14.03.2014 Views

First Solar - JMP

First Solar - JMP

First Solar - JMP

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Copyright © 2007, SAS Institute Inc. All rights reserved.


Innovative Improvement Methods at <strong>First</strong> <strong>Solar</strong><br />

2


Contents<br />

Company Overview<br />

Technology & Manufacturing<br />

Products & Performance<br />

Market Strategy<br />

Environmental Responsibility<br />

My first success story using <strong>JMP</strong><br />

Six Sigma – What works for <strong>First</strong> <strong>Solar</strong><br />

<strong>First</strong> <strong>Solar</strong> tools used for reducing variation<br />

Summary<br />

MD-5-921 US October 2007 3


Company Overview<br />

4


Company Overview<br />

Strategic Objective<br />

Reduce the cost of solar electricity to a level competitive with<br />

conventional energy, enabling solar to become a sustainable<br />

mainstream source of energy<br />

Reduce the cost of solar<br />

modules using thin film<br />

technology and automated,<br />

scalable production<br />

Migrate from subsidized<br />

markets to non-subsidized<br />

markets by leveraging<br />

economies of scale – become<br />

“subsidy independent”<br />

Reduce dependence on scarce<br />

natural resources and curtail<br />

greenhouse gas emissions to<br />

improve our environment<br />

MD-5-921 US October 2007 5


Company Overview<br />

Key Accomplishments<br />

Formed in 1999 and launched<br />

production of first commercial<br />

products in 2002<br />

Raised $450 million in November<br />

2006 IPO. Publicly traded on<br />

NASDAQ (FSLR)<br />

Largest thin-film module<br />

manufacturer in the world<br />

Lowest cost PV manufacturer in<br />

the world<br />

<strong>First</strong> pre-funded module collection<br />

and recycling program in the<br />

PV industry<br />

<strong>First</strong> <strong>Solar</strong> Manufacturing Plant, Frankfurt (Oder), Germany<br />

MD-5-921 US October 2007 6


Company Overview<br />

Module Production Capacity<br />

Scaled first 25MW module production line in the U.S. to steady state<br />

volume in 2005, added two 25MW production lines in 2006<br />

Annual Nameplate Capacity = 90MW* May 2007<br />

2006<br />

Four 30MW* production lines (120MW) built in Frankfurt (Oder),<br />

Germany<br />

2005<br />

Annual Nameplate Capacity = 210MW by Q4 2007<br />

Four 30MW production lines (120 MW) under construction in Kedah,<br />

Malaysia with full production targeted by second half of 2008<br />

Annual Nameplate Capacity = 330MW by 2H 2008<br />

2007<br />

A second Four 30MW production lines (120 MW) announced for<br />

Kedah, Malaysia with full production targeted by first half of 2009<br />

Annual Nameplate Capacity = 450MW by 1H 2009<br />

A third Four 30MW production lines (120 MW) announced for Kedah,<br />

Malaysia with full production targeted by first half of 2009<br />

2008 - 2009<br />

Annual Nameplate Capacity = 570MW by 1H 2009<br />

* In May 2007 we increased the nameplate capacity from 25MW to 30MW per line<br />

MD-5-921 US October 2007 7


Company Overview<br />

Worldwide Associates > 1,150<br />

United States<br />

Phoenix, Arizona<br />

Perrysburg, Ohio<br />

Germany<br />

Mainz<br />

Berlin<br />

Frankfurt (Oder)<br />

Corporate Headquarters<br />

Operations, R&D and Manufacturing Headquarters<br />

Sales, Marketing, Customer Support (EU)<br />

Government & Public Affairs<br />

Manufacturing plant<br />

Europe<br />

Brussels<br />

Madrid<br />

Amsterdam<br />

Government & Public Affairs (EU)<br />

Sales<br />

Business Development<br />

Malaysia<br />

Kedah<br />

Three Manufacturing Plants<br />

(groundbreaking of first plant April 2007)<br />

MD-5-921 US October 2007 8


Technology & Manufacturing<br />

9


Technology & Manufacturing<br />

Fully Integrated, Automated and Continuous Thin Film Process<br />

Glass in<br />

~2.5 hours<br />

Semiconductor<br />

Deposition<br />

Final Assembly<br />

& Test<br />

Cell Definition<br />

Module out<br />

<br />

<br />

99% reduction in high-cost<br />

semiconductor material<br />

Fully integrated, continuous<br />

process vs. batch processing<br />

Large (2’x4’) substrate vs. 6”<br />

wafers<br />

vs. Crystalline Silicon Batch Processing<br />

Feedstock Ingot Wafer <strong>Solar</strong> Cell<br />

<strong>Solar</strong> Module<br />

MD-5-921 US October 2007 10


Technology & Manufacturing<br />

Intellectual Property<br />

<br />

Over 90 U.S. & foreign<br />

patents granted and<br />

pending<br />

Substantial trade secrets /<br />

know-how surrounding<br />

process, device design and<br />

product packaging<br />

<br />

<br />

Proprietary equipment<br />

designs<br />

Exclusive relationships with<br />

key vendors<br />

MD-5-921 US October 2007 11


Technology & Manufacturing<br />

Disciplined Replication Process<br />

Proven replication at Base Plant<br />

Continuous improvement<br />

methodologies<br />

570 MW<br />

120<br />

“Copy Smart”<br />

replication<br />

330 MW<br />

120<br />

210 MW<br />

120 120<br />

120 120 120<br />

75 MW<br />

50 60 60 60<br />

25 MW<br />

25 25 30 30 30<br />

2005 2006 2007 2008 2009<br />

Ohio Base Plant Ohio Expansion German Facility Malaysia 1 Malaysia 2 Malaysia 3<br />

MD-5-921 US October 2007 12


Products & Performance<br />

13


Products & Performance<br />

<strong>First</strong> <strong>Solar</strong> Series 2 Module Features<br />

Frameless glass-glass laminate (60 x 120 cm, 27 lbs) is<br />

durable and recyclable<br />

Power increments of 2.5W (5% rating tolerance) with power<br />

per module of up to 72W<br />

High energy yield in real operating conditions (PR>80%):<br />

• Low temperature coefficient (-0.25%/ o C)<br />

• Excellent low light response<br />

Robust against shading in landscape orientation (perpendicular<br />

to cells)<br />

Certified for reliability and safety according to IEC 61646 and<br />

SK II @ 1000V<br />

Manufacturing certified to ISO9001:2000 quality and<br />

ISO14001:2004 environmental standards<br />

25 year Power Output Warranty for 80% of nominal power<br />

subject to warranty terms & conditions<br />

Pre-financed collection & recycling program<br />

MD-5-921 US October 2007 14


Products & Performance<br />

Proven Record of Increasing Module Conversion Efficiencies<br />

500,000<br />

11.0%<br />

450,000<br />

400,000<br />

10.0%<br />

350,000<br />

9.0%<br />

300,000<br />

250,000<br />

8.0%<br />

200,000<br />

150,000<br />

7.0%<br />

100,000<br />

50,000<br />

6.0%<br />

0<br />

Q3'01 Q4'01 Q1'02 Q2'02 Q3'02 Q4'02 Q1'03 Q2'03 Q3'03 Q4'03 Q1'04 Q2'04 Q3'04 Q4'04 Q1'05 Q2'05 Q3'05 Q4'05 Q1'06 Q2'06 Q3'06 Q4'06 Q1'07 Q2'07<br />

5.0%<br />

MD-5-921 US October 2007 15


Products & Performance<br />

Proven Field Performance<br />

Documented and approved designs define the module mounting,<br />

electrical design, and the system energy yield expected in order to<br />

ensure that systems are designed to perform optimally<br />

<strong>First</strong> <strong>Solar</strong> monitors the performance of > 20MW of installed modules<br />

in a wide range of systems to ensure modules perform as designed<br />

Predicted Energy Ratio (PER%)<br />

(Error Bars =Standard Deviation)<br />

120%<br />

115%<br />

110%<br />

105%<br />

100%<br />

95%<br />

90%<br />

85%<br />

80%<br />

Month<br />

MW Monitored<br />

Monitored MW PER% Expectation<br />

MD-5-921 US October 2007 16


Products & Performance<br />

Tom Hansen, VP & Technical Advisor of Tucson Electric Power<br />

kWh/kWp<br />

2,500<br />

2,000<br />

1,500<br />

1,000<br />

Springerville Generation Station<br />

Specific Energy Yield<br />

<strong>First</strong><br />

<strong>Solar</strong><br />

X-Si<br />

A-Si<br />

“One of the more fascinating things<br />

we’ve found by evaluating the <strong>First</strong><br />

<strong>Solar</strong> modules at Springerville, is<br />

that they turn on earlier in the<br />

morning and they actually put more<br />

voltage out earlier than either the<br />

crystalline or amorphous silicon<br />

modules.”<br />

500<br />

1.2<br />

Relative Efficiency vs. Irradiance,<br />

CdS/CdTe Thin-film and Polycrystalline Si Systems<br />

0<br />

All data m easured by Tucson Electric Pow er - Springe rville Generation Station<br />

Measured w ith Revenue Grade Meter Equipm ent from Septem ber 2003 - October 2004<br />

“The other thing that is fascinating…, is that<br />

they produce more power from a lower light<br />

level than either crystalline or amorphous<br />

silicon modules. On cloudy days, we see 10%,<br />

sometimes as much as 12% more energy<br />

production from the thin film <strong>First</strong> <strong>Solar</strong><br />

modules than from the crystalline modules.”<br />

Relative Efficiency<br />

1.1<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

FS thin-film CdS/CdTe System<br />

Polycrystalline Si System<br />

6th order fit to FS CdS/CdTe data<br />

6th order fit to polycrystalline Si data<br />

0 200 400 600 800 1000<br />

Irradiance in Plane-of-Array [W/m 2 ]<br />

MD-5-921 US October 2007 17


Market Strategy<br />

18


Market Strategy<br />

Target Applications<br />

Ground Mounted Systems<br />

• Typically Multi-MW<br />

Commercial Roof Mounted Systems<br />

• Typically 30kW to 1MW+<br />

MD-5-921 US October 2007 19


Market Strategy<br />

Geographic Markets<br />

Canada<br />

Greece<br />

Portugal<br />

US<br />

South<br />

Korea<br />

Spain<br />

France<br />

Italy<br />

Germany<br />

MD-5-921 US October 2007 20


Market Strategy<br />

Sales Channels<br />

<strong>First</strong> <strong>Solar</strong> sells modules to project developers and alternative energy<br />

power plant operators under multi-year framework agreements.<br />

Project Developers design and develop turnkey commercial grid<br />

connected solar power plants.<br />

MD-5-921 US October 2007 21


Environmental Responsibility<br />

22


Environmental Responsibility<br />

Our 3-Point Environmental Plan<br />

1<br />

Convert<br />

mining byproducts<br />

and waste to clean,<br />

renewable<br />

energy<br />

2<br />

Produce, use and<br />

renew solar modules<br />

in a perpetual,<br />

environmentally<br />

safe life cycle<br />

3<br />

Reduce<br />

toxic emissions by<br />

substituting solar<br />

energy for<br />

fossil fuels<br />

MD-5-921 US October 2007 23


Summary<br />

24


Summary<br />

<br />

<br />

<br />

<br />

<strong>First</strong> <strong>Solar</strong> has developed a<br />

breakthrough thin film module<br />

product and high volume<br />

production capability<br />

Continuous improvements and<br />

rapid scale-up of manufacturing<br />

capacity have resulted in the<br />

lowest production cost per watt in<br />

the PV industry<br />

An innovative pre-funded module<br />

collection and recycling program<br />

ensures products are life-cycle<br />

managed for optimal<br />

environmental benefits<br />

<strong>First</strong> <strong>Solar</strong> is enabling solar to<br />

become a sustainable, mainstream<br />

source of energy<br />

MD-5-921 US October 2007 25


Project Profiles<br />

Relative size of 6MW<br />

project in Rote Jahne<br />

40 MW<br />

Brandis, Germany<br />

Project Developer: juwi<br />

Under Construction<br />

8MW Commissioned/ 10MW Installed<br />

MD-5-921 US October 2007 26


Project Profiles<br />

1.25 MW<br />

Dimbach, Germany<br />

Project Developer: Blitzstrom<br />

6 MW<br />

Rote Jahne, Germany<br />

Project Developer: juwi<br />

MD-5-921 US October 2007 27


Project Profiles<br />

120 kW<br />

Meppen, Germany<br />

Project Developer: R+P Sun Energy<br />

1.4 MW<br />

Gescher, Germany<br />

Project Developer: R+P Sun Energy<br />

MD-5-921 US October 2007 28


Project Profiles<br />

1 MW<br />

Reussenköge, Germany<br />

Project Developer: Phoenix <strong>Solar</strong><br />

1.4 MW<br />

Deponie Sinzheim, Germany<br />

Project Developer: juwi<br />

MD-5-921 US October 2007 29


Six Sigma Strategies that work – for <strong>First</strong> <strong>Solar</strong><br />

Continuous Improvement is one of <strong>First</strong> <strong>Solar</strong>’s 5 core values<br />

30


5 Keys to Success<br />

Understand the needs of your company<br />

– For example, the need to drive costs, and the associated levers<br />

Customer Focus<br />

– Champions – Project Selection and tollgate reviews<br />

– Process Owners – enabling through mentorship<br />

Create a pull<br />

– Don’t push – create pull<br />

Deployment strategy<br />

– That fits the needs of your organization<br />

Provide the best tools available<br />

– <strong>JMP</strong> enables the practitioner with power, speed and<br />

visualization<br />

MD-5-921 US October 2007 31


Deployment Strategies<br />

Project Selection starts 2 months ahead of each cycle<br />

Training occurs in 17 weeks cycles – 3 times per year<br />

Weeks 1-5: Rapid Sigma – DMAIC Problem Solving Process<br />

Weeks 6-8: MSA<br />

Week 9: Project Selection/Champion training for next wave<br />

Weeks 9-12: ESDA<br />

Weeks 13-15: Robust DOE<br />

Weeks 16-17: SPC<br />

Other tips:<br />

Classes are 2 hours in length, 3X’s a week<br />

Use a “learn by doing” approach<br />

MD-5-921 US October 2007 32


My <strong>First</strong> Success Story using <strong>JMP</strong><br />

33


My <strong>First</strong> Success Story using <strong>JMP</strong><br />

Introduced to <strong>JMP</strong> in 1993 by Tom Little while at Read-Rite Corp in Milpitas CA<br />

Used <strong>JMP</strong> to visualize the interactions between OW, PW50, Amplitude and Resolution<br />

and their inter-relationships to Throat Height<br />

Throat Height, for an inductive write-read head, is one of the most critical design<br />

dimensions<br />

DEC RZ28L was “starved” for OW – Yields were 27% - breakeven yields 55%<br />

The common tribal knowledge suggested going short as possible<br />

After not more than 20 minutes of data analysis using <strong>JMP</strong> was able to establish that<br />

the TH was far too short (Multivariate tool with brushing)<br />

• But Kuhn Steve – we need more OW not less!<br />

• Get a refund from Cal Poly<br />

Yields with the longer TH were greater than 73%!<br />

Standardized the method for a non destructive Throat Height optimization<br />

Pradip Thyamballi improved the magnetic models to include the interactions with<br />

media and spacing<br />

<strong>JMP</strong> became the undisputed program of choice – extends to many engineers in S.E.<br />

Asia including Western Digital today<br />

MD-5-921 US October 2007 34


Reducing Variation<br />

Why place effort on reducing variation?<br />

Cost savings<br />

Improved experimental results<br />

Traditional approaches<br />

OFAT experimentation<br />

Main effects experiments<br />

Beat on Suppliers<br />

ANOVA<br />

<br />

<br />

Focused on mean shifts<br />

Mean shifts represent only 20% of the overall variation<br />

MD-5-921 US October 2007 35


Variation Reduction Tools used at <strong>First</strong> <strong>Solar</strong><br />

Partition of Variation (POV)<br />

Includes the between and within components of variation<br />

Robust Design<br />

Early work was based on Taguchi methods<br />

Ideal function thinking<br />

Noise Strategy<br />

Orthogonal Arrays<br />

Optimizing SNR of the main effects<br />

Today FS enhances that same philosophy with Response Surface Methodology<br />

Capture interactions and curvature effects<br />

Design to fit the problem as opposed to fixed arrays<br />

The real world is messy!<br />

Optimization using partial derivatives with respect to the noise factors<br />

Root Cause of BOB’s and WOW’s (Hi/Lo Analysis)<br />

MD-5-921 US October 2007 36


Partition of Variation<br />

POV script developed by Dr. Thomas Little<br />

www.dr-tom.com<br />

The POV script provides a Pareto of the variance components<br />

Between<br />

Within<br />

Interactions (for crossed)<br />

Our exploration with this tool has proven useful in providing<br />

direction of where to focus vital engineering resources<br />

The individual components are not claimed to be 100%<br />

accurate, however the Pareto has been consistent with our<br />

internal findings<br />

MD-5-921 US October 2007 37


FS Macro Process Map<br />

Laser ID<br />

Front end<br />

operations<br />

Edges<br />

finishing<br />

Cleaning<br />

Semiconductor<br />

deposit<br />

CdCl 2<br />

Spray<br />

Activation<br />

Sunnyside<br />

etch<br />

Laser<br />

Scribe 1<br />

Submodule<br />

operations<br />

Post Metal<br />

Heat Treat<br />

Automatic<br />

edge<br />

delete<br />

Laser<br />

Scribe 3<br />

Metallization<br />

Wet Etch<br />

Laser Scribe<br />

2<br />

Photoresist<br />

application<br />

Assembly<br />

operations<br />

Lamination<br />

Lay up<br />

Lamination Cordplate Final IV<br />

Module<br />

Detail<br />

Box and Ship<br />

MD-5-921 US October 2007 38


POV Example One<br />

Process Steps<br />

1-4<br />

Production Lines<br />

A<br />

The Design is Crossed, not balanced, 2^4<br />

or 16 levels<br />

Day to day operations are run with this<br />

constant mixing<br />

MD-5-921 US October 2007 39<br />

B<br />

1<br />

2<br />

3<br />

4<br />

Frequencies<br />

Level<br />

AAAA<br />

AAAB<br />

AABA<br />

AABB<br />

ABAA<br />

ABAB<br />

ABBA<br />

ABBB<br />

BAAA<br />

BAAB<br />

BABA<br />

BABB<br />

BBAA<br />

BBAB<br />

BBBA<br />

BBBB<br />

Total<br />

Count<br />

58<br />

120<br />

86<br />

71<br />

132<br />

181<br />

186<br />

134<br />

49<br />

108<br />

82<br />

66<br />

152<br />

183<br />

189<br />

122<br />

1919


The Variability Chart<br />

Y 1<br />

Std Dev<br />

11.0<br />

10.5<br />

10.0<br />

9.5<br />

0.20<br />

0.15<br />

0.10<br />

0.05<br />

0.00<br />

The power of<br />

visualization –<br />

all the data<br />

broken down<br />

on one page<br />

A B A B A B A B A B A B A B A B Process 4<br />

A B A B A B A B Process 3<br />

A B A B Process 2<br />

A B Process 1<br />

MD-5-921 US October 2007 40


Residual Maximum Likelihood Model<br />

REML - Variance Components<br />

Component<br />

Total<br />

Within<br />

Process 3*Process 4<br />

Process 1<br />

Process 1*Process 2<br />

Process 2*Process 3<br />

Process 3<br />

Process 1*Process 2*Process 3*Process 4<br />

Process 1*Process 3*Process 4<br />

Process 2*Process 4<br />

Process 1*Process 2*Process 3<br />

Process 2<br />

Process 1*Process 3<br />

Process 4<br />

Process 1*Process 4<br />

Process 1*Process 2*Process 4<br />

Process 2*Process 3*Process 4<br />

Var<br />

Component<br />

0.04098051<br />

0.03236716<br />

0.00469185<br />

0.00115908<br />

0.00093237<br />

0.00079189<br />

0.00047601<br />

0.00022384<br />

0.00017669<br />

0.00009557<br />

0.00004709<br />

0.00001897<br />

0.00000000<br />

0.00000000<br />

0.00000000<br />

0.00000000<br />

0.00000000<br />

% of Total 20 40 60 80<br />

100.0<br />

79.0<br />

11.4<br />

2.8<br />

2.3<br />

1.9<br />

1.2<br />

0.5462<br />

0.4312<br />

0.2332<br />

0.1149<br />

0.0463<br />

0.0<br />

0.0<br />

0.0<br />

0.0<br />

0.0<br />

~80% of the variation is “within”, but not characterized further<br />

MD-5-921 US October 2007 41


Variability Chart – Example One<br />

Y 1<br />

11.0<br />

10.5<br />

Visual pattern for between<br />

variation common to<br />

Process3*Process4<br />

Std Dev<br />

10.0<br />

9.5<br />

0.20<br />

0.15<br />

0.10<br />

0.05<br />

0.00<br />

A B A B A B A B A B A B A B A B Process 4<br />

A B A B A B A B Process 3<br />

A B A B Process 2<br />

A B Process 1<br />

POV contributes 17%<br />

of Overall Variation<br />

to Between<br />

Between top 3 Pareto<br />

Process 3 6.4%<br />

P3*P4 3.8%<br />

Process 4 1.8%<br />

MD-5-921 US October 2007 42


Variability Chart – Example One<br />

Y 1<br />

11.0<br />

10.5<br />

Visual pattern for<br />

within component<br />

common to Process2<br />

Std Dev<br />

10.0<br />

9.5<br />

0.20<br />

0.15<br />

0.10<br />

0.05<br />

Within top 4 Pareto<br />

Common 43%<br />

Process 2 29%<br />

Process 1 7%<br />

P3*P4 2%<br />

0.00<br />

A B A B A B A B A B A B A B A B Process 4<br />

A B A B A B A B Process 3<br />

A B A B Process 2<br />

A B Process 1<br />

Entitlement: B-<br />

line of Process<br />

Step 2 should<br />

match A line<br />

MD-5-921 US October 2007 43


Text Book Example of POV<br />

11.5<br />

Y2 is Step 4 related<br />

11.0<br />

1.27<br />

1.26<br />

1.25<br />

1.24<br />

1.23<br />

1.22<br />

121<br />

Voc<br />

Isc<br />

10.5<br />

Y1<br />

EfficiencyTotal<br />

10.0<br />

Y2<br />

Avg=10.60722<br />

9.5<br />

Metal Line<br />

Step 4<br />

100<br />

99<br />

98<br />

Y3 97<br />

96<br />

95<br />

94<br />

93<br />

92<br />

Y3 is Step 2 related<br />

FFO-1-2-A<br />

FFO-1-2-B<br />

FFO-1-2-A<br />

FFO-1-2-B<br />

FFO-1-2-A<br />

FFO-1-2-B<br />

FFO-1-2-A<br />

FFO-1-2-B<br />

FFO-1-2-A<br />

FFO-1-2-B<br />

FFO-1-2-A<br />

FFO-1-2-B<br />

FFO-1-2-A<br />

FFO-1-2-B<br />

FFO-1-2-A<br />

FFO-1-2-B<br />

FFO-1-2-A<br />

FFO-1-2-B<br />

FFO-1-2-A<br />

FFO-1-2-B<br />

FFO-1-2-A<br />

FFO-1-2-B<br />

FFO-1-2-A<br />

FFO-1-2-B<br />

NPR Line<br />

Step 3<br />

Step 2<br />

Step 1<br />

FFO-1-2-A FFO-1-2-B FFO-1-2-A FFO-1-2-BCdCl2 Line<br />

FFO-1-2-A FFO-1-2-B Coat Line<br />

MD-5-921 US October 2007 44


Another Text Book Example<br />

Process Step 2<br />

Line B<br />

High Variation (21%)<br />

Also evidence of<br />

step3*step 4<br />

interaction (7%)<br />

Step 4<br />

PBG-1-2-A<br />

PBG-1-2-B<br />

PBG-1-2-A<br />

PBG-1-2-B<br />

PBG-1-2-A<br />

PBG-1-2-B<br />

PBG-1-2-A<br />

PBG-1-2-B<br />

PBG-1-2-A<br />

PBG-1-2-B<br />

PBG-1-2-A<br />

PBG-1-2-B<br />

PBG-1-2-A<br />

PBG-1-2-B<br />

PBG-1-2-A<br />

PBG-1-2-B<br />

PBG-1-2-A<br />

PBG-1-2-B<br />

PBG-1-2-A<br />

PBG-1-2-B<br />

PBG-1-2-A<br />

PBG-1-2-B<br />

PBG-1-2-A<br />

PBG-1-2-B<br />

PBG-1-2-A PBG-1-2-B PBG-1-2-A PBG-1-2-B<br />

Step 3<br />

Step 2<br />

Step 1<br />

PBG-1-2-A PBG-1-2-B<br />

MD-5-921 US October 2007 45


POV Advantage<br />

Within variation typically represents 80% of the<br />

overall variation<br />

Mean shifts are often more gratifying to work on<br />

However, alone they don’t constitute the largest source of<br />

variation<br />

In the worse case, mean shifts may even be a distraction<br />

POV provides a quantification of the within variation<br />

entitlements<br />

The quantification is not absolute, however, experience<br />

suggests the Pareto scales properly<br />

MD-5-921 US October 2007 46


POV Injection Example<br />

Prefer n>40 for each sub group<br />

The following example represents ~24 hours of production<br />

for one pair of lines<br />

Process Steps<br />

1-4<br />

Production Lines<br />

A<br />

B<br />

Frequencies<br />

Level<br />

A-A-A-A<br />

A-A-A-B<br />

A-A-B-A<br />

A-A-B-B<br />

A-B-A-A<br />

A-B-A-B<br />

A-B-B-A<br />

A-B-B-B<br />

B-A-A-A<br />

B-A-A-B<br />

B-A-B-A<br />

B-A-B-B<br />

B-B-A-A<br />

B-B-A-B<br />

B-B-B-A<br />

B-B-B-B<br />

G-A-A-A<br />

G-A-A-B<br />

G-A-B-A<br />

G-A-B-B<br />

G-B-A-A<br />

G-B-A-B<br />

G-B-B-A<br />

G-B-B-B<br />

Total<br />

Count<br />

311<br />

301<br />

370<br />

375<br />

128<br />

128<br />

141<br />

149<br />

100<br />

100<br />

78<br />

100<br />

50<br />

34<br />

97<br />

99<br />

40<br />

37<br />

62<br />

42<br />

80<br />

68<br />

173<br />

174<br />

3237<br />

MD-5-921 US October 2007 47<br />

G<br />

Dev.<br />

Tool<br />

The Design is Crossed, not balanced with 24<br />

combinations (2^4 + 2^3 levels)<br />

1<br />

2<br />

3<br />

4


Variability Chart for Injection Example<br />

11.5<br />

11.0<br />

10.5<br />

10.0<br />

9.5<br />

9.0<br />

8.5<br />

8.0<br />

7.5 0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

-0.1<br />

A B A B A B A B A B A B A B A B A B A B A B A B Process 4<br />

A B A B A B A B A B A B Process 3<br />

A B A B A B Process 2<br />

A B G Process 1<br />

Visualization of<br />

Process Step 4<br />

interacting with<br />

process Step 1<br />

on Tool G<br />

This group is<br />

amongst the<br />

least<br />

variation<br />

seen to date<br />

MD-5-921 US October 2007 48


Calculating the Variance with REML<br />

Variance Components with REML<br />

Component<br />

Total<br />

Within<br />

Process 1*Process 4<br />

Process 3*Process 4<br />

Process 1*Process 2<br />

Process 2<br />

Process 1*Process 2*Process 3*Process 4<br />

Process 1*Process 3*Process 4<br />

Process 1*Process 3<br />

Process 1*Process 2*Process 3<br />

Process 1<br />

Process 3<br />

Process 2*Process 3<br />

Process 4<br />

Process 2*Process 4<br />

Process 1*Process 2*Process 4<br />

Process 2*Process 3*Process 4<br />

Var Component<br />

0.14658430<br />

0.11268850<br />

0.02173898<br />

0.00438000<br />

0.00309395<br />

0.00150594<br />

0.00094134<br />

0.00088741<br />

0.00081464<br />

0.00053354<br />

0.00000000<br />

0.00000000<br />

0.00000000<br />

0.00000000<br />

0.00000000<br />

0.00000000<br />

0.00000000<br />

% of Total 20 40 60 80<br />

100.0<br />

76.9<br />

14.8<br />

3.0<br />

2.1<br />

1.0<br />

0.6422<br />

0.6054<br />

0.5558<br />

0.364<br />

0.0<br />

0.0<br />

0.0<br />

0.0<br />

0.0<br />

0.0<br />

0.0<br />

REML again reveals nearly 80% of the variation is “Within”<br />

Process1*Process4 between interaction is 15% of overall<br />

MD-5-921 US October 2007 49


POV Summary Table<br />

Component<br />

Between Total<br />

Between Process 1<br />

Between Process 2<br />

Between Process 3<br />

Between Process 4<br />

Between Process 1*Process 2<br />

Between Process 1*Process 3<br />

Between Process 1*Process 4<br />

Between Process 2*Process 3<br />

Between Process 2*Process 4<br />

Between Process 3*Process 4<br />

Within Total<br />

Within Process 1<br />

Within Process 2<br />

Within Process 3<br />

Within Process 4<br />

Within Process 1*Process 2<br />

Within Process 1*Process 3<br />

Within Process 1*Process 4<br />

Within Process 2*Process 3<br />

Within Process 2*Process 4<br />

Within Process 3*Process 4<br />

Common<br />

Total<br />

Pop Variance<br />

0.0273<br />

0.0129<br />

0.0027<br />

0.0002<br />

0.0004<br />

0.0010<br />

0.0005<br />

0.0087<br />

0.0001<br />

0.0000<br />

0.0008<br />

0.1129<br />

0.0199<br />

0.0002<br />

0.0001<br />

0.0328<br />

0.0020<br />

0.0046<br />

0.0362<br />

0.0011<br />

0.0002<br />

0.0005<br />

0.0153<br />

0.1402<br />

.<br />

.<br />

.<br />

% of Total<br />

19.48<br />

9.16<br />

1.95<br />

0.16<br />

0.28<br />

0.73<br />

0.38<br />

6.18<br />

0.04<br />

0.01<br />

0.59<br />

80.52<br />

14.18<br />

0.12<br />

0.10<br />

23.41<br />

1.42<br />

3.26<br />

25.81<br />

0.77<br />

0.12<br />

0.39<br />

10.94<br />

100.00<br />

.<br />

.<br />

.<br />

Sig.<br />

*<br />

*<br />

*<br />

*<br />

*<br />

*<br />

*<br />

*<br />

*<br />

POV Method<br />

calculates within<br />

as 80% of Total<br />

Process<br />

1*Process 4<br />

Interaction as<br />

32% of total<br />

MD-5-921 US October 2007 50


Pareto of the Variance Components<br />

100<br />

75<br />

50<br />

N=100<br />

Combined effect of<br />

Process 1, 4 and<br />

P1*P4 = 68%<br />

Percent<br />

25<br />

0<br />

Within Process 1*Process 4<br />

Within Process 4<br />

Within Process 1<br />

Common<br />

Between Process 1<br />

Between Process 1*Process 4<br />

Within Process 1*Process 3<br />

Between Process 2<br />

Within Process 1*Process 2<br />

Within Process 2*Process 3<br />

Between Process 1*Process 2<br />

Between Process 3*Process 4<br />

Within Process 3*Process 4<br />

Between Process 1*Process 3<br />

Between Process 4<br />

Between Process 3<br />

Within Process 2<br />

Within Process 2*Process 4<br />

Within Process 3<br />

Between Process 2*Process 3<br />

Between Process 2*Process 4<br />

Variance Components<br />

MD-5-921 US October 2007 51


POV Injection – Process Step 2<br />

Standard<br />

Production Lines<br />

A B S<br />

Development<br />

Line<br />

Process Flow<br />

1<br />

2<br />

3<br />

4<br />

MD-5-921 US October 2007 52


POV Injection Example 2 – The “HOT” path<br />

Standard<br />

Production Lines<br />

A B C<br />

Development<br />

Line<br />

Process Flow<br />

A B S<br />

G<br />

1<br />

2<br />

3<br />

4<br />

MD-5-921 US October 2007 53


A method for Rapid Identification of Common Failure<br />

Modes<br />

54


Exploring Relationships for Failure Mode Patterns<br />

Y1<br />

Y2<br />

These 4 - Y’s are<br />

highly interactive<br />

performance<br />

characteristics<br />

Y3<br />

Sweet<br />

spot<br />

Failure<br />

Modes<br />

Failure Mode = f(Y1, Y2, Y3, Y4)<br />

Y4<br />

MD-5-921 US October 2007 55


Establishing the Link between Failure Modes and<br />

Process Lineage<br />

Step 1: Establish Failure Modes from the multivariate<br />

relationships (Y’s)<br />

Step 2: Contingency Analysis of Failure Mode (Y) vs. Lineage<br />

(X)<br />

Step 3: Calculate the % of cell Chi-Square/Sum Chi-Square<br />

Cell Chi Square is the Chi-square values computed for each cell as<br />

(O - E)2 / E<br />

Sum cell Chi Square is the sum of all cell ChiSquare for each given<br />

failure mode<br />

Step 4: Explore commonalities where the % Chi-Square is large<br />

and Deviation is positive<br />

MD-5-921 US October 2007 56


% Cell Chi-Square Example<br />

% Cell Chi-<br />

Square<br />

Heritage FF n FF<br />

GAAA 1% 188 -1<br />

GAAB 1% 144 -1<br />

GABA 1% 256 -2<br />

GABB 1% 300 -2<br />

GACC 0% 82 -1<br />

GBAA 1% 343 -2<br />

GBAB 1% 289 -2<br />

GBBA 1% 327 -2<br />

GBBB 1% 509 -3<br />

GBCC 0% 97 -1<br />

GCAA 0% 200 0<br />

GCAB 1% 185 -1<br />

GCBA 0% 294 -1<br />

GCBB 0% 182 0<br />

GCCC 3% 8756 17<br />

SAAA 0% 61 0<br />

SAAB 0% 51 0<br />

SABA 0% 62 0<br />

SABB 0% 63 0<br />

SBAA 0% 72 0<br />

SBAB 0% 81 -1<br />

SBBA 0% 112 -1<br />

SBBB 0% 130 -1<br />

SCAA 2% 211 3<br />

SCAB 0% 277 -1<br />

SCBA 1% 241 1<br />

SCBB 1% 205 -1<br />

SCCC 9% 7497 29<br />

n<br />

Deviation<br />

XCCC<br />

Sum of % Chi-square = 12%<br />

Deviation = 46<br />

% Deviation = 46/15,253 = .3%<br />

MD-5-921 US October 2007 57


% Chi-Square (Cont).<br />

% Cell Chi-<br />

Square<br />

Heritage FF n FF<br />

AAAA 2% 2284 8<br />

AAAB 0% 2227 -3<br />

AABA 6% 2926 -15<br />

AABB 11% 2859 -20<br />

AACC 0% 96 -1<br />

ABAA 0% 1897 3<br />

ABAB 2% 1919 8<br />

ABBA 5% 2302 -12<br />

ABBB 4% 2483 -11<br />

ABCC 0% 110 -1<br />

ACCC 0% 262 1<br />

BAAA 0% 2129 2<br />

BAAB 0% 2166 -3<br />

BABA 4% 2673 -11<br />

BABB 1% 2528 -4<br />

BACC 0% 94 -1<br />

BBAA 0% 1762 0<br />

BBAB 6% 1781 12<br />

BBBA 1% 2282 6<br />

BBBB 7% 2401 14<br />

BBCC 0% 98 -1<br />

BCBB 18% 85 4<br />

n<br />

Deviation<br />

AxAx<br />

Short Hand:<br />

Sum of %Chi-Square = 4%<br />

Deviation = 16<br />

% Deviation = 16/4203 = .38%<br />

AxAx (4%, 16, .38%)<br />

BxBx (26%, 24, .5%)<br />

BxxB (31%, 30, .7%)<br />

xCxx (30%, 50, .32%)<br />

MD-5-921 US October 2007 58


Robust Design<br />

A method for minimizing the effects of variation<br />

59


Robust Design applied to a new Gage<br />

Robust Design is often applied to process improvement<br />

A new gage presents the ideal opportunity for Robust<br />

Design<br />

Rather than selecting critical set up factors based on<br />

manufacturing preference or “Best Guess” a quick and<br />

practical Robust DOE can help design in excellent gage<br />

capability before it hits the shop floor<br />

This particular design was conceived, executed and<br />

analyzed in less than 4 days.<br />

MD-5-921 US October 2007 60


How the gage works<br />

Glass Plate Motion<br />

X Location<br />

1 2 3 4 5<br />

Laser ID<br />

1<br />

2<br />

3<br />

.<br />

.<br />

.<br />

10<br />

Y Location<br />

5 heads are held in place<br />

along a fixed bar as the<br />

plate is passed from the<br />

top of the plate to the<br />

bottom of the plate.<br />

Height is calibrated to a<br />

fixed position by laser<br />

positioning.<br />

Plate temperature is also<br />

measured with IR sensor<br />

built in to the test system<br />

MD-5-921 US October 2007 61


Experimental Objectives<br />

Can the measurement be performed reliably on incoming<br />

plates?<br />

Incoming plates are covered with parting medium which is<br />

used to facilitate glass on glass separation<br />

If the glass must be cleaned prior to measurement it is a<br />

major disadvantage to manufacturing<br />

Understand the relationship of temperature, sensor height,<br />

and plate speed vs. the gage output (Y2) nominal and<br />

variation<br />

Provide an operational guide for gage set up which helps<br />

ensure a reliable measurement<br />

MD-5-921 US October 2007 62


The Design<br />

<strong>JMP</strong> Custom Design for RSM<br />

Entered Factors as follows:<br />

One Categorical Variable: Condition, easy to change<br />

One uncontrolled variable: Temperature (Measured in-situ)<br />

Two continuous variable: Speed (Very Hard to change) and<br />

Height (hard to change, actual height measured in situ)<br />

Replicates:<br />

Replicates were unknown as we had given time window and<br />

wanted to run as many as possible in the given time<br />

MD-5-921 US October 2007 63


The Real World is messy!<br />

After running the experiment we found what was<br />

actually run was different from what was planned<br />

Gage owner made some executive decisions based on<br />

practicality<br />

What to do?<br />

Plugged data back into Custom DOE<br />

Entered all the factors as covariates<br />

Created a new model<br />

MD-5-921 US October 2007 64


The Analysis<br />

Multivariate Analysis (exclude gross outliers, double check<br />

the design range and values)<br />

Ran step wise regression with main effects, interactions and<br />

2nd level quadratics<br />

Selected model terms with p


Unrealistic Values (Gross Outliers)<br />

1 2 3 4 5 6 7 8 9 10<br />

1 2 3 4 5<br />

Y Location<br />

X Location<br />

Key Observation: Virtually<br />

all of the unrealistic values<br />

are located on the leading<br />

edge of the plate (Y


Multivariate of Design Factors<br />

Scatterplot Matrix - Condition = Clean<br />

Scatterplot Matrix - Condition = Dirty<br />

60<br />

50<br />

50<br />

40<br />

30<br />

Speed<br />

40<br />

30<br />

Speed<br />

20<br />

20<br />

10<br />

10<br />

85<br />

83<br />

81<br />

79<br />

Temp<br />

75<br />

74<br />

Temp<br />

77<br />

75<br />

73<br />

10<br />

9<br />

8<br />

Height<br />

73<br />

72<br />

11<br />

10<br />

9<br />

8<br />

Height<br />

7<br />

7<br />

6<br />

6<br />

10 20 30 40 50<br />

73 75 77 79 81 83 85<br />

6 7 8 9 10<br />

10 20 30 40 50 60<br />

72 73 74 75<br />

6 7 8 9 10 11<br />

MD-5-921 US October 2007 67


Interactions<br />

Interaction Profiles<br />

10<br />

Y1<br />

Y1<br />

Y1<br />

9.7<br />

9.5<br />

9.3<br />

9.7<br />

9.5<br />

9.3<br />

9.7<br />

9.5<br />

9.3<br />

Speed<br />

72<br />

85<br />

5.7<br />

11.3<br />

Temp<br />

60<br />

11.3<br />

5.7<br />

Height<br />

10<br />

60<br />

85<br />

72<br />

Speed Temp Height<br />

10<br />

30<br />

50<br />

70<br />

72<br />

75<br />

78<br />

81<br />

84<br />

87<br />

6<br />

8<br />

10<br />

12<br />

MD-5-921 US October 2007 68


Fit Model<br />

Actual by Predicted Plot<br />

Parameter Estimates<br />

Y1 Actual<br />

9.6<br />

9.5<br />

9.4<br />

9.40 9.50 9.60<br />

Condition<br />

Height Speed<br />

CleanHi10<br />

CleanHi60<br />

CleanLo10<br />

CleanLo35<br />

DirtyHi10<br />

DirtyHi60<br />

DirtyLo10<br />

DirtyLo60<br />

Term<br />

Intercept<br />

Condition[Clean]<br />

Speed(10,60)<br />

Temp(72,85)<br />

Height(5.7,11.3)<br />

Speed*Temp<br />

Speed*Height<br />

Temp*Height<br />

Speed*Speed<br />

Estimate<br />

9.4144147<br />

0.0659857<br />

-0.1329<br />

0.0086641<br />

-0.042314<br />

-0.175065<br />

0.0135683<br />

0.100659<br />

0.0779556<br />

Std Error<br />

0.007973<br />

0.00317<br />

0.002974<br />

0.007149<br />

0.005219<br />

0.005426<br />

0.003391<br />

0.008214<br />

0.00681<br />

t Ratio<br />

1180.8<br />

20.82<br />

-44.69<br />

1.21<br />

-8.11<br />

-32.26<br />

4.00<br />

12.25<br />

11.45<br />

Prob>|t|<br />

0.0000*<br />


The Prediction Profile<br />

9.5<br />

Y1<br />

9.434658<br />

±0.013339<br />

9.4<br />

0.04<br />

0.02<br />

0<br />

-0.02<br />

dY1/dtemp<br />

1.89e-10<br />

±0<br />

-0.04<br />

Clean<br />

Dirty<br />

10<br />

20<br />

30<br />

40<br />

50<br />

60<br />

72<br />

74<br />

76<br />

78<br />

80<br />

6<br />

7<br />

8<br />

0<br />

0.25<br />

0.5<br />

0.75<br />

1<br />

Desirability<br />

1<br />

0 0.25 0.75 1<br />

Dirty<br />

Condition<br />

26.47804<br />

Speed<br />

74.99654<br />

Temp<br />

6.599008<br />

Height<br />

Desirability<br />

MD-5-921 US October 2007 70


Capability Comparison<br />

Nominal Setting<br />

(Height 9mm, Speed 40cm/sec)<br />

Optimized Settings<br />

(Height 5.5mm, Speed 20cm/sec)<br />

LSL<br />

Target<br />

USL<br />

750<br />

500<br />

Count<br />

LSL<br />

Target<br />

USL<br />

4000<br />

3000<br />

2000<br />

Count<br />

250<br />

1000<br />

9.45 9.47 9.49 9.51 9.53 9.55<br />

9.45 9.47 9.49 9.51 9.53 9.55<br />

CpK = .412<br />

Sigma = .013<br />

CpK=2.865<br />

Sigma = .0023<br />

Before After Optimization<br />

Improvement<br />

Ratio<br />

Sigma 0.013 0.0023 5.7<br />

Sigma^2 0.000169 0.00000529 31.9<br />

Measurement Capability Spec 9.5+/-.02<br />

MD-5-921 US October 2007 71


<strong>Solar</strong> Fun Fact<br />

Using current solar technology, a surface area covering<br />

just 1/10 th of the state of Nevada would be enough to<br />

supply all the electricity needs for the entire US<br />

MD-5-921 US October 2007 72


In Summary<br />

<strong>First</strong> <strong>Solar</strong><br />

<strong>JMP</strong><br />

<br />

<br />

<br />

<br />

<br />

leading enabler of cost effective solar energy solutions<br />

committed to improving the global environment<br />

utilizes world class continuous improvement methodologies<br />

Enables the practitioner and provides a data analysis<br />

platform that greatly enhances <strong>First</strong> <strong>Solar</strong>’s continuous<br />

improvement efforts<br />

POV enables a quick daily determination of Six Sigma<br />

entitlements<br />

MD-5-921 US October 2007 73


MD-5-921 US October 2007 74

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!