7 (b).<br />

In case <strong>of</strong> ST-DPC, control method does not allow for opposite vectors application<br />

(refer to Tab. 3.1, and Tab. 3.2), however high sampling frequency (40 kHz)<br />

guarantees fast response.<br />

Because <strong>of</strong> modulator in DPC-SVM, opposite voltage vector applications are<br />

not allowed. Also, in CSF-P-DPC and VF-CSF-P-DPC selection <strong>of</strong> voltage vectors<br />

is limited by switching tables (see Tab. 4.4 and Tab. 4.5), however lack <strong>of</strong> PI<br />

controller in internal control loops give fast response without overshot.


6.2. TRANSIENT OPERATION 95<br />

(a) ST-DPC (b)<br />

u La<br />

i La<br />

u P a<br />

P<br />

Q<br />

VSF-P-DPC<br />

HC-VSF-P-DPC<br />

FL-VSF-P-DPC<br />

Figure 6.5: Experimental transient state <strong>of</strong>: ST-DPC, VSF-P-DPC, HC-VSF-P-<br />

DPC and FL-VSF-P-DPC, step change <strong>of</strong> referenced active power P ref from<br />

1 to 2 kW. From the top: (a) line voltage u La (200 V/div), line current<br />

i La (10 A/div), VSC input voltage u P a (200 V/div), (b) referenced P ref and measured<br />

P active powers (500 W/div), and referenced Q ref and measured Q reactive<br />

powers (500 var/div)


96 CHAPTER 6. EXPERIMENTAL STUDY<br />

(a)<br />

DPC-SVM (b)<br />

u La<br />

i La<br />

u P a<br />

P<br />

Q<br />

CSF-P-DPC<br />

VF-CSF-P-DPC<br />

Figure 6.6: Experimental transient state <strong>of</strong>: DPC-SVM, CSF-P-DPC and VF-<br />

CSF-P-DPC, step change <strong>of</strong> referenced active power P ref from 1 to 2 kW. From<br />

the top: (a) line voltage u La (200 V/div), line current i La (10 A/div), VSC input<br />

voltage u P a (200 V/div), (b) referenced P ref and measured P active powers<br />

(500 W/div), and referenced Q ref and measured Q reactive powers (500 var/div)


6.2. TRANSIENT OPERATION 97<br />

(a)<br />

ST-DPC<br />

(b)<br />

P<br />

u P a<br />

Q<br />

VSF-P-DPC<br />

HC-VSF-P-DPC<br />

FL-VSF-P-DPC<br />

Figure 6.7: Experimental transient state <strong>of</strong>: ST-DPC, VSF-P-DPC, HC-VSF-<br />

P-DPC and FL-VSF-P-DPC, step change <strong>of</strong> referenced active power P ref from<br />

1 to 2 kW. From the top: (a) referenced P ref and measured P active powers<br />

(500 W/div), and referenced Q ref and measured Q reactive powers (500 var/div)<br />

(b) VSC input voltage u P a (200 V/div)


98 CHAPTER 6. EXPERIMENTAL STUDY<br />

(a)<br />

DPC-SVM<br />

(b)<br />

P<br />

u P a<br />

Q<br />

CSF-P-DPC<br />

VF-CSF-P-DPC<br />

Figure 6.8: Experimental transient state <strong>of</strong>: DPC-SVM, CSF-P-DPC and VF-<br />

CSF-P-DPC, step change <strong>of</strong> referenced active power P ref from 1 to 2 kW. From<br />

the top: (a) referenced P ref and measured P active powers (500 W/div), and referenced<br />

Q ref and measured Q reactive powers (500 var/div) (b) VSC input voltage<br />

u P a (200 V/div)<br />

Figures 6.9 – 6.10 present second test, which was step change <strong>of</strong> <strong>DC</strong>-link<br />

voltage reference value U <strong>DC</strong>ref from 300 V to 600 V. The <strong>DC</strong>-link voltage PI<br />

controller has been tuned for each method according to the rules presented in<br />

Section 3.4. For all controls U <strong>DC</strong> overshoot is between 3% – 5%, and regulation<br />

time is between 30 – 40 ms. Note that <strong>DC</strong>-link controller output has been limited<br />

to 3.5 kW in order to avoid converter shot down caused by over current protection.


6.2. TRANSIENT OPERATION 99<br />

(a) ST-DPC (b)<br />

u L<br />

i L<br />

U <strong>DC</strong><br />

P<br />

Q<br />

VSF-P-DPC<br />

HC-VSF-P-DPC<br />

FL-VSF-P-DPC<br />

Figure 6.9: Experimental step change <strong>of</strong> referenced <strong>DC</strong> voltage U <strong>DC</strong>ref from<br />

300 to 600 V. From the top: (a) referenced U <strong>DC</strong>ref and measured U <strong>DC</strong> voltage<br />

(100 V/div), line voltage u La (200 V/div), line current i La (10 A/div),<br />

(b) referenced P ref and measured P active powers (1 kW/div), and referenced<br />

Q ref and measured Q reactive powers (1 kvar/div)


100 CHAPTER 6. EXPERIMENTAL STUDY<br />

(a) DPC-SVM (b)<br />

U <strong>DC</strong><br />

i L<br />

P<br />

Q<br />

CSF-P-DPC<br />

VF-CSF-P-DPC<br />

Figure 6.10: Experimental step change <strong>of</strong> referenced <strong>DC</strong> voltage U <strong>DC</strong>ref from<br />

300 to 600 V. From the top: (a) referenced U <strong>DC</strong>ref and measured U <strong>DC</strong> voltage<br />

(100 V/div), line voltage u La (200 V/div), line current i La (10 A/div),<br />

(b) referenced P ref and measured P active powers (1 kW/div), and referenced<br />

Q ref and measured Q reactive powers (1 kvar/div)


6.3. OPERATION WITH LOW SWITCHING FREQUENCY 101<br />

6.3 Operation with Low Switching Frequency<br />

The same experimental investigations have been repeated with reduced switching<br />

frequency for selected control methods: DPC-SVM, CSF-P-DPC and VF-CSF-<br />

P-DPC, under conditions listed in Tab. 6.1 and Tab. 6.3.<br />

<strong>Control</strong> Method F sw F swAV F swMax F s T HD<br />

per cycle [kHz] [kHz] [kHz] [%]<br />

DPC-SVM fixed 2 2 2 4.2<br />

CSF-P-DPC fixed 2 2 3 3.3<br />

VF-CSF-P-DPC fixed 2 2 3 3.2<br />

Table 6.3: Sampling and switching frequencies <strong>of</strong> tested control methods<br />

(a) (b) DPC-SVM (c)<br />

CSF-P-DPC<br />

VF-CSF-P-DPC<br />

Figure 6.11: Line current T HD factors and spectrum in DPC-SVM, CSF-P-DPC<br />

and VF-CSF-P-DPC: (a) T HD factor measured up to 2.5 kHz, (b) harmonics<br />

spectrum up to 2.5 kHz, (c) harmonics spectrum up to 12.5 kHz<br />

Figure 6.12 shows steady state operation. In all cases oscillations <strong>of</strong> active and<br />

reactive powers can be observed (Fig. 6.12 (b)), however its amplitude and period<br />

are lower in predictive methods. It corresponds to line current T HD factor.


102 CHAPTER 6. EXPERIMENTAL STUDY<br />

(a)<br />

DPC-SVM (b)<br />

u La<br />

i La<br />

u P a<br />

P<br />

Q<br />

CSF-P-DPC<br />

VF-CSF-P-DPC<br />

Figure 6.12: Experimental steady-state operation <strong>of</strong> DPC-SVM, CSF-P-DPC<br />

and VF-CSF-P-DPC under 2 kW load. From the top: (a) line voltage<br />

u La (200 V/div), line current i La (10 A/div), VSC input voltage u P a (200 V/div),<br />

(b) referenced P ref and measured P active powers (500 W/div), and referenced<br />

Q ref and measured Q reactive powers (500 var/div)


6.3. OPERATION WITH LOW SWITCHING FREQUENCY 103<br />

(a)<br />

DPC-SVM (b)<br />

u La<br />

i La<br />

u P a<br />

P<br />

Q<br />

CSF-P-DPC<br />

VF-CSF-P-DPC<br />

Figure 6.13: Experimental transient state <strong>of</strong> DPC-SVM, CSF-P-DPC and VF-<br />

CSF-P-DPC; step change <strong>of</strong> referenced active power P ref from 1 to 2 kW. From<br />

the top: (a) line voltage u La (200 V/div), line current i La (10 A/div), VSC input<br />

voltage u P a (200 V/div), (b) referenced P ref and measured P active powers<br />

(500 W/div), and referenced Q ref and measured Q reactive powers (500 var/div)


104 CHAPTER 6. EXPERIMENTAL STUDY<br />

(a)<br />

DPC-SVM<br />

(b)<br />

u P a<br />

P<br />

Q<br />

CSF-P-DPC<br />

VF-CSF-P-DPC<br />

Figure 6.14: Experimental transient state <strong>of</strong> DPC-SVM, CSF-P-DPC and VF-<br />

CSF-P-DPC; step change <strong>of</strong> referenced active power P ref from 1 to 2 kW. From<br />

the top: (a) line voltage u La (200 V/div), line current i La (10 A/div), VSC input<br />

voltage u P a (200 V/div), (b) referenced P ref and measured P active powers<br />

(500 W/div), and referenced Q ref and measured Q reactive powers (500 var/div)


6.3. OPERATION WITH LOW SWITCHING FREQUENCY 105<br />

(a)<br />

(b) DPC-SVM (c)<br />

U <strong>DC</strong><br />

P<br />

Q<br />

CSF-P-DPC<br />

VF-CSF-P-DPC<br />

Figure 6.15: Experimental step change <strong>of</strong> referenced <strong>DC</strong> voltage U <strong>DC</strong>ref from<br />

300 to 600 V.<br />

From the top: (a) referenced U <strong>DC</strong>ref and measured U <strong>DC</strong> voltage (100 V/div),<br />

(b) line voltage u La (200 V/div), line current i La (5 A/div), VSC input voltage<br />

u P a (200 V/div), (c) referenced P ref and measured P active powers (1 kW/div),<br />

and referenced Q ref and measured Q reactive powers (1 kvar/div)<br />

The lowest value has been achieved by VF-CSF-P-DPC method (see Fig. 6.11<br />

and Tab. 6.3). Another test was step change <strong>of</strong> referenced active power P ref<br />

from 1 kW to 2 kW, and has been carried out with open <strong>DC</strong>-link voltage control<br />

loop (Fig. 6.13). As it can be seen in Fig. 6.14 the predictive control methods<br />

get faster responses, with smaller overshot. Note that, in all cases no opposite<br />

voltage vector application occurs.<br />

Finally, Fig. 6.15 shows control methods performance on step change <strong>of</strong> referenced<br />

<strong>DC</strong>-link voltage U <strong>DC</strong>ref from 300 V to 600 V.


106 CHAPTER 6. EXPERIMENTAL STUDY<br />

6.4 Summary<br />

In order to verify the behavior <strong>of</strong> the predictive control methods several experimental<br />

test have been carried out. This Chapter evaluates both VSF and CSF<br />

predictive methods, along well known ST-DPC and DPC-SVM. Additionally, for<br />

selected methods, a low switching frequency operation have been investigated.<br />

<strong>Control</strong> Method t set [µs] t r [µs] t r2 [µs]<br />

ST-DPC 600 190 400<br />

VSF-P-DPC 420 390 400<br />

HC-VSF-P-DPC 600 100 300<br />

FL-VSF-P-DPC 600 100 300<br />

DPC-SVM 1000 600 500<br />

CSF-P-DPC 600 260 450<br />

VF-CSF-P-DPC 600 260 450<br />

Table 6.4: Summarized dynamic properties <strong>of</strong> control methods for P ref step<br />

change<br />

<strong>Control</strong> Method t set [ms] t r [ms] Overshot [%]<br />

ST-DPC 50 25 5<br />

VSF-P-DPC 50 25 5.5<br />

HC-VSF-P-DPC 50 25 3<br />

HC-VSF-P-DPC 50 25 3<br />

DPC-SVM 55 30 4<br />

CSF-P-DPC 50 35 3.5<br />

VF-CSF-P-DPC 50 35 3.5<br />

Table 6.5: Dynamic properties <strong>of</strong> control methods for U <strong>DC</strong>ref step change<br />

<strong>Control</strong> Method t set [µs] t r [µs]<br />

DPC-SVM 4000 2000<br />

CSF-P-DPC 1500 1000<br />

VF-CSF-P-DPC 1500 1000<br />

Table 6.6: Summarized dynamic properties <strong>of</strong> control methods for P ref step<br />

change with low switching frequency<br />

The <strong>Predictive</strong> methods have very good results both in steady-state (see<br />

Tab. 6.2) and transients (see Tab. 6.4 and Tab. 6.5). The comparative study<br />

between ST-DPC and variable switching frequency predictive methods establish<br />

that for comparable switching frequency VSF-P-DPC has the same dynamic features,<br />

but it gets lower T HD factor (1% <strong>of</strong> improvement).


6.4. SUMMARY 107<br />

<strong>Control</strong> Method t set [ms] t r [ms] Overshot [%]<br />

DPC-SVM 90 40 4<br />

CSF-P-DPC 55 35 3.5<br />

VF-CSF-P-DPC 55 35 3.5<br />

Table 6.7: Dynamic properties <strong>of</strong> control methods for U <strong>DC</strong>ref step change with<br />

low switching frequency<br />

In a similar way, a comparison between DPC-SVM and constant switching<br />

frequency predictive methods have been done. It has been shown that both<br />

predictive methods; CSF-P-DPC and VF-CSF-P-DPC have improved dynamic<br />

as well as T HD factor is decreased in relation to DPC-SVM (1.4% improvement).<br />

The same conclusion can be noted in case <strong>of</strong> low switching (sampling) frequency<br />

operation (see Tab. 6.6, and Tab. 6.7). The P ref step response is about two times<br />

faster and T HD factor in steady state is reduced by 1%.


Chapter 7<br />

Summary and Final Conclusions<br />

This thesis has been devoted to the research <strong>of</strong> predictive control methods for<br />

Voltage Source Converter, which could be competitive to the well known controls<br />

as: Voltage Oriented <strong>Control</strong> - VOC, Switching Table based Direct Power <strong>Control</strong><br />

- ST-DPC and Direct Power <strong>Control</strong> with Space Vector Modulator - DPC-SVM.<br />

The predictive control theory is being used in many fields <strong>of</strong> science. Also applications<br />

in power electronics can be found, however its number is still low. Therefore,<br />

thesis proposes several <strong>Predictive</strong> Direct Power <strong>Control</strong> (P-DPC) methods, a new<br />

control approaches where the well known direct power control is combined with<br />

a predictive selection <strong>of</strong> a voltage vectors, obtaining both high transient dynamic<br />

and low line current T HD factors, even for low switching frequency.<br />

Author has concentrated on Finite Set Model <strong>Predictive</strong> <strong>Control</strong> - FS-MPC,<br />

which meets very well discrete nature <strong>of</strong> power converters. In view <strong>of</strong> switching<br />

frequency the FS-MPC methods can be divided into two groups:<br />

• Variable Switching Frequency (VSF) - Section 4.3 – 4.5,<br />

• Constant Switching Frequency (CSF) - Section 4.6 and 4.7.<br />

In order to present those control methods, several analytical and simulation<br />

based approaches, as well as experimental validations in a line connected,<br />

two-level VSC have been carried out. Taking into consideration advantages <strong>of</strong><br />

constant switching frequency for converter operation, further work has been focused<br />

on CSF approach giving Virtual Flux based Constant Switching Frequency<br />

Direct Power <strong>Control</strong> VF-CSF-P-DPC. From the obtained results <strong>of</strong> comparative<br />

study, the VF-CSF-P-DPC has following advantages:<br />

• high dynamic power control performance (lack <strong>of</strong> PI controllers),<br />

• lower line current T HD factor even for low switching frequency,<br />

109


110 CHAPTER 7. SUMMARY AND FINAL CONCLUSIONS<br />

• lower line current T HD factor even for distorted line voltage,<br />

• lack <strong>of</strong> PWM modulation blocks,<br />

• constant switching frequency (easy design <strong>of</strong> EMI filter),<br />

• operation without <strong>AC</strong>-side voltage sensors, due to used VF-based approach,<br />

• lower sampling frequency (as conventional DPC and P-DPC with variable<br />

switching frequency),<br />

• less noisy estimated active and reactive power signals (VF), easy DSP implementation,<br />

• robust to input choke inductance mismatch, due to on-line estimator.<br />

The experimental results show very good properties under different operation<br />

conditions both in steady and transient states. The comparison between known<br />

DPC-based strategies and proposed approach establishes that the P-DPC is faster<br />

in active power reference transients and achieves lower line current T HD factor,<br />

even for distorted and unbalanced line voltage. The performance comparison<br />

shows that the presented approaches are an attractive option to standard ST-<br />

DPC or DPC-SVM techniques for voltage source converters.<br />

In the author’s opinion the thesis formulated in Chapter 1 has been proved.<br />

The predictive control methods for VSC, provides very high dynamics <strong>of</strong> active<br />

and reactive power control, even for low switching frequency.


Bibliography<br />

[1] M. P. Kazmierkowski, R. Krishnan, and F. Blaabjerg, <strong>Control</strong> in Power Electronics.<br />

Academic Press - USA, 2002. [cited at p. 1, 2, 17, 42]<br />

[2] M. Lissere, P. Rodriguez, J. Guerrero, and R. Teodorescu, “Power electronics<br />

for pv energy systems integration,” 39th IEEE PESC, 15–19 June 2008, tutorial.<br />

[cited at p. 1, 2]<br />

[3] M. P. Kazmierkowski, M. Jasinski, and H. C. Sorensen, “Ocean wave energy<br />

converters-wave dragon mw,” Przeglad Elektrotechniczny, vol. 84, no. 2, pp. 8–13,<br />

2008. [cited at p. 1, 2]<br />

[4] M. Malinowski and M. P. Kazmierkowski, “Simple direct power control <strong>of</strong> threephase<br />

pwm rectifier using space vector modulation - a comparative study,” EPE-<br />

Journal, vol. 13, no. 2, pp. 28–34, Sept 2003. [cited at p. 1, 2, 17, 28]<br />

[5] B. T. Ooi, J. W. Dixon, A. B. Kulkarni, and M. Nishimoto, “An integrated ac drive<br />

system using a controlled-current pwm rectifier/inverter link,” in Proc. <strong>of</strong> PESC<br />

1986, pp. 494–501, 1986. [cited at p. 1, 2]<br />

[6] T. Ohnishi, “<strong>Three</strong>-phase pwm converter/inverter by means <strong>of</strong> instantaneous active<br />

and reactive power control,” in Proc. <strong>of</strong> IEEE-IECON, vol. 1, pp. 819–824, 28 Oct –<br />

1 Nov 1991. [cited at p. 1, 2, 21]<br />

[7] M. Malinowski, M. P. Kazmierkowski, S. Hansen, F. Blaabjerg, and G. D. Marques,<br />

“Virtual flux-based direct power control <strong>of</strong> three-phase pwm rectifiers,” IEEE Trans.<br />

on Industry Applications, vol. 37, no. 4, pp. 1019–1027, July/Aug 2001. [cited at p. 1,<br />

28]<br />

[8] M. P. Kazmierkowski and L. Malesani, “Current control techniques for three-phase<br />

voltage-source pwm converters: A survey,” IEEE Trans. on Industrial Electronics,<br />

vol. 45, no. 5, pp. 691–703, Oct 1998. [cited at p. 2]<br />

[9] M. Malinowski, “Sensorless control strategies for three - phase pwm rectifiers,” Ph.D.<br />

dissertation, Warsaw Univ. <strong>of</strong> Technology, Warsaw, Poland, 2001. [cited at p. 2, 17,<br />

18, 24, 25]<br />

[10] J. L. Duarte, A. V. Zwam, C. Wijnands, and A. Vandenput, “Reference frames fit<br />

for controlling pwm rectifiers,” IEEE Trans. on Industrial Electronics, vol. 46, no. 3,<br />

pp. 628–630, June 1999. [cited at p. 2, 17, 24, 28]<br />

111


112 BIBLIOGRAPHY<br />

[11] K. Hyosung and H. Akagi, “The instantaneous power theory on the rotating p-qr<br />

reference frames,” in Proc. <strong>of</strong> PEDS’99, vol. 1, pp. 422–427, 27–29 July 1999.<br />

[cited at p. 2]<br />

[12] M. Malinowski, “Adaptive space vector modulation for three-phase two-level pwm<br />

rectifiers/inverters,” Archives <strong>of</strong> Electrical Engineering, vol. L1, no. 3, pp. 281–295,<br />

2002. [cited at p. 2]<br />

[13] M. Malinowski, M. Jasinski, and M. P. Kazmierkowski, “Simple direct power control<br />

<strong>of</strong> three-phase pwm rectifier using space-vector modulation (dpc-svm),” IEEE<br />

Trans. on Industrial Electronics, vol. 51, no. 2, pp. 447–454, April 2004. [cited at p. 2,<br />

25]<br />

[14] J. Holtz, “Pulsewidth modulation for electronic power conversion,” in Proc. <strong>of</strong> the<br />

IEEE, vol. 82, no. 8, pp. 1194–1214, Aug 1994. [cited at p. 2]<br />

[15] J. Holtz and S. Stadtfeld, “A predictive controller for the stator current vector <strong>of</strong><br />

ac machines fed from a switched voltage source,” in Proc. <strong>of</strong> IPEC, pp. 1665–1675,<br />

1983. [cited at p. 3]<br />

[16] M. Depenbrock, “Direct self-control (dsc) <strong>of</strong> inverter-fed induction machine,” IEEE<br />

Trans. on Power Electronics, vol. 3, no. 4, pp. 420–429, Oct 1988. [cited at p. 3]<br />

[17] E. Flach, R. H<strong>of</strong>fmann, and P. Mutschler, “Direct mean torque control <strong>of</strong> an induction<br />

motor,” in Proc. <strong>of</strong> EPE 97, vol. 3, pp. 672—-677, 8–10 Sept 1997. [cited at p. 3]<br />

[18] I. Takahashi and T. Noguchi, “A new quick response and high efficiency control<br />

strategy <strong>of</strong> an induction motor,” in Proc. <strong>of</strong> IEEE-IAS 2005, pp. 1665–1675, 1985.<br />

[cited at p. 3]<br />

[19] O. Kukrer, “Discrete-time current control <strong>of</strong> voltage-fed three-phase pwm inverters,”<br />

IEEE Trans. on Power Electronics, vol. 11, no. 2, pp. 260–269, March 1996.<br />

[cited at p. 4]<br />

[20] H. Le-Huy, K. Slimani, and P. Viarouge, “Analysis and implementation <strong>of</strong> a real-time<br />

predictive current controller for permanent-magnet synchronous servo drives,” IEEE<br />

Trans. on Industrial Electronics, vol. 41, no. 1, pp. 110–117, Feb 1994. [cited at p. 4]<br />

[21] H.-T. Moon, H.-S. Kim, and M.-J. Youn, “A discrete-time predictive current control<br />

for pmsm,” IEEE Trans. on Power Electronics, vol. 18, no. 1, pp. 464–472, Jan 2003.<br />

[cited at p. 4]<br />

[22] L. Springob and J. Holtz, “High-bandwidth current control for torque ripple compensation<br />

in pm synchronous machines,” IEEE Trans. on Industrial Electronics,<br />

vol. 45, no. 5, pp. 713–721, Oct 1998. [cited at p. 4]<br />

[23] J. Chen, A. Prodic, R. W. Erickson, and D. Maksimovic, “<strong>Predictive</strong> digital current<br />

programmed control,” IEEE Trans. on Power Electronics, vol. 18, no. 1, pp. 411–<br />

419, Jan 2003. [cited at p. 4]<br />

[24] R. E. Betz, B. J. Cook, and S. J. Henriksen, “A digital current controller for three<br />

phase voltage source inverters,” in Proc. <strong>of</strong> IEEE-IAS 1997, vol. 1, pp. 722–729,<br />

5–9 Oct 1997. [cited at p. 4]


BIBLIOGRAPHY 113<br />

[25] G. Bode, P. C. Loh, M. J. Newman, and D. G. Holmes, “An improved robust<br />

predictive current regulation algorithm,” IEEE Trans. on Industry Applications,<br />

vol. 41, no. 6, pp. 1720–1733, Nov 2005. [cited at p. 4]<br />

[26] S.-M. Yang and C.-H. Lee, “A deadbeat current controller for field oriented induction<br />

motor drives,” IEEE Trans. on Power Electronics, vol. 17, no. 5, pp. 772–778, Sept<br />

2002. [cited at p. 4]<br />

[27] H. Abu-Rub, J. Guzinski, Z. Krzeminski, and H. A. Toliyat, “<strong>Predictive</strong> current<br />

control <strong>of</strong> voltage source inverters,” IEEE Trans. on Industrial Electronics, vol. 51,<br />

no. 3, pp. 585–593, June 2004. [cited at p. 4]<br />

[28] Q. Zeng and L. Chang, “An advanced svpwm-based predictive current controller for<br />

three-phase inverters in distributed generation systems,” IEEE Trans. on Industrial<br />

Electronics, vol. 55, no. 3, pp. 1235–1246, March 2008. [cited at p. 4, 42]<br />

[29] L. Malesani, P. Mattavelli, and S. Buso, “Robust dead-beat current control for pwm<br />

rectifiers and active filters,” IEEE Trans. on Industry Applications, vol. 35, no. 3,<br />

pp. 613–620, May/June 1999. [cited at p. 4, 42]<br />

[30] Y. Nishida, O. Miyashita, T. Haneyoshi, H. Tomita, and A. Maeda, “A predictive<br />

instantaneous-current pwm controlled rectifier with ac-side harmonic current reduction,”<br />

IEEE Trans. on Industrial Electronics, vol. 44, no. 3, pp. 337–343, June 1997.<br />

[cited at p. 4]<br />

[31] S.-G. Jeong and M.-H. Woo, “Dsp-based active power filter with predictive current<br />

control,” IEEE Trans. on Industrial Electronics, vol. 44, no. 3, pp. 329–336, June<br />

1997. [cited at p. 4]<br />

[32] J. Mossoba and P. Lehn, “A controller architecture for high bandwidth active power<br />

filters,” IEEE Trans. on Power Electronics, vol. 18, no. 1, pp. 317–325, Jan 2003.<br />

[cited at p. 4]<br />

[33] W. Zhang, G. Feng, Y.-F. Liu, and B. Wu, “Analysis and implementation <strong>of</strong> a new<br />

pfc digital control method,” in Proc. <strong>of</strong> PESC 2003, vol. 1, pp. 335–340, 15–19 June<br />

2003. [cited at p. 4]<br />

[34] P. Mattavelli, G. Spiazzi, and P. Tenti, “<strong>Predictive</strong> digital control <strong>of</strong> power factor<br />

preregulators using disturbance observer for input voltage estimation,” in Proc. <strong>of</strong><br />

PESC 2003, vol. 4, pp. 1703–1708, 15–19 June 2003. [cited at p. 4]<br />

[35] ——, “<strong>Predictive</strong> digital control <strong>of</strong> power factor preregulators with input voltage<br />

estimation using disturbance observers,” IEEE Trans. on Power Electronics, vol. 20,<br />

no. 1, pp. 140–147, Jan 2005. [cited at p. 4]<br />

[36] S. Buso, S. Fasolo, and P. Mattavelli, “Uninterruptible power supply multi loop employing<br />

digital predictive voltage and current regulators,” IEEE Trans. on Industry<br />

Applications, vol. 37, no. 6, pp. 1846–1854, Nov/Dec 2001. [cited at p. 4]<br />

[37] P. Mattavelli, “An improved deadbeat control for ups using disturbance observers,”<br />

IEEE Trans. on Industrial Electronics, vol. 52, no. 1, pp. 206–212, Feb 2005.<br />

[cited at p. 4]


114 BIBLIOGRAPHY<br />

[38] A. Nasiri, “Digital control <strong>of</strong> three-phase series-parallel uninterruptible power supply<br />

systems,” IEEE Trans. on Power Electronics, vol. 22, no. 4, pp. 1116–1127, July<br />

2007. [cited at p. 4]<br />

[39] S. Saggini, W. Stefanutti, E. Tedeschi, and P. Mattavelli, “Digital deadbeat control<br />

tuning for dc-dc converters using error correlation,” IEEE Trans. on Power<br />

Electronics, vol. 22, no. 4, pp. 1566–1570, July 2007. [cited at p. 4]<br />

[40] P. Correa, M. Pacas, and J. Rodriguez, “<strong>Predictive</strong> torque control for inverter-fed<br />

induction machines,” IEEE Trans. on Industrial Electronics, vol. 54, no. 2, pp.<br />

1073–1079, April 2007. [cited at p. 4]<br />

[41] E. F. Camacho and C. Bordons, Model <strong>Predictive</strong> <strong>Control</strong>. Springer-Verlag, 1999.<br />

[cited at p. 4]<br />

[42] J. M. Maciejowski, <strong>Predictive</strong> <strong>Control</strong> with Constraints. Prentice Hall, 2002.<br />

[cited at p. 4]<br />

[43] G. C. Goodwin, M. M. Seron, and J. A. D. Dona, Constrained <strong>Control</strong> & Estimation<br />

– An Optimization Perspective. Springer Verlag, 2005. [cited at p. 4]<br />

[44] S. J. Qin and T. A. Badgwell, “A survey <strong>of</strong> industrial model predictive control<br />

technology,” Contr. Eng. Pract., vol. 11, pp. 733–764, 2003. [cited at p. 4]<br />

[45] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert, “Constrained<br />

model predictive control: Optimality and stability,” Automatica, vol. 36, no. 6, pp.<br />

789–814, June 2000. [cited at p. 4]<br />

[46] C. E. Garcia, D. M. Prett, and M. Morari, “Model predictive control: Theory and<br />

practice – a survey,” Automatica, vol. 25, no. 3, pp. 335–348, June 1989. [cited at p. 4]<br />

[47] P. Cortes, M. P. Kazmierkowski, R. M. Kennel, D. E. Quevedo, and J. Rodriguez,<br />

“<strong>Predictive</strong> control in power electronics and drives,” IEEE Trans. on Industrial<br />

Electronics, vol. 55, no. 12, pp. 4312–4324, Dec 2008. [cited at p. 4, 42]<br />

[48] P. Antoniewicz and M. P. Kazmierkowski, “Virtual flux based predictive direct<br />

power control <strong>of</strong> ac/dc converters with on-line inductance estimation,” IEEE Trans.<br />

on Industrial Electronics, vol. 55, no. 12, pp. 4381–4390, Dec 2008. [cited at p. 4, 50,<br />

58]<br />

[49] M. Jasinski, “Direct power and torque control <strong>of</strong> ac/dc/ac converter–fed induction<br />

motor drives,” Ph.D. dissertation, Warsaw Univ. <strong>of</strong> Technology, Warsaw, Poland,<br />

2005. [cited at p. 18, 25]<br />

[50] T. Noguchi, H. Tomiki, S. Kondo, and I. Takahashi, “Direct power control <strong>of</strong> pwm<br />

converter without power-source voltage sensors,” IEEE Trans. Industry Applications,<br />

vol. 34, no. 3, pp. 473–479, May/June 1998. [cited at p. 24]<br />

[51] V. Manninen, “Application <strong>of</strong> direct torque control modulation technology to a line<br />

converter,” in Proc. <strong>of</strong> EPE, no. 1, pp. 292–296, 1995. [cited at p. 24]<br />

[52] P. Antoniewicz and M. P. Kazmierkowski, “Virtual flux predictive direct power<br />

control <strong>of</strong> three phase ac/dc converter,” in Proc. <strong>of</strong> IEEE-HSI 2008, pp. 510–515,<br />

25–27 May 2008. [cited at p. 28, 58]


BIBLIOGRAPHY 115<br />

[53] J. Rodriguez, J. Pontt, C. A. Silva, P. Correa, P. Lezana, P. Cortes, and U. Ammann,<br />

“<strong>Predictive</strong> current control <strong>of</strong> a voltage source inverter,” IEEE Trans. on Industrial<br />

Electronics, vol. 54, no. 1, pp. 495–503, Jan 2007. [cited at p. 42]<br />

[54] P. Cortes, J. Rodriguez, P. Antoniewicz, and M. P. Kazmierkowski, “Direct power<br />

control <strong>of</strong> an afe using predictive control,” IEEE Trans. on Power Electronics,<br />

vol. 23, no. 5, pp. 2516–2523, Sept 2008. [cited at p. 42]<br />

[55] P. Antoniewicz, M. P. Kazmierkowski, P. Cortes, J. Rodriguez, and A. Sikorski,<br />

“<strong>Predictive</strong> direct power control algorithm for three phase ac/dc converter,” in Proc.<br />

<strong>of</strong> IEEE-EUROCON 2007, pp. 1530–1534, 9–12 Sept 2007. [cited at p. 42, 46]<br />

[56] P. Antoniewicz and M. P. Kazmierkowski, “<strong>Predictive</strong> direct power control <strong>of</strong> threephase<br />

boost rectifier,” Bulletin <strong>of</strong> Polish Academy <strong>of</strong> Science, Technical Sciences,<br />

vol. 54, no. 3, pp. 287–292, 2006. [cited at p. 42]<br />

[57] J. Rodriguez, J. Pontt, P. Correa, P. Lezana, and P. Cortes, “<strong>Predictive</strong> power<br />

control <strong>of</strong> an ac/dc/ac converter,” in Proc. <strong>of</strong> IEEE-IAS 2005, vol. 2, pp. 934–939,<br />

2–6 Oct 2005. [cited at p. 42]<br />

[58] R. Vargas, P. Cortes, U. Ammann, J. Rodríguez, and J. Pontt, “<strong>Predictive</strong> control<br />

<strong>of</strong> a three-phase neutral-point-clamped inverter,” IEEE Trans. on Industrial<br />

Electronics, vol. 54, no. 5, pp. 2697–2705, Oct 2007. [cited at p. 42]<br />

[59] J. D. Barros and J. F. Silva, “<strong>Predictive</strong> optimal control for three-phase neutral<br />

point clamped multilevel converters,” in Proc. <strong>of</strong> POWERENG 2007, pp. 618–623,<br />

12–14 April 2007. [cited at p. 42]<br />

[60] ——, “Optimal predictive control <strong>of</strong> three-phase npc multilevel inverter: Comparison<br />

to robust sliding mode controller,” in Proc. <strong>of</strong> IEEE-PESC 2007, pp. 2061–2067,<br />

17–21 June 2007. [cited at p. 42]<br />

[61] S. Aurtenechea, M. A. Rodriguez, E. Oyarbide, and J. R. Torrealday, “<strong>Predictive</strong><br />

direct power control <strong>of</strong> mv-grid-connected two-level and three-level npc converters:<br />

Experimental results,” in Proc. <strong>of</strong> EPE 2007, pp. 1–10, 2–5 Sept 2007. [cited at p. 42]<br />

[62] ——, “<strong>Predictive</strong> direct power control <strong>of</strong> mv grid-connected three-level npc converters,”<br />

in Proc. <strong>of</strong> IEEE-ISIE 2007, pp. 901–906, 4–7 June 2007. [cited at p. 42]<br />

[63] P. Zanchetta, D. B. Gerry, V. G. Monopoli, J. C. Clare, and P. W. Wheeler, “<strong>Predictive</strong><br />

current control for multilevel active rectifiers with reduced switching frequency,”<br />

IEEE Trans. on Industrial Electronics, vol. 55, no. 1, pp. 163–172, Jan<br />

2008. [cited at p. 42]<br />

[64] T. Nussbaumer, M. L. Heldwein, G. Gong, S. D. Round, and J. W. Kolar, “Comparison<br />

<strong>of</strong> prediction techniques to compensate time delays caused by digital control<br />

<strong>of</strong> a three-phase buck-type pwm rectifier system,” IEEE Trans. on Industrial Electronics,<br />

vol. 55, no. 2, pp. 791–799, Feb 2008. [cited at p. 42]<br />

[65] M. Perez, J. Rodriguez, and A. Coccia, “<strong>Predictive</strong> current control in a single<br />

phase pfc boost rectifier,” in Proc. <strong>of</strong> IEEE-ICIT 2009, 10–13 Feb 2009, in review.<br />

[cited at p. 42]


116 BIBLIOGRAPHY<br />

[66] F. Morel, J. M. Retif, X. Lin-Shi, B. Allard, and P. Bevilacqua, “A predictive control<br />

for a matrix converter-fed permanent magnet synchronous machine,” in Proc. <strong>of</strong><br />

PESC 2008, pp. 15–21, 15–19 June 2008. [cited at p. 42]<br />

[67] R. Vargas, M. Rivera, J. Rodriguez, J. Espinoza, and P. Wheeler, “<strong>Predictive</strong> torque<br />

control with input pf correction applied to an induction machine fed by a matrix<br />

converter,” in Proc. <strong>of</strong> PESC 2008, pp. 9–14, 15–19 June 2008. [cited at p. 42]<br />

[68] M. E. Rivera, R. E. Vargas, J. R. Espinoza, and J. R. Rodriguez, “Behavior <strong>of</strong><br />

the predictive dtc based matrix converter under unbalanced ac supply,” in Proc. <strong>of</strong><br />

IEEE-IAS 2007, pp. 202–207, 23–27 Sept 2007. [cited at p. 42]<br />

[69] J. Rodriguez, J. Pontt, R. Vargas, P. Lezana, U. Ammann, P. Wheeler, and F. Garcia,<br />

“<strong>Predictive</strong> direct torque control <strong>of</strong> an induction motor fed by a matrix converter,”<br />

in Proc. <strong>of</strong> EPE 2007, pp. 1–10, 2–5 Sept 2007. [cited at p. 42]<br />

[70] S. Aurtenechea, M. A. Rodríguez, E. Oyarbide, and J. R. Torrealday, “<strong>Predictive</strong><br />

direct power control - a new control strategy for dc/ac converters,” in Proc. <strong>of</strong><br />

IEEE-IECON 2006, pp. 1661–1666, Nov 2006. [cited at p. 42]<br />

[71] P. Antoniewicz, M. P. Kazmierkowski, S. Aurtenechea, and M. A. Rodriguez, “Comparative<br />

study <strong>of</strong> two predictive direct power control algorithms for three-phase<br />

ac/dc converters,” in Proc. <strong>of</strong> EPE 2007, pp. 1–10, 2–5 Sept 2007. [cited at p. 42, 50]<br />

[72] S. Aurtenechea, M. A. Rodriguez, E. Oyarbide, and J. R. Torrealday, “<strong>Predictive</strong><br />

control strategy for dc/ac converters based on direct power control,” IEEE Trans.<br />

on Industrial Electronics, vol. 54, no. 3, pp. 1261–1271, June 2007. [cited at p. 42]<br />

[73] P. Cortes, J. Rodriguez, D. E. Quevedo, and C. Silva, “<strong>Predictive</strong> current control<br />

strategy with imposed load current spectrum,” IEEE Trans. on Power Electronics,<br />

vol. 23, no. 2, pp. 612–618, March 2008. [cited at p. 46]<br />

Papers written during work on this thesis:<br />

Journal Papers:<br />

1. P. Antoniewicz, and M. P. Kazmierkowski, “Virtual flux based predictive<br />

direct power control <strong>of</strong> ac/dc converters with on-line inductance estimation,”<br />

IEEE Trans. on Industrial Electronics, vol. 55, no. 12, pp. 4381–<br />

4390, Dec 2008.<br />

2. P. Cortes, J. Rodriguez, P. Antoniewicz, and M. P. Kazmierkowski, “Direct<br />

power control <strong>of</strong> an AFE using predictive control,” IEEE Trans. on<br />

Power Electronics, vol. 23, no. 5, pp. 2516—2523, Sept 2008.<br />

3. P. Antoniewicz, and M. P. Kazmierkowski, “<strong>Predictive</strong> direct power control<br />

<strong>of</strong> three-phase boost rectifier,” Bulletin <strong>of</strong> The Polish Academy <strong>of</strong> Sciences<br />

Technical Sciences, vol. 54, no. 3, pp. 287–292, 2006.


BIBLIOGRAPHY 117<br />

4. M. Jasiński, P. Antoniewicz, and M. P. Kaźmierkowski, “Napędy indukcyjne<br />

zasilane w układzie prostownik PWM / falownik PWM ze sterowaniem<br />

wektorowym,” Przegląd Elektrotechniczny, vol. 81, no. 6, pp. 1–5, June<br />

2005.<br />

Conference Papers:<br />

5. P. Antoniewicz, M. P. Kazmierkowski, and M. Jasinski, “Comparative<br />

Study <strong>of</strong> Two Direct Power <strong>Control</strong> Algorithms for <strong>AC</strong>/<strong>DC</strong> <strong>Converters</strong>,”<br />

in Proc. <strong>of</strong> IEEE SIBIRCON 2008, pp. 159–163, 21–25 July 2008.<br />

6. P. Antoniewicz, M. P. Kaźmierkowski, and M. Jasiński, “Porównanie<br />

dwóch algorytmów bezpośredniego sterowania mocą dla trójfazowego przekształtnika<br />

<strong>AC</strong>/<strong>DC</strong>,” in Proc. <strong>of</strong> MIS 2008, 23–27 June 2008.<br />

7. P. Antoniewicz, and M. P. Kazmierkowski, “Virtual Flux <strong>Predictive</strong> Direct<br />

Power <strong>Control</strong> <strong>of</strong> <strong>Three</strong> <strong>Phase</strong> <strong>AC</strong>/<strong>DC</strong> Converter,” in Proc. <strong>of</strong> IEEE<br />

HSI 2008, pp. 510–515, 25–27 May 2008.<br />

8. A. Sikorski, A. Ruszczyk, M. Korzeniewski, M. P. Kaźmierkowski, P. Antoniewicz,<br />

W. Kołomyjski, and M. Jasiński, “Porównanie właściwości metod<br />

bezpośredniej regulacji strumienia i momentu (DTC-SVM, DTC-δ, DTC-<br />

2x2),” in Proc. <strong>of</strong> SENE 2007, pp. 427–432, 21–23 Nov 2007.<br />

9. A. Sikorski, M. Korzeniewski, A. Ruszczyk, M. P. Kazmierkowski, P. Antoniewicz,<br />

W. Kolomyjski, and M. Jasinski, “A Comparison <strong>of</strong> Properties<br />

<strong>of</strong> Direct Torque and Flux <strong>Control</strong> Methods (DTC-SVM, DTC-δ, DTC-2x2,<br />

DTFC-3A),” in Proc. <strong>of</strong> IEEE EUROCON 2007, pp. 1733-1739, 9-12 Sept<br />

2007.<br />

10. P. Antoniewicz, M. P. Kazmierkowski, P. Cortes, J. Rodriguez, and<br />

A. Sikorski, “<strong>Predictive</strong> Direct Power <strong>Control</strong> Algorithm for <strong>Three</strong> <strong>Phase</strong><br />

<strong>AC</strong>/<strong>DC</strong> Converter,” in Proc. <strong>of</strong> IEEE EUROCON 2007, pp. 1530–1534,<br />

9-12 Sept 2007.<br />

11. P. Antoniewicz, M. P. Kazmierkowski, S. Aurtenechea, and M. A. Rodriguez,<br />

“Comparative Study <strong>of</strong> Two <strong>Predictive</strong> Direct Power <strong>Control</strong> Algorithms<br />

for <strong>Three</strong>-<strong>Phase</strong> <strong>AC</strong>/<strong>DC</strong> <strong>Converters</strong>,” in Proc. <strong>of</strong> IEEE EPE 2007,<br />

pp. 1–10, 2–5 Sept 2007.<br />

12. M. Kazmierkowski, M. Jasinski, M. Malinowski, T. Platek, S. Stynski,<br />

P. Antoniewicz, W. Kolomyjski, D. Swierczynski, H. Ch. Soerensen, E.<br />

Friis-Madsen, L. Christiansen, W. Knapp, Z. Zhou, and P. Igic, “Sea Wave<br />

Energy Converter - Wave Dragon MW for Few Megawatts Power Range,”<br />

in Proc. <strong>of</strong> Elektrotechnika 2006, on CD, 12–13 Dec 2006.


118 BIBLIOGRAPHY<br />

13. A. Lopez de Heredia, P. Antoniewicz, I. Etxeberria-Otadui, M. Malinowski,<br />

and S. Bacha, “A Comparative Study Between the DPC-SVM<br />

and the Multi-Resonant <strong>Control</strong>ler for Power Active Filter Applications,”<br />

in Proc. <strong>of</strong> IEEE ISIE’2006, vol. 2, pp. 1058–1063, 9–13 July 2006.<br />

14. P. Antoniewicz, and M. P. Kazmierkowski, “<strong>Predictive</strong> Power <strong>Control</strong> for<br />

PWM Rectifier,” in Proc. <strong>of</strong> SENE 2005, pp. 15–20, 23–25 Nov 2005.<br />

15. P. Antoniewicz, M. Jasinski, and M. P. Kazmierkowski, “<strong>AC</strong>/<strong>DC</strong>/<strong>AC</strong><br />

Converter with Reduced <strong>DC</strong> Side Capacitor Value,” in Proc. <strong>of</strong> IEEE<br />

EUROCON 2005, vol. 2, pp. 1481–1484, 21–24 Nov 2005.<br />

16. P. Antoniewicz, “<strong>Predictive</strong> Direct Power <strong>Control</strong> <strong>of</strong> a Rectifier,” in Proc.<br />

<strong>of</strong> PELINCEC 2005, on CD, 16–19 Oct 2005.<br />

17. P. Antoniewicz, and M. Jasinski, “Vector <strong>Control</strong> <strong>of</strong> PWM Rectifier -<br />

Inverter Fed Induction Motor,” in Proc. <strong>of</strong> NorMUD’05, pp. 97–101, 2–<br />

4 Sept 2005.<br />

18. P. Antoniewicz, and M. Jasiński, “Przekształtnik <strong>AC</strong>/<strong>DC</strong>/<strong>AC</strong> ze zmniejszoną<br />

wartością kondensatora w obwodzie pośredniczącym,” in Proc.<br />

<strong>of</strong> PES-5, pp. 13–20, 20–24 June 2005.<br />

19. M. Jasinski, P. Antoniewicz, and M. P. Kazmierkowski, “Vector control<br />

<strong>of</strong> PWM rectifier - inverter - fed induction machine - a comparison,” in<br />

Proc. <strong>of</strong> IEEE CPE 2005, pp. 91–95, 1–3 June 2005.


Appendices<br />

119


Appendix A<br />

Coordinate transformations<br />

Due to space vector theory it is possible to describe three phase circuits in various<br />

rectangular coordinate systems. There are two main rectangular coordinate<br />

systems:<br />

• Stationary system (αβ)<br />

• Rotating system (dq)<br />

A.1 Stationary system<br />

If we introduce stationary rectangular coordinate system in such way that α is<br />

real axis and β imagine axis, space vector can be composed as:<br />

k αβ = k α + jk β<br />

(A.1)<br />

Taking into account (2.2) transformation from natural abc to stationary αβ coordinate<br />

system can be expressed as:<br />

[ ] [ ] ⎡ ⎤<br />

k<br />

k α 1 0 0 a<br />

= √ √<br />

⎢ ⎥<br />

k β 0 3<br />

3<br />

− 3 ⎣ k b ⎦<br />

(A.2)<br />

3 k c<br />

where: [<br />

1 0 0<br />

is called matrix transformation.<br />

The reversal transformation:<br />

⎡ ⎤<br />

k a<br />

⎢ ⎥<br />

⎣ k b ⎦ =<br />

k c<br />

0<br />

√ √<br />

3<br />

3<br />

− 3<br />

3<br />

⎡<br />

⎢<br />

⎣<br />

]<br />

1 0<br />

− 1 2<br />

= A abc2αβ (A.3)<br />

√<br />

3<br />

2<br />

− 1 2 − √<br />

3<br />

2<br />

121<br />

⎤<br />

⎥<br />

⎦<br />

[ ]<br />

k α<br />

k β<br />

(A.4)


a α<br />

ka kα kαβ<br />

a α<br />

kα kαβ<br />

ka<br />

122 APPENDIX A. COORDINATE TRANSFORMATIONS<br />

where:<br />

⎡<br />

⎢<br />

⎣<br />

1 0<br />

− 1 2<br />

√<br />

3<br />

2<br />

− 1 2 − √<br />

3<br />

2<br />

⎤<br />

⎥<br />

⎦ = A αβ2abc<br />

(A.5)<br />

is called matrix transformation. Figures A.1 and A.2 show graphical transformation<br />

between coordinate systems.<br />

kβ kc β<br />

kb<br />

Figure A.1: Transformation from natural to stationary coordinate system<br />

c b<br />

kβ kc kb β<br />

Figure A.2: Transformation from stationary to natural coordinate system<br />

c b


q<br />

β<br />

A.2. ROTATING SYSTEM 123<br />

A.2 Rotating system<br />

Let consider space vector k in stationary αβ system, which will be transformed<br />

into rotating with angular frequency coordinate dq system.<br />

Ω r = dγ r<br />

dt<br />

where: γ r is an angle between real axes: α and d <strong>of</strong> coordinate systems.<br />

(A.6)<br />

Figure A.3: Transformation from stationary to rotating coordinate system<br />

kβ α kd kq γr Ωr γ d<br />

The expressions can be written as:<br />

kkα<br />

k r = ke −jγ r<br />

(A.7)<br />

= (k α + jk β )(cos γ r − j sin γ r )<br />

= k α cos γ r + k β sin γ r + j(−k α sin γ r + k β cos γ r ) (A.8)<br />

or as a matrix: [ ] [<br />

k d<br />

=<br />

k q<br />

] [ ]<br />

cos γ r sin γ r k α<br />

− sin γ r cos γ r k β<br />

(A.9)<br />

where: [<br />

]<br />

cos γ r sin γ r<br />

= A αβ2dq (A.10)<br />

− sin γ r cos γ r<br />

is matrix transformation.<br />

The inverse equation:<br />

k = k r e jγ r<br />

= (k d + jk q )(cos γ r + j sin γ r )<br />

(A.11)<br />

= k d cos γ r − k q sin γ r + j(k d sin γ r + k q cos γ r ) (A.12)


124 APPENDIX A. COORDINATE TRANSFORMATIONS<br />

or as a matrix: [ ] [<br />

] [<br />

k α cos γ r − sin γ r<br />

=<br />

k β sin γ r cos γ r<br />

]<br />

k d<br />

k q<br />

(A.13)<br />

where: [<br />

]<br />

cos γ r − sin γ r<br />

= A dq2αβ (A.14)<br />

sin γ r cos γ r<br />

is matrix transformation.


Appendix B<br />

<strong>Predictive</strong> Current <strong>Control</strong><br />

B.1 <strong>Predictive</strong> Current <strong>Control</strong> in stationary system<br />

<strong>Predictive</strong> Current <strong>Control</strong> in αβ coordinates PCC αβ is based on mathematical<br />

model <strong>of</strong> the converter (2.13).<br />

U Lαβ = L dI Lαβ<br />

dt<br />

+ RI Lαβ + U P αβ (B.1)<br />

Eq. (B.1) can be rewritten as a difference equation:<br />

U Lαβ = L (I Lαβ + ∆I Lαβ ) − I Lαβ<br />

∆t<br />

+ RI Lαβ + U P αβ (B.2)<br />

(I Lαβ + ∆I Lαβ ) = ∆t<br />

L (U Lαβ − U P αβ ) + I Lαβ<br />

(<br />

1 − R L ∆t )<br />

(B.3)<br />

where: I Lαβ is line current space vector, ∆I Lαβ is differential <strong>of</strong> line current space<br />

vector and sum <strong>of</strong> this components gives I LαβP (B.4) predicted current vector,<br />

∆t is time difference, and can be noticed as a sampling time (B.5).<br />

(I Lαβ + ∆I Lαβ ) = I LαβP (B.4)<br />

∆t = T s<br />

After decomposition yields:<br />

I LαP = T (<br />

s<br />

L (U Lα − U P α ) + I Lα 1 − R )<br />

L T s<br />

I LβP = T (<br />

s<br />

L (U Lβ − U P β ) + I Lβ 1 − R )<br />

L T s<br />

(B.5)<br />

(B.6)<br />

(B.7)<br />

125


UPU<strong>DC</strong><br />

7<br />

ILαβP<br />

U<strong>DC</strong>Sabc<br />

uLab<br />

iLab<br />

126 APPENDIX B. PREDICTIVE CURRENT CONTROL<br />

As it was mentioned in Section 2.2 VSC has eight permitted states what corresponds<br />

to eight possible voltage vectors U P . The goal <strong>of</strong> the <strong>Predictive</strong> Current<br />

<strong>Control</strong>ler is to calculate current behavior I LαβP for all possible states U P . Voltage<br />

vector, which minimizes cost function value, defined as:<br />

J =<br />

√<br />

(I αref − I LαP ) 2 + (I βref − I LβP ) 2 (B.8)<br />

is being selected for next sampling period.<br />

PLL<br />

αβ<br />

abc<br />

7<br />

Current Model<br />

<strong>Predictive</strong> <strong>Control</strong><br />

ULαβILαβ<br />

(αβ)<br />

Cost Function<br />

Minimization<br />

PI<br />

-<br />

LOAD<br />

VSC<br />

Iαβref<br />

Figure B.1: <strong>Control</strong> scheme <strong>of</strong> <strong>Predictive</strong> Current <strong>Control</strong> in αβ coordinates<br />

PCC αβ<br />

U<strong>DC</strong>ref<br />

Idref<br />

Lets consider operation <strong>of</strong> PCC αβ under 600 V <strong>of</strong> U <strong>DC</strong> and conditions listed<br />

in Tab. B.1.<br />

On the basis <strong>of</strong> (B.6) and (B.7) values <strong>of</strong> predicted line currents I LαβP are<br />

calculated for every voltage vector. Table B.2 summarizes results. As it can be<br />

seen, the minimum value <strong>of</strong> cost function J is achieved by U P 3 voltage vector,<br />

and this vector will be selected for next sampling period. Figure B.2 shows vector<br />

diagram <strong>of</strong> predicted currents in αβ coordinates.


∆ILαβP6<br />

∆ILαβP5<br />

Figure B.2: Vector diagram <strong>of</strong> predicted currents in PCC αβ<br />

ILαβ<br />

B.2. PREDICTIVE CURRENT CONTROL IN ROTATING SYSTEM 127<br />

U Lα 141 V U Ld 200 V<br />

U Lβ 141 V U Lq 0 V<br />

I Lα 0 A I Ld 2 A<br />

I Lβ 2.82 A I Lq 2 A<br />

I Lαref 1.41 A I Ldref 2 A<br />

I Lβref 1.41 A I Lqref 0 A<br />

Table B.1: An example operating conditions <strong>of</strong> PCC αβ and PCC dq<br />

U P I LαP [A] I LβP [A] I Lαerr [A] I Lβerr [A] J [A]<br />

U P 1 -1.29 3.53 2.7 -2.11 3.43<br />

U P 2 -0.29 1.8 1.7 -0.38 1.75<br />

U P 3 1.7 1.8 -0.29 -0.38 0.48<br />

U P 4 2.7 3.53 -1.29 -2.11 2.48<br />

U P 5 1.7 5.26 -0.29 -3.85 3.86<br />

U P 6 -0.29 5.26 1.7 -3.85 4.21<br />

U P 0 0.7 3.53 0.7 -2.11 2.23<br />

Table B.2: An example operation <strong>of</strong> PCC αβ<br />

β<br />

∆ILαβP1<br />

∆ILαβP3 ∆ILαβP4<br />

∆ILαβP0<br />

α<br />

∆ILαβP2<br />

Iαβref<br />

B.2 <strong>Predictive</strong> Current <strong>Control</strong> in rotating system<br />

<strong>Predictive</strong> Current <strong>Control</strong> in dq coordinates PCC dq is based on mathematical<br />

model <strong>of</strong> the converter. Transformation <strong>of</strong> the difference equation (B.3) into


UPdqU<strong>DC</strong><br />

Iqref<br />

7<br />

ILdqP<br />

U<strong>DC</strong>Sabc<br />

128 APPENDIX B. PREDICTIVE CURRENT CONTROL<br />

rotating system gives:<br />

U Ldq = L (I Ldq + ∆I Ldq ) − I Ldq<br />

∆t<br />

+ RI Ldq + U P dq (B.9)<br />

(I Ldq + ∆I Ldq ) = ∆t<br />

L (U Ldq − U P dq ) + I Ldq<br />

(<br />

1 − R L ∆t )<br />

(B.10)<br />

where: I Ldq is line current space vector, ∆I Ldq is differential <strong>of</strong> line current space<br />

vector and sum <strong>of</strong> this components gives I LdqP (B.11) predicted current vector:<br />

(I Ldq + ∆I Ldq ) = I LdqP (B.11)<br />

dq<br />

abc<br />

uLab<br />

7<br />

Current Model<br />

<strong>Predictive</strong> <strong>Control</strong><br />

ULdqILdq<br />

(dq)<br />

Cost Function<br />

Minimization<br />

iLab<br />

VSC<br />

PI<br />

-<br />

LOAD<br />

Figure B.3:<br />

PCC dq<br />

<strong>Control</strong> scheme <strong>of</strong> <strong>Predictive</strong> Current <strong>Control</strong> in dq coordinates<br />

Idref<br />

After decomposition into dq components:<br />

I LdP = T (<br />

s<br />

L (U Ld − U P d ) + I Ld 1 − R L T s<br />

U<strong>DC</strong>ref<br />

)<br />

(B.12)


Figure B.4: Vector diagram <strong>of</strong> predicted currents in PCC dq<br />

∆ILdqP0<br />

B.2. PREDICTIVE CURRENT CONTROL IN ROTATING SYSTEM 129<br />

I LqP = T (<br />

s<br />

L (U Lq − U P q ) + I Lq 1 − R )<br />

L T s<br />

(B.13)<br />

Next, on the basis <strong>of</strong> (B.12) and (B.13) future currents I LdqP are calculated for<br />

every voltage vector U P dq . Voltage vector, which minimizes cost function value<br />

J, defined as:<br />

√<br />

J = (I dref − I LdP ) 2 + (I qref − I LqP ) 2 (B.14)<br />

is being selected for next sampling period.<br />

U P I LdP [A] I LqP [A] I Lderr [A] I Lqerr [A] J [A]<br />

U P 1 1.58 3.41 0.41 -3.41 3.43<br />

U P 2 1.06 1.48 0.93 -1.48 1.75<br />

U P 3 2.48 0.06 -0.48 -0.06 0.48<br />

U P 4 4.41 0.58 -2.41 -0.58 2.48<br />

U P 5 4.93 2.51 -2.93 -2.51 3.86<br />

U P 6 3.51 3.93 -1.51 -3.93 4.21<br />

U P 0 2.99 1.99 -0.99 -1.99 2.23<br />

Table B.3: An example operation <strong>of</strong> PCC dq<br />

q<br />

∆ILdqP1<br />

∆ILdqP6∆ILdqP5<br />

d<br />

Table B.3 and Fig. B.4 show example operation <strong>of</strong> the PCC dq under conditions<br />

listed in Tab. B.1. Note that for both control methods PCC αβ and PCC dq<br />

the same voltage vector has been selected.<br />

∆ILdqP2 ∆ILdqP3 ∆ILdqP4<br />

ILdqIdqref


Appendix C<br />

<strong>Predictive</strong> Direct Power <strong>Control</strong><br />

In subsection 4.6.4 cost function has been determined as:<br />

J = [ P ref − P − 2 ( f p1 t 1 + f p2 t 2 + f p3<br />

( 1<br />

2 T s − t 1 − t 2<br />

))] 2<br />

+ [ Q ref − Q − 2 ( f q1 t 1 + f q2 t 2 + f q3<br />

( 1<br />

2 T s − t 1 − t 2<br />

))] 2 (C.1)<br />

where: P ref , Q ref , P , Q are referenced and measured active and reactive powers,<br />

f p1 , f p2 , f p3 , f q1 , f q2 , f q3 are time power derivatives caused by application <strong>of</strong> U P i<br />

VSC vectors, and t 1 , t 2 , t 3 are vectors application times.<br />

Lets consider operating conditions listed in Tab. C.1. As it can be seen, line<br />

voltage space vector U Lαβ is placed in the second sector, so switching table selects<br />

{0, 1, 2, 2, 1, 0} U P vector sequence (Tab. 4.4).<br />

U Lαβ 200e j45 V P 600 W<br />

I Lαβ 2.82e j90 A Q −600 var<br />

U <strong>DC</strong> 600 V P ref 600 W<br />

L 0.01 H Q ref 0 var<br />

R 0.1 Ω T s 200 µs<br />

Table C.1: An example operating conditions <strong>of</strong> CSF-P-DPC<br />

On the basis <strong>of</strong> (4.23), (4.24) power derivatives f p0 , f p1 , f p2 for U p0 , U p1 ,<br />

U p2 vectors are calculated (Tab. C.2).<br />

f p0 4.121663706143591 MW/s f q0 0.1296637061435918 Mvar/s<br />

f p1 −1.535190543348789 MW/s f q1 −5.527190543348787 Mvar/s<br />

f p2 −3.605742904168955 MW/s f q2 7.857070316456137 Mvar/s<br />

Table C.2: Value <strong>of</strong> active f pi and reactive f qi power derivatives<br />

131


132 APPENDIX C. PREDICTIVE DIRECT POWER CONTROL<br />

Next, from (4.40) cost function J is described as:<br />

[ (−15.45481322062509<br />

J =<br />

∗ 10<br />

6 ) t 1 + ( −4.141104721640333 ∗ 10 6) t 2<br />

2 [ (15.45481322062509<br />

+ 721.1485808337910]<br />

+ ∗ 10<br />

6 ) t 1<br />

(C.2)<br />

+ ( 26.76852171960985 ∗ 10 6) ] 2<br />

t 2 − 971.4140632912274<br />

In order to find minimum value <strong>of</strong> J function, partial derivatives (4.43), (4.44)<br />

are calculated:<br />

∂J<br />

∂t 1<br />

= 0 ⇒ (955405006.7376324<br />

∗ 10<br />

6 ) t 1 + ( 955405006.7376324 ∗ 10 6) t 2 (C.3)<br />

= 52316.47905831899 ∗ 10 6<br />

∂J<br />

∂t 2<br />

= 0 ⇒ (955405006.7376324<br />

∗ 10<br />

6 ) t 1 + ( 1467405006.737632 ∗ 10 6) t 2 (C.4)<br />

= 57979.34049008143 ∗ 10 6<br />

Figure C.1 (a), (b) show cost function J diagram versus voltage vector application<br />

time t 1 , t 2 for conditions listed in Tab. C.1. The minimum value <strong>of</strong> J<br />

function is reached by (4.45), (4.46):<br />

t 1 = 43.69815468216835 µs<br />

t 2 = 11.06027623391102 µs<br />

t 3 = 45.24156908392062 µs<br />

(C.5)<br />

where t 3 is calculated from (4.47).


133<br />

(a)<br />

x 10 7 t 1<br />

2<br />

1.8<br />

J minimum<br />

1.6<br />

1.4<br />

1.2<br />

J<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

0 40e−6 80e−6<br />

t 2<br />

120e−6 160e−6 200e−6<br />

200e−6<br />

160e−6<br />

120e−6<br />

0 40e−6<br />

80e−6<br />

200e−6<br />

(b)<br />

160e−6<br />

J minimum<br />

120e−6<br />

t 1<br />

80e−6<br />

40e−6<br />

0<br />

0 40e−6 80e−6 120e−6 160e−6 200e−6<br />

t 2<br />

Figure C.1: Diagram <strong>of</strong> cost function J versus t 1 and t 2 : (a) 3-D view, (b) 2-D<br />

view


List <strong>of</strong> Symbols<br />

and Abbreviations<br />

Symbols Description Definition<br />

1 unity vector page 8<br />

a complex unity vector a = e j 2π 3 page 8<br />

a 2 complex unity vector a 2 = e −j 2π 3 page 8<br />

d P active power hysteresis controller output page 21<br />

d Q reactive power hysteresis controller output page 21<br />

f pi active power time derivative page 51<br />

f qi reactive power time derivative page 51<br />

H P active power hysteresis controller band page 21<br />

H Q reactive power hysteresis controller band page 21<br />

i c <strong>DC</strong>-link capacitor current page 12<br />

I <strong>DC</strong> <strong>DC</strong>-link current page 12<br />

I dref reference value <strong>of</strong> current in d axis page 17<br />

I qref reference value <strong>of</strong> current in q axis page 17<br />

I L space vector <strong>of</strong> line current page 10<br />

I Lαβ space vector <strong>of</strong> line current in αβ page 13<br />

I LαβP space vector <strong>of</strong> predicted line current in αβ page 125<br />

I Ldq space vector <strong>of</strong> line current in dq page 14<br />

I LdqP space vector <strong>of</strong> predicted line current in dq page 128<br />

i load VSC load current page 12<br />

K C current controller proportional gain page 19<br />

K P power controller proportional gain page 25<br />

K P U <strong>DC</strong>-link voltage controller proportional gain page 25<br />

K RL gain <strong>of</strong> choke math. model page 19<br />

L choke inductance page 9<br />

L C choke inductance used in predictive control page 77<br />

method<br />

N S number <strong>of</strong> transistor “on” and “<strong>of</strong>f ” switchings page 33<br />

P active power page 23<br />

P P predicted active power page 43<br />

135


136 LIST OF SYMBOLS AND ABBREVIATIONS<br />

Symbols Description Definition<br />

P ref referenced active power page 21<br />

Q reactive power page 23<br />

Q P predicted reactive power page 43<br />

Q ref referenced reactive power page 21<br />

R choke resistance page 9<br />

R C choke resistance used in predictive control algorithm<br />

page 79<br />

S abc converter switching states page 11<br />

S αβ space vector <strong>of</strong> converter switching states in αβ page 13<br />

S dq space vector <strong>of</strong> converter switching states in dq page 14<br />

t 1 U P application time page 52<br />

t 2 U P application time page 52<br />

t 3 U P application time page 52<br />

T fC referenced current prefilter time constant page 19<br />

T fP referenced power prefilter time constant page 26<br />

T fU referenced <strong>DC</strong>-link voltage prefilter time constant page 21<br />

T I power controller time constant page 25<br />

T IC current controller time constant page 19<br />

T IU <strong>DC</strong>-link voltage controller time constant page 25<br />

T P W M PWM generation time delay page 19<br />

T RL time constant <strong>of</strong> choke math. model page 19<br />

T s sampling time page 19<br />

U <strong>DC</strong> <strong>DC</strong>-link voltage page 10<br />

U <strong>DC</strong>err <strong>DC</strong>-link voltage error page 17<br />

U <strong>DC</strong>ref reference <strong>DC</strong>-link voltage page 17<br />

U i space vector <strong>of</strong> voltage drop on VSC choke page 11<br />

u L line voltage page 11<br />

U L space vector <strong>of</strong> line voltage page 10<br />

U Lαβ space vector <strong>of</strong> line voltage in αβ page 13<br />

U Ldq space vector <strong>of</strong> line voltage in dq page 14<br />

U P space vector <strong>of</strong> VSC input voltage page 10<br />

U P αβ space vector <strong>of</strong> VSC input voltage in αβ page 13<br />

U P αβref space vector <strong>of</strong> referenced VSC input voltage in page 17<br />

αβ<br />

u P <strong>DC</strong>− voltage measured between converter input page 33<br />

and negative <strong>DC</strong> bus<br />

U P dq space vector <strong>of</strong> VSC input voltage in dq page 14<br />

U P dqref space vector <strong>of</strong> referenced VSC input voltage in dq page 14<br />

∆I Lαβ space vector <strong>of</strong> line current differential in αβ page 125<br />

∆I Ldq space vector <strong>of</strong> line current differential in dq page 128<br />

∆L choke inductance value mismatch in [%] page 77<br />

∆P active power differential page 43<br />

∆R choke resistance value mismatch in [%] page 79<br />

∆Q reactive power differential page 43<br />

∆t time differential page 43


137<br />

Symbols Description Definition<br />

ω L angular frequency <strong>of</strong> line voltage page 14<br />

Ψ L space vector <strong>of</strong> virtual flux page 30<br />

Ψ Lαβ space vector <strong>of</strong> virtual flux in αβ page 29<br />

τ 0 transistor dead time page 19<br />

τ t sum <strong>of</strong> small time constants page 19


138 LIST OF SYMBOLS AND ABBREVIATIONS<br />

Abbreviation Description Definition<br />

AFE Active Front End page 1<br />

CSF-P-DPC Constant Switching Frequency <strong>Predictive</strong> Direct page 50<br />

Power <strong>Control</strong><br />

<strong>DC</strong>-link Direct Current link page 10<br />

DPC-SVM Direct Power <strong>Control</strong> with Space Vector Modulator<br />

page 25<br />

DSP Digital Signal Processing page 42<br />

FL-VSF-P-DPC Switching Frequency Limited VSF-P-DPC page 49<br />

HC-VSF-P-DPC VSF-P-DPC with Current Harmonics control page 46<br />

IGBT Insulated-Gate Bipolar Transistor page 9<br />

LPF Low Pass Filter page 31<br />

MPC Model <strong>Predictive</strong> <strong>Control</strong> page 42<br />

PCC αβ <strong>Predictive</strong> Current <strong>Control</strong> in αβ coordinates page 125<br />

PCC dq <strong>Predictive</strong> Current <strong>Control</strong> in dq coordinates page 127<br />

PI Proportional-Integral <strong>Control</strong>ler page 21<br />

SO Symmetry Optimum design method page 25<br />

ST-DPC Switching Table based Direct Power <strong>Control</strong> page 21<br />

VF Virtual Flux page 28<br />

VF-CSF-P-DPC Virtual Flux based Constant Switching Frequency page 58<br />

<strong>Predictive</strong> Direct Power <strong>Control</strong><br />

VFOC Virtual Flux Oriented <strong>Control</strong> page 25<br />

VOC Voltage Oriented <strong>Control</strong> page 17<br />

VSF-P-DPC Variable Switching Frequency <strong>Predictive</strong> Direct page 42<br />

Power <strong>Control</strong><br />

VSC Voltage Source Converter page 7


List <strong>of</strong> Figures<br />

1.1 Conjunction between predictive control and other methods . . . . . . 2<br />

1.2 Classification <strong>of</strong> predictive control methods used in power electronics . 3<br />

2.1 Construction <strong>of</strong> space vector . . . . . . . . . . . . . . . . . . . . . . . 8<br />

2.2 Scheme <strong>of</strong> VSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9<br />

2.3 Switching states <strong>of</strong> VSC . . . . . . . . . . . . . . . . . . . . . . . . . . 9<br />

2.4 Representation <strong>of</strong> VSC <strong>AC</strong>-side voltage as space vector . . . . . . . . 10<br />

2.5 Single phase representation <strong>of</strong> VSC . . . . . . . . . . . . . . . . . . . . 10<br />

2.6 Phasor diagrams <strong>of</strong> VSC . . . . . . . . . . . . . . . . . . . . . . . . . . 11<br />

2.7 Block scheme <strong>of</strong> VSC in natural coordinates . . . . . . . . . . . . . . . 12<br />

2.8 Block scheme <strong>of</strong> VSC in stationary coordinates . . . . . . . . . . . . . 13<br />

2.9 Block scheme <strong>of</strong> VSC in rotating dq coordinates . . . . . . . . . . . . 14<br />

3.1 Basic block scheme <strong>of</strong> VOC . . . . . . . . . . . . . . . . . . . . . . . . 18<br />

3.2 Vector diagram <strong>of</strong> VOC . . . . . . . . . . . . . . . . . . . . . . . . . . 18<br />

3.3 Block diagram <strong>of</strong> active current control loop in VOC . . . . . . . . . . 19<br />

3.4 Step response <strong>of</strong> active current control loop in VOC . . . . . . . . . . 19<br />

3.5 Step response <strong>of</strong> discretized active current control loop in VOC . . . . 20<br />

3.6 Block diagram <strong>of</strong> <strong>DC</strong>-link voltage control loop in VOC . . . . . . . . . 20<br />

3.7 Step response <strong>of</strong> <strong>DC</strong> voltage control loop in VOC . . . . . . . . . . . . 21<br />

3.8 Block scheme <strong>of</strong> ST-DPC . . . . . . . . . . . . . . . . . . . . . . . . . 22<br />

3.9 Sector selection for ST-DPC and VF-ST-DPC . . . . . . . . . . . . . . 23<br />

3.10 Block scheme <strong>of</strong> DPC-SVM . . . . . . . . . . . . . . . . . . . . . . . . 26<br />

3.11 Block diagram <strong>of</strong> active power control loop in DPC-SVM . . . . . . . 26<br />

3.12 Step response <strong>of</strong> active power control loop in DPC-SVM . . . . . . . . 27<br />

3.13 Step response <strong>of</strong> discretized active power control loop in DPC-SVM . 27<br />

3.14 Block diagram <strong>of</strong> <strong>DC</strong>-link voltage control loop in DPC-SVM . . . . . 28<br />

3.15 Step response <strong>of</strong> <strong>DC</strong> voltage control loop in DPC-SVM . . . . . . . . 28<br />

3.16 Scheme <strong>of</strong> VSC with <strong>AC</strong> side presented as a virtual <strong>AC</strong> motor . . . . 30<br />

3.17 Line voltage and virtual flux coordinates transformation . . . . . . . . 30<br />

139


140 LIST OF FIGURES<br />

3.18 Virtual flux estimator with ideal integration . . . . . . . . . . . . . . . 31<br />

3.19 Virtual flux estimator with LPF . . . . . . . . . . . . . . . . . . . . . 31<br />

3.20 Virtual flux estimator with LPF and gain part K . . . . . . . . . . . . 32<br />

3.21 Steady state operation <strong>of</strong> DPC-SVM . . . . . . . . . . . . . . . . . . . 33<br />

3.22 Steady state operation <strong>of</strong> ST-DPC . . . . . . . . . . . . . . . . . . . . 34<br />

3.23 Line current harmonics spectrum . . . . . . . . . . . . . . . . . . . . . 34<br />

3.24 Switchings number in DPC-SVM and ST-DPC . . . . . . . . . . . . . 35<br />

3.25 Transient operation <strong>of</strong> DPC-SVM (P ref step) . . . . . . . . . . . . . . 36<br />

3.26 Transient operation <strong>of</strong> ST-DPC (P ref step) . . . . . . . . . . . . . . . 37<br />

3.27 Transient operation <strong>of</strong> DPC methods (P ref step) in zoom . . . . . . . 37<br />

3.28 Transient operation <strong>of</strong> DPC-SVM and ST-DPC (U <strong>DC</strong>ref step) . . . . . 38<br />

4.1 Active and reactive power derivatives behavior . . . . . . . . . . . . . 44<br />

4.2 <strong>Control</strong> scheme <strong>of</strong> VSF-P-DPC . . . . . . . . . . . . . . . . . . . . . . 45<br />

4.3 Vector diagram <strong>of</strong> predicted powers in VSF-P-DPC . . . . . . . . . . . 46<br />

4.4 <strong>Control</strong> scheme <strong>of</strong> VSF-P-DPC with current spectrum control . . . . . 47<br />

4.5 Bode diagrams <strong>of</strong> cost function filters . . . . . . . . . . . . . . . . . . 48<br />

4.6 <strong>Control</strong> scheme <strong>of</strong> FL-VSF-P-DPC . . . . . . . . . . . . . . . . . . . . 49<br />

4.7 Active and reactive power changes under three U P i application . . . . 52<br />

4.8 Active and reactive power changes under symmetrical U P i application 53<br />

4.9 Converter voltage vector U P selection in 1st sector . . . . . . . . . . . 54<br />

4.10 Graphical representation <strong>of</strong> converter voltage vector U P selection . . . 55<br />

4.11 <strong>Control</strong> scheme <strong>of</strong> CSF-P-DPC . . . . . . . . . . . . . . . . . . . . . . 57<br />

4.12 Converter voltage vector U P selection . . . . . . . . . . . . . . . . . . 60<br />

4.13 <strong>Control</strong> scheme <strong>of</strong> VF-CSF-P-DPC . . . . . . . . . . . . . . . . . . . . 61<br />

4.14 Steady state operation <strong>of</strong> VSF-P-DPC . . . . . . . . . . . . . . . . . . 63<br />

4.15 Steady state operation <strong>of</strong> HC-VSF-P-DPC . . . . . . . . . . . . . . . . 63<br />

4.16 Steady state operation <strong>of</strong> FL-VSF-P-DPC . . . . . . . . . . . . . . . . 64<br />

4.17 Steady state operation <strong>of</strong> CSF-P-DPC . . . . . . . . . . . . . . . . . . 64<br />

4.18 Steady state operation <strong>of</strong> VF-CSF-P-DPC . . . . . . . . . . . . . . . . 65<br />

4.19 Number transistor switchings in predictive methods . . . . . . . . . . 66<br />

4.20 Line current harmonics spectrum . . . . . . . . . . . . . . . . . . . . . 67<br />

4.21 Transient operation <strong>of</strong> VSF-P-DPC and HC-VSF-P-DPC (P ref step) . 68<br />

4.22 Transient operation <strong>of</strong> FL-VSF-P-DPC and CSF-P-DPC (P ref step) . 69<br />

4.23 Transient operation <strong>of</strong> VF-CSF-P-DPC (P ref step) . . . . . . . . . . . 70<br />

4.24 Transient operation (P ref step) in zoom . . . . . . . . . . . . . . . . . 71<br />

4.25 Transient operation <strong>of</strong> VSF-P-DPC and HC-VSF-P-DPC (U <strong>DC</strong>ref step) 72<br />

4.26 Transient operation <strong>of</strong> FL-VSF-P-DPC and CSF-P-DPC (U <strong>DC</strong>ref step) 73<br />

4.27 Transient operation <strong>of</strong> VF-CSF-P-DPC (U <strong>DC</strong>ref step) . . . . . . . . . 74<br />

5.1 Average switching frequency versus ∆L in VSF-P-DPC . . . . . . . . 78<br />

5.2 Power error versus ∆L . . . . . . . . . . . . . . . . . . . . . . . . . . . 78


LIST OF FIGURES 141<br />

5.3 Line current T HD i factor versus ∆L . . . . . . . . . . . . . . . . . . . 78<br />

5.4 Average switching frequency versus ∆R in VSF-P-DPC . . . . . . . . 79<br />

5.5 Power error versus ∆R . . . . . . . . . . . . . . . . . . . . . . . . . . . 80<br />

5.6 Line current T HD i factor versus ∆R . . . . . . . . . . . . . . . . . . . 80<br />

5.7 On-line choke inductance estimator related to γ UL angle . . . . . . . . 81<br />

5.8 On-line choke inductance estimator related to the γ ΨL angle . . . . . . 81<br />

5.9 On-line choke estimator operation with −90% L C mismatch . . . . . . 82<br />

5.10 On-line choke estimator operation with +200% L C mismatch . . . . . 83<br />

5.11 Steady state operation under line voltage distortion part 1 . . . . . . . 84<br />

5.12 Steady state operation under line voltage distortion part 2 . . . . . . . 84<br />

5.13 Steady state operation under line voltage distortion part 3 . . . . . . . 85<br />

5.14 Steady state operation under line voltage distortion part 4 . . . . . . . 85<br />

5.15 Operation under single phase voltage sag . . . . . . . . . . . . . . . . 86<br />

5.16 Operation under two phase voltage sag . . . . . . . . . . . . . . . . . . 87<br />

5.17 Current T HD factor in presence <strong>of</strong> single phase voltage sag . . . . . . 87<br />

5.18 Operation under two phase voltage sag . . . . . . . . . . . . . . . . . . 88<br />

6.1 Experimental steady state operation part 1 . . . . . . . . . . . . . . . 90<br />

6.2 Experimental steady state operation part 2 . . . . . . . . . . . . . . . 91<br />

6.3 Summarized line current T HD factors and spectrum part 1 . . . . . . 92<br />

6.4 Summarized line current T HD factors and spectrum part 2 . . . . . . 93<br />

6.5 Experimental step change <strong>of</strong> P ref part 1 . . . . . . . . . . . . . . . . . 95<br />

6.6 Experimental step change <strong>of</strong> P ref part 2 . . . . . . . . . . . . . . . . . 96<br />

6.7 Zoomed experimental step change <strong>of</strong> P ref part 1 . . . . . . . . . . . . 97<br />

6.8 Zoomed experimental step change <strong>of</strong> P ref part 2 . . . . . . . . . . . . 98<br />

6.9 Experimental step change <strong>of</strong> U <strong>DC</strong>ref part 1 . . . . . . . . . . . . . . . 99<br />

6.10 Experimental step change <strong>of</strong> U <strong>DC</strong>ref part 1 . . . . . . . . . . . . . . . 100<br />

6.11 Summarized line current T HD factors and spectrum . . . . . . . . . . 101<br />

6.12 Experimental steady-state operation . . . . . . . . . . . . . . . . . . . 102<br />

6.13 Experimental step change <strong>of</strong> P ref . . . . . . . . . . . . . . . . . . . . . 103<br />

6.14 Zoomed experimental step change <strong>of</strong> P ref . . . . . . . . . . . . . . . . 104<br />

6.15 Experimental U <strong>DC</strong>ref step change . . . . . . . . . . . . . . . . . . . . . 105<br />

A.1 Transformation from natural to stationary coordinate system . . . . . 122<br />

A.2 Transformation from stationary to natural coordinate system . . . . . 122<br />

A.3 Transformation from stationary to rotating coordinate system . . . . . 123<br />

B.1 <strong>Control</strong> scheme <strong>of</strong> PCC αβ . . . . . . . . . . . . . . . . . . . . . . . . . 126<br />

B.2 Vector diagram <strong>of</strong> predicted currents in PCC αβ . . . . . . . . . . . . . 127<br />

B.3 <strong>Control</strong> scheme <strong>of</strong> PCC dq . . . . . . . . . . . . . . . . . . . . . . . . . 128<br />

B.4 Vector diagram <strong>of</strong> predicted currents in PCC dq . . . . . . . . . . . . . 129<br />

C.1 Diagram <strong>of</strong> cost function J versus t 1 and t 2 . . . . . . . . . . . . . . . 133


List <strong>of</strong> Tables<br />

1.1 Comparison <strong>of</strong> classical <strong>AC</strong> voltage sensorless control methods . . . . 3<br />

1.2 Comparison <strong>of</strong> predictive control methods . . . . . . . . . . . . . . . . 4<br />

3.1 Switching table related to line voltage vector position γ UL . . . . . . . 22<br />

3.2 Switching table related to virtual flux vector position γ ΨL . . . . . . . 23<br />

3.3 Main data <strong>of</strong> simulation model . . . . . . . . . . . . . . . . . . . . . . 32<br />

3.4 Sampling and switching frequencies <strong>of</strong> tested control methods . . . . . 33<br />

3.5 Dynamic properties <strong>of</strong> DPC methods for P ref step change . . . . . . . 39<br />

3.6 Dynamic properties <strong>of</strong> DPC methods for U <strong>DC</strong>ref step change . . . . . 39<br />

4.1 An example operating conditions <strong>of</strong> VSF-P-DPC . . . . . . . . . . . . 44<br />

4.2 An example operation <strong>of</strong> VSF-P-DPC . . . . . . . . . . . . . . . . . . 45<br />

4.3 Number <strong>of</strong> switchings N S . . . . . . . . . . . . . . . . . . . . . . . . . 50<br />

4.4 Switching table related to line voltage vector position γ UL . . . . . . . 55<br />

4.5 Switching table related to virtual flux vector position γ ΨL . . . . . . . 60<br />

4.6 Main data <strong>of</strong> simulation model . . . . . . . . . . . . . . . . . . . . . . 62<br />

4.7 Sampling and switching frequencies <strong>of</strong> tested control methods . . . . . 62<br />

4.8 Dynamic properties <strong>of</strong> P-DPC methods for P ref step change . . . . . . 74<br />

4.9 Dynamic properties <strong>of</strong> P-DPC methods for U <strong>DC</strong>ref step change . . . . 75<br />

5.1 Summarized line current T HD i factors . . . . . . . . . . . . . . . . . . 86<br />

6.1 Main data <strong>of</strong> laboratory set-up . . . . . . . . . . . . . . . . . . . . . . 89<br />

6.2 Sampling and switching frequencies <strong>of</strong> tested methods . . . . . . . . . 93<br />

6.3 Sampling and switching frequencies <strong>of</strong> tested control methods . . . . . 101<br />

6.4 Summarized P ref step change dynamic . . . . . . . . . . . . . . . . . . 106<br />

6.5 Summarized U <strong>DC</strong>ref step change dynamic . . . . . . . . . . . . . . . . 106<br />

6.6 Summarized P ref step change dynamic . . . . . . . . . . . . . . . . . . 106<br />

6.7 Summarized U <strong>DC</strong>ref step change dynamic . . . . . . . . . . . . . . . . 107<br />

B.1 An example operating conditions <strong>of</strong> PCC αβ and PCC dq . . . . . . . . 127<br />

142


LIST OF TABLES 143<br />

B.2 An example operation <strong>of</strong> PCC αβ . . . . . . . . . . . . . . . . . . . . . 127<br />

B.3 An example operation <strong>of</strong> PCC dq . . . . . . . . . . . . . . . . . . . . . 129<br />

C.1 An example operating conditions <strong>of</strong> CSF-P-DPC . . . . . . . . . . . . 131<br />

C.2 Value <strong>of</strong> active f pi and reactive f qi power derivatives . . . . . . . . . . 131


Index<br />

band pass filter, 47<br />

band stop filter, 47<br />

buck converter, 42<br />

cost function, 41, 42, 44, 45, 47, 49, 56<br />

CSF, 41<br />

CSF-P-DPC, 50<br />

virtual <strong>AC</strong> motor, 29<br />

Virtual Flux, 18, 21, 23–25, 28–31, 39, 58,<br />

80<br />

VOC, 17, 25, 39, 42<br />

VSC, 7, 8, 13, 14, 39, 41, 44, 51<br />

VSF, 41<br />

VSF-P-DPC, 42, 44, 45<br />

<strong>DC</strong>-link, 10, 17, 20, 21<br />

DPC-SVM, 25, 32, 39<br />

DSP, 24, 42<br />

FL-VSF-P-DPC, 49<br />

H-bridge, 42<br />

HC-VSF-P-DPC, 46<br />

hysteresis controller, 21, 22, 24, 25, 34, 39<br />

IGBT, 9<br />

look-up table, 21, 25, 39, 54, 59<br />

matrix converter, 42<br />

MPC, 42, 77<br />

NPC, 42<br />

on-line choke estimator, 80<br />

P-DPC, 41<br />

PI controller, 17–19, 21, 25, 39, 57<br />

PWM, 24<br />

space vector, 8, 29, 30, 53<br />

ST-DPC, 21, 24, 25, 32, 39, 54<br />

SVM, 25, 33, 39, 42<br />

symmetry optimum, 18, 19, 25–27<br />

VF-CSF-P-DPC, 58<br />

VFOC, 25<br />

145

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!