16.04.2014 Views

DIGIMAT Brochure - Figes.com.tr

DIGIMAT Brochure - Figes.com.tr

DIGIMAT Brochure - Figes.com.tr

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Digimat-MF aims at predicting the nonlinear mechanical, thermal and elec<strong>tr</strong>ic behavior of<br />

multi-phase materials based on the constitutive properties of the base materials and the<br />

<s<strong>tr</strong>ong>com</s<strong>tr</strong>ong>posite morphology (inclusion weight fraction, length and orientation).<br />

Digimat-MF is accurate, efficient and very easy to learn and use.<br />

NEW IN <s<strong>tr</strong>ong>DIGIMAT</s<strong>tr</strong>ong> 4.1<br />

Thermo-elastoplastic & thermo-elastoviscoplastic material models<br />

Viscoelastic-viscoplastic material models insensitive to time steps<br />

Transversely iso<strong>tr</strong>opic and ortho<strong>tr</strong>opic Ohm & Fourier laws<br />

Improved discretization scheme of the orientation dis<strong>tr</strong>ibution function (ODF)<br />

GUI improvements:<br />

- Redesign of failure indicator definition<br />

- Redesign of piece-wise linear function capability<br />

- 2D plots( Probing, grid, box zoom), Histogram capabilities<br />

New GUI functionalities<br />

User defined outputs<br />

New outputs section to customize<br />

outputs requests<br />

MAIN CAPABILITIES<br />

Nonlinear (per-phase) Material Models<br />

Homogenization Methods<br />

Creep capabilities with new thermoelastoviscoplastic<br />

material model<br />

Linear thermo-elasticity<br />

- Aniso<strong>tr</strong>opic phases<br />

- Temperature-dependent properties<br />

Linear viscoelasticity<br />

Elasto-plasticity:<br />

- Iso<strong>tr</strong>opic hardening: power, exponential<br />

or exponential linear laws<br />

- Small deformation with large rotation<br />

Cyclic elasto-plasticity: Kinematic hardening; linear<br />

with restoration<br />

Pressure-dependent elasto-plasticity (Drucker-Prager)<br />

Elasto-plasticity with damage (Lemaî<strong>tr</strong>e-Chaboche)<br />

Elasto-viscoplastic : Creep models: Norton laws, Power laws,<br />

Prandtl law<br />

Viscoelasticity-viscoplasticity<br />

Hyperelastic (finite s<strong>tr</strong>ain): neo-Hookean, Mooney-Rivlin,<br />

Ogden, Swanson, Storakers (<s<strong>tr</strong>ong>com</s<strong>tr</strong>ong>pressible foams)<br />

Elasto-viscoplastic (finite s<strong>tr</strong>ain): Leonov-EGP<br />

Thermal & elec<strong>tr</strong>ical conductivity: Ohm & Fourier<br />

Micros<strong>tr</strong>ucture Morphology<br />

Multiple reinforcement phases<br />

Multi-layer micros<strong>tr</strong>ucture<br />

Ellipsoidal reinforcements (fillers, fibers, platelets)<br />

Aspect ratio dis<strong>tr</strong>ibution<br />

General orientation (fixed, random, 2 nd order orientation tensor)<br />

Void inclusions<br />

Coated inclusions with relative or absolute thickness<br />

Deformable, quasi-rigid or rigid inclusions<br />

Mori-Tanaka<br />

Interpolative double inclusion<br />

1 st and 2 nd order homogenization schemes<br />

Multi-step, multi-level homogenization methods<br />

High quality ODF recons<strong>tr</strong>uction method: Ortho<strong>tr</strong>opic method<br />

Failure Indicators<br />

Applied at micro and/or macro scale, or on pseudo-grains using<br />

the FPGF model (First Pseudo-Grain Failure model)<br />

Failure models: Max s<strong>tr</strong>ess and Max s<strong>tr</strong>ain, Tsai-Hill 2D & 3D, Azzi-<br />

Tsai-Hill 2D, Tsai-Wu 2D & 3D, Hashin-Rotem 2D, Hashin 2D & 3D<br />

S<strong>tr</strong>ain rate dependent failure criteria<br />

Failure criteria on Leonov-EGP & hyperelastic material models<br />

Loading<br />

Monotonic, cyclic or user-defined history loading<br />

Multi-axial s<strong>tr</strong>ess or s<strong>tr</strong>ain, General 2D & 3D<br />

Mechanical and thermo-mechanical<br />

Prediction of thermal & elec<strong>tr</strong>ical conductivities<br />

Loading definition from s<strong>tr</strong>uctural FEA results, i.e. Abaqus ODB file<br />

Iso<strong>tr</strong>opic Ex<strong>tr</strong>action Methods<br />

General<br />

Spec<strong>tr</strong>al<br />

Modified spec<strong>tr</strong>al<br />

More Functionalities<br />

Prediction of ortho<strong>tr</strong>opic engineering constants<br />

Multi-analyses capability<br />

Interoperability with Digimat-FE and Digimat-MX<br />

Handling of encrypted material files<br />

Partial unloads<br />

Damaging in a Lemaî<strong>tr</strong>e-Chaboche material<br />

t<br />

User-defined loading with intermediate unloadings used to identify<br />

the end of the elastic regime<br />

Multi-layer micros<strong>tr</strong>ucture<br />

Viscoelastic-Viscoplastic model: S<strong>tr</strong>ain rate dependency<br />

accounted on overall range of deformation<br />

Prediction of temperature dependent<br />

coefficient of thermal expansion<br />

<s<strong>tr</strong>ong>DIGIMAT</s<strong>tr</strong>ong>; The nonlinear multi-scale material & s<strong>tr</strong>ucture modeling platform

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!