20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>44th</str<strong>on</strong>g> <str<strong>on</strong>g>Symposium</str<strong>on</strong>g><br />

<strong>on</strong> <strong>Ring</strong> <strong>Theory</strong> <strong>and</strong> Representati<strong>on</strong> <strong>Theory</strong><br />

September 25(Sun.) - 27(Tue.), 2011<br />

Okayama University, Japan<br />

Edited by<br />

Osamu Iyama<br />

Nagoya University<br />

March, 2012<br />

Nagoya, JAPAN


: ()


Organizing Committee <str<strong>on</strong>g>of</str<strong>on</strong>g> The <str<strong>on</strong>g>Symposium</str<strong>on</strong>g> <strong>on</strong><br />

<strong>Ring</strong> <strong>Theory</strong> <strong>and</strong> Representati<strong>on</strong> <strong>Theory</strong><br />

The <str<strong>on</strong>g>Symposium</str<strong>on</strong>g> <strong>on</strong> <strong>Ring</strong> <strong>Theory</strong> <strong>and</strong> Representati<strong>on</strong> <strong>Theory</strong> has been held annually in<br />

Japan <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> have been published by <str<strong>on</strong>g>the</str<strong>on</strong>g> organizing committee. The first<br />

<str<strong>on</strong>g>Symposium</str<strong>on</strong>g> was organized in 1968 by H.Tominaga, H.Tachikawa, M.Harada <strong>and</strong> S.Endo.<br />

After <str<strong>on</strong>g>the</str<strong>on</strong>g>ir retirement, a new committee was organized in 1997 for managing <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Symposium</str<strong>on</strong>g><br />

<strong>and</strong> committee members are listed in <str<strong>on</strong>g>the</str<strong>on</strong>g> web page<br />

http://fuji.cec.yamanashi.ac.jp/˜ring/h-<str<strong>on</strong>g>of</str<strong>on</strong>g>-ringsymp.html.<br />

The present members <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> committee are H.Asashiba (Shizuoka Univ.), S.Ikehata (Okayama<br />

Univ.), S.Kawata (Osaka City Univ.), M.Sato (Yamanashi Univ.) <strong>and</strong> K.Yamagata<br />

(Tokyo Univ. <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture <strong>and</strong> Technology).<br />

The <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> each <str<strong>on</strong>g>Symposium</str<strong>on</strong>g> is edited by program organizer. Any<strong>on</strong>e who wants<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>se <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> should ask to <str<strong>on</strong>g>the</str<strong>on</strong>g> program organizer <str<strong>on</strong>g>of</str<strong>on</strong>g> each <str<strong>on</strong>g>Symposium</str<strong>on</strong>g> or <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

committee members.<br />

The <str<strong>on</strong>g>Symposium</str<strong>on</strong>g> in 2012 will be held at Shinshu University for Sep. 7(Fri.)–9(Sun.)<br />

<strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> program will be arranged by K.Koike (Okinawa Nati<strong>on</strong>al College <str<strong>on</strong>g>of</str<strong>on</strong>g> Tech.).<br />

C<strong>on</strong>cerning several informati<strong>on</strong> <strong>on</strong> ring <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <strong>and</strong> representati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> group <strong>and</strong><br />

algebras c<strong>on</strong>taining schedules <str<strong>on</strong>g>of</str<strong>on</strong>g> meetings <strong>and</strong> symposiums as well as ring mailing list<br />

service for registered members, you should refer to <str<strong>on</strong>g>the</str<strong>on</strong>g> following ring homepage, which is<br />

arranged by M.Sato (Yamanashi Univ.):<br />

http://fuji.cec.yamanashi.ac.jp/˜ring/ (in Japanese)<br />

(Mirror site: www.cec.yamanashi.ac.jp/˜ring/)<br />

http://fuji.cec.yamanashi.ac.jp/˜ring/japan/ (in English)<br />

Masahisa Sato<br />

Yamanashi Japan<br />

December, 2011<br />

<br />

–iii–


CONTENTS<br />

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii<br />

Program (Japanese) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .viii<br />

Program (English) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi<br />

Tilting modules arising from two-term tilting complexes<br />

Hiroki Abe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1<br />

Dimensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> derived categories<br />

Takuma Aihara . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6<br />

Quiver presentati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Gro<str<strong>on</strong>g>the</str<strong>on</strong>g>ndieck c<strong>on</strong>structi<strong>on</strong>s<br />

Hideto Asashiba, Mayumi Kimura . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16<br />

The Loewy length <str<strong>on</strong>g>of</str<strong>on</strong>g> tensor products for dihedral two-groups<br />

Erik Darpö, Christopher C. Gill . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23<br />

Example <str<strong>on</strong>g>of</str<strong>on</strong>g> categorificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a cluster algebra<br />

Laurent Dem<strong>on</strong>et . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30<br />

Hochschild cohomology <str<strong>on</strong>g>of</str<strong>on</strong>g> cluster-tilted algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> types A n <strong>and</strong> D n<br />

Takahiko Furuya, Takao Hayami . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43<br />

Derived autoequivalences <strong>and</strong> braid relati<strong>on</strong>s<br />

Joseph Grant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50<br />

n-representati<strong>on</strong> infinite algebras<br />

Martin Herschend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55<br />

On a degenerati<strong>on</strong> problem for Cohen-Macaulay modules<br />

Naoya Hiramatsu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60<br />

Weak Gorenstein dimensi<strong>on</strong> for modules <strong>and</strong> Gorenstein algebras<br />

Mitsuo Hoshino, Hirotaka Koga . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68<br />

On Ω-perfect modules <strong>and</strong> sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> Betti numbers<br />

Otto Kerner, Dan Zacharia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76<br />

Quantum unipotent subgroup <strong>and</strong> dual can<strong>on</strong>ical basis<br />

Yoshiyuki Kimura . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92<br />

Weakly closed graph<br />

Kazunori Matsuda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99<br />

–iv–


Polycyclic codes <strong>and</strong> sequential codes<br />

Manabu Matsuoka . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106<br />

A note <strong>on</strong> dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> triangulated categories<br />

Hiroyuki Minamoto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111<br />

APR tilting modules <strong>and</strong> quiver mutati<strong>on</strong>s<br />

Yuya Mizuno . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114<br />

The example by Stephens<br />

Kaoru Motose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121<br />

Hom-orthog<strong>on</strong>al partial tilting modules for Dynkin quivers<br />

Hiroshi Nagase, Makoto Nagura . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125<br />

The Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> rings <str<strong>on</strong>g>of</str<strong>on</strong>g> differential operators <strong>on</strong> central 2-arrangements<br />

Norihiro Nakashima . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132<br />

Hochschild cohomology <str<strong>on</strong>g>of</str<strong>on</strong>g> quiver algebras defined by two cycles <strong>and</strong> a quantum-like relati<strong>on</strong><br />

Daiki Obara . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136<br />

Alternative polarizati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Borel fixed ideals <strong>and</strong> Eliahou-Kervaire type resoluti<strong>on</strong><br />

Ryota Okazaki, Kohji Yanagawa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143<br />

Sharp bounds for Hilbert coefficients <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters<br />

Kazuho Ozeki . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154<br />

Preprojective algebras <strong>and</strong> crystal bases <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum groups<br />

Yoshihisa Saito . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165<br />

Matrix factorizati<strong>on</strong>s, orbifold curves <strong>and</strong> mirror symmetry<br />

Atsushi Takahashi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196<br />

On a generalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> costable torsi<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory<br />

Yasuhiko Takehana . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208<br />

Graded Frobenius algebras <strong>and</strong> quantum Beilins<strong>on</strong> algebras<br />

Kenta Ueyama . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216<br />

Applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> finite Frobenius rings to <str<strong>on</strong>g>the</str<strong>on</strong>g> foundati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> algebraic coding <str<strong>on</strong>g>the</str<strong>on</strong>g>ory<br />

Jay A. Wood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223<br />

Realizing stable categories as derived categories<br />

Kota Yamaura . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246<br />

–v–


Algebraic stratificati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> derived module categories <strong>and</strong> derived simple algebras<br />

D<strong>on</strong>g Yang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256<br />

Recollements generated by idempotents <strong>and</strong> applicati<strong>on</strong> to singularity categories<br />

D<strong>on</strong>g Yang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262<br />

Introducti<strong>on</strong> to representati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> Cohen-Macaulay modules <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir degenerati<strong>on</strong>s<br />

Yuji Yoshino . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268<br />

Subcategories <str<strong>on</strong>g>of</str<strong>on</strong>g> extensi<strong>on</strong> modules related to Serre subcategories<br />

Takeshi Yoshizawa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .282<br />

–vi–


Preface<br />

The <str<strong>on</strong>g>44th</str<strong>on</strong>g> <str<strong>on</strong>g>Symposium</str<strong>on</strong>g> <strong>on</strong> <strong>Ring</strong> <strong>Theory</strong> <strong>and</strong> Representati<strong>on</strong> <strong>Theory</strong> was held at Okayama<br />

University <strong>on</strong> September 25th - 27th, 2011. The symposium <strong>and</strong> this proceeding are<br />

financially supported by<br />

Kunio Yamagata (Tokyo University <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture <strong>and</strong> Technology )<br />

Grant-in-Aid for Scientific Research (B), No.21340003, JSPS,<br />

Kazutoshi Koike (Okinawa Nati<strong>on</strong>al College <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology)<br />

Grant-in-Aid for Scientific Research (C), No.23540064, JSPS,<br />

Yoshitomo Baba (Osaka Kyouiku University)<br />

Grant-in-Aid for Scientific Research (C), No.23540047, JSPS,<br />

Shuichi Ikehata (Okayama University)<br />

Grant-in-Aid for Scientific Research (C), No.23540049, JSPS,<br />

Shigeto Kawata (Osaka City University)<br />

Grant-in-Aid for Scientific Research (C), No.23540054, JSPS,<br />

Tsunekazu Nishinaka (Okayama Shoka University)<br />

Grant-in-Aid for Scientific Research (C), No.23540063, JSPS.<br />

We would like to thanks Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essors Hideto Asashiba, Shuichi Ikahata, Shigeto Kawata,<br />

Masahisa Sato <strong>and</strong> Kunio Yamagata for <str<strong>on</strong>g>the</str<strong>on</strong>g>ir helpful suggesti<strong>on</strong>s c<strong>on</strong>cerning <str<strong>on</strong>g>the</str<strong>on</strong>g> symposium.<br />

Finally we would like to express our thanks to Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essors Akihiko Hida <strong>and</strong><br />

Shuichi Ikahata for <str<strong>on</strong>g>the</str<strong>on</strong>g>ir great effort <strong>and</strong> preparati<strong>on</strong> to hold <str<strong>on</strong>g>the</str<strong>on</strong>g> symposium in Okayama<br />

University.<br />

Masahisa Sato<br />

Yamanashi<br />

December, 2011<br />

–vii–


8:40–9:30 Dan ZachariaSyracuse University<br />

On modules <str<strong>on</strong>g>of</str<strong>on</strong>g> finite complexity over selfinjective algebras I<br />

9:40–10:30 D<strong>on</strong>g Yang<br />

On derived simple algebras<br />

10:50–11:40 <br />

I<br />

13:00–13:40<br />

21 <br />

Tilting modules arising from two-term tilting complexes<br />

24 Erik Darpö<br />

The representati<strong>on</strong> rings <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dihedral 2-groups<br />

13:50–14:30<br />

21 <br />

APR tilting modules <strong>and</strong> quiver mutati<strong>on</strong>s<br />

24 <br />

Hochschild cohomology <str<strong>on</strong>g>of</str<strong>on</strong>g> quiver algebras defined by two cycles <strong>and</strong><br />

a quantum-like relati<strong>on</strong><br />

14:50–15:30<br />

21 Joseph Grant<br />

Derived autoequivalences <strong>and</strong> braid relati<strong>on</strong>s<br />

24 <br />

Hochschild cohomology <str<strong>on</strong>g>of</str<strong>on</strong>g> cluster-tilted algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> types A n <strong>and</strong> D n<br />

15:40–16:20<br />

21 Martin Herschend<br />

n-representati<strong>on</strong> infinite algebras<br />

24 <br />

Subcategories <str<strong>on</strong>g>of</str<strong>on</strong>g> extensi<strong>on</strong> modules related to Serre subcategories<br />

16:40–17:30 <br />

Cohen-Macaulay I<br />

17:40–18:30 Jay A. WoodWestern Michigan University<br />

Applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> finite Frobenius rings to algebraic coding <str<strong>on</strong>g>the</str<strong>on</strong>g>ory I<br />

–viii–


8:40–9:30 Dan ZachariaSyracuse University<br />

On modules <str<strong>on</strong>g>of</str<strong>on</strong>g> finite complexity over selfinjective algebras II<br />

9:40–10:30 D<strong>on</strong>g Yang<br />

Recollements generated by idempotents<br />

10:50–11:40 <br />

II<br />

13:00–13:40<br />

21 <br />

A generalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> costable torsi<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory<br />

24 <br />

A note <strong>on</strong> dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> triangulated categories<br />

13:50–14:30<br />

21 <br />

Quiver presentati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Gro<str<strong>on</strong>g>the</str<strong>on</strong>g>ndieck c<strong>on</strong>structi<strong>on</strong>s<br />

24 <br />

Dimensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> derived categories<br />

14:50–15:30<br />

21 <br />

Graded Frobenius algebras <strong>and</strong> quantum Beilins<strong>on</strong> algebras<br />

24 <br />

Weak Gorenstein dimensi<strong>on</strong> for modules <strong>and</strong> Gorenstein algebras<br />

15:40–16:20<br />

21 <br />

Polycyclic codes <strong>and</strong> sequential codes<br />

24 )<br />

On a degenerati<strong>on</strong> problem for Cohen-Macaulay modules<br />

16:40–17:30 <br />

Cohen-Macaulay II<br />

17:40–18:30 Jay A. WoodWestern Michigan University<br />

Applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> finite Frobenius rings to algebraic coding <str<strong>on</strong>g>the</str<strong>on</strong>g>ory II<br />

19:00– <br />

–ix–


8:40–9:30 <br />

Matrix Factorizati<strong>on</strong>s, Orbifold Curves And Mirror Symmetry<br />

9:40–10:30 <br />

Hidden Hecke Algebras <strong>and</strong> Koszul Duality<br />

10:50–11:30<br />

21 <br />

Tilting <str<strong>on</strong>g>the</str<strong>on</strong>g>ory for stable graded module categories over graded self-injective<br />

algebras<br />

24 <br />

The Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> rings <str<strong>on</strong>g>of</str<strong>on</strong>g> differential operators <strong>on</strong> central<br />

2-arrangements<br />

12:50–13:30<br />

21 <br />

Hom-orthog<strong>on</strong>al partial tilting modules for Dynkin quivers<br />

24 <br />

Alternative polarizati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Borel fixed ideals <strong>and</strong> Eliahou-Kervaire type<br />

resoluti<strong>on</strong><br />

13:40–14:20<br />

21 Laurent Dem<strong>on</strong>et<br />

Categorificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cluster algebra structures <str<strong>on</strong>g>of</str<strong>on</strong>g> coordinate rings <str<strong>on</strong>g>of</str<strong>on</strong>g> simple<br />

Lie groups<br />

24 <br />

Weakly closed graph<br />

14:40–15:20<br />

21 <br />

Quantum unipotent subgroup <strong>and</strong> dual can<strong>on</strong>ical basis<br />

24 <br />

Sharp bounds for Hilbert coefficients <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters<br />

15:30–16:20 <br />

The Example by Stephens<br />

–x–


The <str<strong>on</strong>g>44th</str<strong>on</strong>g> <str<strong>on</strong>g>Symposium</str<strong>on</strong>g> On <strong>Ring</strong> <strong>Theory</strong> <strong>and</strong> Representati<strong>on</strong><br />

<strong>Theory</strong> (2011)<br />

Program<br />

Sunday September 25<br />

8:40–9:30 Dan Zacharia (Syracuse University)<br />

On modules <str<strong>on</strong>g>of</str<strong>on</strong>g> finite complexity over selfinjective algebras I<br />

9:40–10:30 D<strong>on</strong>g Yang<br />

On derived simple algebras<br />

10:50–11:40 Yoshihisa Saito (University <str<strong>on</strong>g>of</str<strong>on</strong>g> Tokyo)<br />

Preprojective algebras <strong>and</strong> crystal bases <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum groups I<br />

13:00–13:40<br />

Room 21 Hiroki Abe (University <str<strong>on</strong>g>of</str<strong>on</strong>g> Tsukuba)<br />

Tilting modules arising from two-term tilting complexes<br />

Room 24 Erik Darpö (Nagoya University)<br />

The representati<strong>on</strong> rings <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dihedral 2-groups<br />

13:50–14:30<br />

Room 21 Yuya Mizuno (Nagoya University)<br />

APR tilting modules <strong>and</strong> quiver mutati<strong>on</strong>s<br />

Room 24 Daiki Obara (Tokyo University <str<strong>on</strong>g>of</str<strong>on</strong>g> Science)<br />

Hochschild cohomology <str<strong>on</strong>g>of</str<strong>on</strong>g> quiver algebras defined by two cycles <strong>and</strong><br />

a quantum-like relati<strong>on</strong><br />

14:50–15:30<br />

Room 21 Joseph Grant (Nagoya University)<br />

Derived autoequivalences <strong>and</strong> braid relati<strong>on</strong>s<br />

Room 24 Takahiko Furuya, Takao Hayami (Tokyo University <str<strong>on</strong>g>of</str<strong>on</strong>g> Science,<br />

Hokkai-Gakuen University)<br />

Hochschild cohomology <str<strong>on</strong>g>of</str<strong>on</strong>g> cluster-tilted algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> types A n <strong>and</strong> D n<br />

15:40–16:20<br />

Room 21 Martin Herschend (Nagoya University)<br />

n-representati<strong>on</strong> infinite algebras<br />

Room 24 Takeshi Yoshizawa (Okayama University)<br />

Subcategories <str<strong>on</strong>g>of</str<strong>on</strong>g> extensi<strong>on</strong> modules related to Serre subcategories<br />

16:40–17:30 Yuji Yoshino (Okayama University)<br />

Introducti<strong>on</strong> to reresentati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Cohen-Macaulay modules <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir<br />

degenerati<strong>on</strong>s I<br />

17:40–18:30 Jay A. Wood (Western Michigan University)<br />

Applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> finite Frobenius rings to algebraic coding <str<strong>on</strong>g>the</str<strong>on</strong>g>ory I<br />

–xi–


M<strong>on</strong>day September 26<br />

8:40–9:30 Dan Zacharia (Syracuse University)<br />

On modules <str<strong>on</strong>g>of</str<strong>on</strong>g> finite complexity over selfinjective algebras II<br />

9:40–10:30 D<strong>on</strong>g Yang<br />

Recollements generated by idempotents<br />

10:50–11:40 Yoshihisa Saito (University <str<strong>on</strong>g>of</str<strong>on</strong>g> Tokyo)<br />

Preprojective algebras <strong>and</strong> crystal bases <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum groups II<br />

13:00–13:40<br />

Room 21 Yasuhiko Takehana (Hakodate Nati<strong>on</strong>al College <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology)<br />

A generalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> costable torsi<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory<br />

Room 24 Hiroyuki Minamoto (Kyoto University)<br />

A note <strong>on</strong> dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> triangulated categories<br />

13:50–14:30<br />

Room 21 Mayumi Kimura, Hideto Asashiba (Shizuoka University)<br />

Quiver presentati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Gro<str<strong>on</strong>g>the</str<strong>on</strong>g>ndieck c<strong>on</strong>structi<strong>on</strong>s<br />

Room 24 Takuma Aihara, Ryo Takahashi (Chiba University, Shinshu University)<br />

Dimensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> derived categories<br />

14:50–15:30<br />

Room 21 Kenta Ueyama (Shizuoka University)<br />

Graded Frobenius algebras <strong>and</strong> quantum Beilins<strong>on</strong> algebras<br />

Room 24 Hirotaka Koga, Mitsuo Hoshino (University <str<strong>on</strong>g>of</str<strong>on</strong>g> Tsukuba)<br />

Weak Gorenstein dimensi<strong>on</strong> for modules <strong>and</strong> Gorenstein algebras<br />

15:40–16:20<br />

Room 21 Matsuoka Manabu (Yokkaichi Highschool)<br />

Polycyclic codes <strong>and</strong> sequential codes<br />

Room 24 Naoya Hiramatsu (Kure Nati<strong>on</strong>al College <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology)<br />

On a degenerati<strong>on</strong> problem for Cohen-Macaulay modules<br />

16:40–17:30 Yuji Yoshino (Okayama University)<br />

Introducti<strong>on</strong> to reresentati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Cohen-Macaulay modules <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir<br />

degenerati<strong>on</strong>s II<br />

17:40–18:30 Jay A. WoodWestern Michigan University<br />

Applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> finite Frobenius rings to algebraic coding <str<strong>on</strong>g>the</str<strong>on</strong>g>ory II<br />

19:00– C<strong>on</strong>ference dinner<br />

–xii–


Tuesday September 27<br />

8:40–9:30 Atsushi Takahashi (Osaka University)<br />

Matrix Factorizati<strong>on</strong>s, Orbifold Curves And Mirror Symmetry<br />

9:40–10:30 Hyohe Miyachi (Nagoya University)<br />

Hidden Hecke Algebras <strong>and</strong> Koszul Duality<br />

10:50–11:30<br />

Room 21 Kota Yamaura (Nagoya University)<br />

Tilting <str<strong>on</strong>g>the</str<strong>on</strong>g>ory for stable graded module categories over graded self-injective<br />

algebras<br />

Room 24 Nakashima Norihiro (Hokkaido University)<br />

The Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> rings <str<strong>on</strong>g>of</str<strong>on</strong>g> differential operators <strong>on</strong> central<br />

2-arrangements<br />

12:50–13:30<br />

Room 21 Hiroshi Nagase, Nagura, Makoto (Tokyo Gakugei University,<br />

Nara Nati<strong>on</strong>al College <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology)<br />

Hom-orthog<strong>on</strong>al partial tilting modules for Dynkin quivers<br />

Room 24 Ryota Okazaki, Kohji Yanagawa (Osaka University, Kansai University)<br />

Alternative polarizati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Borel fixed ideals <strong>and</strong> Eliahou-Kervaire type<br />

resoluti<strong>on</strong><br />

13:40–14:20<br />

Room 21 Laurent Dem<strong>on</strong>et (Nagoya University)<br />

Categorificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cluster algebra structures <str<strong>on</strong>g>of</str<strong>on</strong>g> coordinate rings <str<strong>on</strong>g>of</str<strong>on</strong>g> simple<br />

Lie groups<br />

Room 24 Kazunori Matsuda (Nagoya University)<br />

Weakly closed graph<br />

14:40–15:20<br />

Room 21 Yoshiyuki Kimura (Kyoto University)<br />

Quantum unipotent subgroup <strong>and</strong> dual can<strong>on</strong>ical basis<br />

Room 24 Kazuho Ozeki (Meiji University)<br />

Sharp bounds for Hilbert coefficients <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters<br />

15:30–16:20 Kaoru Motose<br />

The Example by Stephens<br />

–xiii–


TILTING MODULES ARISING FROM TWO-TERM TILTING<br />

COMPLEXES<br />

HIROKI ABE<br />

Abstract. We see that every two-term tilting complex over an Artin algebra has a<br />

tilting module over a certain factor algebra as a homology group. Also, we determine<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> endomorphism algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> such a homology group, which is given as a certain factor<br />

algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> endomorphism algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> two-term tilting complex. Thus, every<br />

derived equivalence between Artin algebras given by a two-term tilting complex induces<br />

a derived equivalence between <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding factor algebras.<br />

Let A be an Artin algebra. We denote by mod-A <str<strong>on</strong>g>the</str<strong>on</strong>g> category <str<strong>on</strong>g>of</str<strong>on</strong>g> finitely generated right<br />

A-modules <strong>and</strong> by P A <str<strong>on</strong>g>the</str<strong>on</strong>g> full subcategory <str<strong>on</strong>g>of</str<strong>on</strong>g> mod-A c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> projective modules.<br />

Definiti<strong>on</strong> 1. A pair (T , F) <str<strong>on</strong>g>of</str<strong>on</strong>g> full subcategories T , F in mod-A is said to be a torsi<strong>on</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>ory for mod-A if <str<strong>on</strong>g>the</str<strong>on</strong>g> following c<strong>on</strong>diti<strong>on</strong>s are satisfied:<br />

(1) T ∩ F = {0};<br />

(2) T is closed under factor modules;<br />

(3) F is closed under submodules; <strong>and</strong><br />

(4) for any X ∈ mod-A, <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists an exact sequence 0 → X ′ → X → X ′′ → 0 with<br />

X ′ ∈ T <strong>and</strong> X ′′ ∈ F.<br />

If T is stable under <str<strong>on</strong>g>the</str<strong>on</strong>g> Nakayama functor ν, <str<strong>on</strong>g>the</str<strong>on</strong>g>n (T , F) is said to be a stable torsi<strong>on</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>ory for mod-A.<br />

Let T • ∈ K b (P A ) be a two-term complex:<br />

T • : · · · → 0 → T −1 α → T 0 → 0 → · · · ,<br />

<strong>and</strong> set <str<strong>on</strong>g>the</str<strong>on</strong>g> following subcategories in mod-A:<br />

T (T • ) = Ker Hom K(A) (T • [−1], −) ∩ mod-A,<br />

F(T • ) = Ker Hom K(A) (T • , −) ∩ mod-A.<br />

Propositi<strong>on</strong> 2 ([1, Propositi<strong>on</strong>s 5.5 <strong>and</strong> 5.7]). The following are equivalent.<br />

(1) T • is a tilting complex.<br />

(2) (T (T • ), F(T • )) is a stable torsi<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory for mod-A.<br />

Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, if <str<strong>on</strong>g>the</str<strong>on</strong>g>se equivalent c<strong>on</strong>diti<strong>on</strong>s hold, <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> following hold.<br />

(1) T (T • ) = gen(H 0 (T • )), <str<strong>on</strong>g>the</str<strong>on</strong>g> generated class by H 0 (T • ), <strong>and</strong> H 0 (T • ) is Ext-projective<br />

in T (T • ).<br />

(2) F(T • ) = cog(H −1 (νT • )), <str<strong>on</strong>g>the</str<strong>on</strong>g> cogenerated class by H −1 (νT • ) <strong>and</strong> H −1 (νT • ) is Extinjective<br />

in F(T • ).<br />

The detailed versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this note has been submitted for publicati<strong>on</strong> elsewhere.<br />

–1–


C<strong>on</strong>versely, let (T , F) be a stable torsi<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory for mod-A.<br />

Propositi<strong>on</strong> 3 ([1, Theorem 5.8]). Assume that <str<strong>on</strong>g>the</str<strong>on</strong>g>re exist X ∈ T <strong>and</strong> Y ∈ F satisfying<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> following c<strong>on</strong>diti<strong>on</strong>s:<br />

(1) T = gen(X) <strong>and</strong> X is Ext-projective in T ; <strong>and</strong><br />

(2) F = cog(Y ) <strong>and</strong> Y is Ext-injective in F.<br />

Let P X • be a minimal projective presentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> X <strong>and</strong> I• Y be a minimal injective presentati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Y , <strong>and</strong> set T X,Y • = P X • ⊕ ν−1 I Y • [1]. Then T X,Y • ∈ Kb (P A ) is a tilting complex such<br />

that T = T (T X,Y • ) <strong>and</strong> F = F(T X,Y • ).<br />

Let T • be a two-term tilting complex. We set a = ann A (H 0 (T • )), <str<strong>on</strong>g>the</str<strong>on</strong>g> annihilator<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> H 0 (T • ). Note that H 0 (T • ) is faithful in mod-A/a <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> can<strong>on</strong>ical full embedding<br />

mod-A/a ↩→ mod-A induces gen(H 0 (T • ) A/a ) = gen(H 0 (T • ) A ) which is closed under extensi<strong>on</strong>s.<br />

Thus, <str<strong>on</strong>g>the</str<strong>on</strong>g> next lemma follows from Propositi<strong>on</strong> 2.<br />

Lemma 4. The following hold.<br />

(1) proj dim H 0 (T • ) A/a ≤ 1.<br />

(2) Ext 1 A/a(H 0 (T • ), H 0 (T • )) = 0.<br />

(3) There exists an exact sequence 0 → A/a → X 0 → X 1 → 0 in mod-A/a such<br />

that X 0 ∈ add(H 0 (T • ) A/a ) <strong>and</strong> X 1 ∈ gen(H 0 (T • ) A/a ) which is Ext-projective in<br />

gen(H 0 (T • ) A/a ).<br />

We set a ′ = ann A (H −1 (νT • )), <str<strong>on</strong>g>the</str<strong>on</strong>g> annihilator <str<strong>on</strong>g>of</str<strong>on</strong>g> H −1 (νT • ). The next lemma follows by<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> dual arguments <str<strong>on</strong>g>of</str<strong>on</strong>g> Lemma 4<br />

Lemma 5. The following hold.<br />

(1) inj dim H −1 (νT • ) A/a ′ ≤ 1.<br />

(2) Ext 1 A/a ′(H−1 (νT • ), H −1 (νT • )) = 0.<br />

(3) There exists an exact sequence 0 → Y 1 → Y 0 → A/a ′ → 0 in mod-A/a ′ such<br />

that Y 0 ∈ add(H −1 (νT • ) A/a ′) <strong>and</strong> Y 1 ∈ cog(H −1 (νT • ) A/a ′) which is Ext-injective<br />

in cog(H −1 (νT • ) A/a ′).<br />

Let X be <str<strong>on</strong>g>the</str<strong>on</strong>g> direct sum <str<strong>on</strong>g>of</str<strong>on</strong>g> all indecomposable n<strong>on</strong>-projective Ext-projective modules<br />

in gen(H 0 (T • )) which are not c<strong>on</strong>tained in add(H 0 (T • )). Then add(H 0 (T • )⊕X) coincides<br />

with <str<strong>on</strong>g>the</str<strong>on</strong>g> class <str<strong>on</strong>g>of</str<strong>on</strong>g> all Ext-projective modules in gen(H 0 (T • )). Also, since gen(H 0 (T • )) =<br />

gen(H 0 (T • ) ⊕ X), <str<strong>on</strong>g>the</str<strong>on</strong>g> pair (gen(H 0 (T • ) ⊕ X), cog(H −1 (νT • )) is a stable torsi<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory<br />

in mod-A. Let P • be <str<strong>on</strong>g>the</str<strong>on</strong>g> minimal projective presentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> H 0 (T • ) ⊕ X <strong>and</strong> I • be <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

minimal injective presentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> H −1 (νT • ), <strong>and</strong> set U • = P • ⊕ ν −1 I • [1]. Then U • is<br />

a tilting complex such that T (U • ) = gen(H 0 (T • ) ⊕ X) <strong>and</strong> F(U • ) = cog(H −1 (νT • )) by<br />

Propositi<strong>on</strong> 3. Note that <str<strong>on</strong>g>the</str<strong>on</strong>g> stable torsi<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory induced by U • coincides with that<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> T • . From this fact, we can prove that add(H 0 (U • )) = add(H 0 (T • )). Since <str<strong>on</strong>g>the</str<strong>on</strong>g>re<br />

exist <str<strong>on</strong>g>the</str<strong>on</strong>g> inclusi<strong>on</strong>s add(H 0 (T • )) ⊂ add(H 0 (T • ) ⊕ X) ⊂ add(H 0 (U • )), we c<strong>on</strong>clude that<br />

add(H 0 (T • )) = add(H 0 (T • ) ⊕ X). Thus, we have <str<strong>on</strong>g>the</str<strong>on</strong>g> next lemma.<br />

Lemma 6. For any M, N ∈ mod-A, <str<strong>on</strong>g>the</str<strong>on</strong>g> following hold.<br />

(1) M ∈ add(H 0 (T • )) if <strong>and</strong> <strong>on</strong>ly if M is Ext-projective in gen(H 0 (T • )).<br />

(2) N ∈ add(H −1 (νT • )) if <strong>and</strong> <strong>on</strong>ly if N is Ext-injective in cog(H −1 (νT • )).<br />

–2–


The next <str<strong>on</strong>g>the</str<strong>on</strong>g>orem is a direct c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> previous three lemmas.<br />

Theorem 7. The following hold.<br />

(1) H 0 (T • ) is a tilting module in mod-A/a.<br />

(2) H −1 (νT • ) is a cotilting module in mod-A/a ′ , i.e., D(H −1 (νT • )) is a tilting module<br />

in mod-(A/a ′ ) op .<br />

We determine <str<strong>on</strong>g>the</str<strong>on</strong>g> endomorphism algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> H 0 (T • ). Set B = End K(A) (T • ). Since<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a surjective algebra homomorphism<br />

θ : B → End A/a (H 0 (T • )),<br />

which is induced by <str<strong>on</strong>g>the</str<strong>on</strong>g> functor H 0 (−), we have an algebra isomorphism<br />

End A/a (H 0 (T • )) ∼ = B/Ker θ.<br />

Also, we can prove that Ker θ = ann B (Hom K(A) (A, T • )) = ann B (H 0 (T • )). Thus, we have<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> next <str<strong>on</strong>g>the</str<strong>on</strong>g>orem.<br />

Theorem 8. We have <str<strong>on</strong>g>the</str<strong>on</strong>g> following algebra isomorphisms.<br />

(1) End A/a (H 0 (T • )) ∼ = B/b, where b = ann B (H 0 (T • )).<br />

(2) End A/a ′(H −1 (νT • )) ∼ = B/b ′ , where b ′ = ann B (H −1 (νT • )).<br />

As <str<strong>on</strong>g>the</str<strong>on</strong>g> final <str<strong>on</strong>g>of</str<strong>on</strong>g> this note, we dem<strong>on</strong>strate our results through an example.<br />

Example 9. Let A be <str<strong>on</strong>g>the</str<strong>on</strong>g> path algebra defined by <str<strong>on</strong>g>the</str<strong>on</strong>g> quiver<br />

2 ❂ ❂❂❂❂❂❂<br />

α<br />

γ<br />

✁ ✁✁✁✁✁✁<br />

1 ❂ 4<br />

❂ ❂❂❂❂❂<br />

β<br />

3<br />

✁ ✁✁✁✁✁✁ δ<br />

with relati<strong>on</strong>s αγ = βδ = 0. We denote by e i <str<strong>on</strong>g>the</str<strong>on</strong>g> empty path corresp<strong>on</strong>ding to <str<strong>on</strong>g>the</str<strong>on</strong>g> vertex<br />

i = 1, · · · , 4. The Ausl<strong>and</strong>er–Reiten quiver <str<strong>on</strong>g>of</str<strong>on</strong>g> A is given by <str<strong>on</strong>g>the</str<strong>on</strong>g> following:<br />

2<br />

4<br />

3<br />

1<br />

❄ ❄❄❄❄❄<br />

❄ ❄❄❄❄❄ 2 ❄ ❄❄❄❄❄❄<br />

8 888888 8 88888 8 88888<br />

4❄ 2 3<br />

1<br />

❄❄❄❄❄❄ 4 ❄ 2 3<br />

1<br />

❄❄❄❄❄ ❄ ❄❄❄❄❄<br />

3 8 88888 8 88888<br />

4<br />

2<br />

1 8 888888<br />

3<br />

where each indecomposable module is represented by its compositi<strong>on</strong> factors. It is not<br />

difficult to see that <str<strong>on</strong>g>the</str<strong>on</strong>g> following pair gives a stable torsi<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory for mod-A:<br />

T = { 1<br />

2 3 , 1 2 , 1 3 , 1 } <strong>and</strong> F = { 4 , 2 4 , 3 4 , 2 3<br />

4 , 3 , 2 },<br />

where T is a torsi<strong>on</strong> class <strong>and</strong> F is a torsi<strong>on</strong>-free class. We set<br />

X = 1<br />

2 3 , Y = 2 3<br />

4 ⊕ 3 ⊕ 2 .<br />

–3–


Then T = gen(X) <strong>and</strong> X is Ext-projective in T , <strong>and</strong> F = cog(Y ) <strong>and</strong> Y is Ext-injective in<br />

F. According to Propositi<strong>on</strong> 3, we have a two-term tilting complex T • = T • 1 ⊕T • 2 ⊕T • 3 ⊕T • 4 ,<br />

where<br />

Thus, we have<br />

T • 1 = 0 → 1<br />

2 3 , T • 2 = 2 4 → 1<br />

2 3 , T • 3 = 3 4 → 1<br />

2 3 , T • 4 = 4 → 0.<br />

H 0 (T • ) = 1<br />

2 3 ⊕ 1 3 ⊕ 1 2<br />

as a right A-module. Since a = ann A (H 0 (T • )) is a two-sided ideal generated by e 4 , γ, δ,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> factor algebra A/a is defined by <str<strong>on</strong>g>the</str<strong>on</strong>g> quiver<br />

α<br />

✁ ✁✁✁✁✁✁<br />

1 ❂ ❂❂❂❂❂❂<br />

β<br />

without relati<strong>on</strong>s. Next, it is not difficult to see that B = End K(A) (T • ) is defined by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

quiver<br />

without relati<strong>on</strong>s. Then we have<br />

2<br />

3<br />

2 ❂ ❂❂❂❂❂❂<br />

λ<br />

ν<br />

✁ ✁✁✁✁✁✁<br />

1 ❂ 4<br />

❂❂❂❂❂❂<br />

µ<br />

Hom K(A) (A, T • ) =<br />

ξ<br />

<br />

✁ ✁✁✁✁✁✁<br />

3<br />

4⊕<br />

Hom K(A) (e i A, T • )<br />

i=1<br />

= 1<br />

2 3 ⊕ 1 3 ⊕ 1 2 ⊕ 0<br />

as a left B-module. Thus, b = ann B (Hom K(A) (A, T • )) is a two-sided ideal generated by<br />

ν, ξ <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> empty path corresp<strong>on</strong>ding to <str<strong>on</strong>g>the</str<strong>on</strong>g> vertex 4. Therefore, <str<strong>on</strong>g>the</str<strong>on</strong>g> factor algebra B/b<br />

is defined by <str<strong>on</strong>g>the</str<strong>on</strong>g> quiver<br />

λ<br />

✁ ✁✁✁✁✁✁<br />

1 ❂ ❂❂❂❂❂❂<br />

µ<br />

without relati<strong>on</strong>s. It follows by Theorems 7 <strong>and</strong> 8 that A/a <strong>and</strong> B/b are derived equivalent<br />

to each o<str<strong>on</strong>g>the</str<strong>on</strong>g>r.<br />

–4–<br />

2<br />

3


References<br />

[1] M. Hoshino, Y. Kato, J. Miyachi, On t-structure <strong>and</strong> torsi<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ories induced by compact objects,<br />

J. Pure <strong>and</strong> App. Algebra 167 (2002), 15–35.<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Tsukuba<br />

Ibaraki 305-8571 JAPAN<br />

E-mail address: abeh@math.tsukuba.ac.jp<br />

–5–


DIMENSIONS OF DERIVED CATEGORIES<br />

TAKUMA AIHARA AND RYO TAKAHASHI<br />

Abstract. Several years ago, B<strong>on</strong>dal, Rouquier <strong>and</strong> Van den Bergh introduced <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

noti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a triangulated category, <strong>and</strong> Rouquier proved that <str<strong>on</strong>g>the</str<strong>on</strong>g> bounded<br />

derived category <str<strong>on</strong>g>of</str<strong>on</strong>g> coherent sheaves <strong>on</strong> a separated scheme <str<strong>on</strong>g>of</str<strong>on</strong>g> finite type over a perfect<br />

field has finite dimensi<strong>on</strong>. In this paper, we study <str<strong>on</strong>g>the</str<strong>on</strong>g> dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> bounded derived<br />

category <str<strong>on</strong>g>of</str<strong>on</strong>g> finitely generated modules over a commutative Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian ring. The main<br />

result <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper asserts that it is finite over a complete local ring c<strong>on</strong>taining a field<br />

with perfect residue field.<br />

1. Introducti<strong>on</strong><br />

The noti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a triangulated category has been introduced by B<strong>on</strong>dal,<br />

Rouquier <strong>and</strong> Van den Bergh [4, 14]. Roughly speaking, it measures how quickly <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

category can be built from a single object. The dimensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> bounded derived<br />

category <str<strong>on</strong>g>of</str<strong>on</strong>g> finitely generated modules over a Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian ring <strong>and</strong> that <str<strong>on</strong>g>of</str<strong>on</strong>g> coherent sheaves<br />

<strong>on</strong> a Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian scheme are called <str<strong>on</strong>g>the</str<strong>on</strong>g> derived dimensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ring <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> scheme,<br />

while <str<strong>on</strong>g>the</str<strong>on</strong>g> dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> singularity category (in <str<strong>on</strong>g>the</str<strong>on</strong>g> sense <str<strong>on</strong>g>of</str<strong>on</strong>g> Orlov [12]; <str<strong>on</strong>g>the</str<strong>on</strong>g> same as <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

stable derived category in <str<strong>on</strong>g>the</str<strong>on</strong>g> sense <str<strong>on</strong>g>of</str<strong>on</strong>g> Buchweitz [5]) is called <str<strong>on</strong>g>the</str<strong>on</strong>g> stable dimensi<strong>on</strong>. These<br />

dimensi<strong>on</strong>s have been in <str<strong>on</strong>g>the</str<strong>on</strong>g> spotlight in <str<strong>on</strong>g>the</str<strong>on</strong>g> studies <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dimensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> triangulated<br />

categories.<br />

The importance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> noti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> derived dimensi<strong>on</strong> was first recognized by B<strong>on</strong>dal<br />

<strong>and</strong> Van den Bergh [4] in relati<strong>on</strong> to representability <str<strong>on</strong>g>of</str<strong>on</strong>g> functors. They proved that<br />

smooth proper commutative/n<strong>on</strong>-commutative varieties have finite derived dimensi<strong>on</strong>,<br />

which yields that every c<strong>on</strong>travariant cohomological functor <str<strong>on</strong>g>of</str<strong>on</strong>g> finite type to vector spaces<br />

is representable.<br />

As to upper bounds, <str<strong>on</strong>g>the</str<strong>on</strong>g> derived dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a ring is at most its Loewy length [14]. In<br />

particular, Artinian rings have finite derived dimensi<strong>on</strong>. Christensen, Krause <strong>and</strong> Kussin<br />

[6, 9] showed that <str<strong>on</strong>g>the</str<strong>on</strong>g> derived dimensi<strong>on</strong> is bounded above by <str<strong>on</strong>g>the</str<strong>on</strong>g> global dimensi<strong>on</strong>, whence<br />

rings <str<strong>on</strong>g>of</str<strong>on</strong>g> finite global dimensi<strong>on</strong> are <str<strong>on</strong>g>of</str<strong>on</strong>g> finite derived dimensi<strong>on</strong>. In relati<strong>on</strong> to a c<strong>on</strong>jecture<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Orlov [13], a series <str<strong>on</strong>g>of</str<strong>on</strong>g> studies by Ballard, Favero <strong>and</strong> Katzarkov [1, 2, 3] gave in several<br />

cases upper bounds for derived <strong>and</strong> stable dimensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> schemes. For instance, <str<strong>on</strong>g>the</str<strong>on</strong>g>y<br />

obtained an upper bound <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> stable dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an isolated hypersurface singularity<br />

by using <str<strong>on</strong>g>the</str<strong>on</strong>g> Loewy length <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Tjurina algebra. On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r h<strong>and</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g>re are a lot <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

triangulated categories having infinite dimensi<strong>on</strong>. The dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> derived category<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> perfect complexes over a ring (respectively, a quasi-projective scheme) is infinite unless<br />

2010 Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics Subject Classificati<strong>on</strong>. Primary 13D09; Sec<strong>on</strong>dary 14F05, 16E35, 18E30.<br />

Key words <strong>and</strong> phrases. dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a triangulated category, derived category, singularity category,<br />

stable category <str<strong>on</strong>g>of</str<strong>on</strong>g> Cohen-Macaulay modules.<br />

The sec<strong>on</strong>d author was partially supported by JSPS Grant-in-Aid for Young Scientists (B) 22740008.<br />

–6–


<str<strong>on</strong>g>the</str<strong>on</strong>g> ring has finite global dimensi<strong>on</strong> (respectively, <str<strong>on</strong>g>the</str<strong>on</strong>g> scheme is regular) [14]. It has turned<br />

out by work <str<strong>on</strong>g>of</str<strong>on</strong>g> Oppermann <strong>and</strong> Šťovíček [11] that over a Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian algebra (respectively,<br />

a projective scheme) all proper thick subcategories <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> bounded derived category <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

finitely generated modules (respectively, coherent sheaves) c<strong>on</strong>taining perfect complexes<br />

have infinite dimensi<strong>on</strong>. However, <str<strong>on</strong>g>the</str<strong>on</strong>g>se do not apply for <str<strong>on</strong>g>the</str<strong>on</strong>g> finiteness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> derived<br />

dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a n<strong>on</strong>-regular Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian ring <str<strong>on</strong>g>of</str<strong>on</strong>g> positive Krull dimensi<strong>on</strong>.<br />

As a main result <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> paper [14], Rouquier gave <str<strong>on</strong>g>the</str<strong>on</strong>g> following <str<strong>on</strong>g>the</str<strong>on</strong>g>orem.<br />

Theorem 1 (Rouquier). Let X be a separated scheme <str<strong>on</strong>g>of</str<strong>on</strong>g> finite type over a perfect field.<br />

Then <str<strong>on</strong>g>the</str<strong>on</strong>g> bounded derived category <str<strong>on</strong>g>of</str<strong>on</strong>g> coherent sheaves <strong>on</strong> X has finite dimensi<strong>on</strong>.<br />

Applying this <str<strong>on</strong>g>the</str<strong>on</strong>g>orem to an affine scheme, <strong>on</strong>e obtains:<br />

Corollary 2. Let R be a commutative ring which is essentially <str<strong>on</strong>g>of</str<strong>on</strong>g> finite type over a perfect<br />

field k. Then <str<strong>on</strong>g>the</str<strong>on</strong>g> bounded derived category D b (mod R) <str<strong>on</strong>g>of</str<strong>on</strong>g> finitely generated R-modules has<br />

finite dimensi<strong>on</strong>, <strong>and</strong> so does <str<strong>on</strong>g>the</str<strong>on</strong>g> singularity category D Sg (R) <str<strong>on</strong>g>of</str<strong>on</strong>g> R.<br />

The main purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper is to study <str<strong>on</strong>g>the</str<strong>on</strong>g> dimensi<strong>on</strong> <strong>and</strong> generators <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> bounded<br />

derived category <str<strong>on</strong>g>of</str<strong>on</strong>g> finitely generated modules over a commutative Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian ring. We<br />

will give lower bounds <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dimensi<strong>on</strong>s over general rings under some mild assumpti<strong>on</strong>s,<br />

<strong>and</strong> over some special rings we will also give upper bounds <strong>and</strong> explicit generators. The<br />

main result <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper is <str<strong>on</strong>g>the</str<strong>on</strong>g> following <str<strong>on</strong>g>the</str<strong>on</strong>g>orem. (See Definiti<strong>on</strong> 5 for <str<strong>on</strong>g>the</str<strong>on</strong>g> notati<strong>on</strong>.)<br />

Main Theorem. Let R be ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r a complete local ring c<strong>on</strong>taining a field with perfect<br />

residue field or a ring that is essentially <str<strong>on</strong>g>of</str<strong>on</strong>g> finite type over a perfect field. Then <str<strong>on</strong>g>the</str<strong>on</strong>g>re exist<br />

a finite number <str<strong>on</strong>g>of</str<strong>on</strong>g> prime ideals p 1 , . . . , p n <str<strong>on</strong>g>of</str<strong>on</strong>g> R <strong>and</strong> an integer m ≥ 1 such that<br />

D b (mod R) = 〈R/p 1 ⊕ · · · ⊕ R/p n 〉 m<br />

.<br />

In particular, D b (mod R) <strong>and</strong> D Sg (R) have finite dimensi<strong>on</strong>.<br />

In Rouquier’s result stated above, <str<strong>on</strong>g>the</str<strong>on</strong>g> essential role is played, in <str<strong>on</strong>g>the</str<strong>on</strong>g> affine case, by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian property <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> enveloping algebra R ⊗ k R. The result does not apply to a<br />

complete local ring, since it is in general far from being (essentially) <str<strong>on</strong>g>of</str<strong>on</strong>g> finite type <strong>and</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>refore <str<strong>on</strong>g>the</str<strong>on</strong>g> enveloping algebra is n<strong>on</strong>-Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian. Our methods not <strong>on</strong>ly show finiteness<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> dimensi<strong>on</strong>s over a complete local ring but also give a ring-<str<strong>on</strong>g>the</str<strong>on</strong>g>oretic pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Corollary<br />

2.<br />

2. Preliminaries<br />

This secti<strong>on</strong> is devoted to stating our c<strong>on</strong>venti<strong>on</strong>, giving some basic notati<strong>on</strong> <strong>and</strong> recalling<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a triangulated category.<br />

We assume <str<strong>on</strong>g>the</str<strong>on</strong>g> following throughout this paper.<br />

C<strong>on</strong>venti<strong>on</strong> 3. (1) All subcategories are full <strong>and</strong> closed under isomorphisms.<br />

(2) All rings are associative <strong>and</strong> with identities.<br />

(3) A Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian ring, an Artinian ring <strong>and</strong> a module mean a right Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian ring,<br />

a right Artinian ring <strong>and</strong> a right module, respectively.<br />

(4) All complexes are cochain complexes.<br />

We use <str<strong>on</strong>g>the</str<strong>on</strong>g> following notati<strong>on</strong>.<br />

–7–


Notati<strong>on</strong> 4. (1) Let A be an abelian category.<br />

(a) For a subcategory X <str<strong>on</strong>g>of</str<strong>on</strong>g> A, <str<strong>on</strong>g>the</str<strong>on</strong>g> smallest subcategory <str<strong>on</strong>g>of</str<strong>on</strong>g> A c<strong>on</strong>taining X which<br />

is closed under finite direct sums <strong>and</strong> direct summ<strong>and</strong>s is denoted by add A X .<br />

(b) We denote by C(A) <str<strong>on</strong>g>the</str<strong>on</strong>g> category <str<strong>on</strong>g>of</str<strong>on</strong>g> complexes <str<strong>on</strong>g>of</str<strong>on</strong>g> objects <str<strong>on</strong>g>of</str<strong>on</strong>g> A. The derived<br />

category <str<strong>on</strong>g>of</str<strong>on</strong>g> A is denoted by D(A). The left bounded, <str<strong>on</strong>g>the</str<strong>on</strong>g> right bounded<br />

<strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> bounded derived categories <str<strong>on</strong>g>of</str<strong>on</strong>g> A are denoted by D + (A), D − (A) <strong>and</strong><br />

D b (A), respectively. We set D ∅ (A) = D(A), <strong>and</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>ten write D ⋆ (A) with<br />

⋆ ∈ {∅, +, −, b} to mean D ∅ (A), D + (A), D − (A) <strong>and</strong> D b (A).<br />

(2) Let R be a ring. We denote by Mod R <strong>and</strong> mod R <str<strong>on</strong>g>the</str<strong>on</strong>g> category <str<strong>on</strong>g>of</str<strong>on</strong>g> R-modules <strong>and</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> category <str<strong>on</strong>g>of</str<strong>on</strong>g> finitely generated R-modules, respectively. For a subcategory X<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> mod R (when R is Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian), we put add R X = add mod R X .<br />

The c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a triangulated category has been introduced by Rouquier<br />

[14]. Now we recall its definiti<strong>on</strong>.<br />

Definiti<strong>on</strong> 5. Let T be a triangulated category.<br />

(1) A triangulated subcategory <str<strong>on</strong>g>of</str<strong>on</strong>g> T is called thick if it is closed under direct summ<strong>and</strong>s.<br />

(2) Let X , Y be two subcategories <str<strong>on</strong>g>of</str<strong>on</strong>g> T . We denote by X ∗ Y <str<strong>on</strong>g>the</str<strong>on</strong>g> subcategory <str<strong>on</strong>g>of</str<strong>on</strong>g> T<br />

c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> all objects M that admit exact triangles<br />

X → M → Y → ΣX<br />

with X ∈ X <strong>and</strong> Y ∈ Y. We denote by 〈X 〉 <str<strong>on</strong>g>the</str<strong>on</strong>g> smallest subcategory <str<strong>on</strong>g>of</str<strong>on</strong>g> T<br />

c<strong>on</strong>taining X which is closed under finite direct sums, direct summ<strong>and</strong>s <strong>and</strong> shifts.<br />

For a n<strong>on</strong>-negative integer n, we define <str<strong>on</strong>g>the</str<strong>on</strong>g> subcategory 〈X 〉 n<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> T by<br />

⎧<br />

⎪⎨ {0} (n = 0),<br />

〈X 〉 n<br />

= 〈X 〉 (n = 1),<br />

⎪⎩<br />

〈〈X 〉 ∗ 〈X 〉 n−1<br />

〉 (2 ≤ n < ∞).<br />

Put 〈X 〉 ∞<br />

= ∪ n≥0 〈X 〉 n<br />

. When <str<strong>on</strong>g>the</str<strong>on</strong>g> ground category T should be specified, we<br />

write 〈X 〉 T n<br />

instead <str<strong>on</strong>g>of</str<strong>on</strong>g> 〈X 〉 n<br />

. For a ring R <strong>and</strong> a subcategory X <str<strong>on</strong>g>of</str<strong>on</strong>g> D(Mod R), we<br />

put 〈X 〉 R R)<br />

n<br />

= 〈X 〉D(Mod<br />

n<br />

.<br />

(3) The dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> T , denoted by dim T , is <str<strong>on</strong>g>the</str<strong>on</strong>g> infimum <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> integers d such that<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>re exists an object M ∈ T with 〈M〉 d+1<br />

= T .<br />

3. Upper bounds<br />

The aim <str<strong>on</strong>g>of</str<strong>on</strong>g> this secti<strong>on</strong> is to find explicit generators <strong>and</strong> upper bounds <str<strong>on</strong>g>of</str<strong>on</strong>g> dimensi<strong>on</strong>s<br />

for derived categories in several cases.<br />

We observe that <str<strong>on</strong>g>the</str<strong>on</strong>g> dimensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> bounded derived categories <str<strong>on</strong>g>of</str<strong>on</strong>g> finitely generated<br />

modules over quotient singularities are at most <str<strong>on</strong>g>the</str<strong>on</strong>g>ir (Krull) dimensi<strong>on</strong>s, particularly that<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>y are finite.<br />

Propositi<strong>on</strong> 6. Let S be ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>the</str<strong>on</strong>g> polynomial ring k[x 1 , . . . , x n ] or <str<strong>on</strong>g>the</str<strong>on</strong>g> formal power<br />

series ring k[[x 1 , . . . , x n ]] over a field k. Let G be a finite subgroup <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> general linear<br />

–8–


group GL n (k), <strong>and</strong> assume that <str<strong>on</strong>g>the</str<strong>on</strong>g> characteristic <str<strong>on</strong>g>of</str<strong>on</strong>g> k does not divide <str<strong>on</strong>g>the</str<strong>on</strong>g> order <str<strong>on</strong>g>of</str<strong>on</strong>g> G. Let<br />

R = S G be <str<strong>on</strong>g>the</str<strong>on</strong>g> invariant subring. Then D b (mod R) = 〈S〉 n+1<br />

holds, <strong>and</strong> hence <strong>on</strong>e has<br />

dim D b (mod R) ≤ n = dim R < ∞.<br />

For a commutative ring R, we denote <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> minimal prime ideals <str<strong>on</strong>g>of</str<strong>on</strong>g> R by Min R.<br />

As is well-known, Min R is a finite set whenever R is Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian. Also, we denote by<br />

λ(R) <str<strong>on</strong>g>the</str<strong>on</strong>g> infimum <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> integers n ≥ 0 such that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a filtrati<strong>on</strong><br />

0 = I 0 ⊆ I 1 ⊆ · · · ⊆ I n = R<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ideals <str<strong>on</strong>g>of</str<strong>on</strong>g> R with I i /I i−1<br />

∼ = R/pi for 1 ≤ i ≤ n, where p i ∈ Spec R. If R is Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>n such a filtrati<strong>on</strong> exists <strong>and</strong> λ(R) is a n<strong>on</strong>-negative integer.<br />

Propositi<strong>on</strong> 7. Let R be a Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian commutative ring.<br />

(1) Suppose that for every p ∈ Min R <str<strong>on</strong>g>the</str<strong>on</strong>g>re exist an R/p-complex G(p) <strong>and</strong> an integer<br />

n(p) ≥ 0 such that D b (mod R/p) = 〈G(p)〉 n(p)<br />

. Then D b (mod R) = 〈G〉 n<br />

holds,<br />

where G = ⊕ p∈Min R<br />

G(p) <strong>and</strong> n = λ(R) · max{ n(p) | p ∈ Min R }.<br />

(2) There is an inequality<br />

dim D b (mod R) ≤ λ(R) · sup{ dim D b (mod R/p) + 1 | p ∈ Min R } − 1.<br />

Let R be a commutative Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian ring. We set<br />

ll(R) = inf{ n ≥ 0 | (rad R) n = 0 },<br />

r(R) = min{ n ≥ 0 | (nil R) n = 0 },<br />

where rad R <strong>and</strong> nil R denote <str<strong>on</strong>g>the</str<strong>on</strong>g> Jacobs<strong>on</strong> radical <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> nilradical <str<strong>on</strong>g>of</str<strong>on</strong>g> R, respectively.<br />

The first number is called <str<strong>on</strong>g>the</str<strong>on</strong>g> Loewy length <str<strong>on</strong>g>of</str<strong>on</strong>g> R <strong>and</strong> is finite if (<strong>and</strong> <strong>on</strong>ly if) R is Artinian,<br />

while <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d <strong>on</strong>e is always finite. Let R red = R/ nil R be <str<strong>on</strong>g>the</str<strong>on</strong>g> associated reduced ring.<br />

When R is reduced, we denote by R <str<strong>on</strong>g>the</str<strong>on</strong>g> integral closure <str<strong>on</strong>g>of</str<strong>on</strong>g> R in <str<strong>on</strong>g>the</str<strong>on</strong>g> total quotient ring<br />

Q <str<strong>on</strong>g>of</str<strong>on</strong>g> R. Let C R denote <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>ductor <str<strong>on</strong>g>of</str<strong>on</strong>g> R, i.e., C R is <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> elements x ∈ Q with<br />

xR ⊆ R. We can give an explicit generator <strong>and</strong> an upper bound <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

bounded derived category <str<strong>on</strong>g>of</str<strong>on</strong>g> finitely generated modules over a <strong>on</strong>e-dimensi<strong>on</strong>al complete<br />

local ring.<br />

Propositi<strong>on</strong> 8. Let R be a Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian commutative complete local ring <str<strong>on</strong>g>of</str<strong>on</strong>g> Krull dimensi<strong>on</strong><br />

<strong>on</strong>e with residue field k. Then it holds that D b (mod R) = 〈R red ⊕k〉 r(R)·(2 ll(Rred /C Rred )+2) .<br />

In particular,<br />

dim D b (mod R) ≤ r(R) · (2 ll(R red /C Rred ) + 2) − 1 < ∞.<br />

Let R be a commutative Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian local ring <str<strong>on</strong>g>of</str<strong>on</strong>g> Krull dimensi<strong>on</strong> d with maximal ideal<br />

d!<br />

m. We denote by e(R) <str<strong>on</strong>g>the</str<strong>on</strong>g> multiplicity <str<strong>on</strong>g>of</str<strong>on</strong>g> R, that is, e(R) = lim n→∞ l<br />

n d R (R/m n+1 ). Recall<br />

that a numerical semigroup is defined as a subsemigroup H <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> additive semigroup<br />

N = {0, 1, 2, . . . } c<strong>on</strong>taining 0 such that N\H is a finite set. For a numerical semigroup<br />

H, let c(H) denote <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>ductor <str<strong>on</strong>g>of</str<strong>on</strong>g> H, that is,<br />

c(H) = max{ i ∈ N | i − 1 /∈ H }.<br />

For a real number α, put ⌈α⌉ = min{ n ∈ Z | n ≥ α }. Making use <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> above<br />

propositi<strong>on</strong>, <strong>on</strong>e can get an upper bound <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> bounded derived category<br />

–9–


<str<strong>on</strong>g>of</str<strong>on</strong>g> finitely generated modules over a numerical semigroup ring k[[H]] over a field k, in terms<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>ductor <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> semigroup <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> multiplicity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ring.<br />

Corollary 9. Let k be a field <strong>and</strong> H be a numerical semigroup. Let R be <str<strong>on</strong>g>the</str<strong>on</strong>g> numerical<br />

semigroup ring k[[H]], that is, <str<strong>on</strong>g>the</str<strong>on</strong>g> subring k[[t h |h ∈ H]] <str<strong>on</strong>g>of</str<strong>on</strong>g> S = k[[t]]. Then D b (mod R) =<br />

〈S ⊕ k〉 2 ⌈ holds. Hence c(H)<br />

e(R) ⌉+2<br />

⌈ ⌉ c(H)<br />

dim D b (mod R) ≤ 2 + 1.<br />

e(R)<br />

4. Finiteness<br />

In this secti<strong>on</strong>, we c<strong>on</strong>sider finiteness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> bounded derived category<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> finitely generated modules over a complete local ring. Let R be a commutative algebra<br />

over a field k. Rouquier [14] proved <str<strong>on</strong>g>the</str<strong>on</strong>g> finiteness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> D b (mod R) when<br />

R is an affine k-algebra, where <str<strong>on</strong>g>the</str<strong>on</strong>g> fact that <str<strong>on</strong>g>the</str<strong>on</strong>g> enveloping algebra R ⊗ k R is Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian<br />

played a crucial role. The problem in <str<strong>on</strong>g>the</str<strong>on</strong>g> case where R is a complete local ring is that <strong>on</strong>e<br />

cannot hope that R ⊗ k R is Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian. Our methods instead use <str<strong>on</strong>g>the</str<strong>on</strong>g> completi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

enveloping algebra, that is, <str<strong>on</strong>g>the</str<strong>on</strong>g> complete tensor product R ̂⊗ k R, which is a Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian<br />

ring whenever R is a complete local ring with coefficient field k.<br />

Let R <strong>and</strong> S be commutative Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian complete local rings with maximal ideals m<br />

<strong>and</strong> n, respectively. Suppose that <str<strong>on</strong>g>the</str<strong>on</strong>g>y c<strong>on</strong>tain fields <strong>and</strong> have <str<strong>on</strong>g>the</str<strong>on</strong>g> same residue field k,<br />

i.e., R/m ∼ = k ∼ = S/n. Then Cohen’s structure <str<strong>on</strong>g>the</str<strong>on</strong>g>orem yields isomorphisms<br />

R ∼ = k[[x 1 , . . . , x m ]]/(f 1 , . . . , f a ),<br />

S ∼ = k[[y 1 , . . . , y n ]]/(g 1 , . . . , g b ).<br />

We denote by R ̂⊗ k S <str<strong>on</strong>g>the</str<strong>on</strong>g> complete tensor product <str<strong>on</strong>g>of</str<strong>on</strong>g> R <strong>and</strong> S over k, namely,<br />

R ̂⊗ k S = lim ←− i,j<br />

(R/m i ⊗ k S/n j ).<br />

For r ∈ R <strong>and</strong> s ∈ S, we denote by r ̂⊗ s <str<strong>on</strong>g>the</str<strong>on</strong>g> image <str<strong>on</strong>g>of</str<strong>on</strong>g> r ⊗ s by <str<strong>on</strong>g>the</str<strong>on</strong>g> can<strong>on</strong>ical ring<br />

homomorphism R ⊗ k S → R ̂⊗ k S. Note that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a natural isomorphism<br />

R ̂⊗ k S ∼ = k[[x 1 , . . . , x m , y 1 , . . . , y n ]]/(f 1 , . . . , f a , g 1 , . . . , g b ).<br />

Details <str<strong>on</strong>g>of</str<strong>on</strong>g> complete tensor products can be found in [15, Chapter V].<br />

Recall that a ring extensi<strong>on</strong> A ⊆ B is called separable if B is projective as a B ⊗ A B-<br />

module. This is equivalent to saying that <str<strong>on</strong>g>the</str<strong>on</strong>g> map B ⊗ A B → B given by x ⊗ y ↦→ xy is<br />

a split epimorphism <str<strong>on</strong>g>of</str<strong>on</strong>g> B ⊗ A B-modules.<br />

Now, let us prove our main <str<strong>on</strong>g>the</str<strong>on</strong>g>orem.<br />

Theorem 10. Let R be a Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian complete local commutative ring c<strong>on</strong>taining a field<br />

with perfect residue field. Then <str<strong>on</strong>g>the</str<strong>on</strong>g>re exist a finite number <str<strong>on</strong>g>of</str<strong>on</strong>g> prime ideals p 1 , . . . , p n ∈<br />

Spec R <strong>and</strong> an integer m ≥ 1 such that<br />

Hence <strong>on</strong>e has dim D b (mod R) < ∞.<br />

D b (mod R) = 〈R/p 1 ⊕ · · · ⊕ R/p n 〉 m<br />

.<br />

–10–


Sketch <str<strong>on</strong>g>of</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. We use inducti<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Krull dimensi<strong>on</strong> d := dim R. If d = 0, <str<strong>on</strong>g>the</str<strong>on</strong>g>n R<br />

is an Artinian ring, <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> asserti<strong>on</strong> follows from [14, Propositi<strong>on</strong> 7.37]. Assume d ≥ 1.<br />

By [10, Theorem 6.4], we have a sequence<br />

0 = I 0 ⊆ I 1 ⊆ · · · ⊆ I n = R<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ideals <str<strong>on</strong>g>of</str<strong>on</strong>g> R such that for each 1 ≤ i ≤ n <strong>on</strong>e has I i /I i−1<br />

∼ = R/pi with p i ∈ Spec R. Then<br />

every object X <str<strong>on</strong>g>of</str<strong>on</strong>g> D b (mod R) possesses a sequence<br />

0 = XI 0 ⊆ XI 1 ⊆ · · · ⊆ XI n = X<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> R-subcomplexes. Decompose this into exact triangles<br />

XI i−1 → XI i → XI i /XI i−1 → ΣXI i−1 ,<br />

in D b (mod R), <strong>and</strong> note that each XI i /XI i−1 bel<strong>on</strong>gs to D b (mod R/p i ). Hence <strong>on</strong>e may<br />

assume that R is an integral domain. By [16, Definiti<strong>on</strong>-Propositi<strong>on</strong> (1.20)], we can take a<br />

formal power series subring A = k[[x 1 , . . . , x d ]] <str<strong>on</strong>g>of</str<strong>on</strong>g> R such that R is a finitely generated A-<br />

module <strong>and</strong> that <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> Q(A) ⊆ Q(R) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> quotient fields is finite <strong>and</strong> separable.<br />

Claim 1. We have natural isomorphisms<br />

R ∼ = k[[x]][t]/(f(x, t)) = k[[x, t]]/(f(x, t)),<br />

S := R ⊗ A R ∼ = k[[x]][t, t ′ ]/(f(x, t), f(x, t ′ )) = k[[x, t, t ′ ]]/(f(x, t), f(x, t ′ )),<br />

U := R ̂⊗ k A ∼ = k[[x, t, x ′ ]]/(f(x, t)),<br />

T := R ̂⊗ k R ∼ = k[[x, t, x ′ , t ′ ]]/(f(x, t), f(x ′ , t ′ )).<br />

Here x = x 1 , . . . , x d , x ′ = x ′ 1, . . . , x ′ d , t = t 1, . . . , t n , t ′ = t ′ 1, . . . , t ′ n are indeterminates over<br />

k, <strong>and</strong> f(x, t) = f 1 (x, t), . . . , f m (x, t) are elements <str<strong>on</strong>g>of</str<strong>on</strong>g> k[[x]][t] ⊆ k[[x, t]]. In particular, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

rings S, T, U are Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian commutative complete local rings.<br />

There is a surjective ring homomorphism µ : S = R ⊗ A R → R which sends r ⊗ r ′ to<br />

rr ′ . This makes R an S-module. Using Claim 1, we observe that µ corresp<strong>on</strong>ds to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

map k[[x, t, t ′ ]]/(f(x, t), f(x, t ′ )) → k[[x, t]]/(f(x, t)) given by t ′ ↦→ t. Taking <str<strong>on</strong>g>the</str<strong>on</strong>g> kernel,<br />

we have an exact sequence<br />

0 → I → S µ −→ R → 0<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> finitely generated S-modules. Al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> injective ring homomorphism A → S sending<br />

a ∈ A to a ⊗ 1 = 1 ⊗ a ∈ S, we can regard A as a subring <str<strong>on</strong>g>of</str<strong>on</strong>g> S. Note that S is a finitely<br />

generated A-module. Put W = A \ {0}. This is a multiplicatively closed subset <str<strong>on</strong>g>of</str<strong>on</strong>g> A, R<br />

<strong>and</strong> S, <strong>and</strong> <strong>on</strong>e can take localizati<strong>on</strong> (−) W .<br />

Claim 2. The S W -module R W is projective.<br />

There are ring epimorphisms<br />

α : U → R,<br />

r ̂⊗ a ↦→ ra,<br />

β : T → S, r ̂⊗ r ′ ↦→ r ⊗ r ′ ,<br />

γ : T → R, r ̂⊗ r ′ ↦→ rr ′ .<br />

Identifying <str<strong>on</strong>g>the</str<strong>on</strong>g> rings R, S, T <strong>and</strong> U with <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding residue rings <str<strong>on</strong>g>of</str<strong>on</strong>g> formal power<br />

series rings made in Claim 1, we see that α, β are <str<strong>on</strong>g>the</str<strong>on</strong>g> maps given by x ′ ↦→ x, <strong>and</strong> γ<br />

–11–


is <str<strong>on</strong>g>the</str<strong>on</strong>g> map given by x ′ ↦→ x <strong>and</strong> t ′ ↦→ t. Note that γ = µβ. The map α is naturally<br />

a homomorphism <str<strong>on</strong>g>of</str<strong>on</strong>g> (R, A)-bimodules, <strong>and</strong> β, γ are naturally homomorphisms <str<strong>on</strong>g>of</str<strong>on</strong>g> (R, R)-<br />

bimodules. The ring R has <str<strong>on</strong>g>the</str<strong>on</strong>g> structure <str<strong>on</strong>g>of</str<strong>on</strong>g> a finitely generated U-module through α. The<br />

Koszul complex <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> U-regular sequence x ′ − x gives a free resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> U-module<br />

R:<br />

(4.1) 0 → U → U ⊕d → U ⊕ ( d 2) → · · · → U<br />

⊕( d 2) → U<br />

⊕d x ′ −x<br />

−−→ U α −→ R → 0.<br />

This is an exact sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> (R, A)-bimodules. Since <str<strong>on</strong>g>the</str<strong>on</strong>g> natural homomorphisms<br />

A ∼ = k[[x ′ ]] → k[[x ′ ]][x, t]/(f(x, t)),<br />

k[[x ′ ]][x, t]/(f(x, t)) → k[[x ′ ]][[x, t]]/(f(x, t)) ∼ = U<br />

are flat, so is <str<strong>on</strong>g>the</str<strong>on</strong>g> compositi<strong>on</strong>. Therefore U is flat as a right A-module. The exact sequence<br />

(4.1) gives rise to a chain map η : F → R <str<strong>on</strong>g>of</str<strong>on</strong>g> U-complexes, where<br />

F = (0 → U → U ⊕d → U ⊕ ( d 2) → · · · → U<br />

⊕( d 2) → U<br />

⊕d<br />

x ′ −x<br />

−−→ U → 0)<br />

is a complex <str<strong>on</strong>g>of</str<strong>on</strong>g> finitely generated free U-modules. By Claim 1, we have isomorphisms<br />

U ⊗ A R ∼ = U ⊗ A A[t]/(f(x, t)) ∼ = U[t ′ ]/(f(x ′ , t ′ )) ∼ = U[[t ′ ]]/(f(x ′ , t ′ ))<br />

∼ = (k[[x, t, x ′ ]]/(f(x, t)))[[t ′ ]]/(f(x ′ , t ′ )) ∼ = k[[x, t, x ′ , t ′ ]]/(f(x, t), f(x ′ , t ′ )) ∼ = T.<br />

Note from [17, Exercise 10.6.2] that R ⊗ L A R is an object <str<strong>on</strong>g>of</str<strong>on</strong>g> D− (R-Mod-R) = D − (Mod R ⊗ k R).<br />

(Here, R-Mod-R denotes <str<strong>on</strong>g>the</str<strong>on</strong>g> category <str<strong>on</strong>g>of</str<strong>on</strong>g> (R, R)-bimodules, which can be identified with<br />

Mod R ⊗ k R.) There are isomorphisms<br />

R ⊗ L A R ∼ = F ⊗ A R<br />

∼ = (0 → U ⊗A R → (U ⊗ A R) ⊕d → · · · → (U ⊗ A R) ⊕d<br />

∼ = (0 → T → T ⊕d → · · · → T ⊕d<br />

x ′ −x<br />

−−→ T → 0) =: C<br />

x ′ −x<br />

−−→ U ⊗ A R → 0)<br />

in D − (Mod R ⊗ k R). Note that C can be regarded as an object <str<strong>on</strong>g>of</str<strong>on</strong>g> D b (mod T ). Taking <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

tensor product η ⊗ A R, <strong>on</strong>e gets a chain map λ : C → S <str<strong>on</strong>g>of</str<strong>on</strong>g> T -complexes. Thus, <strong>on</strong>e has<br />

a commutative diagram<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> exact triangles in D b (mod T ).<br />

K −−−→ C −−−→ R −−−→ ΣK<br />

⏐ ⏐<br />

⏐<br />

↓ λ↓<br />

∥<br />

ξ↓<br />

I<br />

−−−→ S<br />

µ<br />

−−−→ R<br />

δ<br />

ε<br />

−−−→ ΣI<br />

Claim 3. There exists an element a ∈ W such that δ·(1 ̂⊗ a) = 0 in Hom D b (mod T )(R, ΣK).<br />

One can choose it as a n<strong>on</strong>-unit element <str<strong>on</strong>g>of</str<strong>on</strong>g> A, if necessary.<br />

Let a ∈ W be a n<strong>on</strong>-unit element <str<strong>on</strong>g>of</str<strong>on</strong>g> A as in Claim 3. Since we regard R as a T -module<br />

through <str<strong>on</strong>g>the</str<strong>on</strong>g> homomorphism γ, we have an exact sequence 0 → R 1 ̂⊗ a<br />

−−→ R → R/(a) → 0.<br />

–12–


The octahedral axiom makes a diagram in D b (mod T )<br />

R<br />

∥<br />

R<br />

⏐<br />

↓<br />

R<br />

⏐<br />

↓<br />

1 ̂⊗ a<br />

−−−→ R −−−→ R/(a) −−−→ ΣR<br />

⏐<br />

⏐<br />

δ↓<br />

↓<br />

∥<br />

0<br />

−−−→ ΣK −−−→ ΣK ⊕ ΣR −−−→ ΣR<br />

⏐<br />

⏐<br />

∥<br />

↓<br />

↓<br />

δ<br />

−−−→ ΣK −−−→ ΣC −−−→ ΣR<br />

⏐<br />

⏐<br />

↓<br />

∥<br />

↓<br />

R/(a) −−−→ ΣK ⊕ ΣR −−−→ ΣC −−−→ ΣR/(a)<br />

with <str<strong>on</strong>g>the</str<strong>on</strong>g> bottom row being an exact triangle. Rotating it, we obtain an exact triangle<br />

K ⊕ R → C → R/(a) → Σ(K ⊕ R)<br />

in D b (mod T ). The exact functor D b (mod T ) → D − (Mod R ⊗ k R) induced by <str<strong>on</strong>g>the</str<strong>on</strong>g> can<strong>on</strong>ical<br />

ring homomorphism R ⊗ k R → T sends this to an exact triangle<br />

(4.2) K ⊕ R → R ⊗ L A R → R/(a) → Σ(K ⊕ R)<br />

in D − (Mod R ⊗ k R). As R is a local domain <strong>and</strong> a is a n<strong>on</strong>-zero element <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> maximal<br />

ideal <str<strong>on</strong>g>of</str<strong>on</strong>g> R, we have dim R/(a) = d − 1 < d. Hence <strong>on</strong>e can apply <str<strong>on</strong>g>the</str<strong>on</strong>g> inducti<strong>on</strong> hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>sis<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> ring R/(a), <strong>and</strong> sees that<br />

D b (mod R/(a)) = 〈R/p 1 ⊕ · · · ⊕ R/p h 〉 R/(a)<br />

m<br />

for some integer m ≥ 1 <strong>and</strong> some prime ideals p 1 , · · · , p h <str<strong>on</strong>g>of</str<strong>on</strong>g> R that c<strong>on</strong>tain a. Now, let X<br />

be any object <str<strong>on</strong>g>of</str<strong>on</strong>g> D b (mod R). Applying <str<strong>on</strong>g>the</str<strong>on</strong>g> exact functor X ⊗ L R − to (4.2) gives an exact<br />

triangle in D − (Mod R)<br />

(4.3) (X ⊗ L R K) ⊕ X → X ⊗ L A R → X ⊗ L R R/(a) → Σ((X ⊗ L R K) ⊕ X).<br />

Note that X ⊗ L R R/(a) is an object <str<strong>on</strong>g>of</str<strong>on</strong>g> Db (mod R/(a)) = 〈R/p 1 ⊕ · · · ⊕ R/p h 〉 R/(a)<br />

m<br />

. As<br />

an object <str<strong>on</strong>g>of</str<strong>on</strong>g> D b (mod R), <str<strong>on</strong>g>the</str<strong>on</strong>g> complex X ⊗ L R R/(a) bel<strong>on</strong>gs to 〈R/p 1 ⊕ · · · ⊕ R/p h 〉 R m . We<br />

observe from (4.3) that X is in 〈R⊕R/p 1 ⊕· · ·⊕R/p h 〉 R d+1+m . Thus we obtain Db (mod R) =<br />

〈R⊕R/p 1 ⊕· · ·⊕R/p h 〉 d+1+m<br />

. (As R is a domain, <str<strong>on</strong>g>the</str<strong>on</strong>g> zero ideal <str<strong>on</strong>g>of</str<strong>on</strong>g> R is a prime ideal.) □<br />

Now, we make sure that <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 10 also gives a ring-<str<strong>on</strong>g>the</str<strong>on</strong>g>oretic pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

affine case <str<strong>on</strong>g>of</str<strong>on</strong>g> Rouquier’s <str<strong>on</strong>g>the</str<strong>on</strong>g>orem. Actually, we obtain a more detailed result as follows.<br />

Recall that a commutative ring R is said to be essentially <str<strong>on</strong>g>of</str<strong>on</strong>g> finite type over a field k if<br />

R is a localizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a finitely generated k-algebra. Of course, every finitely generated<br />

k-algebra is essentially <str<strong>on</strong>g>of</str<strong>on</strong>g> finite type over k.<br />

Theorem 11. (1) Let R be a finitely generated algebra over a perfect field. Then <str<strong>on</strong>g>the</str<strong>on</strong>g>re<br />

exist a finite number <str<strong>on</strong>g>of</str<strong>on</strong>g> prime ideals p 1 , . . . , p n ∈ Spec R <strong>and</strong> an integer m ≥ 1<br />

such that<br />

D b (mod R) = 〈R/p 1 ⊕ · · · ⊕ R/p n 〉 m<br />

.<br />

–13–


(2) Let R be a commutative ring which is essentially <str<strong>on</strong>g>of</str<strong>on</strong>g> finite type over a perfect field.<br />

Then <str<strong>on</strong>g>the</str<strong>on</strong>g>re exist a finite number <str<strong>on</strong>g>of</str<strong>on</strong>g> prime ideals p 1 , . . . , p n ∈ Spec R <strong>and</strong> an integer<br />

m ≥ 1 such that<br />

D b (mod R) = 〈R/p 1 ⊕ · · · ⊕ R/p n 〉 m<br />

.<br />

Now <str<strong>on</strong>g>the</str<strong>on</strong>g> following result due to Rouquier (cf.<br />

recovered by Theorem 11(2).<br />

[14, Theorem 7.38]) is immediately<br />

Corollary 12 (Rouquier). Let R be a commutative ring essentially <str<strong>on</strong>g>of</str<strong>on</strong>g> finite type over a<br />

perfect field. Then <str<strong>on</strong>g>the</str<strong>on</strong>g> derived category D b (mod R) has finite dimensi<strong>on</strong>.<br />

Remark 13. In Corollary 12, <str<strong>on</strong>g>the</str<strong>on</strong>g> assumpti<strong>on</strong> that <str<strong>on</strong>g>the</str<strong>on</strong>g> base field is perfect can be removed;<br />

see [7, Propositi<strong>on</strong> 5.1.2]. We do not know whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r we can also remove <str<strong>on</strong>g>the</str<strong>on</strong>g> perfectness<br />

assumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> residue field in Theorem 10. It seems that <str<strong>on</strong>g>the</str<strong>on</strong>g> techniques in <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> [7, Propositi<strong>on</strong> 5.1.2] do not directly apply to that case.<br />

5. Lower bounds<br />

In this secti<strong>on</strong>, we will mainly study lower bounds for <str<strong>on</strong>g>the</str<strong>on</strong>g> dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> bounded<br />

derived category <str<strong>on</strong>g>of</str<strong>on</strong>g> finitely generated modules. We shall refine a result <str<strong>on</strong>g>of</str<strong>on</strong>g> Rouquier over an<br />

affine algebra, <strong>and</strong> also give a similar lower bound over a general commutative Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian<br />

ring.<br />

Throughout this secti<strong>on</strong>, let R be a commutative Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian ring. First, we c<strong>on</strong>sider<br />

refining a result <str<strong>on</strong>g>of</str<strong>on</strong>g> Rouquier.<br />

Theorem 14. Let R be a finitely generated algebra over a field. Suppose that <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists<br />

p ∈ Assh R such that R p is a field. Then <strong>on</strong>e has <str<strong>on</strong>g>the</str<strong>on</strong>g> inequality dim D b (mod R) ≥ dim R.<br />

The following result <str<strong>on</strong>g>of</str<strong>on</strong>g> Rouquier [14, Propositi<strong>on</strong> 7.16] is a direct c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem<br />

14.<br />

Corollary 15 (Rouquier). Let R be a reduced finitely generated algebra over a field. Then<br />

dim D b (mod R) ≥ dim R.<br />

Next, we try to extend Theorem 14 to n<strong>on</strong>-affine algebras. We do not know whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> inequality in Theorem 14 itself holds over n<strong>on</strong>-affine algebras; we can prove that a<br />

similar but slightly weaker inequality holds over <str<strong>on</strong>g>the</str<strong>on</strong>g>m.<br />

Now we can show <str<strong>on</strong>g>the</str<strong>on</strong>g> following result.<br />

Theorem 16. Let R be a ring <str<strong>on</strong>g>of</str<strong>on</strong>g> finite Krull dimensi<strong>on</strong> such that R p is a field for all<br />

p ∈ Assh R. Then we have dim D b (mod R) ≥ dim R − 1.<br />

Here is an obvious c<strong>on</strong>clusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> above <str<strong>on</strong>g>the</str<strong>on</strong>g>orem.<br />

Corollary 17. Let R be a reduced ring <str<strong>on</strong>g>of</str<strong>on</strong>g> finite Krull dimensi<strong>on</strong>. Then dim D b (mod R) ≥<br />

dim R − 1.<br />

–14–


References<br />

[1] M. Ballard; D. Favero, Hochschild dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> tilting objects, Preprint (2009),<br />

http://arxiv.org/abs/0905.1444.<br />

[2] M. Ballard; D. Favero; L. Katzarkov, Orlov spectra: bounds <strong>and</strong> gaps, Preprint (2010),<br />

http://arxiv.org/abs/1012.0864.<br />

[3] M. Ballard; D. Favero; L. Katzarkov, A category <str<strong>on</strong>g>of</str<strong>on</strong>g> kernels for graded matrix factorizati<strong>on</strong>s<br />

<strong>and</strong> Hodge <str<strong>on</strong>g>the</str<strong>on</strong>g>ory, Preprint (2011), http://arxiv.org/abs/1105.3177.<br />

[4] A. B<strong>on</strong>dal; M. van den Bergh, Generators <strong>and</strong> representability <str<strong>on</strong>g>of</str<strong>on</strong>g> functors in commutative <strong>and</strong><br />

n<strong>on</strong>commutative geometry, Mosc. Math. J. 3 (2003), no. 1, 1–36, 258.<br />

[5] R.-O. Buchweitz, Maximal Cohen-Macaulay modules <strong>and</strong> Tate-cohomology over Gorenstein rings,<br />

Preprint (1986), http://hdl.h<strong>and</strong>le.net/1807/16682.<br />

[6] J. D. Christensen, Ideals in triangulated categories: phantoms, ghosts <strong>and</strong> skeleta, Adv. Math.<br />

136 (1998), no. 2, 284–339.<br />

[7] B. Keller; M. Van den Bergh, On two examples by Iyama <strong>and</strong> Yoshino, <str<strong>on</strong>g>the</str<strong>on</strong>g> first versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> [8],<br />

http://arxiv.org/abs/0803.0720v1.<br />

[8] B. Keller; D. Murfet; M. Van den Bergh, On two examples by Iyama <strong>and</strong> Yoshino, Compos.<br />

Math. 147 (2011), no. 2, 591–612.<br />

[9] H. Krause; D. Kussin, Rouquier’s <str<strong>on</strong>g>the</str<strong>on</strong>g>orem <strong>on</strong> representati<strong>on</strong> dimensi<strong>on</strong>, Trends in representati<strong>on</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> algebras <strong>and</strong> related topics, 95–103, C<strong>on</strong>temp. Math., 406, Amer. Math. Soc., Providence,<br />

RI, 2006.<br />

[10] H. Matsumura, Commutative ring <str<strong>on</strong>g>the</str<strong>on</strong>g>ory, Translated from <str<strong>on</strong>g>the</str<strong>on</strong>g> Japanese by M. Reid, Sec<strong>on</strong>d<br />

editi<strong>on</strong>, Cambridge Studies in Advanced Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics, 8, Cambridge University Press, Cambridge,<br />

1989.<br />

[11] S. Oppermann; J. Šťovíček, Generating <str<strong>on</strong>g>the</str<strong>on</strong>g> bounded derived category <strong>and</strong> perfect ghosts,<br />

Preprint (2010), http://arxiv.org/abs/1006.3568.<br />

[12] D. Orlov, Derived categories <str<strong>on</strong>g>of</str<strong>on</strong>g> coherent sheaves <strong>and</strong> triangulated categories <str<strong>on</strong>g>of</str<strong>on</strong>g> singularities, Algebra,<br />

arithmetic, <strong>and</strong> geometry: in h<strong>on</strong>or <str<strong>on</strong>g>of</str<strong>on</strong>g> Yu. I. Manin. Vol. II, 503–531, Progr. Math., 270,<br />

Birkhäuser Bost<strong>on</strong>, Inc., Bost<strong>on</strong>, MA, 2009.<br />

[13] D. Orlov, Remarks <strong>on</strong> generators <strong>and</strong> dimensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> triangulated categories, Moscow Math. J. 9<br />

(2009), no. 1, 153–159.<br />

[14] R. Rouquier, Dimensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> triangulated categories, J. K-<strong>Theory</strong> 1 (2008), 193–256.<br />

[15] J.-P. Serre, Local algebra, Translated from <str<strong>on</strong>g>the</str<strong>on</strong>g> French by CheeWhye Chin <strong>and</strong> revised by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

author, Springer M<strong>on</strong>ographs in Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics, Springer-Verlag, Berlin, 2000.<br />

[16] Y. Yoshino, Cohen-Macaulay modules over Cohen-Macaulay rings, L<strong>on</strong>d<strong>on</strong> Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical Society<br />

Lecture Note Series, 146, Cambridge University Press, Cambridge, 1990.<br />

[17] C. A. Weibel, An introducti<strong>on</strong> to homological algebra, Cambridge Studies in Advanced Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics,<br />

38, Cambridge University Press, Cambridge, 1994.<br />

Divisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical Science <strong>and</strong> Physics<br />

Graduate School <str<strong>on</strong>g>of</str<strong>on</strong>g> Science <strong>and</strong> Technology<br />

Chiba University<br />

Yayoi-cho, Chiba 263-8522, Japan<br />

E-mail address: taihara@math.s.chiba-u.ac.jp<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical Sciences<br />

Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Science<br />

Shinshu University<br />

3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan<br />

E-mail address: takahasi@math.shinshu-u.ac.jp<br />

–15–


QUIVER PRESENTATIONS OF GROTHENDIECK CONSTRUCTIONS<br />

HIDETO ASASHIBA AND MAYUMI KIMURA<br />

Abstract. We give quiver presentati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Gro<str<strong>on</strong>g>the</str<strong>on</strong>g>ndieck c<strong>on</strong>structi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> functors<br />

from a small category to <str<strong>on</strong>g>the</str<strong>on</strong>g> 2-category <str<strong>on</strong>g>of</str<strong>on</strong>g> k-categories for a commutative ring k.<br />

Key Words: Gro<str<strong>on</strong>g>the</str<strong>on</strong>g>ndieck c<strong>on</strong>structi<strong>on</strong>, functors, quivers.<br />

1. Introducti<strong>on</strong><br />

Throughout this report I is a small category, k is a commutative ring, <strong>and</strong> k-Cat<br />

denotes <str<strong>on</strong>g>the</str<strong>on</strong>g> 2-category <str<strong>on</strong>g>of</str<strong>on</strong>g> all k-categories, k-functors between <str<strong>on</strong>g>the</str<strong>on</strong>g>m <strong>and</strong> natural transformati<strong>on</strong>s<br />

between k-functors.<br />

The Gro<str<strong>on</strong>g>the</str<strong>on</strong>g>ndieck c<strong>on</strong>structi<strong>on</strong> is a way to form a single category Gr(X) from a diagram<br />

X <str<strong>on</strong>g>of</str<strong>on</strong>g> small categories indexed by a small category I, which first appeared in [4, §8 <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Exposé VI]. As is exposed by Tamaki [7] this c<strong>on</strong>structi<strong>on</strong> has been used as a useful tool<br />

in homotopy <str<strong>on</strong>g>the</str<strong>on</strong>g>ory (e.g., [8]) or topological combinatorics (e.g., [9]). This can be also<br />

regarded as a generalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> orbit category c<strong>on</strong>structi<strong>on</strong> from a category with a group<br />

acti<strong>on</strong>.<br />

In [2] we defined a noti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> derived equivalences <str<strong>on</strong>g>of</str<strong>on</strong>g> (oplax) functors from I to k-Cat,<br />

<strong>and</strong> in [3] we have shown that if (oplax) functors X, X ′ : I → k-Cat are derived equivalent,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>n so are <str<strong>on</strong>g>the</str<strong>on</strong>g>ir Gro<str<strong>on</strong>g>the</str<strong>on</strong>g>ndieck c<strong>on</strong>structi<strong>on</strong>s Gr(X) <strong>and</strong> Gr(X ′ ). An easy example <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

derived equivalent pair <str<strong>on</strong>g>of</str<strong>on</strong>g> functors is given by using diag<strong>on</strong>al functors: For a category<br />

C define <str<strong>on</strong>g>the</str<strong>on</strong>g> diag<strong>on</strong>al functor ∆(C): I → k-Cat to be a functor sending all objects <str<strong>on</strong>g>of</str<strong>on</strong>g> I<br />

to C <strong>and</strong> all morphisms in I to <str<strong>on</strong>g>the</str<strong>on</strong>g> identity functor <str<strong>on</strong>g>of</str<strong>on</strong>g> C. Then if categories C <strong>and</strong> C ′<br />

are derived equivalent, <str<strong>on</strong>g>the</str<strong>on</strong>g>n so are <str<strong>on</strong>g>the</str<strong>on</strong>g>ir diag<strong>on</strong>al functors ∆(C) <strong>and</strong> ∆(C ′ ). Therefore,<br />

to compute examples <str<strong>on</strong>g>of</str<strong>on</strong>g> derived equivalent pairs using this result, it will be useful to<br />

present Gro<str<strong>on</strong>g>the</str<strong>on</strong>g>ndieck c<strong>on</strong>structi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> functors by quivers with relati<strong>on</strong>s. We already<br />

have computati<strong>on</strong>s in two special cases. First for a k-algebra A, which we regard as a<br />

k-category with a single object, we noted in [3] that if I is a semigroup G, a poset S, or<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> free category PQ <str<strong>on</strong>g>of</str<strong>on</strong>g> a quiver Q, <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> Gro<str<strong>on</strong>g>the</str<strong>on</strong>g>ndieck c<strong>on</strong>structi<strong>on</strong> Gr(∆(A)) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

diag<strong>on</strong>al functor ∆(A) is isomorphic to <str<strong>on</strong>g>the</str<strong>on</strong>g> semigroup algebra AG, <str<strong>on</strong>g>the</str<strong>on</strong>g> incidence algebra<br />

AS, or <str<strong>on</strong>g>the</str<strong>on</strong>g> path-algebra AQ, respectively. Sec<strong>on</strong>d in [1] we gave a quiver presentati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> orbit category C/G for each k-category C with an acti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a semigroup G in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

case that k is a field, which can be seen as a computati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a quiver presentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Gro<str<strong>on</strong>g>the</str<strong>on</strong>g>ndieck c<strong>on</strong>structi<strong>on</strong> Gr(X) <str<strong>on</strong>g>of</str<strong>on</strong>g> each functor X : G → k-Cat.<br />

In this report we generalize <str<strong>on</strong>g>the</str<strong>on</strong>g>se two results as follows:<br />

(1) We compute <str<strong>on</strong>g>the</str<strong>on</strong>g> Gro<str<strong>on</strong>g>the</str<strong>on</strong>g>ndieck c<strong>on</strong>structi<strong>on</strong> Gr(∆(A)) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> diag<strong>on</strong>al functor<br />

∆(A) for each k-algebra A <strong>and</strong> each small category I.<br />

The final versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper has been submitted for publicati<strong>on</strong> elsewhere.<br />

–16–


(2) We give a quiver presentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Gro<str<strong>on</strong>g>the</str<strong>on</strong>g>ndieck c<strong>on</strong>structi<strong>on</strong> Gr(X) for each<br />

functor X : I → k-Cat <strong>and</strong> each small category I when k is a field.<br />

2. Preliminaries<br />

Throughout this report Q = (Q 0 , Q 1 , t, h) is a quiver, where t(α) ∈ Q 0 is <str<strong>on</strong>g>the</str<strong>on</strong>g> tail <strong>and</strong><br />

h(α) ∈ Q 0 is <str<strong>on</strong>g>the</str<strong>on</strong>g> head <str<strong>on</strong>g>of</str<strong>on</strong>g> each arrow α <str<strong>on</strong>g>of</str<strong>on</strong>g> Q. For each path µ <str<strong>on</strong>g>of</str<strong>on</strong>g> Q, <str<strong>on</strong>g>the</str<strong>on</strong>g> tail <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> head<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> µ is denoted by t(µ) <strong>and</strong> h(µ), respectively. For each n<strong>on</strong>-negative integer n <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

all paths <str<strong>on</strong>g>of</str<strong>on</strong>g> Q <str<strong>on</strong>g>of</str<strong>on</strong>g> length at least n is denoted by Q ≥n . In particular Q ≥0 denotes <str<strong>on</strong>g>the</str<strong>on</strong>g> set<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> all paths <str<strong>on</strong>g>of</str<strong>on</strong>g> Q.<br />

A category C is called a k-category if for each x, y ∈ C, C(x, y) is a k-module <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

compositi<strong>on</strong>s are k-bilinear.<br />

Definiti<strong>on</strong> 1. Let Q be a quiver.<br />

(1) The free category PQ <str<strong>on</strong>g>of</str<strong>on</strong>g> Q is <str<strong>on</strong>g>the</str<strong>on</strong>g> category whose underlying quiver is (Q 0 , Q ≥0 , t, h)<br />

with <str<strong>on</strong>g>the</str<strong>on</strong>g> usual compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> paths.<br />

(2) The path k-category <str<strong>on</strong>g>of</str<strong>on</strong>g> Q is <str<strong>on</strong>g>the</str<strong>on</strong>g> k-linearizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> PQ <strong>and</strong> is denoted by kQ.<br />

Definiti<strong>on</strong> 2. Let C be a category. We set<br />

∪<br />

Rel(C) := C(i, j) × C(i, j),<br />

(i,j)∈C 0 ×C 0<br />

elements <str<strong>on</strong>g>of</str<strong>on</strong>g> which are called relati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> C. Let R ⊆ Rel(C). For each i, j ∈ C 0 we set<br />

R(i, j) := R ∩ (C(i, j) × C(i, j)).<br />

(1) The smallest c<strong>on</strong>gruence relati<strong>on</strong><br />

∪<br />

R c := {(dac, dbc) | c ∈ C(−, i), d ∈ C(j, −), (a, b) ∈ R(i, j)}<br />

(i,j)∈C 0 ×C 0<br />

c<strong>on</strong>taining R is called <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>gruence relati<strong>on</strong> generated by R.<br />

(2) For each i, j ∈ C 0 we set<br />

R −1 (i, j) := {(g, f) ∈ C(i, j) × C(i, j) | (f, g) ∈ R(i, j)}<br />

1 C(i,j) := {(f, f) | f ∈ C(i, j)}<br />

S(i, j) := R(i, j) ∪ R −1 (i, j) ∪ 1 C(i,j)<br />

S(i, j) 1 := S(i, j)<br />

S(i, j) n := {(h, f) | ∃g ∈ C(i, j), (g, f) ∈ S(i, j), (h, g) ∈ S(i, j) n−1 } (for all n ≥ 2)<br />

S(i, j) ∞ := ∪ n≥1<br />

S(i, j) n , <strong>and</strong> set<br />

R e :=<br />

∪<br />

(i,j)∈C 0 ×C 0<br />

S(i, j) ∞ .<br />

R e is called <str<strong>on</strong>g>the</str<strong>on</strong>g> equivalence relati<strong>on</strong> generated by R.<br />

(3) We set R # := (R c ) e (cf. [5]).<br />

The following is well known (cf. [6]).<br />

–17–


Propositi<strong>on</strong> 3. Let C be a category, <strong>and</strong> R ⊆ Rel(C). Then <str<strong>on</strong>g>the</str<strong>on</strong>g> category C/R # <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

functor F : C → C/R # defined above satisfy <str<strong>on</strong>g>the</str<strong>on</strong>g> following c<strong>on</strong>diti<strong>on</strong>s.<br />

(i) For each i, j ∈ C 0 <strong>and</strong> each (f, f ′ ) ∈ R(i, j) we have F f = F f ′ .<br />

(ii) If a functor G : C → D satisfies Gf = Gf ′ for all f, f ′ ∈ C(i, j) <strong>and</strong> all i, j ∈ C 0<br />

with (f, f ′ ) ∈ R(i, j), <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a unique functor G ′ : C/R # → D such that<br />

G ′ ◦ F = G.<br />

Definiti<strong>on</strong> 4. Let Q be a quiver <strong>and</strong> R ⊆ Rel(PQ). We set<br />

The following is straightforward.<br />

〈Q | R〉 := PQ/R # .<br />

Propositi<strong>on</strong> 5. Let C be a category, Q <str<strong>on</strong>g>the</str<strong>on</strong>g> underlying quiver <str<strong>on</strong>g>of</str<strong>on</strong>g> C, <strong>and</strong> set<br />

R := {(e i , 1l i ), (µ, [µ]) | i ∈ Q 0 , µ ∈ Q ≥2 } ⊆ Rel(PQ),<br />

where e i is <str<strong>on</strong>g>the</str<strong>on</strong>g> path <str<strong>on</strong>g>of</str<strong>on</strong>g> length 0 at each vertex i ∈ Q 0 , <strong>and</strong> [µ] := α n ◦· · ·◦α 1 (<str<strong>on</strong>g>the</str<strong>on</strong>g> composite<br />

in C) for all paths µ = α n . . . α 1 ∈ Q ≥2 with α 1 , . . . , α n ∈ Q 1 . Then<br />

C ∼ = 〈Q | R〉.<br />

By this statement, an arbitrary category is presented by a quiver <strong>and</strong> relati<strong>on</strong>s. Throughout<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> rest <str<strong>on</strong>g>of</str<strong>on</strong>g> this report I is a small category with a presentati<strong>on</strong> I = 〈Q | R〉.<br />

3. Gro<str<strong>on</strong>g>the</str<strong>on</strong>g>ndieck c<strong>on</strong>structi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Diag<strong>on</strong>al functors<br />

Definiti<strong>on</strong> 6. Let X : I → k-Cat be a functor. Then a category Gr(X), called <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Gro<str<strong>on</strong>g>the</str<strong>on</strong>g>ndiek c<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> X, is defined as follows:<br />

(i) (Gr(X)) 0 := ∪<br />

{(i, x) | x ∈ X(i) 0 }<br />

i∈I 0<br />

(ii) For (i, x), (j, y) ∈ (Gr(X)) 0<br />

Gr(X)((i, x), (j, y)) :=<br />

⊕<br />

X(j)(X(a)x, y)<br />

a∈I(i,j)<br />

(iii) For f = (f a ) a∈I(i,j) ∈ Gr(X)((i, x), (j, y)) <strong>and</strong> g = (g b ) b∈I(j,k) ∈ Gr(X)((j, y), (k, z))<br />

g ◦ f := ( ∑ c=ba<br />

a∈I(i,j)<br />

b∈I(j,k)<br />

g b X(b)f a ) c∈I(i,k)<br />

Definiti<strong>on</strong> 7. Let C ∈ k-Cat 0 . Then <str<strong>on</strong>g>the</str<strong>on</strong>g> diag<strong>on</strong>al functor ∆(C) <str<strong>on</strong>g>of</str<strong>on</strong>g> C is a functor from I<br />

to k-Cat sending each arrow a: i → j in I to 1l C : C → C in k-Cat.<br />

In this secti<strong>on</strong>, we fix a k-algebra A which we regard as a k-category with a single<br />

object ∗ <strong>and</strong> with A(∗, ∗) = A. The quiver algebra AQ <str<strong>on</strong>g>of</str<strong>on</strong>g> Q over A is <str<strong>on</strong>g>the</str<strong>on</strong>g> A-linearizati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> PQ, namely AQ := A ⊗ k kQ.<br />

Theorem 8. We have an isomorphism Gr(∆(A)) ∼ = AQ/〈R〉 A , where 〈R〉 A is <str<strong>on</strong>g>the</str<strong>on</strong>g> ideal<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> AQ generated by <str<strong>on</strong>g>the</str<strong>on</strong>g> elements g − h with (g, h) ∈ R.<br />

Remark 9. Theorem 8 can be written in <str<strong>on</strong>g>the</str<strong>on</strong>g> form<br />

Gr(∆(A)) ∼ = A ⊗ k (kQ/〈R〉 k ).<br />

–18–


4. The quiver presentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Gro<str<strong>on</strong>g>the</str<strong>on</strong>g>ndieck c<strong>on</strong>structi<strong>on</strong>s<br />

In this secti<strong>on</strong> we give a quiver presentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Gro<str<strong>on</strong>g>the</str<strong>on</strong>g>ndieck c<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an<br />

arbitrary functor I → k-Cat. Throughout this secti<strong>on</strong> we assume that k is a field.<br />

Theorem 10. Let X : I → k-Cat be a functor, <strong>and</strong> for each i ∈ I set X(i) = kQ (i) /<br />

〈R (i) 〉 with Φ (i) : kQ (i) → X(i) <str<strong>on</strong>g>the</str<strong>on</strong>g> can<strong>on</strong>ical morphism, where R (i) ⊆ kQ (i) , 〈R (i) 〉 ∩ {e x |<br />

x ∈ Q(i) 0<br />

} = ∅. Then Gro<str<strong>on</strong>g>the</str<strong>on</strong>g>ndieck c<strong>on</strong>structi<strong>on</strong> is presented by <str<strong>on</strong>g>the</str<strong>on</strong>g> quiver with relati<strong>on</strong>s<br />

(Q, R ′ ) defined as follows.<br />

Quiver: Q ′ = (Q ′ 0, Q ′ 1, t ′ , h ′ ), where<br />

(i) Q ′ 0 := ∪ i∈I<br />

(ii) Q ′ 1 := ∪ i∈I<br />

{ i x | x ∈ Q (i)<br />

0 }.<br />

{{ i α | α ∈ Q (i)<br />

1 } ∪ {(a, i x) : i x → j (ax) | a : i → j ∈ Q 1 , x ∈ Q (i)<br />

0 , ax ≠<br />

0}},<br />

where we set ax := X(a)(x).<br />

(iii) For α ∈ Q (i)<br />

1 , t ′ ( i α) = t (i) (α) <strong>and</strong> h ′ ( i α) = h (i) (α).<br />

(iv) For a : i → j ∈ Q 1 , x ∈ Q (i)<br />

0 , t ′ (a, i x) = i x <strong>and</strong> h ′ (a, i x) = j (ax).<br />

Relati<strong>on</strong>s: R ′ := R 1 ′ ∪ R 2 ′ ∪ R 3, ′ where<br />

(i) R 1 ′ := {σ (i) (µ) | i ∈ Q 0 , µ ∈ R (i) },<br />

where we set σ (i) : kQ (i) ↩→ kQ ′ .<br />

(ii) R 2 ′ := {π(g, i x) − π(h, i x) | i, j ∈ Q 0 , (g, h) ∈ R(i, j), x ∈ Q (i)<br />

0 }, where for each<br />

path a in Q we set<br />

π(a, i x) := (a n , in−1 (a n−1 a n−2 . . . a 1 x)) . . . (a 2 , i1 (a 1 x))(a 1 , i x)<br />

if a = a n . . . a 2 a 1 for some a 1 , . . . , a n arrows in Q, <strong>and</strong><br />

π(a, i x) := e i x<br />

if a = e i for some i ∈ Q 0 .<br />

(iii) R 3 ′ := {(a, i y) i α − j (aα)(a, i x) | a : i → j ∈ Q 1 , α : x → y ∈ Q (i)<br />

1 }, where we take<br />

aα : ax → ay so that Φ (j) (aα) ∈ X(a)Φ (i) (α):<br />

α ∈ kQ (i)<br />

aα ∈ kQ (j)<br />

Φ (i) X(i)<br />

X(a)<br />

Φ (j) X(j).<br />

Note that <str<strong>on</strong>g>the</str<strong>on</strong>g> ideal 〈R ′ 〉 is independent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> choice <str<strong>on</strong>g>of</str<strong>on</strong>g> aα because R ′ 1 ⊆ R ′ .<br />

5. Examples<br />

In this secti<strong>on</strong>, we illustrate Theorems 8 <strong>and</strong> 10 by some examples.<br />

–19–


Example 11. Let Q be <str<strong>on</strong>g>the</str<strong>on</strong>g> quiver<br />

2 ❂ ❂❂❂❂❂❂<br />

a<br />

b<br />

✁ ✁✁✁✁✁✁ c<br />

1 d<br />

3 <br />

❂ 5<br />

❂❂❂❂❂❂<br />

e<br />

4<br />

✁ ✁✁✁✁✁✁ f<br />

<strong>and</strong> let R = {(ba, dc)}. Then <str<strong>on</strong>g>the</str<strong>on</strong>g> category I := 〈Q | R〉 is not given as a semigroup, as a<br />

poset or as <str<strong>on</strong>g>the</str<strong>on</strong>g> free category <str<strong>on</strong>g>of</str<strong>on</strong>g> a quiver. For any algebra A c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> diag<strong>on</strong>al functor<br />

∆(A): I → k-Cat. Then by Theorem 8 <str<strong>on</strong>g>the</str<strong>on</strong>g> category Gr(∆(A)) is given by<br />

AQ/〈ba − dc〉.<br />

Remark 12. Let Q <strong>and</strong> Q ′ be quivers having nei<str<strong>on</strong>g>the</str<strong>on</strong>g>r double arrows nor loops, <strong>and</strong> let<br />

f : Q 0 → Q ′ 0 be a map (a vertex map between Q <strong>and</strong> Q ′ ). If Q(x, y) ≠ ∅ (x, y ∈ Q 0 )<br />

implies Q ′ (f(x), f(y)) ≠ ∅ or f(x) = f(y), <str<strong>on</strong>g>the</str<strong>on</strong>g>n f induces a k-functor ˆf : kP → kP ′<br />

defined by <str<strong>on</strong>g>the</str<strong>on</strong>g> following corresp<strong>on</strong>dence: For each x ∈ Q 0 , ˆf(ex ) := e f(x) , <strong>and</strong> for each<br />

arrow a: x → y in Q, f(a) is <str<strong>on</strong>g>the</str<strong>on</strong>g> unique arrow f(x) → f(y) (resp. e f(x) ) if f(x) ≠ f(y)<br />

(resp. if f(x) = f(y)).<br />

Example 13. Let I = 〈Q | R〉 be as in <str<strong>on</strong>g>the</str<strong>on</strong>g> previous example. Define a functor X :<br />

I → k-Cat by <str<strong>on</strong>g>the</str<strong>on</strong>g> k-linearizati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> following quivers in frames <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> k-functors<br />

induced by <str<strong>on</strong>g>the</str<strong>on</strong>g> vertex maps expressed by broken arrows between <str<strong>on</strong>g>the</str<strong>on</strong>g>m:<br />

1<br />

α<br />

X(a)<br />

2<br />

♣ ♣ ♦ ♦ ♥ ♠ ♠ ❧ ❧ ❦ ❦ ❥ ✐ ❯ ❚ ❚ ❙ ❘ ❘ ◗ X(b) ◗<br />

X(a)<br />

1 1<br />

α α<br />

♣ ♣ ♦ ♦ ♥ ♠ ♠ ❧ ❧ ❦ ❦ ❥ ✐ ❭ ❬ <br />

❬ ❩ ❨ ❖<br />

❨ ❳ ❳ ❖ ❲ ◆<br />

X(b) ❲ ❱ ❱ ◆<br />

X(2)<br />

❯ ▼ ❚ ❚▲<br />

▲<br />

❭ ❬ ❬ ❩ ❨<br />

❢<br />

▼ ❨ ❳ X(c)<br />

◆ ❳<br />

❢ ❢ ❢<br />

❲ ◆ ❲ X(3)<br />

X(d) ❢<br />

❱ ❢ ❢ ❢<br />

❖ ❱ ❯ ❢ ❢ ❢<br />

❖ X(c)<br />

❚ ❚ ❢ ❢ ❢<br />

<br />

2 ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ◗<br />

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ 1 ❢ ❢ ❢<br />

2<br />

◗ ❘ X(f)<br />

X(e) ❘ ❙ ❚ ❚ ❯ ♣ ♣ ♦ ♦ ♥ ♠ ♠ ❧ ❧ ❦ ❦ ❥ ✐<br />

X(1)<br />

X(5)<br />

1<br />

▲ ▼ ◆ ◆ ❖ ❖ ◗ ◗<br />

X(e) ❘ ❘ ❙ ❚ ❚ ❯<br />

2<br />

X(4)<br />

–20–<br />

X(f)<br />

α<br />

✐ ❥ ❦ ❦ ❧ ❧ ♠ ♠ ♥ ♦ ♦ ♣ ♣


Then by Theorem 10 Gr(X) is presented by <str<strong>on</strong>g>the</str<strong>on</strong>g> quiver<br />

⎛<br />

21<br />

2α<br />

(a, 1 1)<br />

22<br />

♣ ♦ ♦ ♥ ♥ ♠ ♠ ❧ ❦ ❦ ❥ ❥ ❚ ❚ ❙ ❙ ❘ ❘ ◗ (b, 2 1)<br />

(a, 1 2)<br />

11 51<br />

Q ′ =<br />

1α<br />

♣ ♦ ♦ ♥ ♥ ♠ ♠ ❧ ❦ ❦ ❥ ❥ ❬ ❬ <br />

❩ ❩ ❨ ❖<br />

❨ ❳ ❳ ❖ ❲ ◆<br />

(b, 2 2) ❲ ❱ ❯ ▼ ❯ ▼ ❚ ❚▲ <br />

❬<br />

<br />

▲ ❬ ❩ ❩ ❨ ❨ ❳ (c, 1 1)<br />

❢ ❢<br />

▼<br />

▼ ❳ ❲ ❲<br />

(d, 3 1) ❢ ❢ ❢<br />

◆ ❱ ❢ ❢ ❢<br />

❖ ❯ ❯ ❢ ❢ ❢<br />

❖ (c,1 2)<br />

❚ ❚<br />

❢ ❢ ❢<br />

<br />

12 ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ <br />

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❢ ❢ ❢<br />

▲ 31 52<br />

▼ ◗ ▼ ❘ (f, 4 1)<br />

◆ (e, 1 1) ❘ ❙ ❖ ❙ ❚ ❖ ❚ ♣ ♦ ♦ ♥ ♥ ♠ ♠ ❧ ❦ ❦ ❥ ❥ <br />

41<br />

◗<br />

(e,<br />

⎜<br />

1 2) ❘ ❘<br />

(f, 4 2)<br />

4α<br />

⎝<br />

❙ ❙ ❚ ❚ ❥<br />

42<br />

❥ ❦ ❦ ❧ ♠ ♠ ♥ ♥ ♦ ♦ ♣ <br />

with relati<strong>on</strong>s<br />

R ′ = {π(ba, 1 1) − π(dc, 1 1), π(ba, 1 2) − π(dc, 1 2)}<br />

∪{(a, i y) i α − j (aα)(a, i x) | a : i → j ∈ Q 1 , α : x → y ∈ Q (i)<br />

1 },<br />

where <str<strong>on</strong>g>the</str<strong>on</strong>g> new arrows are presented by broken arrows.<br />

a<br />

Example 14. Let Q = ( 1 2 ) <strong>and</strong> I := 〈Q〉. Define functors X, X ′ : I → k-Cat by<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> k-linearizati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> following quivers in frames <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> k-functors induced by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

vertex maps expressed by dotted arrows between <str<strong>on</strong>g>the</str<strong>on</strong>g>m:<br />

5α<br />

⎞<br />

⎟<br />

⎠<br />

X :<br />

1 ✼ 2<br />

✼✼✼✼✼✼✼✼<br />

X(a)<br />

α β<br />

✞ ✞✞✞✞✞✞✞✞<br />

3<br />

X(a)<br />

X(1)<br />

X ′ :<br />

1 ✼ ✼✼✼✼✼✼✼✼<br />

α<br />

β<br />

✞ ✞✞✞✞✞✞✞✞<br />

2 X ′ (a) 3<br />

X ′ (1)<br />

X(a)<br />

1<br />

X(2),<br />

X ′ (a)<br />

1<br />

X ′ (a)<br />

X ′ (2).<br />

Then by Theorem 10 Gr(X) is given by <str<strong>on</strong>g>the</str<strong>on</strong>g> following quiver with no relati<strong>on</strong>s<br />

⎛<br />

⎞ ⎛<br />

⎞<br />

11<br />

❅ 12<br />

11 ❅❅❅❅❅❅<br />

❅ 12<br />

1α 1β<br />

❅❅❅❅❅❅<br />

1α 1β<br />

7 777777<br />

(a, 13<br />

1 1)<br />

(a, 1 2) , (a, 1 3) 1 α − (a, 1 1), (a, 1 3) 1 β − (a, 1 2)<br />

∼ 7 777777<br />

= 13<br />

,<br />

⎜<br />

⎝<br />

(a, 1<br />

⎟ ⎜<br />

3)<br />

⎠ ⎝<br />

(a, 1<br />

⎟<br />

3)<br />

⎠<br />

21<br />

–21–<br />

21


<strong>and</strong> Gr(X ′ ) is given by <str<strong>on</strong>g>the</str<strong>on</strong>g> following quiver with a commutativity relati<strong>on</strong><br />

⎛<br />

⎞ ⎛<br />

⎞<br />

11<br />

❅ 11<br />

❅❅❅❅❅❅<br />

❅<br />

1α<br />

1β<br />

❅❅❅❅❅❅<br />

1α<br />

1β<br />

7 777777<br />

12 (a, 1 1) 13 , (a, 1 2) 1 α − (a, 1 1), (a, 1 3) 1 β − (a, 1 1)<br />

∼ 7 777777<br />

= 12 13<br />

.<br />

⎜<br />

⎟ ⎜<br />

⎟<br />

⎝<br />

(a, 1 2) (a, 1<br />

⎠ ⎝<br />

3)<br />

(a, 1 2) (a, 1<br />

⎠<br />

3)<br />

21<br />

21<br />

By using <str<strong>on</strong>g>the</str<strong>on</strong>g> main <str<strong>on</strong>g>the</str<strong>on</strong>g>orem in [3] derived equivalences between X(1) <strong>and</strong> X ′ (1) <strong>and</strong><br />

between X(2) <strong>and</strong> X ′ (2) are glued toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r to have a derived equivalence between Gr(X)<br />

<strong>and</strong> Gr(X ′ ).<br />

References<br />

[1] Asashiba, H.: A generalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Gabriel’s Galois covering functors <strong>and</strong> derived equivalences, J.<br />

Algebra 334 (2011), 109–149.<br />

[2] : Derived equivalences <str<strong>on</strong>g>of</str<strong>on</strong>g> acti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> a category, arXiv:1111.2239.<br />

[3] : Gluing derived equivalences toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r, in preparati<strong>on</strong>.<br />

[4] Revêtements étales et groupe f<strong>on</strong>damental, Springer-Verlag, Berlin, 1971. Séminaire de Géométrie<br />

Algébrique du Bois Marie 1960–1961 (SGA 1), Dirigé par Alex<strong>and</strong>re Gro<str<strong>on</strong>g>the</str<strong>on</strong>g>ndieck. Augmenté de<br />

deux exposés de M. Raynaud, Lecture Notes in Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics, Vol. 224.<br />

[5] Howie, J. M.: Fundamentals <str<strong>on</strong>g>of</str<strong>on</strong>g> Semigroup <strong>Theory</strong>, L<strong>on</strong>d<strong>on</strong> Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical Society M<strong>on</strong>ographs New<br />

Series, 12. Oxford Science Publicati<strong>on</strong>s. The Clarend<strong>on</strong> Press, Oxford University Press, New York,<br />

1995.<br />

[6] Mac Lane, S.: Categories for <str<strong>on</strong>g>the</str<strong>on</strong>g> Working Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matician, Graduate Texts in Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics,<br />

5.Springer-Verlag, New York,1998.<br />

[7] Tamaki, D.: The Gro<str<strong>on</strong>g>the</str<strong>on</strong>g>ndieck c<strong>on</strong>structi<strong>on</strong> <strong>and</strong> gradings for enriched categories, arXiv:0907.0061.<br />

[8] Thomas<strong>on</strong>, R. W.: Homotopy colimits in <str<strong>on</strong>g>the</str<strong>on</strong>g> category <str<strong>on</strong>g>of</str<strong>on</strong>g> small categories, Math. Proc. Cambridge<br />

Philos. Soc., 85(1), 91–109, 1979.<br />

[9] Welker, V., Ziegler, G. M. <strong>and</strong> Zǐvaljević,R. T.: Homotopy colimits—comparis<strong>on</strong> lemmas for combinatorial<br />

applicati<strong>on</strong>s, J. Reine Angew. Math., 509, 117–149, 1999.<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics,<br />

Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Science,<br />

Shizuoka University,<br />

Suruga-ku, Shizuoka 422-8529 JAPAN<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Informati<strong>on</strong> Science <strong>and</strong> Technology,<br />

Graduate School <str<strong>on</strong>g>of</str<strong>on</strong>g> Science <strong>and</strong> Technology,<br />

Shizuoka University,<br />

Suruga-ku, Shizuoka 422-8529 JAPAN<br />

E-mail address: shasash@ipc.shizuoka.ac.jp<br />

E-mail address: f5144005@ipc.shizuoka.ac.jp<br />

–22–


THE LOEWY LENGTH OF TENSOR PRODUCTS FOR DIHEDRAL<br />

TWO-GROUPS<br />

ERIK DARPÖ AND CHRISTOPHER C. GILL<br />

Abstract. The indecomposable modules <str<strong>on</strong>g>of</str<strong>on</strong>g> a dihedral 2-group over a field <str<strong>on</strong>g>of</str<strong>on</strong>g> characteristic<br />

2 were classified by <strong>Ring</strong>el over 30 years ago. However, relatively little is known<br />

about <str<strong>on</strong>g>the</str<strong>on</strong>g> tensor products <str<strong>on</strong>g>of</str<strong>on</strong>g> such modules, except in certain special cases. We describe<br />

here <str<strong>on</strong>g>the</str<strong>on</strong>g> main result <str<strong>on</strong>g>of</str<strong>on</strong>g> our recent work determining <str<strong>on</strong>g>the</str<strong>on</strong>g> Loewy length <str<strong>on</strong>g>of</str<strong>on</strong>g> a tensor product<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> modules for a dihedral 2-group. As a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> this result, we can determine<br />

precisely when a tensor product has a projective direct summ<strong>and</strong>.<br />

1. Introducti<strong>on</strong><br />

Let k be a field <str<strong>on</strong>g>of</str<strong>on</strong>g> positive characteristic p <strong>and</strong> let G be a finite group. The group algebra<br />

kG is a Hopf algebra with coproduct <strong>and</strong> co-unit given by ∆( ∑ g∈G r gg) = ∑ g∈G r gg ⊗ g<br />

<strong>and</strong> ɛ( ∑ g∈G r gg) = ∑ g∈G r g for r g ∈ k. Thus, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a tensor product operati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

category <str<strong>on</strong>g>of</str<strong>on</strong>g> kG-modules. If M <strong>and</strong> N are kG-modules, <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> tensor product <str<strong>on</strong>g>of</str<strong>on</strong>g> M <strong>and</strong><br />

N is <str<strong>on</strong>g>the</str<strong>on</strong>g> module with underlying vector space M ⊗ k N <strong>and</strong> module structure given by<br />

g(m ⊗ n) = ∆(g)(m ⊗ n) = gm ⊗ gn for g ∈ G, m ∈ M, n ∈ N. The tensor product is a<br />

frequently used tool in <str<strong>on</strong>g>the</str<strong>on</strong>g> representati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> finite groups. However, <str<strong>on</strong>g>the</str<strong>on</strong>g> problem<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> determining <str<strong>on</strong>g>the</str<strong>on</strong>g> decompositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a tensor product <str<strong>on</strong>g>of</str<strong>on</strong>g> two modules <str<strong>on</strong>g>of</str<strong>on</strong>g> a finite group G<br />

– <str<strong>on</strong>g>the</str<strong>on</strong>g> Clebsch-Gordan problem – can be extremely difficult.<br />

One approach to underst<strong>and</strong>ing tensor products <str<strong>on</strong>g>of</str<strong>on</strong>g> kG-modules goes via <str<strong>on</strong>g>the</str<strong>on</strong>g> representati<strong>on</strong><br />

ring, or Green ring, <str<strong>on</strong>g>of</str<strong>on</strong>g> kG. The isomorphism classes <str<strong>on</strong>g>of</str<strong>on</strong>g> finite-dimensi<strong>on</strong>al kG-modules<br />

form a semiring, with additi<strong>on</strong> given by <str<strong>on</strong>g>the</str<strong>on</strong>g> direct sum, <strong>and</strong> multiplicati<strong>on</strong> by <str<strong>on</strong>g>the</str<strong>on</strong>g> tensor<br />

product <str<strong>on</strong>g>of</str<strong>on</strong>g> kG-modules. The Green ring, A(kG), is <str<strong>on</strong>g>the</str<strong>on</strong>g> Groe<str<strong>on</strong>g>the</str<strong>on</strong>g>ndieck ring <str<strong>on</strong>g>of</str<strong>on</strong>g> this semiring,<br />

i.e., <str<strong>on</strong>g>the</str<strong>on</strong>g> ring obtained by formally adjoining additive inverses to all elements in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

semiring. Research in this directi<strong>on</strong> was pi<strong>on</strong>eered by J. A. Green [6], who proved <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Green ring <str<strong>on</strong>g>of</str<strong>on</strong>g> a cyclic p-group is semisimple. The questi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> semisimplicity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Green<br />

ring for o<str<strong>on</strong>g>the</str<strong>on</strong>g>r finite groups has been studied by several authors since. Bens<strong>on</strong> <strong>and</strong> Carls<strong>on</strong><br />

[2] gave a method to produce nilpotent elements in a Green ring, <strong>and</strong> determined a quotient<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Green ring which has no nilpotent elements.<br />

This so-called Bens<strong>on</strong>–Carls<strong>on</strong> quotient <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Green ring was studied by Archer [1] in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dihedral 2-groups, who realised it as an integral group ring <str<strong>on</strong>g>of</str<strong>on</strong>g> an abelian,<br />

infinitely generated, torsi<strong>on</strong>-free group. Archer gave a precise statement relating <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

multiplicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> two elements in this infinite group to <str<strong>on</strong>g>the</str<strong>on</strong>g> Ausl<strong>and</strong>er–Reiten quiver <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

kD 4q . The Green ring <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Klein four group V 4 was completely determined by C<strong>on</strong>l<strong>on</strong><br />

[4]; a summary <str<strong>on</strong>g>of</str<strong>on</strong>g> this result can be found in [1].<br />

For <str<strong>on</strong>g>the</str<strong>on</strong>g> dihedral 2-groups D 4q , <str<strong>on</strong>g>the</str<strong>on</strong>g> indecomposable modules, over fields <str<strong>on</strong>g>of</str<strong>on</strong>g> characteristic<br />

2, were classified by <strong>Ring</strong>el [7] over 30 years ago. However, very little progress has been<br />

made towards underst<strong>and</strong>ing <str<strong>on</strong>g>the</str<strong>on</strong>g> behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> tensor product <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> kD 4q -modules. In<br />

–23–


particular, <str<strong>on</strong>g>the</str<strong>on</strong>g> decompositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a tensor product <str<strong>on</strong>g>of</str<strong>on</strong>g> two indecomposable kD 4q -modules is<br />

not known, o<str<strong>on</strong>g>the</str<strong>on</strong>g>r than in some very special cases. One example is <str<strong>on</strong>g>the</str<strong>on</strong>g> work <str<strong>on</strong>g>of</str<strong>on</strong>g> Bessenrodt<br />

[3], classifying <str<strong>on</strong>g>the</str<strong>on</strong>g> endotrivial kD 4q -modules, thus determining <str<strong>on</strong>g>the</str<strong>on</strong>g> kD 4q -modules M for<br />

which <str<strong>on</strong>g>the</str<strong>on</strong>g> tensor product <str<strong>on</strong>g>of</str<strong>on</strong>g> M with its dual M ∗ is <str<strong>on</strong>g>the</str<strong>on</strong>g> direct sum <str<strong>on</strong>g>of</str<strong>on</strong>g> a trivial <strong>and</strong> a<br />

projective module.<br />

In recent work [5], we have c<strong>on</strong>tinued <str<strong>on</strong>g>the</str<strong>on</strong>g> study <str<strong>on</strong>g>of</str<strong>on</strong>g> tensor products <str<strong>on</strong>g>of</str<strong>on</strong>g> kD 4q -modules, determining<br />

completely <str<strong>on</strong>g>the</str<strong>on</strong>g> Loewy length <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> tensor product <str<strong>on</strong>g>of</str<strong>on</strong>g> any two indecomposable<br />

kD 4q -modules. This provides an additi<strong>on</strong>al piece <str<strong>on</strong>g>of</str<strong>on</strong>g> informati<strong>on</strong> towards <str<strong>on</strong>g>the</str<strong>on</strong>g> underst<strong>and</strong>ing<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Green rings <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dihedral 2-groups, <strong>and</strong> gives certain bounds <strong>on</strong> which modules<br />

can occur as direct summ<strong>and</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> a tensor product. In particular, it determines precisely<br />

when a tensor product <str<strong>on</strong>g>of</str<strong>on</strong>g> two modules has a projective direct summ<strong>and</strong>.<br />

The Loewy length l(M) <str<strong>on</strong>g>of</str<strong>on</strong>g> a module M is, by definiti<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> comm<strong>on</strong> length <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

radical series <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> socle series <str<strong>on</strong>g>of</str<strong>on</strong>g> M, that is, l(M) = min{t ∈ N | rad t (kD 4q )M = 0}.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> next secti<strong>on</strong>, we recall <strong>Ring</strong>el’s classificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> indecomposable kD 4q -modules.<br />

Secti<strong>on</strong> 3 gives a summary <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> results in [5], <strong>and</strong> in Secti<strong>on</strong> 4, we give examples illuminating<br />

our results <strong>and</strong> showing how <str<strong>on</strong>g>the</str<strong>on</strong>g>y can be used to determine <str<strong>on</strong>g>the</str<strong>on</strong>g> direct sum<br />

decompositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a tensor product in certain cases.<br />

2. The indecomposable modules <str<strong>on</strong>g>of</str<strong>on</strong>g> dihedral 2-groups<br />

Let q be a 2-power, <strong>and</strong> write D 4q = 〈x, y | x 2 = y 2 = 1, (xy) q = (yx) q 〉 for <str<strong>on</strong>g>the</str<strong>on</strong>g> dihedral<br />

group <str<strong>on</strong>g>of</str<strong>on</strong>g> order 4q. There is an isomorphism <str<strong>on</strong>g>of</str<strong>on</strong>g> algebras<br />

kD 4q ˜→ Λ q :=<br />

k〈X, Y 〉<br />

(X 2 , Y 2 , (XY ) q − (Y X) q ) ,<br />

given by x ↦→ 1 + X <strong>and</strong> y ↦→ 1 + Y . Setting ∆(X) = 1 ⊗ X + X ⊗ 1 + X ⊗ X <strong>and</strong><br />

∆(Y ) = 1 ⊗ Y + Y ⊗ 1 + Y ⊗ Y defines a coproduct <strong>on</strong> Λ q corresp<strong>on</strong>ding under this<br />

isomorphism to <str<strong>on</strong>g>the</str<strong>on</strong>g> Hopf algebra structure <str<strong>on</strong>g>of</str<strong>on</strong>g> kD 4q . Owing to <str<strong>on</strong>g>the</str<strong>on</strong>g> fact that Λ q is a special<br />

biserial algebra, its n<strong>on</strong>-projective modules split into two classes, known as string modules<br />

<strong>and</strong> b<strong>and</strong> modules. We describe both classes <str<strong>on</strong>g>of</str<strong>on</strong>g> modules below.<br />

Let ¯W be <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> words in letters a, b <strong>and</strong> inverse letters a −1 , b −1 such that a or a −1<br />

are always followed by b or b −1 <strong>and</strong> b or b −1 are always followed by a or a −1 . A directed<br />

subword <str<strong>on</strong>g>of</str<strong>on</strong>g> a word w ∈ ¯W is a word w ′ in ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>the</str<strong>on</strong>g> letters {a, b} or {a −1 , b −1 } such that<br />

w = w 1 w ′ w 2 for some words w 1 , w 2 ∈ ¯W. Let W be <str<strong>on</strong>g>the</str<strong>on</strong>g> subset <str<strong>on</strong>g>of</str<strong>on</strong>g> ¯W c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> words<br />

in which all directed subwords are <str<strong>on</strong>g>of</str<strong>on</strong>g> length strictly less than 2q. Define an equivalence<br />

relati<strong>on</strong> ∼ 1 <strong>on</strong> W by w ∼ 1 w ′ if, <strong>and</strong> <strong>on</strong>ly if, w ′ = w or w ′ = w −1 . Given w = l 1 . . . l n ∈ W,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> string module determined by w, denoted by M(w), is <str<strong>on</strong>g>the</str<strong>on</strong>g> n + 1-dimensi<strong>on</strong>al module<br />

with basis e 0 , . . . , e n <strong>and</strong> Λ q -acti<strong>on</strong> given by <str<strong>on</strong>g>the</str<strong>on</strong>g> following schema:<br />

l 1<br />

l<br />

ke 0<br />

ke 1<br />

2<br />

ke 2 . . .<br />

l n−1<br />

l<br />

ke n−1<br />

n<br />

ke n .<br />

If l i ∈ {a −1 , b −1 }, <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding arrow should be interpreted as going in <str<strong>on</strong>g>the</str<strong>on</strong>g> opposite<br />

directi<strong>on</strong>, from ke i−1 to ke i , <strong>and</strong> having <str<strong>on</strong>g>the</str<strong>on</strong>g> label l −1<br />

i . Now X maps e i to e j (j ∈ {i −<br />

1, i + 1}) if <str<strong>on</strong>g>the</str<strong>on</strong>g>re is an arrow ke a i → ke j , <strong>and</strong> as zero if no arrow labelled with a starting<br />

in ke i exists. Similarly, <str<strong>on</strong>g>the</str<strong>on</strong>g> acti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Y is given by arrows labelled with b. Two modules<br />

M(w) <strong>and</strong> M(w ′ ), w, w ′ ∈ W, are isomorphic if, <strong>and</strong> <strong>on</strong>ly if, w ∼ 1 w ′ .<br />

–24–


Next, let W ′ be <str<strong>on</strong>g>the</str<strong>on</strong>g> subset <str<strong>on</strong>g>of</str<strong>on</strong>g> W c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> words w <str<strong>on</strong>g>of</str<strong>on</strong>g> even positive length c<strong>on</strong>taining<br />

letters from both {a, b} <strong>and</strong> {a −1 , b −1 }, <strong>and</strong> such that w is not a power <str<strong>on</strong>g>of</str<strong>on</strong>g> a word <str<strong>on</strong>g>of</str<strong>on</strong>g> smaller<br />

length. Given w = l 1 . . . l m ∈ W ′ , <strong>and</strong> ϕ an indecomposable linear automorphism <str<strong>on</strong>g>of</str<strong>on</strong>g> k n ,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> b<strong>and</strong> module determined by w <strong>and</strong> ϕ, M(w, ϕ), is <str<strong>on</strong>g>the</str<strong>on</strong>g> Λ q -module with underlying<br />

vector space ⊕ m−1<br />

i=0 V i where V i = k n , <strong>and</strong> Λ q -acti<strong>on</strong> specified by <str<strong>on</strong>g>the</str<strong>on</strong>g> following schema:<br />

l m−2<br />

l m−1<br />

V l 1 =ϕ l<br />

0 V 1<br />

2<br />

V 2 · · · V m−2<br />

<br />

V m−1 .<br />

l m<br />

The interpretati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> schema is similar to that for string modules. The elements<br />

l 2 , . . . , l m act as <str<strong>on</strong>g>the</str<strong>on</strong>g> identity map <strong>on</strong> k n , l 1 acts as <str<strong>on</strong>g>the</str<strong>on</strong>g> linear automorphism ϕ (this means<br />

that if l 1 ∈ {a −1 , b −1 } <str<strong>on</strong>g>the</str<strong>on</strong>g>n V 0 is mapped <strong>on</strong>to V 1 by ϕ −1 under ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r X or Y ).<br />

Define ∼ 2 to be <str<strong>on</strong>g>the</str<strong>on</strong>g> equivalence relati<strong>on</strong> <strong>on</strong> W ′ defined by w ∼ 2 w ′ if, <strong>and</strong> <strong>on</strong>ly if,<br />

w <str<strong>on</strong>g>of</str<strong>on</strong>g> w −1 is a cyclic permutati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> w ′ . Two b<strong>and</strong> modules M(w, ϕ) <strong>and</strong> M(w ′ , ψ) are<br />

isomorphic if, <strong>and</strong> <strong>on</strong>ly if, w ∼ 2 w ′ <strong>and</strong> ϕ = φψφ −1 for some linear automorphism φ.<br />

It may be noted that for every w ∈ W ′ <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a w ′ ∈ W with an even number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

maximal directed subwords such that w ∼ 2 w ′ . While <str<strong>on</strong>g>the</str<strong>on</strong>g>re are several different choices<br />

for w ′ , its maximal directed subwords are uniquely determined, as elements in W/ ∼ 1 , by<br />

w.<br />

Every indecomposable n<strong>on</strong>-projective kD 4q -module is isomorphic ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r to a string<br />

or a b<strong>and</strong> module, but not both. There is a single, indecomposable projective module,<br />

kD4q kD 4q . The Loewy length <str<strong>on</strong>g>of</str<strong>on</strong>g> any n<strong>on</strong>-projective module is at most 2q, while<br />

l( kD4q kD 4q ) = 2q + 1.<br />

3. Loewy length <str<strong>on</strong>g>of</str<strong>on</strong>g> tensor products<br />

Here, we give an overview <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> results in [5]. We fix <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> following c<strong>on</strong>venti<strong>on</strong>s<br />

<strong>and</strong> notati<strong>on</strong>. The least natural number is 0. For l < 2q, A l ∈ W is <str<strong>on</strong>g>the</str<strong>on</strong>g> (unique) word <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

length l in <str<strong>on</strong>g>the</str<strong>on</strong>g> letters a, b ending in a, <strong>and</strong> similarly B l ∈ W is <str<strong>on</strong>g>the</str<strong>on</strong>g> word <str<strong>on</strong>g>of</str<strong>on</strong>g> length l in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

letters a, b ending in b.<br />

If M is a module <strong>and</strong> X ⊂ M any set <str<strong>on</strong>g>of</str<strong>on</strong>g> generators, <str<strong>on</strong>g>the</str<strong>on</strong>g>n l(M) = max{l(〈x〉) | x ∈ X},<br />

<strong>and</strong> if N is ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r module <str<strong>on</strong>g>the</str<strong>on</strong>g>n, in a similar fashi<strong>on</strong>, l(M ⊗ N) = max{l(〈x〉 ⊗ N) |<br />

x ∈ X}. Any kD 4q -module that is generated by a single element is isomorphic to ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

M(A l B −1<br />

m ) or M(A l B −1<br />

m , ρ) for some l, m < 2q <strong>and</strong> ρ ∈ k {0}, hence it is sufficient<br />

to determine Loewy lengths <str<strong>on</strong>g>of</str<strong>on</strong>g> tensor products <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se types <str<strong>on</strong>g>of</str<strong>on</strong>g> modules, to solve <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

problem for arbitrary modules M <strong>and</strong> N. Refining <str<strong>on</strong>g>the</str<strong>on</strong>g>se ideas a little, <strong>on</strong>e can prove <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

following results.<br />

Propositi<strong>on</strong> 1. Let M <strong>and</strong> N be kD 4q -modules. If M is a string module corresp<strong>on</strong>ding<br />

to a word w ∈ W with maximal directed subwords w i , i ∈ {1, . . . , m}, <str<strong>on</strong>g>the</str<strong>on</strong>g>n<br />

l(M ⊗ N) = max{l(M(w i ) ⊗ N) | i ∈ {1, . . . , m}}.<br />

Propositi<strong>on</strong> 2. Let M = M(w, ϕ), where w ∈ W ′ <strong>and</strong> ϕ is an indecomposable automorphism<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> k n , n 1. Let w ′ ∈ W ′ be a word with an even number <str<strong>on</strong>g>of</str<strong>on</strong>g> maximal directed<br />

subwords w i , i ∈ {1, . . . , 2m}, such that w ∼ 2 w ′ . If m <strong>and</strong> n are not both equal to 1, <str<strong>on</strong>g>the</str<strong>on</strong>g>n<br />

l(M(w, ϕ) ⊗ N) = max{l(M(w i ) ⊗ N) | i ∈ {1, . . . , 2m}}.<br />

–25–


Propositi<strong>on</strong> 1 <strong>and</strong> 2 leave us with determining <str<strong>on</strong>g>the</str<strong>on</strong>g> Loewy lengths <str<strong>on</strong>g>of</str<strong>on</strong>g> tensor products <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

modules <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> types M(A l ), M(B m ) <strong>and</strong> M(A l Bm −1 , ρ) for l, m < 2q, ρ ∈ k {0}. One<br />

can note that <str<strong>on</strong>g>the</str<strong>on</strong>g>se are precisely <str<strong>on</strong>g>the</str<strong>on</strong>g> n<strong>on</strong>-projective kD 4q -modules whose top <strong>and</strong> socle<br />

are simple modules.<br />

Given x ∈ N, denote by [x] i <str<strong>on</strong>g>the</str<strong>on</strong>g> ith term <str<strong>on</strong>g>of</str<strong>on</strong>g> its binary expansi<strong>on</strong>, i.e., [x] i ∈ {0, 1} such<br />

that x = ∑ i∈N [x] i2 i . Let l, m ∈ N, <strong>and</strong> take a ∈ N to be <str<strong>on</strong>g>the</str<strong>on</strong>g> smallest number such that<br />

[l] i + [m] i 1 for all i a. Set λ = ∑ ia [l] i2 i <strong>and</strong> µ = ∑ ja [m] j2 j . Now define a binary<br />

operati<strong>on</strong> # <strong>on</strong> N by setting<br />

l#m = λ + µ + 2 a − 1 .<br />

If <str<strong>on</strong>g>the</str<strong>on</strong>g> binary expansi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> l <strong>and</strong> m are disjoint, that is, if [l] i + [m] i 1 for all i ∈ N, we<br />

write l ⊥ m. Now observe that if l ⊥ m <str<strong>on</strong>g>the</str<strong>on</strong>g>n a = 0 <strong>and</strong> l#m = l + m, while l#m < l + m<br />

o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise.<br />

Example 3. We have 85#38 = 119. Namely, 85 = 2 0 +2 2 +2 4 +2 6 <strong>and</strong> 38 = 2 1 +2 2 +2 5 ,<br />

hence a = 3 for <str<strong>on</strong>g>the</str<strong>on</strong>g>se two numbers, <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>refore 85#38 = (2 4 + 2 6 ) + 2 5 + 2 3 − 1 = 119.<br />

Clearly, 85#38 = 119 < 123 = 85 + 38, which was to be expected, since 85 ̸⊥ 38.<br />

The relevance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> operati<strong>on</strong> # is that it neatly describes <str<strong>on</strong>g>the</str<strong>on</strong>g> Loewy length <str<strong>on</strong>g>of</str<strong>on</strong>g> a tensor<br />

product <str<strong>on</strong>g>of</str<strong>on</strong>g> uniserial modules, that is, modules <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> type M(A l ) <strong>and</strong> M(B l ). If u is a<br />

generating element in <str<strong>on</strong>g>the</str<strong>on</strong>g> module M(A l ), <strong>and</strong> v a generating element in M(A m ), <str<strong>on</strong>g>the</str<strong>on</strong>g>n<br />

l(〈u ⊗ v〉) = l#m + 1 (observe that u ⊗ v does not generate M(A l ) ⊗ M(A m ), unless l<br />

or m equals zero). Showing this is <str<strong>on</strong>g>the</str<strong>on</strong>g> most important step in <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> our principal<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>orem, which gives <str<strong>on</strong>g>the</str<strong>on</strong>g> Loewy lengths <str<strong>on</strong>g>of</str<strong>on</strong>g> tensor products <str<strong>on</strong>g>of</str<strong>on</strong>g> kD 4q -modules with simple<br />

top <strong>and</strong> simple socle.<br />

Theorem 4. Let l, m ∈ N, l 1 , l 2 , m 1 , m 2 ∈ N {0}, ρ, σ ∈ k {0}.<br />

1. String with string:<br />

{<br />

1 + l#m = 1 + l + m if l ⊥ m,<br />

l(M(A l ) ⊗ M(B m )) =<br />

2 + l#m if l ̸⊥ m,<br />

{<br />

1 + l#m if [l] t = [m] t = 0 for all 0 t < a − 1,<br />

l(M(A l ) ⊗ M(A m )) =<br />

2 + l#m o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise.<br />

where a = min{r ∈ N | [l] t + [m] t 1, ∀t r}.<br />

2. B<strong>and</strong> with string:<br />

l ( M(A l1 B −1<br />

l 2<br />

, ρ) ⊗ M(A m ) ) =<br />

⎧<br />

⎪⎨ 2 + (l 1 − 1)#m if ρ = 1, l 1 = l 2 <strong>and</strong><br />

l 1 ⊥ m, l 1 ⊥ (m − 1),<br />

⎪⎩<br />

l ( M ( )<br />

A l1 B −1<br />

l 2 ⊗ M(Am ) ) o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise.<br />

3. B<strong>and</strong> with b<strong>and</strong>: Let M = M ( A l1 B −1<br />

l 2<br />

, ρ ) , N = M ( A m1 Bm −1<br />

2<br />

, σ ) .<br />

(a) If l 1 ≠ l 2 , <str<strong>on</strong>g>the</str<strong>on</strong>g>n<br />

l(M ⊗ N) = l(M ( )<br />

A l1 B −1<br />

l 2 ⊗ N).<br />

–26–


Assume l 1 = l 2 , m 1 = m 2 .<br />

(b) If l 1 ̸⊥ m 1 , l 1 ̸⊥ (m 1 − 1), (l 1 − 1) ̸⊥ m 1 <str<strong>on</strong>g>the</str<strong>on</strong>g>n<br />

l(M ⊗ N) = 2 + (l 1 − 1)#(m 1 − 1).<br />

(c) If l 1 ⊥ m 1 , (l 1 − 1) ⊥ m 1 , <str<strong>on</strong>g>the</str<strong>on</strong>g>n<br />

{<br />

2 + (l 1 − 1)#(m 1 − 1) if σ = 1,<br />

l(M ⊗ N) =<br />

l 1 + m 1 + 1<br />

o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise.<br />

(d) If l 1 ⊥ m 1 , l 1 ⊥ (m 1 − 1), <str<strong>on</strong>g>the</str<strong>on</strong>g>n<br />

{<br />

2 + (l 1 − 1)#(m 1 − 1) if ρ = 1,<br />

l(M ⊗ N) =<br />

l 1 + m 1 + 1<br />

o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise.<br />

(e) If (l 1 − 1) ⊥ m 1 , l 1 ⊥ (m 1 − 1), <str<strong>on</strong>g>the</str<strong>on</strong>g>n<br />

⎧<br />

⎪⎨ 2 + (l 1 − 1)#(m 1 − 1) if ρ = σ = 1,<br />

l(M ⊗ N) = l 1 + m 1 if ρ = σ ≠ 1,<br />

⎪⎩<br />

l 1 + m 1 + 1<br />

o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise.<br />

We remark that if any <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> statements l ⊥ m, (l − 1) ⊥ m <strong>and</strong> l ⊥ (m − 1) holds<br />

true, <str<strong>on</strong>g>the</str<strong>on</strong>g>n so does precisely <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> remaining <strong>on</strong>es. Hence 3(b)–3(e) in <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>orem<br />

give a complete list <str<strong>on</strong>g>of</str<strong>on</strong>g> cases. As a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 4:1, it is not difficult to prove<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> following sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> inequalities:<br />

(3.1) l(M(A l ) ⊗ M(A m )) l(M(A l ) ⊗ M(B m )) l(M(A l ) ⊗ M(A m+1 )) .<br />

It is entirely possible that each <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se inequalities are identities. This is <str<strong>on</strong>g>the</str<strong>on</strong>g> case for<br />

example if l = 8, m = 9: l(M(A 8 ) ⊗ M(A 9 )) = 2 + 8#9 = 2 + 15 = 2 + 8#10 =<br />

l(M(A 8 ) ⊗ M(A 10 )).<br />

Corollary 5. Let l, m < 2q, 0 < l 1 , l 2 , m 1 , m 2 < 2q, <strong>and</strong> ρ, σ ∈ k {0}.<br />

1. M(A l ) ⊗ M(B m ) has a projective direct summ<strong>and</strong> if, <strong>and</strong> <strong>on</strong>ly if, l + m 2q,<br />

2. M(A l ) ⊗ M(A m ) has a projective direct summ<strong>and</strong> if, <strong>and</strong> <strong>on</strong>ly if, l + m 2q + 1.<br />

3. M(A l1 B −1<br />

l 2<br />

, ρ) ⊗ M(A m ) has a projective direct summ<strong>and</strong> precisely when<br />

max{l 1 + m − 1, l 2 + m} 2q.<br />

4. If l 1 ≠ l 2 or m 1 ≠ m 2 , <str<strong>on</strong>g>the</str<strong>on</strong>g>n M ( A l1 B −1<br />

l 2<br />

, ρ ) ⊗ M ( A m1 Bm −1<br />

2<br />

, σ ) has a projective direct<br />

summ<strong>and</strong> if, <strong>and</strong> <strong>on</strong>ly if,<br />

max{l 1 + m 1 − 1, l 1 + m 2 , l 2 + m 1 , l 2 + m 2 − 1} 2q .<br />

5. If l 1 = l 2 , m 1 = m 2 <str<strong>on</strong>g>the</str<strong>on</strong>g>n M ( A l1 B −1<br />

l 2<br />

, ρ ) ⊗ M ( A m1 Bm −1<br />

2<br />

, σ ) has projective direct<br />

summ<strong>and</strong>s if, <strong>and</strong> <strong>on</strong>ly if,<br />

(a) l 1 ⊥ (m 1 − 1), ρ ≠ σ <strong>and</strong> l 1 + m 1 = 2q, or<br />

(b) l 1 ̸⊥ (m 1 − 1), <strong>and</strong> l 1 + m 1 2q.<br />

We remark that, for l, m < 2q, <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong> l + m 2q implies l ̸⊥ m. Thus, in<br />

particular, in 5(a) above, <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong> l 1 ⊥ (m 1 − 1) is equivalent to (l 1 − 1) ⊥ m 1 , <strong>and</strong><br />

similarly, in 5(b), l 1 ̸⊥ (m 1 − 1) could be replaced by (l 1 − 1) ̸⊥ m 1 .<br />

–27–


4. Examples<br />

Example 6. Let M = M(A 5 B7 −1 B 4 ), N = M(A 6 B4 −1 ). By Propositi<strong>on</strong> 1,<br />

l(M ⊗ N) = max { l(M(w) ⊗ M(w ′ )) | w ∈ {A 5 , B7 −1 , B 4 }, w ′ ∈ {A 6 , B4 −1 } }<br />

= l(M(B −1<br />

7 ) ⊗ M(A 6 )) = l(M(B 7 ) ⊗ M(A 6 )) .<br />

Since 7 ̸⊥ 6, by Theorem 4:1 we have, l(M(B 7 ) ⊗ M(A 6 )) = 2 + 7#6 = 9. Hence, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Loewy length <str<strong>on</strong>g>of</str<strong>on</strong>g> M ⊗ N is 9 <strong>and</strong>, seen as a kD 16 -module, M ⊗ N has a projective direct<br />

summ<strong>and</strong>.<br />

Example 7. By Propositi<strong>on</strong> 1 <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> inequality (3.1), we have<br />

l(M(A l ) ⊗ M(A m+1 B −1<br />

m )) = max{l(M(A l ) ⊗ M(A m+1 )), l(M(A l ) ⊗ M(B m ))}<br />

= l(M(A l ) ⊗ M(A m+1 )) .<br />

for all l, m ∈ N.<br />

Example 8. While it is clear that l(M(A l B −1<br />

l<br />

, 1)⊗N) l(M(A l B −1<br />

l<br />

)⊗N), <str<strong>on</strong>g>the</str<strong>on</strong>g> difference<br />

between <str<strong>on</strong>g>the</str<strong>on</strong>g> lengths <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> two tensor products may be zero, or arbitrarily large. For<br />

example, if N = M(A m ) <strong>and</strong> l ̸⊥ m, <str<strong>on</strong>g>the</str<strong>on</strong>g>n l(M(A l B −1<br />

l<br />

, 1) ⊗ N) = l(M(A l B −1<br />

l<br />

) ⊗ N) by<br />

Theorem 4:2. If, <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r h<strong>and</strong>, l = 2 r <strong>and</strong> m = 2 s with r > s <str<strong>on</strong>g>the</str<strong>on</strong>g>n<br />

while<br />

l(M(A l B −1<br />

l<br />

, 1) ⊗ M(A m )) = 2 + (l − 1)#m = 2 + 2 r − 1 = 1 + 2 r ,<br />

l(M(A l B −1<br />

l<br />

) ⊗ M(A m )) = l(M(B l ) ⊗ M(A m )) = 1 + l + m = 1 + 2 r + 2 s .<br />

Example 9. Let M = M(a) = M(A 1 ) <strong>and</strong> N = M(b(ab) l ) = M(B 2l+1 ) for some l ∈ N.<br />

Now 1 ̸⊥ (2l + 1), <strong>and</strong> 1#(2l + 1) = 2l + 1, so by Theorem 4:1, l(M ⊗ N) = 2l + 3. In this<br />

case, <str<strong>on</strong>g>the</str<strong>on</strong>g> Loewy length actually provides <str<strong>on</strong>g>the</str<strong>on</strong>g> missing piece <str<strong>on</strong>g>of</str<strong>on</strong>g> informati<strong>on</strong> to compute <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

isomorphism type <str<strong>on</strong>g>of</str<strong>on</strong>g> M ⊗ N.<br />

Namely, since k is <str<strong>on</strong>g>the</str<strong>on</strong>g> unique simple module, we have<br />

<strong>and</strong> similarly,<br />

dim soc(M ⊗ N) = dim Hom kD4q (k, M ⊗ N) = dim Hom kD4q (N ∗ , M)<br />

= dim Hom kD4q (N, M) = 1<br />

dim top(M ⊗ N) = dim Hom kD4q (M ⊗ N, k) = 1 .<br />

Hence M ⊗ N is a module with simple top <strong>and</strong> simple socle, <str<strong>on</strong>g>of</str<strong>on</strong>g> dimensi<strong>on</strong> 4(l + 1), <strong>and</strong><br />

Loewy length 2l + 3. A module satisfying <str<strong>on</strong>g>the</str<strong>on</strong>g>se c<strong>on</strong>diti<strong>on</strong>s is indecomposable, <strong>and</strong> must<br />

be isomorphic to M(A 2l+2 B −1<br />

2l+2<br />

, ρ) for some ρ ∈ k {0}. Now if k is <str<strong>on</strong>g>the</str<strong>on</strong>g> prime field, that<br />

is <str<strong>on</strong>g>the</str<strong>on</strong>g> Galois field with two elements, this means that ρ = 1. From this follows that ρ = 1<br />

also in <str<strong>on</strong>g>the</str<strong>on</strong>g> general case, since extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> scalars commutes with taking tensor products.<br />

Hence, we have M ⊗ N ≃ M(A 2l+2 B −1<br />

2l+2 , 1).<br />

–28–


References<br />

[1] L. Archer. On certain quotients <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Green rings <str<strong>on</strong>g>of</str<strong>on</strong>g> dihedral 2-groups. J. Pure Appl. Algebra,<br />

212(8):1888–1897, 2008.<br />

[2] D. J. Bens<strong>on</strong> <strong>and</strong> J. F. Carls<strong>on</strong>. Nilpotent elements in <str<strong>on</strong>g>the</str<strong>on</strong>g> Green ring. J. Algebra, 104(2):329–350,<br />

1986.<br />

[3] Christine Bessenrodt. Endotrivial modules <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Ausl<strong>and</strong>er-Reiten quiver. In Representati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> finite groups <strong>and</strong> finite-dimensi<strong>on</strong>al algebras (Bielefeld, 1991), volume 95 <str<strong>on</strong>g>of</str<strong>on</strong>g> Progr. Math., pages<br />

317–326. Birkhäuser, 1991.<br />

[4] S. B. C<strong>on</strong>l<strong>on</strong>. Certain representati<strong>on</strong> algebras. J. Austral. Math. Soc., 5:83–99, 1965.<br />

[5] E. Darpö <strong>and</strong> C. C. Gill. The Loewy length <str<strong>on</strong>g>of</str<strong>on</strong>g> a tensor product <str<strong>on</strong>g>of</str<strong>on</strong>g> modules <str<strong>on</strong>g>of</str<strong>on</strong>g> a dihedral two-group,<br />

2012. http://arxiv.org/abs/1202.5385.<br />

[6] J. A. Green. The modular representati<strong>on</strong> algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> a finite group. Illinois J. Math, 6:607–619, 1962.<br />

[7] C. M. <strong>Ring</strong>el. The indecomposable representati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dihedral 2-groups. Math. Ann., 214:19–34,<br />

1975.<br />

Darpö: Graduate School <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics, Nagoya University, Furocho, Chikusaku,<br />

Nagoya, Japan<br />

E-mail address: darpo@math.nagoya-u.ac.jp<br />

Gill: Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Algebra, Charles University, Sokolovska 83, Praha 8, 186 75,<br />

Czech Republic<br />

E-mail address: gill@karlin.mff.cuni.cz<br />

–29–


EXAMPLE OF CATEGORIFICATION OF A CLUSTER ALGEBRA<br />

LAURENT DEMONET<br />

Abstract. We present here two detailed examples <str<strong>on</strong>g>of</str<strong>on</strong>g> additive categorificati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

cluster algebra structure <str<strong>on</strong>g>of</str<strong>on</strong>g> a coordinate ring <str<strong>on</strong>g>of</str<strong>on</strong>g> a maximal unipotent subgroup <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

simple Lie group. The first <strong>on</strong>e is <str<strong>on</strong>g>of</str<strong>on</strong>g> simply-laced type (A 3 ) <strong>and</strong> relies <strong>on</strong> an article by<br />

Geiß, Leclerc <strong>and</strong> Schröer. The sec<strong>on</strong>d is <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong> simply-laced type (C 2 ) <strong>and</strong> relies <strong>on</strong> an<br />

article by <str<strong>on</strong>g>the</str<strong>on</strong>g> author <str<strong>on</strong>g>of</str<strong>on</strong>g> this note. This is aimed to be accessible, specially for people<br />

who are not familiar with this subject.<br />

1. Introducti<strong>on</strong>: <str<strong>on</strong>g>the</str<strong>on</strong>g> total positivity problem<br />

Let N be <str<strong>on</strong>g>the</str<strong>on</strong>g> subgroup <str<strong>on</strong>g>of</str<strong>on</strong>g> SL 4 (C) c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> upper triangular matrices with diag<strong>on</strong>al<br />

1. We say that X ∈ N is totally positive if its 12 n<strong>on</strong>-trivial minors are positive real<br />

numbers (a minor is n<strong>on</strong>-trivial if it is not c<strong>on</strong>stant <strong>on</strong> N <strong>and</strong> not product <str<strong>on</strong>g>of</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

minors). As a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> various results <str<strong>on</strong>g>of</str<strong>on</strong>g> Fomin <strong>and</strong> Zelevinsky [3] (see also [1]), in<br />

a (very) special case, we get<br />

Propositi<strong>on</strong> 1 (Fomin-Zelevinsky). X ∈ N is totally positive if <strong>and</strong> <strong>on</strong>ly if <str<strong>on</strong>g>the</str<strong>on</strong>g> minors<br />

∆ 1 4(X), ∆ 12<br />

34(X), ∆ 123<br />

234(X), ∆ 12<br />

24(X), ∆ 2 4(X), ∆ 3 4(X) are positive.<br />

where ∆ l 1...l k<br />

c 1 ...c k<br />

(X) is <str<strong>on</strong>g>the</str<strong>on</strong>g> minor <str<strong>on</strong>g>of</str<strong>on</strong>g> X with rows l 1 , . . . , l k <strong>and</strong> columns c 1 , . . . , c k .<br />

Remark that, as <str<strong>on</strong>g>the</str<strong>on</strong>g> algebraic variety N has dimensi<strong>on</strong> 6, we can not expect to find a<br />

criteri<strong>on</strong> with less than 6 inequalities to check <str<strong>on</strong>g>the</str<strong>on</strong>g> total positivity <str<strong>on</strong>g>of</str<strong>on</strong>g> a matrix.<br />

To prove this, just remark that we have <str<strong>on</strong>g>the</str<strong>on</strong>g> following equality:<br />

∆ 12<br />

24∆ 23<br />

34 = ∆ 123<br />

234∆ 2 4 + ∆ 3 4∆ 12<br />

34<br />

which immediately implies that ∆ 1 4(X), ∆ 12<br />

34(X), ∆ 123<br />

234(X), ∆ 12<br />

24(X), ∆ 2 4(X), ∆ 3 4(X) are<br />

positive if <strong>and</strong> <strong>on</strong>ly if ∆ 1 4(X), ∆ 12<br />

34(X), ∆ 123<br />

234(X), ∆ 23<br />

34(X), ∆ 2 4(X), ∆ 3 4(X) are positive.<br />

Such an equality is called an exchange identity. In Figure 1, we wrote 14 sets <str<strong>on</strong>g>of</str<strong>on</strong>g> minors<br />

which are related by exchange identities whenever <str<strong>on</strong>g>the</str<strong>on</strong>g>y are linked by an edge. As every<br />

minor appears in this graph, it induces <str<strong>on</strong>g>the</str<strong>on</strong>g> previous propositi<strong>on</strong>.<br />

These observati<strong>on</strong>s lead to <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a cluster algebra [4]. A cluster algebra is an<br />

algebra endowed with an additi<strong>on</strong>al combinatorial structure. Namely, a (generally infinite)<br />

set <str<strong>on</strong>g>of</str<strong>on</strong>g> distinguished elements called cluster variables grouped into subsets <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> same<br />

cardinality n, called clusters <strong>and</strong> a finite set {x n+1 , x n+2 , . . . , x m } called <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> coefficients.<br />

For each cluster {x 1 , x 2 , . . . , x n }, <str<strong>on</strong>g>the</str<strong>on</strong>g> extended cluster {x 1 , . . . , x n , x n+1 , . . . , x m }<br />

is a transcendence basis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> algebra. Moreover, each cluster {x 1 , x 2 , . . . , x n } has n<br />

The paper is in a final form <strong>and</strong> no versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> it will be submitted for publicati<strong>on</strong> elsewhere.<br />

–30–


✦<br />

✦<br />

✦<br />

✦<br />

✦<br />

✦<br />

✦<br />

✦<br />

✦<br />

✦<br />

1<br />

4 , 12<br />

34 , 123<br />

234 ,<br />

13<br />

34 , 1 2 , 1 3<br />

✎<br />

✴<br />

1<br />

4 , 12<br />

34 , 123<br />

234 ,<br />

✎ ✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴<br />

✎<br />

❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞<br />

13<br />

34 , 23<br />

34 , ✎<br />

✎<br />

1 ✎<br />

✎<br />

3❄ ✎<br />

❄❄❄❄❄❄❄❄<br />

✎<br />

✎<br />

1<br />

4 , 12<br />

34 , 123<br />

234<br />

❞<br />

,<br />

13<br />

34 , 1 2 , 3 1<br />

4<br />

4 , 12<br />

34 , 123<br />

234 ❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞<br />

,<br />

13<br />

34 , 23<br />

34 , 3 4<br />

✬ ✬✬✬✬✬✬✬✬✬<br />

1<br />

4 , 12<br />

34 , 123<br />

234 ,<br />

12<br />

1<br />

24 , 1 2 , 3 4<br />

4 , 12<br />

34 , 123<br />

234 ,<br />

❉<br />

1 ♦♦♦♦♦ ❉❉❉❉❉❉❉<br />

23<br />

4 , 12<br />

34 , 123<br />

34 , 2 4 , 3 ❩❩❩<br />

4<br />

234 ,<br />

☛<br />

12<br />

24 , 2 4 , 3 4<br />

1<br />

☛<br />

☛<br />

❄<br />

☛<br />

❄❄❄❄❄❄<br />

4 , 12<br />

34 , 123<br />

234 ,<br />

☛<br />

12<br />

24 , 1 2 , 12<br />

23<br />

❩❩❩❩❩❩ 1<br />

☛<br />

☛<br />

4 , 12<br />

34 , 123<br />

234 ,<br />

☛<br />

☛<br />

1 ❧❧❧❧❧❧❧<br />

1<br />

4 , 12<br />

34 , 123<br />

234 ,<br />

12<br />

4 , 12<br />

34 , 123<br />

234 ,<br />

23 , 1 2 , 1 3<br />

12<br />

23<br />

24 , 2 4 , 12<br />

23<br />

34 , 2 4 , 2 3<br />

✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚<br />

1 ♦♦♦♦♦♦♦♦<br />

4 , 12<br />

34 , 123<br />

234 ,<br />

23<br />

34 , 2 3 , 1 3<br />

❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖ ✒ ✒✒✒✒✒✒✒✒✒<br />

1<br />

4 , 12<br />

34 , 123<br />

234 ,<br />

12<br />

23 , 2 4 , 2 3<br />

✩<br />

✩<br />

✩<br />

✩<br />

✩<br />

✩<br />

✩<br />

✩<br />

✩<br />

✩<br />

✩<br />

❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖ ❖<br />

1<br />

4 , 12<br />

34 , 8 88888888888888888888888888888888888888888<br />

123<br />

234 ,<br />

12<br />

23 , 2 3 , 1 3<br />

Figure 1. Exchange graph <str<strong>on</strong>g>of</str<strong>on</strong>g> minors<br />

neighbours obtained by replacing <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> its elements x k by a new <strong>on</strong>e x ′ k<br />

relati<strong>on</strong><br />

related by a<br />

x k x ′ k = M 1 + M 2<br />

where M 1 <strong>and</strong> M 2 are mutually prime m<strong>on</strong>omials in {x 1 , . . . , x k−1 , x k+1 , . . . , x m }, given<br />

by precise combinatorial rules. These replacements, called mutati<strong>on</strong>s <strong>and</strong> denoted by µ k<br />

are involutive. For precise definiti<strong>on</strong>s <strong>and</strong> details about <str<strong>on</strong>g>the</str<strong>on</strong>g>se c<strong>on</strong>structi<strong>on</strong>s, we refer to<br />

[4].<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> previous example, <str<strong>on</strong>g>the</str<strong>on</strong>g> coefficients are ∆ 1 4, ∆ 12<br />

34 <strong>and</strong> ∆ 123<br />

234 <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> cluster variables<br />

are all <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r n<strong>on</strong>-trivial minors. The extended clusters are <str<strong>on</strong>g>the</str<strong>on</strong>g> sets appearing at <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

vertices <str<strong>on</strong>g>of</str<strong>on</strong>g> Figure 1.<br />

–31–


The aim <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> following secti<strong>on</strong>s is to describe examples <str<strong>on</strong>g>of</str<strong>on</strong>g> additive categorificati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> cluster algebras. It c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> enhancing <str<strong>on</strong>g>the</str<strong>on</strong>g> cluster algebra structure with an additive<br />

category, some objects <str<strong>on</strong>g>of</str<strong>on</strong>g> which reflect <str<strong>on</strong>g>the</str<strong>on</strong>g> combinatorial structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> cluster algebra;<br />

moreover, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is an explicit formula, <str<strong>on</strong>g>the</str<strong>on</strong>g> cluster character associating to <str<strong>on</strong>g>the</str<strong>on</strong>g>se particular<br />

objects elements <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> algebra, in a way which is compatible with <str<strong>on</strong>g>the</str<strong>on</strong>g> combinatorial<br />

structure. The examples we develop here rely <strong>on</strong> (abelian) module categories. They are<br />

particular cases <str<strong>on</strong>g>of</str<strong>on</strong>g> categorificati<strong>on</strong>s by exact categories appearing in [6] (simply-laced case)<br />

<strong>and</strong> [2] (n<strong>on</strong> simply-laced case). The study <str<strong>on</strong>g>of</str<strong>on</strong>g> cluster algebras <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir categorificati<strong>on</strong>s<br />

has been particularly successful <str<strong>on</strong>g>the</str<strong>on</strong>g>se last years. For a survey <strong>on</strong> categorificati<strong>on</strong> by<br />

triangulated categories <strong>and</strong> a much more complete bibliography, see [7].<br />

2. The preprojective algebra <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> cluster character<br />

Let Q be <str<strong>on</strong>g>the</str<strong>on</strong>g> following quiver (oriented graph):<br />

α<br />

1 2 3<br />

α ∗<br />

As usual, denote by CQ <str<strong>on</strong>g>the</str<strong>on</strong>g> C-algebra, a basis <str<strong>on</strong>g>of</str<strong>on</strong>g> which is formed by <str<strong>on</strong>g>the</str<strong>on</strong>g> paths (including<br />

0-length paths supported by each <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> three vertices) <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> multiplicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> which is<br />

defined by c<strong>on</strong>catenati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> paths when it is possible <strong>and</strong> vanishes when paths can not be<br />

composed (we write here <str<strong>on</strong>g>the</str<strong>on</strong>g> compositi<strong>on</strong> from left to right, <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trary to <str<strong>on</strong>g>the</str<strong>on</strong>g> usual<br />

compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> maps). Thus, a (right) CQ-module is naturally graded by idempotents<br />

(0-length paths) corresp<strong>on</strong>ding to vertices <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> acti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> arrows seen as elements<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> algebra can naturally be identified with linear maps between <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding<br />

homogeneous subspaces <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> representati<strong>on</strong>. We shall use <str<strong>on</strong>g>the</str<strong>on</strong>g> following right-h<strong>and</strong> side<br />

c<strong>on</strong>venient notati<strong>on</strong>:<br />

⎛<br />

⎞<br />

⎛<br />

⎞<br />

β<br />

β ∗<br />

0 0 0<br />

⎝ ⎠ ⎝ ⎠<br />

−1 1 0<br />

C C 2 C 2<br />

( ) ⎛<br />

1 0<br />

⎞<br />

1 0<br />

⎝ ⎠<br />

0 1<br />

=<br />

2<br />

✂ ✂✂ ❁ ❁❁<br />

1❁ 3 ❁ ✂<br />

2<br />

✂✂<br />

❁ ❁❁<br />

3<br />

where each <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> digits represents a basis vector <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> representati<strong>on</strong> <strong>and</strong> each arrow a<br />

n<strong>on</strong>-zero scalar (1 when not specified) in <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding matrix entry.<br />

Let us now introduce <str<strong>on</strong>g>the</str<strong>on</strong>g> preprojective algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> Q:<br />

Definiti<strong>on</strong> 2. The preprojective algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> Q is defined by<br />

Π Q =<br />

−1<br />

CQ<br />

(αα ∗ , α ∗ α + β ∗ β, ββ ∗ )<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> representati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> which are seen as particular representati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> CQ (in o<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

words, mod Π Q is a full subcategory <str<strong>on</strong>g>of</str<strong>on</strong>g> mod CQ).<br />

–32–


Example 3. Am<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> following representati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> CQ, <str<strong>on</strong>g>the</str<strong>on</strong>g> first <strong>on</strong>e <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d<br />

<strong>on</strong>e are representati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Π Q :<br />

2<br />

1❁ ❁❁<br />

2<br />

✂<br />

2❁ ❁❁<br />

;<br />

✂✂ ❁ ❁❁<br />

✂ ✂✂ ❁ ❁❁<br />

1❁ 1❁ 3 ; ❁<br />

−1 ✂<br />

3 2<br />

✂✂ 1 2 ;<br />

3 ❁<br />

−1 ✂<br />

2<br />

✂✂ .<br />

❁ ❁❁<br />

3<br />

One <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> property, which is discussed in many places (for example in [6]), <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

preprojective algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> Q, fundamental for this categorificati<strong>on</strong>, is<br />

Propositi<strong>on</strong> 4. The category mod Π Q is stably 2-Calabi-Yau. In o<str<strong>on</strong>g>the</str<strong>on</strong>g>r words, for every<br />

X, Y ∈ mod Π Q ,<br />

Ext 1 (X, Y ) ≃ Ext 1 (Y, X) ∗<br />

functorially in X <strong>and</strong> Y , where Ext 1 (Y, X) ∗ is <str<strong>on</strong>g>the</str<strong>on</strong>g> C-dual <str<strong>on</strong>g>of</str<strong>on</strong>g> Ext 1 (Y, X). In particular, it<br />

is a Frobenius category (is has enough projective objects <strong>and</strong> enough injective objects <strong>and</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>y coincide).<br />

Let us now define <str<strong>on</strong>g>the</str<strong>on</strong>g> three following <strong>on</strong>e-parameter subgroups <str<strong>on</strong>g>of</str<strong>on</strong>g> N:<br />

⎛ ⎞ ⎛ ⎞ ⎛ ⎞<br />

1 t 0 0<br />

1 0 0 0<br />

1 0 0 0<br />

x 1 (t) = ⎜0 1 0 0<br />

⎟<br />

⎝0 0 1 0⎠ x 2(t) = ⎜0 1 t 0<br />

⎟<br />

⎝0 0 1 0⎠ x 3(t) = ⎜0 1 0 0<br />

⎟<br />

⎝0 0 1 t⎠ .<br />

0 0 0 1<br />

0 0 0 1<br />

0 0 0 1<br />

For X ∈ mod Π Q <strong>and</strong> any sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> vertices a 1 , a 2 , . . . , a n <str<strong>on</strong>g>of</str<strong>on</strong>g> Q, we denote by<br />

{<br />

}<br />

X i<br />

Φ X,a1 a 2 ...a n<br />

= 0 = X 0 ⊂ X 1 ⊂ · · · ⊂ X n−1 ⊂ X n = X | ∀i ∈ {1, 2, . . . , n}, ≃ S ai<br />

X i−1<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> variety <str<strong>on</strong>g>of</str<strong>on</strong>g> compositi<strong>on</strong> series <str<strong>on</strong>g>of</str<strong>on</strong>g> X <str<strong>on</strong>g>of</str<strong>on</strong>g> type a 1 a 2 . . . a n (S ai is <str<strong>on</strong>g>the</str<strong>on</strong>g> simple module, <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

dimensi<strong>on</strong> 1, supported at vertex a i ). This is a closed algebraic subvariety <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> product<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Grassmannians<br />

Gr 1 (X) × Gr 2 (X) × · · · × Gr n (X).<br />

We denote by χ <str<strong>on</strong>g>the</str<strong>on</strong>g> Euler characteristic. Using results <str<strong>on</strong>g>of</str<strong>on</strong>g> Lusztig <strong>and</strong> Kashiwara-Saito,<br />

Geiß-Leclerc-Schroër proved <str<strong>on</strong>g>the</str<strong>on</strong>g> following result:<br />

Theorem 5 ([6]). Let X ∈ mod Π Q . There is a unique ϕ X ∈ C[N] such that<br />

ϕ X (x a1 (t 1 )x a2 (t 2 ) . . . x a6 (t 6 )) =<br />

∑<br />

i 1 ,i 2 ,...,i 6 ∈N<br />

(<br />

) t<br />

i 1<br />

χ Φ 1 t i 2<br />

2 . . . t i 6<br />

6<br />

i X,a 1<br />

1 a i 2<br />

2 ...a i 6<br />

6 i 1 !i 2 ! . . . i 6 !<br />

for every word a 1 a 2 a 3 a 4 a 5 a 6 representing <str<strong>on</strong>g>the</str<strong>on</strong>g> l<strong>on</strong>gest element <str<strong>on</strong>g>of</str<strong>on</strong>g> S 4 (a i k<br />

k<br />

i k times <str<strong>on</strong>g>of</str<strong>on</strong>g> a k ).<br />

The map ϕ : mod Π Q → C[N] is called a cluster character.<br />

is <str<strong>on</strong>g>the</str<strong>on</strong>g> repetiti<strong>on</strong><br />

Remark 6. (1) The uniqueness in <str<strong>on</strong>g>the</str<strong>on</strong>g> previous <str<strong>on</strong>g>the</str<strong>on</strong>g>orem is easy because it is well known<br />

that<br />

x a1 (t 1 )x a2 (t 2 ) . . . x a6 (t 6 )<br />

runs over a dense subset <str<strong>on</strong>g>of</str<strong>on</strong>g> N ;<br />

–33–


X ∈ mod Π Q S 1 S 2 S 3<br />

1 ❁ ❁❁<br />

2<br />

✂ ✂✂2<br />

1<br />

2 ❁ ❁❁<br />

3<br />

✂ ✂✂3<br />

2<br />

ϕ X ∈ C[N] ∆ 1 2 ∆ 2 3 ∆ 3 4 ∆ 12<br />

23 ∆ 1 3 ∆ 23<br />

34 ∆ 2 4<br />

1[dr]<br />

2❁ 2❁ X ∈ mod Π ❁❁ 1❁ 3<br />

❁❁<br />

✂ ✂✂<br />

Q ❁<br />

1❁ 3<br />

✂<br />

1 ✂✂<br />

3<br />

✂<br />

2<br />

✂✂<br />

2 ❁ ❁❁<br />

3<br />

❁ ❁ ✂<br />

2<br />

✂✂<br />

✂ ✂✂3<br />

✂ ✂✂2<br />

1<br />

ϕ X ∈ C[N] ∆ 13<br />

34 ∆ 12<br />

24 ∆ 123<br />

234 ∆ 12<br />

34 ∆ 1 4<br />

Figure 2. Cluster character<br />

(2) <str<strong>on</strong>g>the</str<strong>on</strong>g> existence is much harder <strong>and</strong> str<strong>on</strong>gly relies <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> semican<strong>on</strong>ical<br />

bases by Lusztig [8]. In particular, <str<strong>on</strong>g>the</str<strong>on</strong>g> fact that it does not depend<br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> choice <str<strong>on</strong>g>of</str<strong>on</strong>g> a 1 a 2 a 3 a 4 a 5 a 6 is not clear a priori (see <str<strong>on</strong>g>the</str<strong>on</strong>g> following examples).<br />

Example 7. We suppose that a 1 a 2 a 3 a 4 a 5 a 6 = 213213. Then<br />

⎛<br />

⎞<br />

1 t 2 + t 5 t 2 t 4 t 2 t 4 t 6<br />

x a1 (t 1 )x a2 (t 2 )x a3 (t 3 )x a4 (t 4 )x a5 (t 5 )x a6 (t 6 ) = ⎜0 1 t 1 + t 4 t 1 t 3 + t 1 t 6 + t 4 t 6<br />

⎟<br />

⎝0 0 1 t 3 + t 6<br />

⎠ .<br />

0 0 0 1<br />

• The module S 1 has <strong>on</strong>ly <strong>on</strong>e compositi<strong>on</strong> series, <str<strong>on</strong>g>of</str<strong>on</strong>g> type 1. Therefore Φ 1 (S 1 ) is<br />

<strong>on</strong>e point <strong>and</strong> Φ a (S 1 ) = ∅ for any o<str<strong>on</strong>g>the</str<strong>on</strong>g>r a. Identifying <str<strong>on</strong>g>the</str<strong>on</strong>g> two members in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

formula <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> previous <str<strong>on</strong>g>the</str<strong>on</strong>g>orem,<br />

ϕ S1 (x a1 (t 1 )x a2 (t 2 )x a3 (t 3 )x a4 (t 4 )x a5 (t 5 )x a6 (t 6 )) = t 2 + t 5 = ∆ 1 2.<br />

• The module<br />

2❁ ❁❁<br />

✂<br />

P 2 = 1<br />

✂✂<br />

❁ 3 ❁ ✂<br />

2<br />

✂✂<br />

has two compositi<strong>on</strong> series, <str<strong>on</strong>g>of</str<strong>on</strong>g> type 2312 <strong>and</strong> 2132. Therefore,<br />

ϕ P2 (x a1 (t 1 )x a2 (t 2 )x a3 (t 3 )x a4 (t 4 )x a5 (t 5 )x a6 (t 6 )) = t 1 t 2 t 3 t 4 = ∆ 12<br />

34.<br />

Remark that, in this case, <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>ly compositi<strong>on</strong> series which is playing a role<br />

is 2132, even if <str<strong>on</strong>g>the</str<strong>on</strong>g> situati<strong>on</strong> is symmetric. This justify <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

previous remark.<br />

The o<str<strong>on</strong>g>the</str<strong>on</strong>g>r indecomposable representati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Π Q <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir cluster character values are<br />

collected in Figure 2.<br />

Two important properties <str<strong>on</strong>g>of</str<strong>on</strong>g> this cluster character were proved by Geiß-Leclerc-Schroër<br />

(see for example [6]):<br />

Propositi<strong>on</strong> 8. Let X, Y ∈ mod Π Q .<br />

(1) ϕ X⊕Y = ϕ X ϕ Y .<br />

–34–


(2) Suppose that dim Ext 1 (X, Y ) = 1 (<strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>refore dim Ext 1 (Y, X) = 1) <strong>and</strong> let<br />

0 → X → T a → Y → 0 <strong>and</strong> 0 → Y → T b → X → 0<br />

be two (unique up to isomorphism) n<strong>on</strong>-split short exact sequences. Then<br />

ϕ X ϕ Y = ϕ Ta + ϕ Tb .<br />

3. Minimal approximati<strong>on</strong>s<br />

This secti<strong>on</strong> recall <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong> <strong>and</strong> elementary properties <str<strong>on</strong>g>of</str<strong>on</strong>g> approximati<strong>on</strong>s. It is<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>re for <str<strong>on</strong>g>the</str<strong>on</strong>g> sake <str<strong>on</strong>g>of</str<strong>on</strong>g> ease. In what follows, mod Π Q can be replaced by any additive<br />

Hom-finite category over a field.<br />

Definiti<strong>on</strong> 9. Let X <strong>and</strong> T be two objects <str<strong>on</strong>g>of</str<strong>on</strong>g> mod Π Q . A left add(T )-approximati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

X is a morphism f : X → T ′ such that<br />

• T ′ ∈ add(T ) (which means that every indecomposable summ<strong>and</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> T ′ is an indecomposable<br />

summ<strong>and</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> T ) ;<br />

• every morphism g : X → T factors through f.<br />

If, moreover, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is no strict direct summ<strong>and</strong> T ′′ <str<strong>on</strong>g>of</str<strong>on</strong>g> T ′ <strong>and</strong> left add(T )-approximati<strong>on</strong><br />

f ′ : X → T ′′ , <str<strong>on</strong>g>the</str<strong>on</strong>g>n f is said to be a minimal left add(T )-approximati<strong>on</strong>.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> same way, we can define<br />

Definiti<strong>on</strong> 10. Let X <strong>and</strong> T be two objects in mod Π Q . A right add(T )-approximati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> X is a morphism f : T ′ → X such that<br />

• T ′ ∈ add(T ) ;<br />

• every morphism g : T → X factors through f.<br />

If, moreover, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is no strict direct summ<strong>and</strong> T ′′ <str<strong>on</strong>g>of</str<strong>on</strong>g> T ′ <strong>and</strong> right add(T )-approximati<strong>on</strong><br />

f ′ : T ′′ → X, <str<strong>on</strong>g>the</str<strong>on</strong>g>n f is said to be a minimal right add(T )-approximati<strong>on</strong>.<br />

Now, a classical propositi<strong>on</strong> which permits to explicitly compute approximati<strong>on</strong>s:<br />

Propositi<strong>on</strong> 11. Let X <strong>and</strong> T ≃ T i 1<br />

1 ⊕ T i 2<br />

2 ⊕ · · · ⊕ T i n n be two objects in mod Π Q (<str<strong>on</strong>g>the</str<strong>on</strong>g> T i ’s<br />

are n<strong>on</strong>-isomorphic indecomposable). For i, j ∈ {1, . . . , n}, we denote by I ij <str<strong>on</strong>g>the</str<strong>on</strong>g> subvector<br />

space <str<strong>on</strong>g>of</str<strong>on</strong>g> Hom(T i , T j ) c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> n<strong>on</strong>-invertible morphisms (I ij = Hom(T i , T j ) if<br />

i ≠ j). Thus, for j ∈ {1, . . . , n}, we obtain a linear map<br />

⊕<br />

i∈{1,...,n}<br />

I ij ⊗ Hom(X, T i ) ϕ j<br />

−→ Hom(X, T j )<br />

(g, f) ↦→ g ◦ f.<br />

Let B j be a basis <str<strong>on</strong>g>of</str<strong>on</strong>g> coker ϕ j lifted to Hom(X, T j ). Then <str<strong>on</strong>g>the</str<strong>on</strong>g> morphism<br />

X (f) j∈{1,...,n},f∈B j<br />

−−−−−−−−−−→<br />

⊕<br />

j∈{1,...,n}<br />

T #B j<br />

j<br />

is a minimal left add(T )-approximati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> X. Moreover, any minimal left add(T )-<br />

approximati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> X is isomorphic to it.<br />

–35–


The previous propositi<strong>on</strong> has a dual versi<strong>on</strong> which permits to compute minimal right<br />

approximati<strong>on</strong>s. In practice, this computati<strong>on</strong> relies <strong>on</strong> searching morphisms up to factorizati<strong>on</strong><br />

through o<str<strong>on</strong>g>the</str<strong>on</strong>g>r objects. There is an explicit example <str<strong>on</strong>g>of</str<strong>on</strong>g> computati<strong>on</strong> in Example<br />

19.<br />

4. Maximal rigid objects <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir mutati<strong>on</strong>s<br />

Let us introduce <str<strong>on</strong>g>the</str<strong>on</strong>g> objects <str<strong>on</strong>g>the</str<strong>on</strong>g> combinatorics <str<strong>on</strong>g>of</str<strong>on</strong>g> which will play <str<strong>on</strong>g>the</str<strong>on</strong>g> role <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> cluster<br />

algebra structure.<br />

Definiti<strong>on</strong> 12. Let X ∈ mod Π Q .<br />

• The module X is said to be rigid if it has no self-extensi<strong>on</strong>, (i.e., Ext 1 (X, X) = 0).<br />

• The module X is said to be basic maximal rigid if it is basic (i.e., it does not<br />

have two isomorphic indecomposable summ<strong>and</strong>s), rigid, <strong>and</strong> maximal for <str<strong>on</strong>g>the</str<strong>on</strong>g>se<br />

two properties.<br />

Remark 13. A basic maximal rigid Π Q -module c<strong>on</strong>tains Π Q as a direct summ<strong>and</strong> (because<br />

Π Q is both projective <strong>and</strong> injective <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>refore has no extensi<strong>on</strong> with any module).<br />

Example 14. The object<br />

1❁ 3 ❁ ✂<br />

2<br />

✂✂ ⊕ ✂<br />

2<br />

✂✂3<br />

⊕ 1 1[dr]<br />

❁ ❁❁<br />

2 ⊕<br />

2❁ ❁❁<br />

3<br />

2❁ ❁❁<br />

✂<br />

⊕ 1<br />

✂✂<br />

✂<br />

❁ 3 ⊕<br />

✂✂3<br />

❁ ✂<br />

2<br />

✂✂ ✂<br />

1<br />

✂✂2 ,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> last three summ<strong>and</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> which are <str<strong>on</strong>g>the</str<strong>on</strong>g> indecomposable projective-injective Π Q -modules,<br />

is basic maximal rigid. It is easy to check that it is basic <strong>and</strong> rigid, but more difficult to<br />

prove that it is maximal for <str<strong>on</strong>g>the</str<strong>on</strong>g>se properties (see [6] for more details).<br />

Remark 15. We can prove that all basic maximal rigid objects have <str<strong>on</strong>g>the</str<strong>on</strong>g> same number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

indecomposable summ<strong>and</strong>s (six in <str<strong>on</strong>g>the</str<strong>on</strong>g> example we are talking about).<br />

The following result permits to define a mutati<strong>on</strong> <strong>on</strong> basic maximal rigid objects. C<strong>on</strong>sidered<br />

as an operati<strong>on</strong> <strong>on</strong> isomorphism classes <str<strong>on</strong>g>of</str<strong>on</strong>g> basic maximal rigid objects, <str<strong>on</strong>g>the</str<strong>on</strong>g> induced<br />

combinatorial structure will corresp<strong>on</strong>d to <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> a cluster algebra.<br />

Theorem 16 ([6]). Let T ≃ T 1 ⊕ T 2 ⊕ T 3 ⊕ P 1 ⊕ P 2 ⊕ P 3 ∈ mod Π Q be basic maximal<br />

rigid such that P 1 , P 2 <strong>and</strong> P 3 are <str<strong>on</strong>g>the</str<strong>on</strong>g> indecomposable projective Π Q -modules <strong>and</strong> T 1 , T 2<br />

<strong>and</strong> T 3 are indecomposable n<strong>on</strong>-projective Π Q -modules. Then, for i ∈ {1, 2, 3}, <str<strong>on</strong>g>the</str<strong>on</strong>g>re are<br />

two (unique) short exact sequences<br />

f f<br />

0 → T i −→ ′<br />

Ta −→ Ti ∗ → 0 <strong>and</strong> 0 → Ti<br />

∗ g g<br />

−→ T ′<br />

b −→ T i → 0<br />

such that<br />

(1) f <strong>and</strong> g are minimal left add(T/T i )-approximati<strong>on</strong>s ;<br />

(2) f ′ <strong>and</strong> g ′ are minimal right add(T/T i )-approximati<strong>on</strong>s ;<br />

(3) Ti ∗ is indecomposable <strong>and</strong> n<strong>on</strong>-projective ;<br />

(4) dim Ext 1 (T i , Ti ∗ ) = dim Ext 1 (T ∗<br />

split ;<br />

(5) µ i (T ) = T/T i ⊕ T ∗<br />

i is basic maximal rigid ;<br />

i , T i ) = 1 <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> two short exact sequences do not<br />

–36–


(6) T a <strong>and</strong> T b do not have comm<strong>on</strong> summ<strong>and</strong>s.<br />

Remark 17. In <str<strong>on</strong>g>the</str<strong>on</strong>g> previous <str<strong>on</strong>g>the</str<strong>on</strong>g>orem, <str<strong>on</strong>g>the</str<strong>on</strong>g> existence <strong>and</strong> uniqueness, regarding <str<strong>on</strong>g>the</str<strong>on</strong>g> first<br />

two c<strong>on</strong>diti<strong>on</strong>s, are automatic, except <str<strong>on</strong>g>the</str<strong>on</strong>g> fact that <str<strong>on</strong>g>the</str<strong>on</strong>g> extremities <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> two short exact<br />

sequences coincide up to order. This fact str<strong>on</strong>gly relies <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> stably 2-Calabi-Yau<br />

property. It implies that µ i is involutive.<br />

Definiti<strong>on</strong> 18. In <str<strong>on</strong>g>the</str<strong>on</strong>g> previous <str<strong>on</strong>g>the</str<strong>on</strong>g>orem, µ i is called <str<strong>on</strong>g>the</str<strong>on</strong>g> mutati<strong>on</strong> in directi<strong>on</strong> i. The<br />

short exact sequences appearing are called exchange sequences.<br />

Example 19. Let<br />

T = 1 ❁ 3 ❁ ✂<br />

2<br />

✂✂ ⊕ ✂<br />

2<br />

✂✂3<br />

⊕ 1 1[dr]<br />

❁ ❁❁<br />

2 ⊕<br />

(<br />

Using Propositi<strong>on</strong> 11, we get a left add T/<br />

2❁ ❁❁<br />

✂<br />

2❁ ⊕ ❁❁<br />

1<br />

✂✂<br />

❁ 3 ⊕ ❁ ✂ ✂✂<br />

3 2<br />

)<br />

-approximati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

✂<br />

2<br />

✂✂3<br />

✂<br />

2<br />

✂✂3 → 1 ❁ 3 ❁ ✂<br />

2<br />

✂✂<br />

<strong>and</strong> computing <str<strong>on</strong>g>the</str<strong>on</strong>g> cokernel, we get <str<strong>on</strong>g>the</str<strong>on</strong>g> exchange sequence:<br />

so that<br />

µ 2 (T ) = 1 ❁ 3 ❁ ✂<br />

2<br />

✂✂<br />

0 → 3<br />

✂ ✂✂<br />

2<br />

⊕ S 1 ⊕ 1 1[dr]<br />

❁ ❁❁<br />

2 ⊕<br />

Doing mutati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> reverse directi<strong>on</strong>:<br />

0 → S 1 →<br />

→ 1 ❁ 3 ❁ ✂<br />

2<br />

✂✂ → S 1 → 0<br />

✂ ✂✂3<br />

✂<br />

1<br />

✂✂2<br />

2 ❁ ❁❁<br />

3<br />

→ 3<br />

✂ ✂✂<br />

2<br />

✂ ✂✂3<br />

✂<br />

1<br />

✂✂2 .<br />

✂<br />

2<br />

✂✂3 :<br />

2❁ ❁❁<br />

✂<br />

⊕ 1<br />

✂✂<br />

✂<br />

❁ 3 ⊕<br />

✂✂3<br />

❁ ✂<br />

2<br />

✂✂ ✂<br />

1<br />

✂✂2 .<br />

→ 0.<br />

Let us now compute µ 1 µ 2 (T ) with its two exchange sequences:<br />

µ 1 µ 2 (T ) =<br />

0 → 1 ❁ 3 ❁ ✂<br />

2<br />

✂✂ → S 1 ⊕<br />

0 → 2<br />

✂ ✂✂<br />

1<br />

✂ ✂✂2<br />

1<br />

1<br />

2❁ ❁❁<br />

✂ ✂✂<br />

❁ 3 ❁ ✂<br />

2<br />

✂✂<br />

→ 2<br />

✂ ✂✂<br />

1<br />

→ 0<br />

→ 1<br />

3<br />

❁ ❁❁<br />

2 ⊕ ✂ ✂✂<br />

✂<br />

1<br />

✂✂2 → 1 ❁ 3 ❁ ✂<br />

2<br />

✂✂ → 0<br />

⊕ S 1 ⊕ 1 1[dr]<br />

2❁ ❁❁<br />

❁ ❁❁<br />

2 ⊕ ✂<br />

2❁ ⊕ ❁❁<br />

1<br />

✂✂<br />

❁ 3 ⊕ ❁ ✂ ✂✂<br />

3 2<br />

–37–<br />

✂ ✂✂3<br />

✂<br />

1<br />

✂✂2 .


Computing inductively all <str<strong>on</strong>g>the</str<strong>on</strong>g> mutati<strong>on</strong>s, we obtain <str<strong>on</strong>g>the</str<strong>on</strong>g> exchange graph <str<strong>on</strong>g>of</str<strong>on</strong>g> maximal<br />

rigid objects <str<strong>on</strong>g>of</str<strong>on</strong>g> Π Q (Figure 3).<br />

Then, using Propositi<strong>on</strong> 8 <strong>and</strong> Theorem 16 toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r with o<str<strong>on</strong>g>the</str<strong>on</strong>g>r technical results, we<br />

get <str<strong>on</strong>g>the</str<strong>on</strong>g> following propositi<strong>on</strong>:<br />

Propositi<strong>on</strong> 20 ([6]). If we project <str<strong>on</strong>g>the</str<strong>on</strong>g> mutati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> maximal rigid objects to C[N] through<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> cluster character ϕ, we get a cluster algebra structure <strong>on</strong> C[N] (in <str<strong>on</strong>g>the</str<strong>on</strong>g> sense <str<strong>on</strong>g>of</str<strong>on</strong>g> [4]).<br />

Moreover, this structure is <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>e proposed combinatorially in [1]. Under this projecti<strong>on</strong>,<br />

we get <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>dence:<br />

{n<strong>on</strong> projective indecomposable objects} ↔ {cluster variables}<br />

{projective indecomposable objects} ↔ {coefficients}<br />

{basic maximal rigid objects} ↔ {extended clusters}<br />

Example 21. Taking <str<strong>on</strong>g>the</str<strong>on</strong>g> notati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Example 19 <strong>and</strong> looking at Figure 2, we get:<br />

<strong>and</strong><br />

∆ 12<br />

∆ 1 2∆ 2 4 = ϕ S1 ϕ 3<br />

✂ ✂✂<br />

2<br />

24∆ 1 3 = ϕ 1 ❁ 3ϕ ❁ ✂<br />

2<br />

✂✂ 2<br />

✂<br />

1<br />

✂✂<br />

= ϕ S1 ϕ 2❁ ❁❁<br />

✂<br />

1<br />

✂✂<br />

❁ 3 ❁ ✂<br />

2<br />

✂✂<br />

= ϕ 1 ❁ 3 + ϕ<br />

❁ ✂<br />

2<br />

✂✂<br />

3<br />

✂ ✂✂<br />

✂<br />

1<br />

✂✂2<br />

= ϕ<br />

S 1 ⊕<br />

1<br />

2❁ ❁❁<br />

✂ ✂✂<br />

❁ 3 ❁ ✂<br />

2<br />

✂✂<br />

+ ϕ 1 ϕ<br />

❁ ❁❁ 3<br />

✂<br />

2<br />

✂✂<br />

✂<br />

1<br />

✂✂2<br />

+ ϕ<br />

1 ❁ ❁❁<br />

= ∆ 12<br />

24 + ∆ 1 4<br />

3<br />

2 ⊕ ✂ ✂✂<br />

✂<br />

1<br />

✂✂2<br />

= ∆ 1 2∆ 12<br />

34 + ∆ 12<br />

23∆ 1 4.<br />

which can be easily checked by h<strong>and</strong>. These are part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> equalities which appear in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Propositi<strong>on</strong> 1.<br />

5. From simply-laced case to general <strong>on</strong>e<br />

Define <str<strong>on</strong>g>the</str<strong>on</strong>g> following symplectic form:<br />

⎛<br />

⎞<br />

0 0 0 1<br />

Ψ = ⎜ 0 0 −1 0<br />

⎟<br />

⎝ 0 1 0 0⎠<br />

−1 0 0 0<br />

<strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> subgroup<br />

N ′ = {M ∈ N| t MΨM = Ψ} or, equivalently N ′ = N Z/2Z<br />

where Z/2Z = 〈g〉 acts <strong>on</strong> N by M ↦→ Ψ −1 ( t M −1 ) Ψ. The group N ′ is a maximal<br />

unipotent subgroup <str<strong>on</strong>g>of</str<strong>on</strong>g> a symplectic group <str<strong>on</strong>g>of</str<strong>on</strong>g> type C 2 .<br />

–38–


✦<br />

✦<br />

✦<br />

✦<br />

✦<br />

✦<br />

✦<br />

✦<br />

✦<br />

✦<br />

✦<br />

✦<br />

✦<br />

✦<br />

✦<br />

✦<br />

✦<br />

<br />

2<br />

✂<br />

✎<br />

✎<br />

✎<br />

✎<br />

✎<br />

✎<br />

✎<br />

✎<br />

❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞ ✂ ❁ ✴<br />

1 3 ⊕ S ✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴<br />

1 ⊕ ✂ ✂ 2<br />

1<br />

2<br />

✂ ✂ ❁ ❄ ❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄<br />

✎<br />

✎<br />

1 3 ⊕ 2 ❁ <br />

3 ⊕ ✂ ✂ 2<br />

1<br />

✎<br />

✎<br />

✎<br />

✎<br />

✎<br />

✎<br />

✂ ❞ ✎<br />

❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞ ✂ ❁ <br />

1 3 ⊕ S 1 ⊕ S 3<br />

2<br />

✂ ✂ ❁ ✬<br />

1 3 ⊕ 2 ❁ ✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬ <br />

3 ⊕ S 3<br />

1❁ 3 ✂ ❉ ❉❉❉❉❉❉❉❉❉❉❉❉❉❉❉❉<br />

♦♦♦♦♦♦♦♦♦♦♦♦♦♦ ✂ ⊕ S 1 ⊕ S 3<br />

2<br />

2❁ <br />

3 ⊕ ✂ ✂ 3<br />

2<br />

❩❩❩❩❩❩❩❩❩❩❩❩❩❩❄ 1❁ 3 ✂ ✂ ❄❄❄❄❄❄❄❄❄❄❄❄❄❄<br />

⊕ ✂ ✂ 3 ⊕ S 3<br />

2 2<br />

1❁ 3 ✂ ❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩<br />

❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧ ✂ ⊕ S 1 ⊕ 1 ❁ <br />

2<br />

2 1❁ <br />

☛<br />

♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦ ❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖✒ ☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛<br />

1❁ 3 ✂ ✂ ⊕ ✂ ✂ 3 ⊕ 1 2 ⊕ S 1 ⊕ ✂ ✂ 2<br />

1<br />

❁<br />

2❁ <br />

<br />

2 2 2<br />

3 ⊕ ✂ ✂ 3 ⊕ S 2<br />

2<br />

2❁ ✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚<br />

<br />

3 ⊕ S 2 ⊕ ✂ ✂ 2<br />

1<br />

✒✒✒✒✒✒✒✒✒✒✒✒✒✒✒✒<br />

⊕ S 3<br />

2<br />

1 ✩<br />

✩<br />

✩<br />

✩<br />

✩<br />

✩<br />

✩<br />

✩<br />

✩<br />

✩<br />

✩<br />

✩<br />

✩<br />

✩<br />

✩<br />

✩<br />

❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖<br />

❁ <br />

2 ⊕ ✂ ✂ 3 ⊕ S 2<br />

2<br />

1❁ ❖✩<br />

8 8888888888888888888888888888888888888888888888888<br />

<br />

2 ⊕ S 2 ⊕ ✂ ✂ 2<br />

1<br />

Figure 3. Exchange graph <str<strong>on</strong>g>of</str<strong>on</strong>g> maximal rigid objects (up to projective summ<strong>and</strong>s)<br />

The <strong>on</strong>ly n<strong>on</strong>-trivial acti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Z/2Z <strong>on</strong> Q induces an acti<strong>on</strong> <strong>on</strong> Π Q <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>refore <strong>on</strong><br />

mod Π Q . Denote by π : C[N] → C[N ′ ] <str<strong>on</strong>g>the</str<strong>on</strong>g> can<strong>on</strong>ical projecti<strong>on</strong>. We can now formulate<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> following result:<br />

Theorem 22 ([2]). (1) If T is a Z/2Z-stable basic maximal rigid Π Q -module, <str<strong>on</strong>g>the</str<strong>on</strong>g>n<br />

µ 1 µ 3 (T ) = µ 3 µ 1 (T ). Moreover, µ 1 µ 3 (T ) <strong>and</strong> µ 2 (T ) are also Z/2Z-stable.<br />

(2) If X ∈ mod Π Q , <str<strong>on</strong>g>the</str<strong>on</strong>g>n π (ϕ X ) = π (ϕ gX ).<br />

(3) If we denote ¯µ 2 = µ 2 <strong>and</strong> ¯µ 1 = µ 1 µ 3 = µ 3 µ 1 , acting <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> Z/2Z-stable<br />

maximal rigid Π Q -modules, ¯µ induces through π ◦ ϕ <str<strong>on</strong>g>the</str<strong>on</strong>g> structure <str<strong>on</strong>g>of</str<strong>on</strong>g> a cluster<br />

algebra <strong>on</strong> C[N ′ ], <str<strong>on</strong>g>the</str<strong>on</strong>g> clusters <str<strong>on</strong>g>of</str<strong>on</strong>g> which are projecti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Z/2Z-stable <strong>on</strong>es <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

C[N].<br />

–39–


Example 23. We have<br />

⎛<br />

⎞<br />

⎛<br />

⎞<br />

1 a 12 a 13 a 14<br />

1 a 12 a 13 a 14<br />

∆ 12 ⎜0 1 a 23 a 24<br />

⎟<br />

23 ⎝0 0 1 a 34<br />

⎠ = a 12a 23 − a 13 <strong>and</strong> ∆ 2 ⎜0 1 a 23 a 24<br />

⎟<br />

4 ⎝0 0 1 a 34<br />

⎠ = a 24.<br />

0 0 0 1<br />

0 0 0 1<br />

Moreover,<br />

t ⎛ ⎞−1<br />

1 a 12 a 13 a 14<br />

⎜<br />

Ψ −1 ⎜⎝ 0 1 a 23 a 24<br />

⎟<br />

0 0 1 a 34<br />

⎠ Ψ<br />

0 0 0 1<br />

⎛<br />

⎞<br />

1 a 34 a 23 a 34 − a 24 a 12 a 23 a 34 − a 12 a 24 − a 13 a 34 + a 14<br />

= ⎜0 1 a 23 a 12 a 23 − a 13<br />

⎟<br />

⎝0 0 1 a 12<br />

⎠<br />

0 0 0 1<br />

which implies that, as expected,<br />

π ( )<br />

∆ 12<br />

23 = πϕ1<br />

❁ ❁❁<br />

<br />

2<br />

= πϕ 3<br />

✂ ✂✂<br />

2<br />

= π ( ∆ 2 4)<br />

.<br />

The exchange graph <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Z/2Z-stable basic maximal rigid objects <str<strong>on</strong>g>of</str<strong>on</strong>g> mod Π Q is presented<br />

<strong>on</strong> Figure 4, in relati<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> exchange graph <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> basic maximal rigid objects.<br />

It permits, in view <str<strong>on</strong>g>of</str<strong>on</strong>g> Figure 1 to describe <str<strong>on</strong>g>the</str<strong>on</strong>g> clusters <str<strong>on</strong>g>of</str<strong>on</strong>g> C[N ′ ]:<br />

<br />

∆ 1 4 = ∆123 234 , ∆12 34 ,<br />

∆ 12<br />

24 , ∆2 4 = ∆12 23<br />

∆ 1 4 = ∆123 234 , ∆12 34 ,<br />

∆ 12<br />

24 , ∆1 2 = ∆3 4 ▼▼▼▼▼▼<br />

∆ 1 4 = ∆123<br />

∆ 13<br />

34 , ∆1 2 = ∆3 4<br />

234 , ∆12 34 ,<br />

.<br />

∆ 1 4 = ∆123 234 , ∆12 34 ,<br />

∆ 2 3 , ∆2 4 = ∆12 23 ▼▼▼▼▼▼<br />

∆ 1 4 = ∆123<br />

∆ 1 4 = ∆123 234 , ∆12 34 ,<br />

∆ 13<br />

34 , ∆23 34 = ∆1 3<br />

<br />

<br />

234 , ∆12 34 ,<br />

∆ 2 3 , ∆23 34 = ∆1 3<br />

6. Scope <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se results <strong>and</strong> c<strong>on</strong>sequences<br />

The example presented here can be generalized to <str<strong>on</strong>g>the</str<strong>on</strong>g> coordinate rings <str<strong>on</strong>g>of</str<strong>on</strong>g>:<br />

• The groups <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> form<br />

N(w) = N ∩ ( w −1 N − w ) <strong>and</strong> N w = N ∩ (B − wB − )<br />

–40–


✦<br />

✦<br />

✦<br />

✦<br />

✦<br />

✦✦<br />

✦<br />

✦✦<br />

✦<br />

✦✦<br />

✦<br />

✦✦<br />

✦<br />

✦✦<br />

✦<br />

✦✦<br />

✦<br />

✦✦<br />

✦<br />

✦✦<br />

✦<br />

✦✦<br />

✦<br />

✦✦<br />

✦<br />

✦✦<br />

✦<br />

✦✦<br />

✦<br />

✦✦<br />

✦<br />

✦✦<br />

✦<br />

✦✦<br />

✦<br />

✦<br />

<br />

2<br />

✂<br />

✎<br />

✎<br />

✎<br />

✎<br />

✎<br />

✎<br />

✎<br />

✎<br />

❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞ ✂ ❁ ✴<br />

1 3 ⊕ S ✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴<br />

1 ⊕ ✂ ✂ 2<br />

1<br />

2<br />

✂ ✂ ❁ ❄ ❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄<br />

✎<br />

✎<br />

1 3 ⊕ 2 ❁ <br />

3<br />

✎<br />

✎<br />

✎<br />

✎<br />

✎<br />

✎<br />

❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨<br />

⊕ ✂ ✂ 2<br />

1<br />

✂ ❞ ✎<br />

❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞ ✂ ❁ <br />

1 3 ⊕ S 1 ⊕ S 3<br />

2<br />

✂ ✂ ❁ ✬<br />

1 3 ⊕ 2 ❁ ✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬ <br />

3 ⊕ S 3<br />

1❁ 3 ✂ ❉ ❉❉❉❉❉❉❉❉❉❉❉❉❉❉❉❉<br />

♦♦♦♦♦♦♦♦♦♦♦♦♦♦ ✂ ⊕ ✚<br />

✚✚<br />

S 1 ⊕ S 3<br />

2<br />

✚<br />

✚<br />

2❁ ✚<br />

✚<br />

✚<br />

✚<br />

❩❩❩❩❩❩❩❩❩❩❩❩❩❩❄ ✚<br />

✚<br />

3 ⊕ ✂ ✂ 3<br />

2<br />

1❁ 3 ❄❄❄❄❄❄❄❄❄❄❄❄❄❄ ✚<br />

✚<br />

✂ ✂ ⊕ ✂ ✂ 3 ⊕ S 3<br />

✚<br />

✚<br />

✚<br />

2 2 ✚<br />

✚<br />

✚✚<br />

✚<br />

1<br />

✚<br />

✚<br />

✚<br />

❁ 3<br />

✚ ✂<br />

✚<br />

✚<br />

❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩<br />

✚<br />

✚<br />

❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧ ✂ ⊕ S 1 ⊕ 1 ❁ <br />

2<br />

2 1❁ ☛<br />

♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦ ❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖✒ ☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛<br />

✚<br />

✚✚<br />

✚<br />

<br />

1❁ 3 ✂ ✂ ⊕ ✚✂ ✂ 3 ⊕ 1 2 ⊕ S 1 ⊕ ✂ ✂ 2<br />

1<br />

❁<br />

2❁ <br />

<br />

2 2 2<br />

3 ⊕ ✂ ✂ 3 ⊕ S 2<br />

2<br />

2❁ ✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚ ✚ ❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬<br />

✒✩<br />

✩<br />

✒ ✩<br />

✩<br />

✩<br />

✩<br />

✩<br />

✩<br />

✩<br />

✩<br />

✩<br />

✩<br />

✩<br />

✩<br />

✩<br />

✩<br />

❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖<br />

<br />

3 ⊕ S 2 ⊕ ✂ ✂ 2<br />

1<br />

1❁ ✒✒✒✒✒✒✒✒✒✒✒✒✒✒✒✒<br />

<br />

2 ⊕ ✂ ✂ 3 ⊕ S 2<br />

2<br />

1❁ ❖✩<br />

8 8888888888888888888888888888888888888888888888888<br />

<br />

2 ⊕ S 2 ⊕ ✂ ✂ 2<br />

1<br />

⊕ S 3<br />

2<br />

Figure 4. Exchange graph <str<strong>on</strong>g>of</str<strong>on</strong>g> Z/2Z-stable maximal rigid objects<br />

where N is a maximal unipotent subgroup <str<strong>on</strong>g>of</str<strong>on</strong>g> a Kac-Moody group, N − its opposite<br />

unipotent group, B − <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding Borel subgroup, <strong>and</strong> w is an element <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

corresp<strong>on</strong>ding Weyl group. In particular, if N is <str<strong>on</strong>g>of</str<strong>on</strong>g> Lie type <strong>and</strong> w is <str<strong>on</strong>g>the</str<strong>on</strong>g> l<strong>on</strong>gest<br />

element, <str<strong>on</strong>g>the</str<strong>on</strong>g>n N(w) = N.<br />

• Partial flag varieties corresp<strong>on</strong>ding to classical Lie groups.<br />

These results were obtained in [5] <strong>and</strong> [6] for <str<strong>on</strong>g>the</str<strong>on</strong>g> simply-laced cases <strong>and</strong> in [2] for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

n<strong>on</strong> simply-laced cases.<br />

It permits for example to prove in <str<strong>on</strong>g>the</str<strong>on</strong>g>se cases that all <str<strong>on</strong>g>the</str<strong>on</strong>g> cluster m<strong>on</strong>omials (products<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> elements <str<strong>on</strong>g>of</str<strong>on</strong>g> a same extended cluster) are linearly independent (result which is now<br />

generalized but was new at that time) <strong>and</strong> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r more specific results (for example <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

–41–


classificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> partial flag varieties <str<strong>on</strong>g>the</str<strong>on</strong>g> coordinate rings <str<strong>on</strong>g>of</str<strong>on</strong>g> which have finite cluster type,<br />

that is a finite number <str<strong>on</strong>g>of</str<strong>on</strong>g> clusters).<br />

References<br />

[1] A. Berenstein, S. Fomin, A. Zelevinsky, Cluster algebras. III. Upper bounds <strong>and</strong> double Bruhat cells,<br />

Duke Math. J. 126 (2005), no. 1, 1–52.<br />

[2] L. Dem<strong>on</strong>et, Categorificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> skew-symmetrizable cluster algebras, Algebr. Represent. <strong>Theory</strong> 14<br />

(2011), no. 6, 1087–1162.<br />

[3] S. Fomin, A. Zelevinsky, Double Bruhat cells <strong>and</strong> total positivity, J. Amer. Math. Soc. 12 (1999), no.<br />

2, 335–380.<br />

[4] , Cluster algebras. I. Foundati<strong>on</strong>s, J. Amer. Math. Soc. 15 (2002), no. 2, 497–529.<br />

[5] C. Geiß, B. Leclerc, J. Schröer, Partial flag varieties <strong>and</strong> preprojective algebras, Ann. Inst. Fourier<br />

(Grenoble) 58 (2008), no. 3, 825–876.<br />

[6] , Kac-Moody groups <strong>and</strong> cluster algebras, Adv. Math. 228 (2011), no. 1, 329–433.<br />

[7] B. Keller, Cluster algebras <strong>and</strong> derived categories, arXiv:1202.4161 [math.RT].<br />

[8] G. Lusztig, Semican<strong>on</strong>ical bases arising from enveloping algebras, Adv. Math. 151 (2000), no. 2,<br />

129–139.<br />

Graduate School <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics<br />

Nagoya University<br />

Furocho, Chikusaku, Nagoya, 464-8602 Japan<br />

E-mail address: Laurent.Dem<strong>on</strong>et@normalesup.org<br />

–42–


HOCHSCHILD COHOMOLOGY OF CLUSTER-TILTED ALGEBRAS OF<br />

TYPES A n AND D n<br />

TAKAHIKO FURUYA AND TAKAO HAYAMI<br />

Abstract. In this note, we study <str<strong>on</strong>g>the</str<strong>on</strong>g> Hochschild cohomology for cluster-tilted algebras<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Dynkin types A n <strong>and</strong> D n . We first show that all cluster-tilted algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> type A n<br />

are (D, A)-stacked m<strong>on</strong>omial algebras (with D = 2 <strong>and</strong> A = 1), <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>n investigate<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>ir Hochschild cohomology rings modulo nilpotence. Also we describe <str<strong>on</strong>g>the</str<strong>on</strong>g> Hochschild<br />

cohomology rings modulo nilpotence for some cluster-tilted algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> type D n which<br />

are derived equivalent to a (D, A)-stacked m<strong>on</strong>omial algebra. Finally we determine <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

structures <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Hochschild cohomology rings modulo nilpotence for algebras in a class<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> some special biserial algebras which c<strong>on</strong>tains a cluster-tilted algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> type D 4 .<br />

1. Introducti<strong>on</strong><br />

The purpose in this note is to study <str<strong>on</strong>g>the</str<strong>on</strong>g> Hochschild cohomology for cluster-tilted algebras<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Dynkin types A n <strong>and</strong> D n .<br />

Throughout this note, let K denote an algebraically closed field. Let A be a finitedimensi<strong>on</strong>al<br />

K-algebra, <strong>and</strong> let A e be <str<strong>on</strong>g>the</str<strong>on</strong>g> enveloping algebra A op ⊗ K A <str<strong>on</strong>g>of</str<strong>on</strong>g> A (hence right<br />

A e -modules corresp<strong>on</strong>d to A-A-bimodules). Then <str<strong>on</strong>g>the</str<strong>on</strong>g> Hochschild cohomology ring HH ∗ (A)<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> A is defined by <str<strong>on</strong>g>the</str<strong>on</strong>g> graded ring<br />

HH ∗ (A) := Ext ∗ A e(A, A) = ⊕ i≥0<br />

Ext i Ae(A, A),<br />

where <str<strong>on</strong>g>the</str<strong>on</strong>g> product is given by <str<strong>on</strong>g>the</str<strong>on</strong>g> Y<strong>on</strong>eda product. It is well-known that HH ∗ (A) is a<br />

graded commutative K-algebra.<br />

Let N A be <str<strong>on</strong>g>the</str<strong>on</strong>g> ideal in HH ∗ (A) generated by all homogeneous nilpotent elements. The<br />

following questi<strong>on</strong> is important in <str<strong>on</strong>g>the</str<strong>on</strong>g> study <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Hochschild cohomology rings for finitedimensi<strong>on</strong>al<br />

algebras:<br />

Questi<strong>on</strong> ([23]). When is <str<strong>on</strong>g>the</str<strong>on</strong>g> Hochschild cohomology ring modulo nilpotence HH ∗ (A)/N A<br />

finitely generated as an algebra?<br />

It is shown that <str<strong>on</strong>g>the</str<strong>on</strong>g> Hochschild cohomology rings modulo nilpotence are finitely generated<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> following cases: blocks <str<strong>on</strong>g>of</str<strong>on</strong>g> a group ring <str<strong>on</strong>g>of</str<strong>on</strong>g> a finite group [12, 25], m<strong>on</strong>omial algebras<br />

[16], self-injective algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> finite representati<strong>on</strong> type [17], finite-dimensi<strong>on</strong>al hereditary<br />

algebras ([19]). On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r h<strong>and</strong>, Xu [26] gave an algebra whose Hochschild cohomology<br />

ring modulo nilpotence is infinitely generated (see also [23]).<br />

In [7], Buan, Marsh <strong>and</strong> Reiten introduced cluster-tilted algebras, <strong>and</strong> since <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g>y<br />

have been <str<strong>on</strong>g>the</str<strong>on</strong>g> subjects <str<strong>on</strong>g>of</str<strong>on</strong>g> many investigati<strong>on</strong>s (see for example [1, 3, 6, 7, 8, 9, 10, 11, 21]).<br />

We briefly recall <str<strong>on</strong>g>the</str<strong>on</strong>g>ir definiti<strong>on</strong>. Let H = KQ be <str<strong>on</strong>g>the</str<strong>on</strong>g> path algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> a finite acyclic<br />

The detailed versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper will be submitted for publicati<strong>on</strong> elsewhere.<br />

–43–


quiver Q over K, <strong>and</strong> let D b (H) <str<strong>on</strong>g>the</str<strong>on</strong>g> bounded derived category <str<strong>on</strong>g>of</str<strong>on</strong>g> H. Then <str<strong>on</strong>g>the</str<strong>on</strong>g> cluster<br />

category C H associated with H is defined to be <str<strong>on</strong>g>the</str<strong>on</strong>g> orbit category D b (H)/τ −1 [1], where τ<br />

denotes <str<strong>on</strong>g>the</str<strong>on</strong>g> Ausl<strong>and</strong>er-Reiten translati<strong>on</strong> in D b (H), <strong>and</strong> [1] is <str<strong>on</strong>g>the</str<strong>on</strong>g> shift functor in D b (H)<br />

([5, 10]). Note that, by [5], C H is a Krull-Schmidt category, <strong>and</strong> by Keller [20] it is also a<br />

triangulated category. A basic object T in C H is called a cluster tilting object, if it satisfies<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> following c<strong>on</strong>diti<strong>on</strong>s ([5]):<br />

(1) Ext 1 C H<br />

(T, T ) = 0; <strong>and</strong><br />

(2) <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> indecomposable summ<strong>and</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> T equals <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> vertices<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Q.<br />

Let ∆ be <str<strong>on</strong>g>the</str<strong>on</strong>g> underlying graph <str<strong>on</strong>g>of</str<strong>on</strong>g> Q. Then <str<strong>on</strong>g>the</str<strong>on</strong>g> endomorphism ring End CH (T ) <str<strong>on</strong>g>of</str<strong>on</strong>g> a cluster<br />

tilting object T in C H is called a cluster-tilted algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> type ∆ ([7]). In this note, we deal<br />

with cluster-tilted algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> Dynkin types A n <strong>and</strong> D n . Note that by [7] <str<strong>on</strong>g>the</str<strong>on</strong>g>se algebras<br />

are <str<strong>on</strong>g>of</str<strong>on</strong>g> finite representati<strong>on</strong> type.<br />

In Secti<strong>on</strong> 2, we show that cluster-tilted algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> type A n are (D, A)-stacked m<strong>on</strong>omial<br />

algebras (with D = 2 <strong>and</strong> A = 1) <str<strong>on</strong>g>of</str<strong>on</strong>g> [18] (Lemma 3), <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>n describe <str<strong>on</strong>g>the</str<strong>on</strong>g> structures<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir Hochschild cohomology rings modulo nilpotence by using [18] (Theorem 4). In<br />

Secti<strong>on</strong> 3, we determine <str<strong>on</strong>g>the</str<strong>on</strong>g> Hochschild cohomology rings modulo nilpotence for some<br />

cluster-tilted algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> type D n which are derived equivalent to a (D, A)-stacked m<strong>on</strong>omial<br />

algebra (Propositi<strong>on</strong> 7). We also describe <str<strong>on</strong>g>the</str<strong>on</strong>g> Hochschild cohomology rings modulo<br />

nilpotence for algebras in a class <str<strong>on</strong>g>of</str<strong>on</strong>g> some special biserial algebras which c<strong>on</strong>tains a clustertilted<br />

algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> type D 4 (Theorem 9).<br />

2. Cluster-tilted algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> type A n <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Hochschild cohomology<br />

rings modulo nilpotence<br />

In this secti<strong>on</strong> we describe <str<strong>on</strong>g>the</str<strong>on</strong>g> structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Hochschild cohomology rings modulo<br />

nilpotence for cluster-tilted algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> type A n (n ≥ 1).<br />

First we recall <str<strong>on</strong>g>the</str<strong>on</strong>g> presentati<strong>on</strong> by <str<strong>on</strong>g>the</str<strong>on</strong>g> quiver <strong>and</strong> relati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> cluster-tilted algebras <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

type A n given in [3, 9]. For a vertex x in a quiver Γ , <str<strong>on</strong>g>the</str<strong>on</strong>g> neighborhood <str<strong>on</strong>g>of</str<strong>on</strong>g> x is <str<strong>on</strong>g>the</str<strong>on</strong>g> full<br />

subquiver <str<strong>on</strong>g>of</str<strong>on</strong>g> Γ c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> x <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> vertices which are end-points <str<strong>on</strong>g>of</str<strong>on</strong>g> arrows starting<br />

at x or start-points <str<strong>on</strong>g>of</str<strong>on</strong>g> arrows ending with x. Let n ≥ 2 be an integer, <strong>and</strong> let Q n be <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

class <str<strong>on</strong>g>of</str<strong>on</strong>g> quivers Q satisfying <str<strong>on</strong>g>the</str<strong>on</strong>g> following:<br />

(1) Q has n vertices.<br />

(2) The neighborhood <str<strong>on</strong>g>of</str<strong>on</strong>g> each vertex v <str<strong>on</strong>g>of</str<strong>on</strong>g> Q is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> following forms:<br />

v❄ ❄❄❄❄ • ❄ ❄❄❄❄ • ❄ ❄❄❄❄<br />

<br />

• v❄ ❄❄❄❄ v<br />

8<br />

• •<br />

8888<br />

• ❄ ❄❄❄❄ • ❄ ❄❄❄❄ • ❄ ❄❄❄❄<br />

v<br />

v❄ ❄❄❄❄ v<br />

8<br />

• •<br />

8888<br />

–44–<br />

• ❄ ❄❄❄❄<br />

v❄ ❄❄❄❄<br />

88 888<br />

• •<br />

• ❄ ❄❄❄❄<br />

v❄ ❄❄❄❄<br />

8<br />

• 8888 •<br />

• ❄ ❄❄❄❄ •<br />

8<br />

v❄ 8888<br />

❄❄❄❄<br />

8<br />

• 8888 •


(3) There is no cycles in <str<strong>on</strong>g>the</str<strong>on</strong>g> underlying graph <str<strong>on</strong>g>of</str<strong>on</strong>g> Q apart from those induced by<br />

oriented cycles c<strong>on</strong>tained in neighborhoods <str<strong>on</strong>g>of</str<strong>on</strong>g> vertices <str<strong>on</strong>g>of</str<strong>on</strong>g> Q.<br />

Let Q 1 = {Q ′ }, where Q ′ is <str<strong>on</strong>g>the</str<strong>on</strong>g> quiver which has a single vertex <strong>and</strong> no arrows. It is<br />

shown in [9, Propositi<strong>on</strong> 2.4] that a quiver Γ is mutati<strong>on</strong> equivalent A n if <strong>and</strong> <strong>on</strong>ly if<br />

Γ ∈ Q n .<br />

In [9], Buan <strong>and</strong> Vatne proved <str<strong>on</strong>g>the</str<strong>on</strong>g> following (see also [3]):<br />

Propositi<strong>on</strong> 1 ([9, Propositi<strong>on</strong> 3.1]). The cluster-tilted algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> type A n are exactly<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> algebras KQ/I, where Q ∈ Q n , <strong>and</strong><br />

(2.1) I = 〈p | p is a path <str<strong>on</strong>g>of</str<strong>on</strong>g> length 2, <strong>and</strong> <strong>on</strong> an oriented 3-cycle in Q〉<br />

As a c<strong>on</strong>sequence we see that cluster-tilted algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> type A n are gentle algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> [2]:<br />

Corollary 2 ([9, Corollary 3.2]). The cluster-tilted algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> type A n are gentle algebras.<br />

Green <strong>and</strong> Snashall [18] introduced (D, A)-stacked m<strong>on</strong>omial algebras by using <str<strong>on</strong>g>the</str<strong>on</strong>g> noti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> overlaps <str<strong>on</strong>g>of</str<strong>on</strong>g> paths, where D <strong>and</strong> A are positive integers with D ≥ 2 <strong>and</strong> A ≥ 1, <strong>and</strong><br />

gave generators <strong>and</strong> relati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Hochschild cohomology rings modulo nilpotence for<br />

(D, A)-stacked m<strong>on</strong>omial algebras completely. (In this note, we do not state <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> (D, A)-stacked algebras <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> result <str<strong>on</strong>g>of</str<strong>on</strong>g> [18]; see for <str<strong>on</strong>g>the</str<strong>on</strong>g>ir details [13, Secti<strong>on</strong> 1], [18,<br />

Secti<strong>on</strong> 3], or [23, Secti<strong>on</strong> 3].)<br />

It is known that (2, 1)-stacked m<strong>on</strong>omial algebras are precisely Koszul m<strong>on</strong>omial algebras<br />

(equivalently, quadratic m<strong>on</strong>omial algebras), <strong>and</strong> also (D, 1)-stacked m<strong>on</strong>omial<br />

algebras are exactly D-Koszul m<strong>on</strong>omial algebras (see [4]). By <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong>, we directly<br />

see that all gentle algebras are (2, 1)-stacked m<strong>on</strong>omial algebras (see [13]). Hence, by<br />

Corollary 2, we have <str<strong>on</strong>g>the</str<strong>on</strong>g> following:<br />

Lemma 3. All cluster-tilted algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> type A n are (2, 1)-stacked m<strong>on</strong>omial algebras, <strong>and</strong><br />

so are Koszul m<strong>on</strong>omial algebras.<br />

By Lemma 3, we can apply <str<strong>on</strong>g>the</str<strong>on</strong>g> result <str<strong>on</strong>g>of</str<strong>on</strong>g> [18] to describe <str<strong>on</strong>g>the</str<strong>on</strong>g> Hochshild cohomology rings<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> cluster-tilted algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> type A n . Applying [18, Theorem 3.4] with Propositi<strong>on</strong> 1, we<br />

have <str<strong>on</strong>g>the</str<strong>on</strong>g> following <str<strong>on</strong>g>the</str<strong>on</strong>g>orem:<br />

Theorem 4. Let n be a positive integer, <strong>and</strong> let Λ = KQ/I be a cluster-tilted algebra<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> type A n , where Q ∈ Q n <strong>and</strong> I is <str<strong>on</strong>g>the</str<strong>on</strong>g> ideal given by (2.1). Suppose that char K ≠ 2.<br />

Moreover, let r be <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> oriented 3-cycles in Q. Then<br />

{<br />

HH ∗ K[x 1 , . . . , x r ]/〈x i x j | i ≠ j〉 if r > 0<br />

(Λ)/N Λ ≃<br />

K if r = 0,<br />

where deg x i = 6 for i = 1, . . . , r.<br />

Example 5. Let Q be <str<strong>on</strong>g>the</str<strong>on</strong>g> following quiver with 17 vertices <strong>and</strong> five oriented 3-cycles:<br />

• ✷ ✷✷✷✷<br />

• ✷ ✷✷✷✷ •<br />

✷ ✷✷✷✷✷✷✷✷✷✷ • ✷ ✷✷✷✷<br />

☞<br />

• • ☞☞☞☞ • • ☞<br />

• ☞☞☞☞ • ☞<br />

• ☞☞☞☞ • <br />

☞<br />

• • ☞☞☞☞ •<br />

–45–<br />

☞<br />

• ✷ ☞☞☞☞<br />

✷✷✷✷<br />


Then Q ∈ Q 17 . Suppose char K ≠ 2, <strong>and</strong> let Λ := KQ/I, where I is <str<strong>on</strong>g>the</str<strong>on</strong>g> ideal generated<br />

by all possible paths <str<strong>on</strong>g>of</str<strong>on</strong>g> length 2 <strong>on</strong> oriented 3-cycles. Then Λ is a cluster-tilted algebra <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

type A 17 , <strong>and</strong> by Theorem 4 we have HH ∗ (Λ)/N Λ ≃ K[x 1 , . . . , x 5 ]/〈x i x j | i ≠ j〉, where<br />

deg x i = 6 (1 ≤ i ≤ 5).<br />

3. Cluster-tilted algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> type D n <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Hochschild cohomology<br />

rings modulo nilpotence<br />

The purpose in this secti<strong>on</strong> is to describe <str<strong>on</strong>g>the</str<strong>on</strong>g> Hochschild cohomology rings modulo<br />

nilpotence for some cluster-tilted algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> type D n (n ≥ 4) which are derived equivalent<br />

to a (D, A)-stacked m<strong>on</strong>omial algebra.<br />

In [3, Theorem 2.3], Bastian, Holm <strong>and</strong> Ladkani introduced specific quivers, called<br />

“st<strong>and</strong>ard forms” for derived equivalences, <strong>and</strong> proved that any cluster-tilted algebra <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

type D n is derived equivalent to <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> cluster-tilted algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> type D n whose quiver is<br />

a st<strong>and</strong>ard form.<br />

It is known that Hochschild cohomology ring is invariant under derived equivalence, so<br />

that it suffices to deal with cluster-tilted algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> type D n whose quivers are st<strong>and</strong>ard<br />

forms. In this note, we c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> following quivers Γ i (1 ≤ i ≤ 4). Clearly <str<strong>on</strong>g>the</str<strong>on</strong>g>se quivers<br />

are st<strong>and</strong>ard forms <str<strong>on</strong>g>of</str<strong>on</strong>g> [3, Theorem 2.3].<br />

Γ 1 :<br />

Γ 2 :<br />

• ❑ ❑❑❑<br />

• • · · · • • with m (≥ 4) vertices,<br />

• <br />

• ❄ ❄❄❄❄❄❄❄❄<br />

a 1 a 0<br />

8<br />

•<br />

88888888 a 2 = b 2<br />

•<br />

❄ ❄❄❄❄❄❄❄❄<br />

with m vertices, where m (≥ 5) is odd, or m = 4,<br />

Γ 3 :<br />

Γ 4 :<br />

b 0 b<br />

8 1<br />

•<br />

88888888<br />

8888 • • ❄ ❄❄❄❄<br />

8<br />

•<br />

•<br />

.<br />

• ❄ ❄❄❄❄ •<br />

• 8<br />

•<br />

8888<br />

• ❄ ❄❄<br />

8<br />

• •<br />

88 • ❄ ❄❄❄❄ •<br />

8<br />

•<br />

8888 • ❄ ❄❄<br />

.<br />

• with 2m vertices, where m ≥ 3.<br />

8<br />

• ❄ ❄❄❄❄ •<br />

88<br />

• • 8<br />

❄ •<br />

8888<br />

❄<br />

•<br />

8<br />

•<br />

88<br />

–46–


Remark 6. For i = 1, . . . , 4, let Λ i = KΓ i /I i be <str<strong>on</strong>g>the</str<strong>on</strong>g> cluster-tilted algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> type D n<br />

corresp<strong>on</strong>ding to Γ i . Then we see from [3, 24] that<br />

(1) Λ 1 is <str<strong>on</strong>g>the</str<strong>on</strong>g> path algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> a Dynkin quiver <str<strong>on</strong>g>of</str<strong>on</strong>g> type D m .<br />

(2) Λ 2 is <str<strong>on</strong>g>of</str<strong>on</strong>g> type D 4 , <strong>and</strong> I 2 = 〈a 1 a 2 , b 1 b 2 , a 2 a 0 , b 2 b 0 , a 0 a 1 − b 0 b 1 〉. We immediately see<br />

that Λ 2 is a special biserial algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> [22], but not a self-injective algebra.<br />

(3) Λ 3 is <str<strong>on</strong>g>of</str<strong>on</strong>g> type D m , <strong>and</strong> I 3 = 〈p | p is a path <str<strong>on</strong>g>of</str<strong>on</strong>g> length m − 1〉. Hence Λ 3 is a<br />

(m−1, 1)-stacked m<strong>on</strong>omial algebra, <strong>and</strong> is also a self-injective Nakayama algebra.<br />

(4) Λ 4 is <str<strong>on</strong>g>of</str<strong>on</strong>g> type D 2m , <strong>and</strong> it follows by [3, Lemma 4.5] that Λ 4 is derived equivalent<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> (2m − 1, 1)-stacked m<strong>on</strong>omial algebra Λ ′ = KQ ′ /I ′ , where Q ′ is <str<strong>on</strong>g>the</str<strong>on</strong>g> cyclic<br />

quiver with 2m vertices<br />

1 2<br />

• • ❄ ❄❄❄❄<br />

2m 8<br />

•<br />

8888 • 3<br />

.<br />

7 • ❄ ❄❄❄❄ • 4<br />

• 8<br />

•<br />

8888<br />

6 5<br />

<strong>and</strong> I ′ is generated by all paths <str<strong>on</strong>g>of</str<strong>on</strong>g> length 2m − 1. Note that Λ ′ is a self-injective<br />

Nakayama algebra, <strong>and</strong> moreover is a cluster-tilted algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> type D 2m ([21, 24]).<br />

In [19], Happel described <str<strong>on</strong>g>the</str<strong>on</strong>g> Hochschild cohomology for path algebras. Using this result<br />

<strong>and</strong> [18, Theorem 3.4], we have <str<strong>on</strong>g>the</str<strong>on</strong>g> following propositi<strong>on</strong>:<br />

Propositi<strong>on</strong> 7. For <str<strong>on</strong>g>the</str<strong>on</strong>g> algebras Λ 1 , Λ 3 <strong>and</strong> Λ 4 above, we have<br />

HH ∗ (Λ 1 ) ≃ HH ∗ (Λ 1 )/N Λ1 ≃ K<br />

HH ∗ (Λ 3 )/N Λ3 ≃ HH ∗ (Λ 4 )/N Λ4 ≃ K[x].<br />

Finally we describe <str<strong>on</strong>g>the</str<strong>on</strong>g> Hochschild cohomology ring modulo nilpotence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> algebra<br />

A k := Γ 2 /J k , where k ≥ 0 <strong>and</strong> J k is <str<strong>on</strong>g>the</str<strong>on</strong>g> ideal generated by <str<strong>on</strong>g>the</str<strong>on</strong>g> following elements:<br />

(a 1 a 2 a 0 ) k a 1 a 2 , b 1 b 2 , (a 2 a 0 a 1 ) k a 2 a 0 , b 2 b 0 , (a 0 a 1 a 2 ) k a 0 a 1 − b 0 b 1 .<br />

If k = 0, <str<strong>on</strong>g>the</str<strong>on</strong>g>n J 0 = I 2 , <strong>and</strong> so A 0 = Γ 2 /J 0 coincides with <str<strong>on</strong>g>the</str<strong>on</strong>g> algebra Λ 2 . Note that, for<br />

all k ≥ 0, A k is a special biserial algebra <strong>and</strong> not a self-injective algebra.<br />

Now <str<strong>on</strong>g>the</str<strong>on</strong>g> dimensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Hochschild cohomology groups <str<strong>on</strong>g>of</str<strong>on</strong>g> A k are given as follows:<br />

Theorem 8 ([14]). For k ≥ 0 <strong>and</strong> i ≥ 0 we have<br />

⎧<br />

k + 1 if i ≡ 0 (mod 6)<br />

k + 1 if i ≡ 1 (mod 6)<br />

k if i ≡ 2 (mod 6)<br />

⎪⎨<br />

dim K HH i k + 1 if i ≡ 3 (mod 6) <strong>and</strong> char K | 3k + 2<br />

(A k ) =<br />

k if i ≡ 3 (mod 6) <strong>and</strong> char K ∤ 3k + 2<br />

k + 1 if i ≡ 4 (mod 6) <strong>and</strong> char K | 3k + 2<br />

k if i ≡ 4 (mod 6) <strong>and</strong> char K ∤ 3k + 2<br />

⎪⎩<br />

k if i ≡ 5 (mod 6).<br />

–47–


Moreover <str<strong>on</strong>g>the</str<strong>on</strong>g> Hochschild cohomology ring modulo nilpotence <str<strong>on</strong>g>of</str<strong>on</strong>g> A k is given as follows:<br />

Theorem 9 ([15]). For k ≥ 0, we have<br />

HH ∗ (A k )/N Ak ≃ K[x], where deg x =<br />

Hence HH ∗ (A k )/N Ak<br />

(k ≥ 0) is finitely generated as an algebra.<br />

{<br />

3 if k = 0 <strong>and</strong> char K = 2<br />

6 o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise.<br />

Remark 10. It seems that most <str<strong>on</strong>g>of</str<strong>on</strong>g> computati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Hochschild cohomology rings modulo<br />

nilpotence for cluster-tilted algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> type D n except those in <str<strong>on</strong>g>the</str<strong>on</strong>g> derived equivalence<br />

classes <str<strong>on</strong>g>of</str<strong>on</strong>g> Λ i (1 ≤ i ≤ 4) are open questi<strong>on</strong>s.<br />

References<br />

[1] I. Assem, T. Brüstle <strong>and</strong> R. Schiffler, Cluster-tilted algebras as trivial extensi<strong>on</strong>s, Bull. L<strong>on</strong>d<strong>on</strong> Math.<br />

Soc. 40 (2008), 151–162.<br />

[2] I. Assem <strong>and</strong> A. Skowroński, Iterated tilted algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> type Ãn, Math. Z. 195 (1987), 269–290.<br />

[3] J. Bastian, T. Holm <strong>and</strong> S. Ladkani, Derived equivalences for cluster-tilted algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> Dynkin type D,<br />

arXiv:1012.4661.<br />

[4] R. Berger, Koszulity for n<strong>on</strong>quadratic algebras, J. Algebra 239 (2001), 705–734.<br />

[5] A. B. Buan, R. Marsh, M. Reineke, I. Reiten <strong>and</strong> G. Todorov, Tilting <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <strong>and</strong> cluster combinatorics,<br />

Adv. Math. 204 (2006), 572–618.<br />

[6] A. B. Buan, R. Marsh <strong>and</strong> I. Reiten, Cluster-tilted algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> finite representati<strong>on</strong> type, J. Algebra<br />

306 (2006), 412–431.<br />

[7] A. B. Buan, R. Marsh <strong>and</strong> I. Reiten, Cluster-tilted algebras, Trans. Amer. Math Soc. 359, (2007),<br />

323–332 (electr<strong>on</strong>ic).<br />

[8] A. B. Buan, R. Marsh <strong>and</strong> I. Reiten, Cluster mutati<strong>on</strong> via quiver representati<strong>on</strong>s, Comment. Math.<br />

Helv. 83 (2008), 143–177.<br />

[9] A. B. Buan <strong>and</strong> D. F. Vatne, Derived equivalence classificati<strong>on</strong> for cluster-tilted algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> type A n ,<br />

J. Algebra 319 (2008), 2723–2738.<br />

[10] P. Caldero, F. Chapot<strong>on</strong> <strong>and</strong> R. Schiffler, Quivers with relati<strong>on</strong>s arising from clusters (A n case),<br />

Trans. Amer. Math. Soc. 358 (2006), 1347–1364.<br />

[11] P. Caldero, F. Chapot<strong>on</strong> <strong>and</strong> R. Schiffler, Quivers with relati<strong>on</strong>s <strong>and</strong> cluster tilted algebras, Algebr.<br />

Represent. <strong>Theory</strong> 9 (2006), 359–376.<br />

[12] L. Evens, The cohomology ring <str<strong>on</strong>g>of</str<strong>on</strong>g> a finite group, Trans. Amer. Math. Soc. 101 (1961), 224–239.<br />

[13] T. Furuya <strong>and</strong> N. Snashall, Support varieties modules over stacked m<strong>on</strong>omial algebras, Comm. Algebra<br />

39 (2011), 2926–2942.<br />

[14] T. Furuya, A projective bimodule resoluti<strong>on</strong> <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Hochschild cohomology for a cluster-tilted algebra<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> type D 4 , preprint.<br />

[15] T. Furuya <strong>and</strong> T. Hayami, Hochschild cohomology rings for cluster-tilted algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> type D 4 , in<br />

preparati<strong>on</strong>.<br />

[16] E. L. Green, N. Snashall <strong>and</strong> Ø. Solberg, The Hochschild cohomology ring <str<strong>on</strong>g>of</str<strong>on</strong>g> a self-injective algebra<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> finite representati<strong>on</strong> type, Proc. Amer. Math. Soc. 131 (2003), 3387–3393.<br />

[17] E. L. Green, N. Snashall <strong>and</strong> Ø. Solberg, The Hochschild cohomology ring modulo nilpotence <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

m<strong>on</strong>omial algebra, J. Algebra Appl. 5 (2006), 153–192.<br />

[18] E. L. Green <strong>and</strong> N. Snashall, The Hochschild cohomology ring modulo nilpotence <str<strong>on</strong>g>of</str<strong>on</strong>g> a stacked m<strong>on</strong>omial<br />

algebra, Colloq. Math. 105 (2006), 233–258.<br />

[19] D. Happel, The Hochschild cohomology <str<strong>on</strong>g>of</str<strong>on</strong>g> finite-dimensi<strong>on</strong>al algebras, Springer Lecture Notes in<br />

Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics 1404 (1989), 108–126.<br />

[20] B. Keller, On triangulated orbit categories, Documenta Math. 10 (2005), 551–581.<br />

[21] C. M. <strong>Ring</strong>el, The self-injective cluster-tilted algebras, Arch. Math. 91 (2008), 218–225.<br />

–48–


[22] A. Skowroński <strong>and</strong> J. Waschbüsch, Representati<strong>on</strong>-finite biserial algebras, J. Reine und Angew. Math.<br />

345 (1983), 172–181.<br />

[23] N. Snashall, Support varieties <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Hochschild ohomology ring modulo nilpotence <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 41st <str<strong>on</strong>g>Symposium</str<strong>on</strong>g> <strong>on</strong> <strong>Ring</strong> <strong>Theory</strong> <strong>and</strong> Representati<strong>on</strong> <strong>Theory</strong>, 68–82, Symp. <strong>Ring</strong> <strong>Theory</strong><br />

Represent. <strong>Theory</strong> Organ. Comm., Tsukuba, 2009.<br />

[24] D. F. Vatne, The mutati<strong>on</strong> class <str<strong>on</strong>g>of</str<strong>on</strong>g> D n quivers, Comm. Algebra 38 (2010), 1137–1146.<br />

[25] B. B. Venkov, Cohomology algebras for some classifying spaces, Dokl. Akad. Nauk SSSR 127 (1959),<br />

943–944.<br />

[26] F. Xu, Hochschild <strong>and</strong> ordinary cohomology rings <str<strong>on</strong>g>of</str<strong>on</strong>g> small categories, Adv. Math. 219 (2008), 1872–<br />

1893.<br />

Takahiko Furuya<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics<br />

Tokyo University <str<strong>on</strong>g>of</str<strong>on</strong>g> Science<br />

1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601 JAPAN<br />

E-mail address: furuya@ma.kagu.tus.ac.jp<br />

Takao Hayami<br />

Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Engineering<br />

Hokkai-Gakuen University<br />

4-1-40, Asahi-machi, Toyohira-ku, Sapporo, JAPAN<br />

E-mail address: hayami@ma.kagu.tus.ac.jp<br />

–49–


DERIVED AUTOEQUIVALENCES AND BRAID RELATIONS<br />

JOSEPH GRANT<br />

Abstract. We will c<strong>on</strong>sider braid relati<strong>on</strong>s between autoequivalences <str<strong>on</strong>g>of</str<strong>on</strong>g> derived categories<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> symmetric algebras. We first recall <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> spherical twists for<br />

symmetric algebras <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> braid relati<strong>on</strong>s that <str<strong>on</strong>g>the</str<strong>on</strong>g>y satisfy, as illustrated by Brauer<br />

tree algebras. Then we explain <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> periodic twists, which generalise<br />

spherical twists for symmetric algebras. Finally, we explain a lifting <str<strong>on</strong>g>the</str<strong>on</strong>g>orem for periodic<br />

twists, <strong>and</strong> show how this gives a new interpretati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> acti<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> derived<br />

Picard group <str<strong>on</strong>g>of</str<strong>on</strong>g> lifts <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>on</strong>gest elements <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> symmetric group to <str<strong>on</strong>g>the</str<strong>on</strong>g> braid group.<br />

1. Preliminaries<br />

Let k be an algebraically closed field. All algebras we c<strong>on</strong>sider will be finite-dimensi<strong>on</strong>al<br />

k-algebras, <strong>and</strong> for simplicity we will also assume that A is basic. We will denote <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

category <str<strong>on</strong>g>of</str<strong>on</strong>g> finite-dimensi<strong>on</strong>al left A-modules by A -mod, <strong>and</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> finite-dimensi<strong>on</strong>al right<br />

A-modules by mod- A.<br />

Given an algebra A <strong>and</strong> a left (or right) A-module M, we have a right (or left, respectively)<br />

A-module M ∗ = Hom k (M, k) with A-acti<strong>on</strong> fa(m) = f(am) for m ∈ M, f ∈ M ∗ ,<br />

<strong>and</strong> a ∈ A. This gives a duality<br />

(−) ∗ : A -mod ∼ → mod- A.<br />

Similarly, if M is an A-B-bimodule for algebras A <strong>and</strong> B, <str<strong>on</strong>g>the</str<strong>on</strong>g>n M ∗ is a B-A-bimodule.<br />

There is ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r way to c<strong>on</strong>struct a right module from M ∈ A -mod: we set M ∨ =<br />

Hom A (M, A), where <str<strong>on</strong>g>the</str<strong>on</strong>g> acti<strong>on</strong> is given here by fa(m) = f(m)a for m ∈ M, f ∈ M ∨ ,<br />

<strong>and</strong> a ∈ A. This defines a functor<br />

(−) ∨ : A -mod → mod- A.<br />

but in general this is not an equivalence. However, in <str<strong>on</strong>g>the</str<strong>on</strong>g> cases we c<strong>on</strong>sider below this<br />

will be an equivalence.<br />

Any algebra A has a natural structure <str<strong>on</strong>g>of</str<strong>on</strong>g> an A-A-bimodule given by <str<strong>on</strong>g>the</str<strong>on</strong>g> multiplicati<strong>on</strong>.<br />

We say that A is a symmetric algebra if <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists an isomorphism <str<strong>on</strong>g>of</str<strong>on</strong>g> A-A-bimodules<br />

A ∼ → A ∗ . Symmetric algebras have various equivalent definiti<strong>on</strong>s: <strong>on</strong>e is that (−) ∗ <strong>and</strong><br />

(−) ∨ are natually isomorphic functors, <strong>and</strong> ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r is a Calabi-Yau type c<strong>on</strong>diti<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

derived category. For more informati<strong>on</strong> <strong>on</strong> this, we refer <str<strong>on</strong>g>the</str<strong>on</strong>g> reader to [Ric2, Secti<strong>on</strong> 3].<br />

We will be interested in bounded derived categories <str<strong>on</strong>g>of</str<strong>on</strong>g> module categories over algebras<br />

A, which we will denote D b (A). We refer <str<strong>on</strong>g>the</str<strong>on</strong>g> reader to [Wei, Chapter 10] for <str<strong>on</strong>g>the</str<strong>on</strong>g>ir definiti<strong>on</strong><br />

<strong>and</strong> basic properties. In partuicular, we will study autoequivalences <str<strong>on</strong>g>of</str<strong>on</strong>g> D b (A). Clearly <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

autoequivalences form a group, but in fact we can restrict ourselves to a particular subset.<br />

One way to define an end<str<strong>on</strong>g>of</str<strong>on</strong>g>unctor <str<strong>on</strong>g>of</str<strong>on</strong>g> D b (A) is to take <str<strong>on</strong>g>the</str<strong>on</strong>g> derived tensor product with<br />

The detailed versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper will be submitted for publicati<strong>on</strong> elsewhere.<br />

–50–


a cochain complex X <str<strong>on</strong>g>of</str<strong>on</strong>g> A-A-bimodules. If this gives us an equivalence <str<strong>on</strong>g>of</str<strong>on</strong>g> triangulated<br />

categories, we call X a two-sided tilting complex [Ric1]. Rickard showed that tensoring<br />

with two-sided tilting complexes does give a subgroup <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> group <str<strong>on</strong>g>of</str<strong>on</strong>g> autoequivalences<br />

[Ric1]. We call this subgroup <str<strong>on</strong>g>the</str<strong>on</strong>g> derived Picard group <str<strong>on</strong>g>of</str<strong>on</strong>g> A, <strong>and</strong> denote it DPic(A). Here<br />

we can work with ordinary tensor products, <strong>and</strong> will not need to c<strong>on</strong>sider derived tensor<br />

products, as all our two-sided tilting complexes will be presented as cochain complexes <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

A-A-bimodules which are projective <strong>on</strong> both sides.<br />

2. Spherical Twists <strong>and</strong> Braid Relati<strong>on</strong>s<br />

Let A be a symmetric algebra <strong>and</strong> let P be a projective A-module. Following [ST], we<br />

say that P is spherical if End A (P ) ∼ = k[x]/〈x 2 〉. In this case, c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> cochain complex<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> A-A-bimodules<br />

P ⊗ k P ∨ → A<br />

c<strong>on</strong>centrated in degrees 1 <strong>and</strong> 0, where <str<strong>on</strong>g>the</str<strong>on</strong>g> n<strong>on</strong>zero map is given by evaluati<strong>on</strong>. We will<br />

denote this complex by X P . It defines an object in <str<strong>on</strong>g>the</str<strong>on</strong>g> bounded derived category D b (A),<br />

which we will also denote by X P . Then tensoring with X P defines an end<str<strong>on</strong>g>of</str<strong>on</strong>g>unctor<br />

which we denote by F P .<br />

X P ⊗ A − : D b (A) → D b (A)<br />

Theorem 1 ([RZ] for Brauer tree algebras, [ST] in general). If <str<strong>on</strong>g>the</str<strong>on</strong>g> projective A-module<br />

P is spherical <str<strong>on</strong>g>the</str<strong>on</strong>g>n F P is an autoequivalence.<br />

Now let P 1 , . . . , P n be a collecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> n spherical projective A-modules. Following [ST],<br />

we say that {P 1 , . . . , P n } is an A n -collecti<strong>on</strong> if<br />

{<br />

0 if |i − j| > 1;<br />

dim k Hom A (P i , P j ) =<br />

1 if |i − j| = 1<br />

for all 1 ≤ i, j ≤ n.<br />

Theorem 2 ([RZ] for Brauer tree algebras, [ST] in general). If {P 1 , . . . , P n } is an A n -<br />

collecti<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> spherical twists F i = F Pi satisfy <str<strong>on</strong>g>the</str<strong>on</strong>g> braid relati<strong>on</strong>s<br />

• F i F j<br />

∼ = Fj F i if |i − j| > 1;<br />

• F i F j F i<br />

∼ = Fj F i F j if |i − j| = 1<br />

for all 1 ≤ i, j ≤ n.<br />

Ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r way to say this is as follows: let B n+1 be <str<strong>on</strong>g>the</str<strong>on</strong>g> braid group <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> letters<br />

{1, . . . , n, n + 1}. This is generated by elements s 1 , . . . , s n <strong>and</strong> has relati<strong>on</strong>s<br />

• s i s j = s j s i if |i − j| > 1;<br />

• s i s j s i = s j s i s j if |i − j| = 1.<br />

If A has an A n -collecti<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>n we have a group homomorphism<br />

B n+1 → DPic(A)<br />

which sends s i to <str<strong>on</strong>g>the</str<strong>on</strong>g> spherical twist F i .<br />

Let S n+1 be <str<strong>on</strong>g>the</str<strong>on</strong>g> symmetric group <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> letters {1, . . . , n, n + 1}. We also denote <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

generators <str<strong>on</strong>g>of</str<strong>on</strong>g> S i by s 1 , . . . , s n , <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>re is an obvious group epimorphism B n+1 ↠ S n+1 .<br />

–51–


3. Periodic Twists<br />

We now describe a generalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> spherical twists described above.<br />

An algebra E is called twisted periodic if <str<strong>on</strong>g>the</str<strong>on</strong>g>re is an algebra automorphism σ : E ∼ → E<br />

<strong>and</strong> an exact sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> E-E-bimodules<br />

0 → E σ → Y n−1 → Y n−2 → · · · → Y 1 → Y 0 → E → 0<br />

where each Y i is a projective E-E-bimodule. This just says that <str<strong>on</strong>g>the</str<strong>on</strong>g> E-E-bimodule E has<br />

a periodic resoluti<strong>on</strong> which is projective up to some automorphism (twist). We say that<br />

E has a period n.<br />

Let A be a symmetric algebra <strong>and</strong> P a projective A-module. Let E = End A (P ) op , so<br />

P is an A-E-bimodule, <strong>and</strong> suppose that E is a periodic algebra. We denote <str<strong>on</strong>g>the</str<strong>on</strong>g> cochain<br />

complex<br />

Y n−1 → Y n−2 → · · · → Y 1 → Y 0<br />

c<strong>on</strong>centrated in degrees n−1 to 0 by Y . Then we have a natural map f : Y → E <str<strong>on</strong>g>of</str<strong>on</strong>g> cochain<br />

complexes <str<strong>on</strong>g>of</str<strong>on</strong>g> E-E-bimodules. We use this to c<strong>on</strong>struct a map g : P ⊗ E Y ⊗ E P ∨ → A <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

cochain complexes <str<strong>on</strong>g>of</str<strong>on</strong>g> A-A-bimodules defined as <str<strong>on</strong>g>the</str<strong>on</strong>g> following compositi<strong>on</strong><br />

P ⊗ E Y ⊗ E P ∨ → P ⊗ E E ⊗ E P ∨<br />

∼ → P ⊗ E P ∨ → A<br />

where <str<strong>on</strong>g>the</str<strong>on</strong>g> first map is given by P ⊗ E f ⊗ E P ∨ <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> last is given by an evaluati<strong>on</strong> map.<br />

We take <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> map g to obtain a cochain complex<br />

P ⊗ E Y n−1 ⊗ E P ∨ → P ⊗ E Y n−2 ⊗ E P ∨ → · · · → P ⊗ E Y 0 ⊗ E P ∨ → A<br />

c<strong>on</strong>centrated in degrees n to 0, which we denote X. By tensoring over A we obtain an<br />

end<str<strong>on</strong>g>of</str<strong>on</strong>g>unctor<br />

which we denote by Ψ P .<br />

X ⊗ A − : D b (A) → D b (A)<br />

Theorem 3 ([Gra]). If <str<strong>on</strong>g>the</str<strong>on</strong>g> algebra E is twisted periodic <str<strong>on</strong>g>the</str<strong>on</strong>g>n Ψ P is an autoequivalence.<br />

Note that <str<strong>on</strong>g>the</str<strong>on</strong>g> functor Ψ P depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> resoluti<strong>on</strong> Y that we choose.<br />

If E ∼ = k[x]/〈x 2 〉 <str<strong>on</strong>g>the</str<strong>on</strong>g>n we recover <str<strong>on</strong>g>the</str<strong>on</strong>g> spherical twists described above by using <str<strong>on</strong>g>the</str<strong>on</strong>g> exact<br />

sequence<br />

0 → E σ → E ⊗ k E → E → 0<br />

where σ is <str<strong>on</strong>g>the</str<strong>on</strong>g> algebra automorphism which sends x to −x.<br />

4. Brauer Tree Algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> Lines<br />

We define a collecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> algebras Γ n , n ≥ 1, which are isomorphic to <str<strong>on</strong>g>the</str<strong>on</strong>g> Brauer tree<br />

algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> lines without multiplicity. Let Γ 1 = k[x]/〈x 2 〉 <strong>and</strong> let Γ 2 = kQ 2 /I 2 , where Q 2<br />

is <str<strong>on</strong>g>the</str<strong>on</strong>g> quiver<br />

Q 2 = 1<br />

–52–<br />

α<br />

β<br />

2


<strong>and</strong> I 2 is <str<strong>on</strong>g>the</str<strong>on</strong>g> ideal generated by αβα <strong>and</strong> βαβ. For n ≥ 3, let Γ n = kQ n /I n where Q n is<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> quiver<br />

Q n = 1<br />

α 1<br />

β 2<br />

<strong>and</strong> I n is <str<strong>on</strong>g>the</str<strong>on</strong>g> ideal generated by α i−1 α i , β i+1 β i , <strong>and</strong> α i β i+1 − β i α i−1 for 2 ≤ i ≤ n − 1.<br />

Note that if we take <str<strong>on</strong>g>the</str<strong>on</strong>g> indecomposable projective Γ n -modules P i , P i+1 , . . . , P j for 1 ≤<br />

i < j ≤ n, we have End A (P i ⊕ P i+1 ⊕ . . . ⊕ P j ) op ∼ = Γj−i .<br />

One can check that for all n ≥ 1, each indecomposable projective Γ n -module is spherical.<br />

Spherical twists for <str<strong>on</strong>g>the</str<strong>on</strong>g>se algebras were studied in detail in [RZ].<br />

We have <str<strong>on</strong>g>the</str<strong>on</strong>g> following observati<strong>on</strong>:<br />

Lemma 4. Let A be a symmetric algebra. A collecti<strong>on</strong> {P 1 , . . . , P n } <str<strong>on</strong>g>of</str<strong>on</strong>g> projective A-<br />

modules is an A n -collecti<strong>on</strong> if <strong>and</strong> <strong>on</strong>ly if<br />

n⊕<br />

End A ( P i ) op ∼ = Γn .<br />

i=1<br />

The algebras Γ n are <str<strong>on</strong>g>of</str<strong>on</strong>g> finite representati<strong>on</strong> type, <strong>and</strong> hence are twisted periodic, but<br />

in fact we can say more.<br />

Theorem 5 ([BBK]). The algebra n is twisted periodic with period n <strong>and</strong> automorphism<br />

σ n induced by <str<strong>on</strong>g>the</str<strong>on</strong>g> quiver automorphism which sends <str<strong>on</strong>g>the</str<strong>on</strong>g> vertex i to n − i + 1.<br />

A natural questi<strong>on</strong> is: what do <str<strong>on</strong>g>the</str<strong>on</strong>g> associated periodic twists look like? It was noted<br />

in [Gra] that periodic twists associated to Γ 2 are isomorphic to <str<strong>on</strong>g>the</str<strong>on</strong>g> compositi<strong>on</strong> F 1 F 2 F 1<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> spherical twists. We will show that this pattern c<strong>on</strong>tinues.<br />

2<br />

α 2<br />

β 3<br />

· · ·<br />

5. A Lifting Theorem<br />

Let A be a symmetric algebra <strong>and</strong> let P 1 , . . . , P n be a collecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> indecomposable<br />

projective A-modules. We will use <str<strong>on</strong>g>the</str<strong>on</strong>g> following notati<strong>on</strong>:<br />

• P = ⊕ n<br />

i=1 P i;<br />

• E = End A (P ) op ;<br />

• E i = End A (P i ) op ;<br />

• Q i = Hom A (P, P i ),<br />

• Q = ⊕ n<br />

i=1 Q i;<br />

so {Q i |1 ≤ i ≤ n} is a complete set <str<strong>on</strong>g>of</str<strong>on</strong>g> representatives <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> isoclasses <str<strong>on</strong>g>of</str<strong>on</strong>g> indecomposable<br />

projective E-modules. Note that End E (Q i ) op ∼ = Ei . We will explain a c<strong>on</strong>necti<strong>on</strong> between<br />

compositi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> periodic twists for E <strong>and</strong> compositi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> corresp<strong>on</strong>ding periodic twists<br />

for A.<br />

Theorem 6 (Lifting Theorem). Suppose that E <strong>and</strong> each E i are twisted periodic with<br />

fixed truncated resoluti<strong>on</strong>s Y <strong>and</strong> Y i . Let Ψ i = Ψ Pi : D b (A) ∼ → D b (A) <strong>and</strong> Ψ ′ i = Ψ Qi :<br />

D b (E) ∼ → D b (E). If<br />

Ψ Q<br />

∼ = Ψ<br />

′<br />

il<br />

. . . Ψ ′ i 2<br />

Ψ ′ i 1<br />

for some 1 ≤ i 1 , . . . , i l ≤ n <str<strong>on</strong>g>the</str<strong>on</strong>g>n<br />

Ψ P<br />

∼ = Ψil . . . Ψ i2 Ψ i1 .<br />

–53–<br />

α n−1<br />

β n<br />

n


We now specialise to <str<strong>on</strong>g>the</str<strong>on</strong>g> case where {P 1 , . . . , P n } is an A n -collecti<strong>on</strong>, so E ∼ = Γ n , <strong>and</strong><br />

F i = Ψ i <strong>and</strong> F i ′ = Ψ ′ i are spherical twists.<br />

Recall that <str<strong>on</strong>g>the</str<strong>on</strong>g> symmetric group S n+1 has a unique l<strong>on</strong>gest element, <str<strong>on</strong>g>of</str<strong>on</strong>g>ten denoted w 0 .<br />

We choose a particular presentati<strong>on</strong><br />

w 0 = s 1 (s 2 s 1 ) . . . (s n . . . s 2 s 1 ) ∈ S n+1<br />

<strong>and</strong> define an element w 0 <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> braid group by <str<strong>on</strong>g>the</str<strong>on</strong>g> same presentati<strong>on</strong>. Rouquier <strong>and</strong><br />

Zimmermann showed how this element acts <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> derived Picard group <str<strong>on</strong>g>of</str<strong>on</strong>g> an algebra Γ n :<br />

Theorem 7 ([RZ, Theorem 4.5]). The image <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> element w 0 under <str<strong>on</strong>g>the</str<strong>on</strong>g> group morphism<br />

B n+1 → DPic(Γ n ) is <str<strong>on</strong>g>the</str<strong>on</strong>g> functor − σn [n] which twists <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> right by <str<strong>on</strong>g>the</str<strong>on</strong>g> automorphism σ n<br />

<strong>and</strong> shifts cochain complexes n places to <str<strong>on</strong>g>the</str<strong>on</strong>g> left.<br />

By Theorem 5 we see that Ψ Γn : D b (Γ n ) → D b (Γ n ) is <str<strong>on</strong>g>the</str<strong>on</strong>g> same functor, <strong>and</strong> hence by<br />

applying <str<strong>on</strong>g>the</str<strong>on</strong>g> lifting <str<strong>on</strong>g>the</str<strong>on</strong>g>orem we obtain <str<strong>on</strong>g>the</str<strong>on</strong>g> following:<br />

Corollary 8. Suppose <str<strong>on</strong>g>the</str<strong>on</strong>g> symmetric algebra A has an A n -collecti<strong>on</strong> {P 1 , . . . , P n }. Then<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> image <str<strong>on</strong>g>of</str<strong>on</strong>g> w 0 in <str<strong>on</strong>g>the</str<strong>on</strong>g> group morphism B n+1 → DPic(A) is Ψ P , where P = ⊕ n<br />

i=1 P i.<br />

We also obtain a new pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> braid relati<strong>on</strong>s by using Theorem 7 in <str<strong>on</strong>g>the</str<strong>on</strong>g> case n = 2,<br />

or alternatively by performing a straightforward calculati<strong>on</strong> with Γ 2 , <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>n applying<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> lifting <str<strong>on</strong>g>the</str<strong>on</strong>g>orem.<br />

References<br />

[BBK] S. Brenner, M. Butler, <strong>and</strong> A. King, Periodic algebras which are almost Koszul, Algebr. Represent.<br />

<strong>Theory</strong> 5 (2002), no. 4, 331-367<br />

[Gra] J. Grant, Derived autoequivalences from periodic algebras, arXiv:1106.2733v1 [math.RT]<br />

[Ric1] J. Rickard, Derived equivalences as derived functors, J. L<strong>on</strong>d<strong>on</strong> Math. Soc. (2) 43 (1991) 37-48<br />

[Ric2] J. Rickard, Equivalences <str<strong>on</strong>g>of</str<strong>on</strong>g> derived categories for symmetric algebras, J. Algebra 257 (2002), no.<br />

2, 460-481<br />

[RZ] R. Rouquier <strong>and</strong> A. Zimmermann, Picard groups for derived module categories, Proc. L<strong>on</strong>d<strong>on</strong> Math.<br />

Soc. (3) 87 (2003), no. 1, 197-225<br />

[ST] P. Seidel <strong>and</strong> R. Thomas, Braid group acti<strong>on</strong>s <strong>on</strong> derived categories <str<strong>on</strong>g>of</str<strong>on</strong>g> coherent sheaves, Duke Math.<br />

J. 108 (2001), no. 1, 37-108<br />

[Wei] C. A. Weibel, An introducti<strong>on</strong> to homological algebra, Cambridge studies in advanced ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics<br />

38, 1994<br />

Graduate School <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics<br />

Nagoya University<br />

Chikusa-ku, Nagoya, 464-8602, Japan<br />

E-mail address: joseph.grant@gmail.com<br />

–54–


n-REPRESENTATION INFINITE ALGEBRAS<br />

MARTIN HERSCHEND<br />

Abstract. We introduce <str<strong>on</strong>g>the</str<strong>on</strong>g> class <str<strong>on</strong>g>of</str<strong>on</strong>g> n-representati<strong>on</strong> infinite algebras <strong>and</strong> discuss some<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir homological properties. We also present <str<strong>on</strong>g>the</str<strong>on</strong>g> family <str<strong>on</strong>g>of</str<strong>on</strong>g> n-representati<strong>on</strong> infinite<br />

algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> type Ã.<br />

1. Introducti<strong>on</strong><br />

This brief survey c<strong>on</strong>tains <str<strong>on</strong>g>the</str<strong>on</strong>g> results from my presentati<strong>on</strong> at <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>44th</str<strong>on</strong>g> <str<strong>on</strong>g>Symposium</str<strong>on</strong>g> <strong>on</strong><br />

<strong>Ring</strong> <strong>Theory</strong> <strong>and</strong> Representati<strong>on</strong> <strong>Theory</strong> in Okayama. It is based <strong>on</strong> joint work Osamu<br />

Iyama <strong>and</strong> Steffen Oppermann. A detailed final versi<strong>on</strong> will be published elsewhere.<br />

The class <str<strong>on</strong>g>of</str<strong>on</strong>g> hereditary finite dimensi<strong>on</strong>al algebras is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> best understood in terms<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> representati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory, especially in <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g> Ausl<strong>and</strong>er-Reiten <str<strong>on</strong>g>the</str<strong>on</strong>g>ory. This applies<br />

in particular to representati<strong>on</strong> finite hereditary algebras. In higher dimensi<strong>on</strong>al Ausl<strong>and</strong>er-<br />

Reiten <str<strong>on</strong>g>the</str<strong>on</strong>g>ory an analogue <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se algebras is given by <str<strong>on</strong>g>the</str<strong>on</strong>g> class <str<strong>on</strong>g>of</str<strong>on</strong>g> n-representati<strong>on</strong> finite<br />

algebras [1, 2]. Recall that a finite dimensi<strong>on</strong>al algebra is called n-representati<strong>on</strong> finite<br />

if it has global dimensi<strong>on</strong> at most n <strong>and</strong> admits an n-cluster tilting module. Since a<br />

1-cluster tilting module is <str<strong>on</strong>g>the</str<strong>on</strong>g> same as an additive generator <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> module category,<br />

1-representati<strong>on</strong> finite means precisely hereditary <strong>and</strong> representati<strong>on</strong> finite.<br />

The aim <str<strong>on</strong>g>of</str<strong>on</strong>g> this report is to define <str<strong>on</strong>g>the</str<strong>on</strong>g> class <str<strong>on</strong>g>of</str<strong>on</strong>g> n-representati<strong>on</strong> infinite algebras, that will<br />

in a similar way be a higher dimensi<strong>on</strong>al analogue <str<strong>on</strong>g>of</str<strong>on</strong>g> representati<strong>on</strong> infinite hereditary<br />

algebras. To do this we begin by recalling some properties <str<strong>on</strong>g>of</str<strong>on</strong>g> n-representati<strong>on</strong> finite<br />

algebras.<br />

Let K be a field <strong>and</strong> Λ a finite dimensi<strong>on</strong>al K-algebra with gl.dim Λ ≤ n. We always<br />

assume that Λ is ring indecomposable. Denote by mod Λ <str<strong>on</strong>g>the</str<strong>on</strong>g> category <str<strong>on</strong>g>of</str<strong>on</strong>g> finite dimensi<strong>on</strong>al<br />

left Λ-modules <strong>and</strong> by D b (Λ) <str<strong>on</strong>g>the</str<strong>on</strong>g> bounded derived category <str<strong>on</strong>g>of</str<strong>on</strong>g> mod Λ. Combining <str<strong>on</strong>g>the</str<strong>on</strong>g> K-<br />

dual D := Hom K (−, K) with <str<strong>on</strong>g>the</str<strong>on</strong>g> Λ-dual we obtain <str<strong>on</strong>g>the</str<strong>on</strong>g> Nakayama functor<br />

ν := DRHom(−, Λ) : D b (Λ) → D b (Λ).<br />

It is a Serre functor in <str<strong>on</strong>g>the</str<strong>on</strong>g> sense that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a functorial ismorphism<br />

Hom D b (Λ)(X, Y ) ≃ D Hom D b (Λ)(Y, ν(X)).<br />

We combine ν with <str<strong>on</strong>g>the</str<strong>on</strong>g> shift functor <strong>on</strong> D b (Λ) to obtain <str<strong>on</strong>g>the</str<strong>on</strong>g> autoequivalence<br />

ν n := ν ◦ [−n] : D b (Λ) → D b (Λ).<br />

It plays <str<strong>on</strong>g>the</str<strong>on</strong>g> role <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> higher Ausl<strong>and</strong>er-Reiten translati<strong>on</strong> in D b (Λ). More precisely,<br />

define<br />

τ n := D Ext n Λ(−, Λ) : mod Λ → mod Λ<br />

The detailed versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper will be submitted for publicati<strong>on</strong> elsewhere.<br />

–55–


<strong>and</strong><br />

τ − n := Ext n Λ(DΛ, −) : mod Λ → mod Λ.<br />

Then τ n = H 0 (ν n −) <strong>and</strong> τn<br />

− = H 0 (νn<br />

−1 −). Using <str<strong>on</strong>g>the</str<strong>on</strong>g>se functors we can capture <str<strong>on</strong>g>the</str<strong>on</strong>g> noti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> n-representati<strong>on</strong> finiteness in <str<strong>on</strong>g>the</str<strong>on</strong>g> following way.<br />

Propositi<strong>on</strong> 1. [3] Let Λ be a finite dimensi<strong>on</strong>al K-algebra with gl.dim Λ ≤ n. Then <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

following c<strong>on</strong>diti<strong>on</strong>s are equivalent.<br />

(a) Λ is n-representati<strong>on</strong> finite.<br />

(b) For every indecomposable projective Λ-module P , <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a n<strong>on</strong>-negative integer<br />

l P such that ν −l P<br />

n P is an indecomposable injective Λ-module.<br />

We remark that if c<strong>on</strong>diti<strong>on</strong> (b) is satisfied <str<strong>on</strong>g>the</str<strong>on</strong>g>n νn −i P ≃ τn<br />

−i P for all 0 ≤ i ≤ l P <strong>and</strong><br />

⊕<br />

P<br />

l P<br />

⊕<br />

i=0<br />

τn<br />

−i P = ⊕ P<br />

l P<br />

⊕<br />

i=0<br />

ν −i<br />

n P<br />

is an n-cluster tilting Λ-module [1]. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, since ν −1 sends injectives to projectives<br />

we have<br />

ν −(l P +1)<br />

n P = ν −1 (ν −l P<br />

n P )[n] = P ′ [n] ∈ mod Λ[n]<br />

for some indecomposable projective P ′ . We c<strong>on</strong>clude that knowing <str<strong>on</strong>g>the</str<strong>on</strong>g> τn − -orbits <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

indecomposable projectives in mod Λ is enough to determine <str<strong>on</strong>g>the</str<strong>on</strong>g>ir νn<br />

−1 -orbits. Comparing<br />

this to <str<strong>on</strong>g>the</str<strong>on</strong>g> classical case n = 1 gives us a hint how to define n-representati<strong>on</strong> infinite<br />

algebras.<br />

2. n-representati<strong>on</strong> infinite algebras<br />

Recall that if n = 1 <strong>and</strong> Λ is representati<strong>on</strong> infinite, <str<strong>on</strong>g>the</str<strong>on</strong>g>n τ −i P is never injective for<br />

an indecomposable projective Λ-module P . In fact ν1 −i P = τ −i P ∈ mod Λ for all i ≥ 0.<br />

Inspired by this we make <str<strong>on</strong>g>the</str<strong>on</strong>g> following definiti<strong>on</strong>.<br />

Definiti<strong>on</strong> 2. Let Λ be a finite dimensi<strong>on</strong>al K-algebra with gl.dim Λ ≤ n. We say that<br />

Λ is n-representati<strong>on</strong> infinite if<br />

ν −i<br />

n Λ ∈ mod Λ<br />

for all i ≥ 0.<br />

We remark that this c<strong>on</strong>diti<strong>on</strong> is equivalent to ν i n(DΛ) ∈ mod Λ for all i ≥ 0. In <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

classical setting <str<strong>on</strong>g>of</str<strong>on</strong>g> n = 1 every indecomposable module is ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r preprojective, preinjective<br />

or regular. We define higher analogues <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se classes <str<strong>on</strong>g>of</str<strong>on</strong>g> modules as follows.<br />

Definiti<strong>on</strong> 3. Let Λ be an n-representati<strong>on</strong> infinite algebra. The full subcategories <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

n-preprojective, n-preinjective <strong>and</strong> n-regular modules are defined as<br />

respectively.<br />

P := add{ν −i<br />

n Λ | i ≥ 0},<br />

I := add{ν i n(DΛ) | i ≥ 0},<br />

R := {X ∈ mod Λ | Ext i Λ(P, X) = 0 = Ext i Λ(X, I) for all i ≥ 0},<br />

–56–


Note that P <strong>and</strong> I are well-defined as subcategories <str<strong>on</strong>g>of</str<strong>on</strong>g> mod Λ since Λ is n-representati<strong>on</strong><br />

infinite. Many properties <str<strong>on</strong>g>of</str<strong>on</strong>g> representati<strong>on</strong> infinite hereditary algebras generalize to n-<br />

representati<strong>on</strong> infinite algebras. For instance n-regular modules can be characterized by<br />

R = {X ∈ mod Λ | ν i n(X) ∈ mod Λ for all i ∈ Z}. Moreover, <strong>on</strong>e has <str<strong>on</strong>g>the</str<strong>on</strong>g> following result<br />

about vanishing <str<strong>on</strong>g>of</str<strong>on</strong>g> homomorphisms <strong>and</strong> extensi<strong>on</strong>s.<br />

Theorem 4. Let Λ be an n-representati<strong>on</strong> infinite algebra. Then <str<strong>on</strong>g>the</str<strong>on</strong>g> following holds:<br />

Hom Λ (R, P) = 0, Hom Λ (I, P) = 0, Hom Λ (I, R) = 0,<br />

Ext n Λ(P, R) = 0, Ext n Λ(P, I) = 0, Ext n Λ(R, I) = 0.<br />

3. n-representati<strong>on</strong> infinite algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> type Ã<br />

In this secti<strong>on</strong> we assume that K is an algebraically closed field <str<strong>on</strong>g>of</str<strong>on</strong>g> characteristic zero.<br />

We shall present a family <str<strong>on</strong>g>of</str<strong>on</strong>g> n-representati<strong>on</strong> infinite algebras by generalizing <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

simplest classes <str<strong>on</strong>g>of</str<strong>on</strong>g> representati<strong>on</strong> infinite hereditary algebras, namely path algebras <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

extended Dynkin quivers <str<strong>on</strong>g>of</str<strong>on</strong>g> type Ã.<br />

On can c<strong>on</strong>struct extended Dynkin quivers <str<strong>on</strong>g>of</str<strong>on</strong>g> type à by taking <str<strong>on</strong>g>the</str<strong>on</strong>g> following steps.<br />

Start with <str<strong>on</strong>g>the</str<strong>on</strong>g> double quiver <str<strong>on</strong>g>of</str<strong>on</strong>g> A ∞ ∞:<br />

· · · −2 −1 0 1 2 · · ·<br />

Identify vertices <strong>and</strong> arrows modulo m for some m ≥ 1 <strong>and</strong> remove <strong>on</strong>e arrow from each<br />

2-cycle. For instance, choosing m = 2 <strong>and</strong> removing <str<strong>on</strong>g>the</str<strong>on</strong>g> arrows starting in <str<strong>on</strong>g>the</str<strong>on</strong>g> odd vertex<br />

gives <str<strong>on</strong>g>the</str<strong>on</strong>g> Kr<strong>on</strong>ecker quiver:<br />

<br />

0 1.<br />

We shall c<strong>on</strong>struct <str<strong>on</strong>g>the</str<strong>on</strong>g> n-representati<strong>on</strong> infinite algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> type à similarly. First we<br />

define <str<strong>on</strong>g>the</str<strong>on</strong>g> covering quiver Q. As vertices in Q we take <str<strong>on</strong>g>the</str<strong>on</strong>g> lattice<br />

{ ∣ }<br />

∣∣∣∣ ∑n+1<br />

Q 0 = G := v ∈ Z n+1 v i = 0 .<br />

It is freely generated as an abelian group by <str<strong>on</strong>g>the</str<strong>on</strong>g> elements f i := e i+1 − e i for 1 ≤ i ≤ n.<br />

We also define f n+1 := e 1 − e n+1 , so that ∑ n+1<br />

i=1 f i = 0. As arrows in Q we take<br />

i=1<br />

Q 1 := {a i : v → v + f i | v ∈ G, 1 ≤ i ≤ n + 1}.<br />

Then Q is <str<strong>on</strong>g>the</str<strong>on</strong>g> double <str<strong>on</strong>g>of</str<strong>on</strong>g> A ∞ ∞ for n = 1. For n ≥ 2 we need to introduce certain relati<strong>on</strong>s.<br />

Let v ∈ Q 0 <strong>and</strong> i, j ∈ {1, . . . , n + 1}. We c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> relati<strong>on</strong> r v ij := a i a j − a j a i from v to<br />

v + f i + f j <strong>and</strong> let I be <str<strong>on</strong>g>the</str<strong>on</strong>g> two-sided ideal in KQ generated by<br />

{r v ij | v ∈ Q 0 , 1 ≤ i, j ≤ n + 1}.<br />

Since G is an abelian group it acts <strong>on</strong> itself by translati<strong>on</strong>s. This extends to a unique<br />

G-acti<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> quiver Q. We say that a subgroup B ≤ G is c<str<strong>on</strong>g>of</str<strong>on</strong>g>inite if G/B is finite.<br />

In that case we define Γ(B) as <str<strong>on</strong>g>the</str<strong>on</strong>g> orbit algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> KQ/I. More explicitly we define<br />

Q/B := (Q 0 /B, Q 1 /B) <strong>and</strong> set<br />

Γ(B) := K(Q/B)/〈r v ij | v ∈ Q 0 /B, 1 ≤ i, j ≤ n + 1〉<br />

–57–


where r v ij := a i a j −a j a i <strong>and</strong> a denotes <str<strong>on</strong>g>the</str<strong>on</strong>g> B-orbit <str<strong>on</strong>g>of</str<strong>on</strong>g> a. As motivati<strong>on</strong> for this c<strong>on</strong>structi<strong>on</strong><br />

we remark that Γ(B) is isomorphic to a skew group algebra K[x 1 , . . . , x n+1 ] ∗ H for some<br />

finite abelian subgroup H < SL n+1 (K).<br />

Next we c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> analogue <str<strong>on</strong>g>of</str<strong>on</strong>g> 2-cycles. For every v ∈ Q 0 <strong>and</strong> permutati<strong>on</strong> σ <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

1, . . . , n + 1, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a cyclic path a σ(1) · · · a σ(n+1) from v to v. We call such cyclic paths<br />

small cycles. A subset C ⊂ Q 1 is called a cut if it c<strong>on</strong>tains precisely <strong>on</strong>e arrow from every<br />

small cycle. The symmetry group <str<strong>on</strong>g>of</str<strong>on</strong>g> C is defined as<br />

S C := {g ∈ G | gC = C} ≤ G.<br />

We say that a cut C is acyclic if all paths in Q C := (Q 0 , Q 1 \ C) have length bounded<br />

by some N ≥ 0, <strong>and</strong> periodic if S C is c<str<strong>on</strong>g>of</str<strong>on</strong>g>inite in G. If both <str<strong>on</strong>g>the</str<strong>on</strong>g>se c<strong>on</strong>diti<strong>on</strong>s are satisfied<br />

<strong>and</strong> B ≤ S C is c<str<strong>on</strong>g>of</str<strong>on</strong>g>inite we say that<br />

Γ(B) C := Γ(B)/〈a | a ∈ C/B〉<br />

is n-representati<strong>on</strong> finite <str<strong>on</strong>g>of</str<strong>on</strong>g> type Ã. The name is justified by <str<strong>on</strong>g>the</str<strong>on</strong>g> following Theorem.<br />

Theorem 5. If C is an acyclic periodic cut <strong>and</strong> B ≤ S C is c<str<strong>on</strong>g>of</str<strong>on</strong>g>inite, <str<strong>on</strong>g>the</str<strong>on</strong>g>n Γ(B) C is<br />

n-representati<strong>on</strong> finite.<br />

We remark that if n = 1, <str<strong>on</strong>g>the</str<strong>on</strong>g>n Γ(B) C is a path algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> an acyclic quiver <str<strong>on</strong>g>of</str<strong>on</strong>g> type Ã<br />

c<strong>on</strong>structed exactly as explained above. For n = 2, Q 0 is a triangular lattice in <str<strong>on</strong>g>the</str<strong>on</strong>g> plane<br />

<strong>and</strong> Q is<br />

.<br />

.<br />

• ✶ • • • • • •<br />

✶✶ ✶ ✶✶ ✶ ✶✶ ✶ ✶✶ ✶ ✶✶ ✶ ✶✶<br />

✌ ✌✌ ✌ ✌✌ ✌ ✌✌ ✌ ✌✌ ✌ ✌✌ ✌ ✌✌<br />

· · · • • • • • <br />

✶ • · · ·<br />

✶✶ ✶ ✶✶ ✶ ✶✶ ✶ ✶✶ ✶ ✶✶ ✶ ✶✶<br />

✌ ✌✌ ✌ ✌✌ ✌ ✌✌ ✌ ✌✌ ✌ ✌✌ ✌ ✌✌<br />

• ✶ • • • • • •<br />

✶✶ ✶ ✶✶ ✶ ✶✶ ✶ ✶✶ ✶ ✶✶ ✶ ✶✶<br />

✌ ✌✌ ✌ ✌✌ ✌ ✌✌ ✌ ✌✌ ✌ ✌✌ ✌ ✌✌<br />

· · · • ✶ • • • • • · · ·<br />

✶✶ ✶ ✶✶ ✶ ✶✶ ✶ ✶✶ ✶ ✶✶ ✶ ✶✶<br />

✌ ✌✌ ✌ ✌✌ ✌ ✌✌ ✌ ✌✌ ✌ ✌✌ ✌ ✌✌<br />

• • • • • • •<br />

.<br />

.<br />

where <str<strong>on</strong>g>the</str<strong>on</strong>g> small cycles are formed by <str<strong>on</strong>g>the</str<strong>on</strong>g> small triangles.<br />

Finally we shall generalize <str<strong>on</strong>g>the</str<strong>on</strong>g> alternating orientati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> A ∞ ∞. To do this define ω : G →<br />

Z/(n + 1)Z by ω(f i ) = 1 <strong>and</strong> set<br />

C := {a i : v → v + f i | ω(v) = 0, 1 ≤ i ≤ n + 1}.<br />

Then every path in Q <str<strong>on</strong>g>of</str<strong>on</strong>g> length n+1 intersects C <strong>and</strong> so C is acyclic. Moreover, S C = ker ω<br />

<strong>and</strong> so C is periodic.<br />

For n = 1, Q C is<br />

· · · −2 −1 0 1 2 · · ·<br />

–58–


For n = 2, Q C is<br />

.<br />

.<br />

• ✶ • • • • • •<br />

✶✶ ✶ ✶✶ ✶ ✶✶ ✶ ✶✶<br />

✌ ✌✌ ✌ ✌✌ ✌ ✌✌ ✌ ✌✌<br />

· · · • • • • <br />

✶ • • · · ·<br />

✶✶ ✶ ✶✶ ✶ ✶✶ ✶ ✶✶<br />

✌ ✌✌ ✌ ✌✌ ✌ ✌✌ ✌ ✌✌<br />

• • • <br />

✶ • • • •<br />

✶✶ ✶ ✶✶ ✶ ✶✶ ✶ ✶✶<br />

✌ ✌✌ ✌ ✌✌ ✌ ✌✌ ✌ ✌✌ · · · • ✶ • • • • • · · ·<br />

✶✶ ✶ ✶✶ ✶ ✶✶ ✶ ✶✶<br />

✌ ✌✌ ✌ ✌✌ ✌ ✌✌ ✌ ✌✌<br />

• • • • • • •<br />

.<br />

.<br />

where <str<strong>on</strong>g>the</str<strong>on</strong>g> dotted lines indicate commutativity relati<strong>on</strong>s in Γ/〈C〉.<br />

Now let’s c<strong>on</strong>sider Γ(B) C for B = S C . Then we can identify Q 0 /B with Z/(n + 1)Z via<br />

ω <strong>and</strong> C/B c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> all arrows from n + 1 to 1. Hence Γ(B) C is <str<strong>on</strong>g>the</str<strong>on</strong>g> Beilins<strong>on</strong> algebra:<br />

1<br />

a 1<br />

.<br />

2<br />

a n+1<br />

a 1<br />

.<br />

3 · · · n<br />

a n+1<br />

a 1<br />

.<br />

a n+1<br />

<strong>and</strong> for n = 1 we obtain <str<strong>on</strong>g>the</str<strong>on</strong>g> Kr<strong>on</strong>ecker algebra:<br />

<br />

1 2.<br />

References<br />

n + 1 , a i a j = a j a i .<br />

[1] O. Iyama, Cluster tilting for higher Ausl<strong>and</strong>er algebras, Adv. Math. 226(1) (2011), 1–61.<br />

[2] O. Iyama, S. Oppermann, n-representati<strong>on</strong>-finite algebras <strong>and</strong> n-APR tilting, Trans. Amer. Math.<br />

Soc. 363(12) (2011), 6575–6614.<br />

[3] O. Iyama, S. Oppermann, Stable categories <str<strong>on</strong>g>of</str<strong>on</strong>g> higher preprojective algebras, arXiv:0912.3412.<br />

Graduate School <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics<br />

Nagoya University<br />

Chikusa-ku, Nagoya, 464-8602 JAPAN<br />

E-mail address: martinh@math.nagoya-u.ac.jp<br />

–59–


ON A DEGENERATION PROBLEM FOR COHEN-MACAULAY<br />

MODULES<br />

NAOYA HIRAMATSU<br />

1. Introducti<strong>on</strong><br />

The aim <str<strong>on</strong>g>of</str<strong>on</strong>g> this article is to give an outline <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> paper [3], which is a joint work with<br />

Yuji Yoshino.<br />

In this note, we would like to give several examples <str<strong>on</strong>g>of</str<strong>on</strong>g> degenerati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> maximal Cohen-<br />

Macaulay modules <strong>and</strong> to show how we can describe <str<strong>on</strong>g>the</str<strong>on</strong>g>m (Theorem 12). This result<br />

depends heavily <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> recent work by Yoshino about <str<strong>on</strong>g>the</str<strong>on</strong>g> stable analogue <str<strong>on</strong>g>of</str<strong>on</strong>g> degenerati<strong>on</strong>s<br />

for Cohen-Macaulay modules over a Gorenstein local algebra [9]. In Secti<strong>on</strong> 3 we<br />

also investigate <str<strong>on</strong>g>the</str<strong>on</strong>g> relati<strong>on</strong> am<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> extended versi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> degenerati<strong>on</strong> order, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

extensi<strong>on</strong> order <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> AR order (Theorem 22).<br />

2. Examples <str<strong>on</strong>g>of</str<strong>on</strong>g> degenerati<strong>on</strong>s<br />

In this secti<strong>on</strong>, we recall <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> degenerati<strong>on</strong> <strong>and</strong> state several known results<br />

<strong>on</strong> degenerati<strong>on</strong>s.<br />

Definiti<strong>on</strong> 1. Let R be a noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian algebra over a field k, <strong>and</strong> let M <strong>and</strong> N be finitely<br />

generated left R-modules. We say that M degenerates to N, or N is a degenerati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> M,<br />

if <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a discrete valuati<strong>on</strong> ring (V, tV, k) that is a k-algebra (where t is a prime element)<br />

<strong>and</strong> a finitely generated left R ⊗ k V -module Q which satisfies <str<strong>on</strong>g>the</str<strong>on</strong>g> following c<strong>on</strong>diti<strong>on</strong>s:<br />

(1) Q is flat as a V -module.<br />

(2) Q/tQ ∼ = N as a left R-module.<br />

(3) Q[1/t] ∼ = M ⊗ k V [1/t] as a left R ⊗ k V [1/t]-module.<br />

The following characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> degenerati<strong>on</strong>s has been proved by Yoshino [7].<br />

Theorem 2. [7, Theorem 2.2] The following c<strong>on</strong>diti<strong>on</strong>s are equivalent for finitely generated<br />

left R-modules M <strong>and</strong> N.<br />

(1) M degenerates to N.<br />

(2) There is a short exact sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> finitely generated left R-modules<br />

( ϕ<br />

ψ)<br />

0 −−−→ Z −−−→ M ⊕ Z −−−→ N −−−→ 0,<br />

such that <str<strong>on</strong>g>the</str<strong>on</strong>g> endomorphism ψ <str<strong>on</strong>g>of</str<strong>on</strong>g> Z is nilpotent, i.e. ψ n = 0 for n ≫ 1.<br />

Remark 3. Let R be a noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian k-algebra.<br />

(1) Suppose that a finitely generated R-module M degenerates to a finitely generated<br />

module N. Then as a discrete valuati<strong>on</strong> ring V in Definiti<strong>on</strong> 1 we can always take<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> ring k[t] (t) . See [7, Corollary 2.4.]. Thus we always take k[t] (t) as V .<br />

–60–


(2) Assume that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is an exact sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> finitely generated left R-modules<br />

0 −−−→ L −−−→ M −−−→ N −−−→ 0.<br />

Then M degenerates to L ⊕ N. See [7, Remark 2.5] for <str<strong>on</strong>g>the</str<strong>on</strong>g> detail.<br />

(3) Let M <strong>and</strong> N be finitely generated R-modules <strong>and</strong> suppose that M degenerates<br />

to N. Then <str<strong>on</strong>g>the</str<strong>on</strong>g> modules M <strong>and</strong> N give <str<strong>on</strong>g>the</str<strong>on</strong>g> same class in <str<strong>on</strong>g>the</str<strong>on</strong>g> Gro<str<strong>on</strong>g>the</str<strong>on</strong>g>ndieck group,<br />

i.e. [M] = [N] as an element <str<strong>on</strong>g>of</str<strong>on</strong>g> K 0 (mod(R)), where mod(R) denotes <str<strong>on</strong>g>the</str<strong>on</strong>g> category<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> finitely generated R-modules <strong>and</strong> R-homomorphisms.<br />

We are mainly interested in degenerati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> modules over commutative rings. Henceforth,<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> rest <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> paper, all <str<strong>on</strong>g>the</str<strong>on</strong>g> rings are assumed to be commutative.<br />

Definiti<strong>on</strong> 4. Let M <strong>and</strong> N be finitely generated modules over a commutative noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian<br />

k-algebra R.<br />

(1) We denote by M ≤ deg N if N is obtained from M by iterative degenerati<strong>on</strong>s,<br />

i.e. <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> finitely generated R-modules L 0 , L 1 , . . . , L r such that<br />

M ∼ = L 0 , N ∼ = L r <strong>and</strong> each L i degenerates to L i+1 for 0 ≤ i < r.<br />

(2) We say that M degenerates by an extensi<strong>on</strong> to N if <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a short exact sequence<br />

0 → U → M → V → 0 <str<strong>on</strong>g>of</str<strong>on</strong>g> finitely generated R-modules such that N ∼ = U ⊕ N.<br />

We denote by M ≤ ext N if N is obtained from M by iterative degenerati<strong>on</strong>s by<br />

extensi<strong>on</strong>s, i.e. <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> finitely generated R-modules L 0 , L 1 , . . . , L r<br />

such that M ∼ = L 0 , N ∼ = L r <strong>and</strong> each L i degenerates by an extensi<strong>on</strong> to L i+1 for<br />

0 ≤ i < r.<br />

If R is a local ring, <str<strong>on</strong>g>the</str<strong>on</strong>g>n ≤ deg <strong>and</strong> ≤ ext are known to be partial orders <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

isomorphism classes <str<strong>on</strong>g>of</str<strong>on</strong>g> finitely generated R-modules, which are called <str<strong>on</strong>g>the</str<strong>on</strong>g> degenerati<strong>on</strong><br />

order <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> order respectively. See [6] for <str<strong>on</strong>g>the</str<strong>on</strong>g> detail.<br />

Remark 5. By virtue <str<strong>on</strong>g>of</str<strong>on</strong>g> Remark 3, if M ≤ ext N <str<strong>on</strong>g>the</str<strong>on</strong>g>n M ≤ deg N. However <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>verse is<br />

not necessarily true.<br />

For example, c<strong>on</strong>sider a ring R = k[[x, y]]/(x 2 ). A pair <str<strong>on</strong>g>of</str<strong>on</strong>g> matrices over k[[x, y]];<br />

(( ) ( ))<br />

x y<br />

2 x −y<br />

2<br />

(ϕ, ψ) = ,<br />

0 x 0 x<br />

is a matrix factorizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> equati<strong>on</strong> x 2 , hence it gives a maximal Cohen-Macaulay R-<br />

module N that is isomorphic to <str<strong>on</strong>g>the</str<strong>on</strong>g> ideal (x, y 2 )R. It is known that N is indecomposable.<br />

Then we can show that R degenerates to (x, y 2 )R in this case, <strong>and</strong> hence R ≤ deg (x, y 2 )R.<br />

See [3, Remark 2.5.].<br />

In general if M ≤ ext N <strong>and</strong> if M ≁ = N, <str<strong>on</strong>g>the</str<strong>on</strong>g>n N is a n<strong>on</strong>-trivial direct sum <str<strong>on</strong>g>of</str<strong>on</strong>g> modules.<br />

Since N ∼ = (x, y 2 )R is indecomposable, we see that R ≤ ext (x, y 2 )R can never happen.<br />

Remark 6. We remark that if finitely generated R-modules M <strong>and</strong> N satisfy <str<strong>on</strong>g>the</str<strong>on</strong>g> relati<strong>on</strong><br />

M ≤ ext N, <str<strong>on</strong>g>the</str<strong>on</strong>g>n M degenerates to N.<br />

Now we note that <str<strong>on</strong>g>the</str<strong>on</strong>g> following lemma holds.<br />

Lemma 7. Let I be a two-sided ideal <str<strong>on</strong>g>of</str<strong>on</strong>g> a noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian k-algebra R, <strong>and</strong> let M <strong>and</strong> N be<br />

finitely generated left R/I-modules. Then M ≤ deg N (resp. M ≤ ext N) as R-modules if<br />

<strong>and</strong> <strong>on</strong>ly if so does as R/I-modules.<br />

□<br />

–61–


We make several o<str<strong>on</strong>g>the</str<strong>on</strong>g>r remarks <strong>on</strong> degenerati<strong>on</strong>s for <str<strong>on</strong>g>the</str<strong>on</strong>g> later use.<br />

Remark 8. Let R be a noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian k-algebra, <strong>and</strong> let M <strong>and</strong> N be finitely generated R-<br />

modules. Suppose that M degenerates to N. The ith Fitting ideal <str<strong>on</strong>g>of</str<strong>on</strong>g> M c<strong>on</strong>tains that <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

N for all i ≥ 0. Namely, denoting <str<strong>on</strong>g>the</str<strong>on</strong>g> ith Fitting ideal <str<strong>on</strong>g>of</str<strong>on</strong>g> an R-module M by F R i (M), we<br />

have F R i (M) ⊇ F R i (N) for all i ≧ 0. (See [9, Theorem 2.5]).<br />

Let R = k[[x]] be a formal power series ring over a field k with <strong>on</strong>e variable x <strong>and</strong> let<br />

M be an R-module <str<strong>on</strong>g>of</str<strong>on</strong>g> length n. It is easy to see that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is an isomorphism<br />

(2.1) M ∼ = R/(x p 1<br />

) ⊕ · · · ⊕ R/(x p n<br />

),<br />

where<br />

(2.2) p 1 ≥ p 2 ≥ · · · ≥ p n ≥ 0 <strong>and</strong><br />

n∑<br />

p i = n.<br />

In this case <str<strong>on</strong>g>the</str<strong>on</strong>g> finite presentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> M is given as follows:<br />

⎛<br />

x p ⎞<br />

1<br />

⎜<br />

. .. ⎟<br />

⎝<br />

x p ⎠<br />

n<br />

0 −−−→ R n −−−−−−−−−−−−−→ R n −−−→ M −−−→ 0.<br />

Note that we can easily compute <str<strong>on</strong>g>the</str<strong>on</strong>g> ith Fitting ideal <str<strong>on</strong>g>of</str<strong>on</strong>g> M from this presentati<strong>on</strong>;<br />

i=1<br />

F R i (M) = (x p i+1+···+p n<br />

) (i ≥ 0).<br />

We denote by p M <str<strong>on</strong>g>the</str<strong>on</strong>g> sequence (p 1 , p 2 , · · · , p n ) <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-negative integers. Recall that such<br />

a sequence satisfying (2.2) is called a partiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> n.<br />

C<strong>on</strong>versely, given a partiti<strong>on</strong> p = (p 1 , p 2 , · · · , p n ) <str<strong>on</strong>g>of</str<strong>on</strong>g> n, we can associate an R-module <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

length n by (2.1), which we denote by M(p). In such a way we see that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a <strong>on</strong>e-<strong>on</strong>e<br />

corresp<strong>on</strong>dence between <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> partiti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> n <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> isomorphism classes <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

R-modules <str<strong>on</strong>g>of</str<strong>on</strong>g> length n.<br />

Definiti<strong>on</strong> 9. Let n be a positive integer <strong>and</strong> let p = (p 1 , p 2 , · · · , p n ) <strong>and</strong> q = (q 1 , q 2 , · · · , q n )<br />

be partiti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> n. Then we denote p ≽ q if it satisfies ∑ j<br />

i=1 p i ≥ ∑ j<br />

i=1 q i for all 1 ≤ j ≤ n.<br />

We note that ≽ is known to be a partial order <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> partiti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> n <strong>and</strong> called<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> dominance order (see for example [4, page 7]).<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> following propositi<strong>on</strong> we show <str<strong>on</strong>g>the</str<strong>on</strong>g> degenerati<strong>on</strong> order for R-modules <str<strong>on</strong>g>of</str<strong>on</strong>g> length n<br />

coincides with <str<strong>on</strong>g>the</str<strong>on</strong>g> opposite <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dominance order <str<strong>on</strong>g>of</str<strong>on</strong>g> corresp<strong>on</strong>ding partiti<strong>on</strong>s.<br />

Propositi<strong>on</strong> 10. Let R = k[[x]] as above, <strong>and</strong> let M, N be R-modules <str<strong>on</strong>g>of</str<strong>on</strong>g> length n. Then<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> following c<strong>on</strong>diti<strong>on</strong>s are equivalent:<br />

(1) M ≤ deg N,<br />

(2) M ≤ ext N,<br />

(3) p M ≽ p N .<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. First <str<strong>on</strong>g>of</str<strong>on</strong>g> all, we assume M degenerates to N, <strong>and</strong> let p M = (p 1 , p 2 , · · · , p n ) <strong>and</strong><br />

p N = (q 1 , q 2 , · · · , q n ). Then, by definiti<strong>on</strong>, we have <str<strong>on</strong>g>the</str<strong>on</strong>g> equalities <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Fitting ideals;<br />

Fi R (M) = (x p i+1+···+p n<br />

) <strong>and</strong> Fi R (M) = (x q i+1+···+q n<br />

) for all i ≥ 0. Since M degenerates<br />

–62–


to N, it follows from Remark 8 that Fi R (M) ⊇ Fi R (N) for all i. Thus p i+1 + · · · + p n ≤<br />

q i+1 + · · · + q n . Since ∑ n<br />

i=1 p i = n = ∑ n<br />

i=1 q i, it follows that p 1 + · · · + p i ≥ q 1 + · · · + q i<br />

for all i ≥ 0. Therefore p M ≽ p N , so that we have proved <str<strong>on</strong>g>the</str<strong>on</strong>g> implicati<strong>on</strong> (1) ⇒ (3).<br />

Finally we shall prove (3) ⇒ (2). To this end let p = (p 1 , p 2 , · · · , p n ) <strong>and</strong> q =<br />

(q 1 , q 2 , · · · , q n ) be partiti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> n. Note that it is enough to prove that <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding<br />

R-module M(p) degenerates by an extensi<strong>on</strong> to M(q) whenever q is a predecessor <str<strong>on</strong>g>of</str<strong>on</strong>g> p<br />

under <str<strong>on</strong>g>the</str<strong>on</strong>g> dominance order. (Recall that q is called a predecessor <str<strong>on</strong>g>of</str<strong>on</strong>g> p if p ≽ q <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>re<br />

are no partiti<strong>on</strong>s r with p ≽ r ≽ q o<str<strong>on</strong>g>the</str<strong>on</strong>g>r than p <strong>and</strong> q.)<br />

Assume that q is a predecessor <str<strong>on</strong>g>of</str<strong>on</strong>g> p under <str<strong>on</strong>g>the</str<strong>on</strong>g> dominance order. Then it is easy to<br />

see that <str<strong>on</strong>g>the</str<strong>on</strong>g>re are numbers 1 ≤ i < j ≤ n with p i − p j ≥ 2, p i > p i+1 , p j−1 > p j such<br />

that <str<strong>on</strong>g>the</str<strong>on</strong>g> equality q = (p 1 , · · · , p i − 1, p i+1 , · · · , p j + 1, · · · , p n ) holds. In this case, setting<br />

L = M((p 1 , · · · , p i−1 , p i+1 , · · · , p j−1 , p j , · · · , p n )), we have M(p) = L ⊕ M((p i , p j )) <strong>and</strong><br />

M(q) = L ⊕ M((p i − 1, p j + 1)). Note that, in general, if M degenerates by an extensi<strong>on</strong><br />

to N, <str<strong>on</strong>g>the</str<strong>on</strong>g>n M ⊕ L degenerates by an extensi<strong>on</strong> to N ⊕ L, for any R-modules L. Hence<br />

it is enough to show that M((a, b)) degenerates by an extensi<strong>on</strong> to M((a − 1, b + 1)) if<br />

a ≥ b + 2. However <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a short exact sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> form:<br />

0 −−−→ R/(x a−1 ) −−−→ R/(x a ) ⊕ R/(x b ) −−−→ R/(x b+1 ) −−−→ 0<br />

1 −−−→ (x, 1)<br />

Thus M((a, b)) = R/(x a ) ⊕ R/(x b ) degenerates by an extensi<strong>on</strong> to M((a − 1, b + 1)) =<br />

R/(x a−1 ) ⊕ R/(x b+1 ).<br />

□<br />

Combining Propositi<strong>on</strong> 10 with Lemma 7, we have <str<strong>on</strong>g>the</str<strong>on</strong>g> following corollary which will<br />

be used latter.<br />

Corollary 11. Let R = k[[x]]/(x m ), where k is a field <strong>and</strong> m is a positive integer, <strong>and</strong><br />

let M, N be finitely generated R-modules. Then M ≤ deg N holds if <strong>and</strong> <strong>on</strong>ly if M ≤ ext N<br />

holds.<br />

□<br />

Next we describe ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r example.<br />

Let k be a field <str<strong>on</strong>g>of</str<strong>on</strong>g> characteristic 0 <strong>and</strong> R = k[[x 0 , x 1 , x 2 , · · · , x d ]]/(f), where f is a<br />

polynomial <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> form<br />

f = x n+1<br />

0 + x 2 1 + x 2 2 + · · · + x 2 d (n ≥ 1).<br />

Recall that such a ring R is call <str<strong>on</strong>g>the</str<strong>on</strong>g> ring <str<strong>on</strong>g>of</str<strong>on</strong>g> simple singularity <str<strong>on</strong>g>of</str<strong>on</strong>g> type (A n ). Note that R<br />

is a Gorenstein complete local ring <strong>and</strong> has finite Cohen-Macaulay representati<strong>on</strong> type.<br />

(Recall that a Cohen-Macaulay k-algebra R is said to be <str<strong>on</strong>g>of</str<strong>on</strong>g> finite Cohen-Macaulay representati<strong>on</strong><br />

type if <str<strong>on</strong>g>the</str<strong>on</strong>g>re are <strong>on</strong>ly a finite number <str<strong>on</strong>g>of</str<strong>on</strong>g> isomorphism classes <str<strong>on</strong>g>of</str<strong>on</strong>g> objects in<br />

CM(R). See [5].) We shall show <str<strong>on</strong>g>the</str<strong>on</strong>g> following whose pro<str<strong>on</strong>g>of</str<strong>on</strong>g> will be given in <str<strong>on</strong>g>the</str<strong>on</strong>g> last part<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> this secti<strong>on</strong>.<br />

Theorem 12. Let k be an algebraically closed field <str<strong>on</strong>g>of</str<strong>on</strong>g> characteristic 0 <strong>and</strong> let R =<br />

k[[x 0 , x 1 , x 2 , · · · , x d ]]/(x n+1<br />

0 + x 2 1 + x 2 2 + · · · + x 2 d ) as above, where we assume that d is<br />

even. For maximal Cohen-Macaulay R-modules M <strong>and</strong> N, if M ≤ deg N, <str<strong>on</strong>g>the</str<strong>on</strong>g>n M ≤ ext N.<br />

To prove <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>orem, we need several results c<strong>on</strong>cerning <str<strong>on</strong>g>the</str<strong>on</strong>g> stable degenerati<strong>on</strong> which<br />

was introduced by Yoshino in [9].<br />

–63–


Let A be a commutative Gorenstein ring. We denote by CM(A) <str<strong>on</strong>g>the</str<strong>on</strong>g> category <str<strong>on</strong>g>of</str<strong>on</strong>g> all<br />

maximal Cohen-Macaulay A-module with all A-homomorphisms. And we also denote by<br />

CM(A) <str<strong>on</strong>g>the</str<strong>on</strong>g> stable category <str<strong>on</strong>g>of</str<strong>on</strong>g> CM(A). For a maximal Cohen-Macaulay module M we<br />

denote it by M to indicate that it is an object <str<strong>on</strong>g>of</str<strong>on</strong>g> CM(A). Since A is Gorenstein, it is<br />

known that CM(A) has a structure <str<strong>on</strong>g>of</str<strong>on</strong>g> triangulated category.<br />

The following <str<strong>on</strong>g>the</str<strong>on</strong>g>orem proved by Yoshino [9] shows <str<strong>on</strong>g>the</str<strong>on</strong>g> relati<strong>on</strong> between stable degenerati<strong>on</strong>s<br />

<strong>and</strong> ordinary degenerati<strong>on</strong>s.<br />

Theorem 13. [9, Theorem 5.1, 6.1, 7.1] Let (R, m, k) be a Gorenstein complete local k-<br />

algebra, where k is an infinite field. C<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> following four c<strong>on</strong>diti<strong>on</strong>s for maximal<br />

Cohen-Macaulay R-modules M <strong>and</strong> N:<br />

(1) R m ⊕ M degenerates to R n ⊕ N for some m, n ∈ N.<br />

(2) There is a triangle<br />

Z<br />

( ϕ<br />

ψ)<br />

−−−→ M ⊕ Z<br />

−−−→ N −−−→ Z[1]<br />

in CM(R), where ψ is a nilpotent element <str<strong>on</strong>g>of</str<strong>on</strong>g> End R (Z).<br />

(3) M stably degenerates to N.<br />

(4) There exists an X ∈ CM(R) such that M ⊕ R m ⊕ X degenerates to N ⊕ R n ⊕ X<br />

for some m, n ∈ N.<br />

Then, in general, <str<strong>on</strong>g>the</str<strong>on</strong>g> implicati<strong>on</strong>s (1) ⇒ (2) ⇒ (3) ⇒ (4) hold. If R is an isolated<br />

singularity, <str<strong>on</strong>g>the</str<strong>on</strong>g>n (2) <strong>and</strong> (3) are equivalent. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, if R is an artinian ring, <str<strong>on</strong>g>the</str<strong>on</strong>g>n<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>s (1), (2) <strong>and</strong> (3) are equivalent.<br />

Corollary 14. [9, Corollary 6.6] Let (R 1 , m 1 , k) <strong>and</strong> (R 2 , m 2 , k) be Gorenstein complete<br />

local k-algebras. Assume that <str<strong>on</strong>g>the</str<strong>on</strong>g> both R 1 <strong>and</strong> R 2 are isolated singularities, <strong>and</strong> that k<br />

is an infinite field. Suppose <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a k-linear equivalence F : CM(R 1 ) → CM(R 2 ) <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

triangulated categories. Then, for M, N ∈ CM(R 1 ), M stably degenerates to N if <strong>and</strong><br />

<strong>on</strong>ly if F (M) stably degenerates to F (N).<br />

□<br />

We now c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> stable analogue <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> degenerati<strong>on</strong> by an extensi<strong>on</strong>.<br />

Definiti<strong>on</strong> 15.<br />

(1) We denote by M ≤ st N if N is obtained from M by iterative stable degenerati<strong>on</strong>s,<br />

i.e. <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> objects L 0 , L 1 , . . . , L r in CM(R) such that M ∼ = L 0 ,<br />

N ∼ = L r <strong>and</strong> each L i stably degenerates to L i+1 for 0 ≤ i < r.<br />

(2) We say that M stably degenerates by a triangle to N, if <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a triangle <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

form U → M → V → U[1] in CM(R) such that U ⊕ V ∼ = N. We denote by<br />

M ≤ tri N if <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a finite sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> modules L 0 , L 1 , · · · , L r in CM(R) such<br />

that M ∼ = L 0 , N ∼ = L r <strong>and</strong> each L i stably degenerates by a triangle to L i+1 for<br />

0 ≤ i < r.<br />

Remark 16. Let R be a Gorenstein local ring that is a k-algebra.<br />

(1) Let M, N ∈ CM(R). If M degenerates to N, <str<strong>on</strong>g>the</str<strong>on</strong>g>n M stably degenerates to N.<br />

Therefore that M ≤ deg N forces that M ≤ st N. (See [9, Lemma 4.2].)<br />

–64–


(2) Suppose that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a triangle<br />

L −−−→ M −−−→ N −−−→ L[1],<br />

in CM(R). Then M stably degenerates to L ⊕ N, thus M ≤ st L ⊕ N. (See [9,<br />

Propositi<strong>on</strong> 4.3].)<br />

We need <str<strong>on</strong>g>the</str<strong>on</strong>g> following propositi<strong>on</strong> to prove Theorem 12.<br />

Propositi<strong>on</strong> 17. Let (R, m, k) be a Gorenstein complete local ring <strong>and</strong> let M, N ∈<br />

CM(R). Assume [M] = [N] in K 0 (mod(R)). Then M ≤ tri N if <strong>and</strong> <strong>on</strong>ly if M ≤ ext N. □<br />

Now we proceed to <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 12.<br />

Let k be an algebraically closed field <str<strong>on</strong>g>of</str<strong>on</strong>g> characteristic 0 <strong>and</strong> let<br />

R = k[[x 0 , x 1 , x 2 , · · · , x d ]]/(x n+1<br />

0 + x 2 1 + x 2 2 + · · · + x 2 d)<br />

as in <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>orem, where we assume that d is even. Suppose that M ≤ deg N for maximal<br />

Cohen-Macaulay R-modules M <strong>and</strong> N. We want to show M ≤ ext N.<br />

Since M ≤ deg N, we have M ≤ st N in CM(R) <strong>and</strong> [M] = [N] in K 0 (mod(R)), by<br />

Remarks 16(1) <strong>and</strong> 3(3). Now let us denote R ′ = k[[x 0 ]]/(x n+1<br />

0 ), <strong>and</strong> we note that CM(R)<br />

<strong>and</strong> CM(R ′ ) are equivalent to each o<str<strong>on</strong>g>the</str<strong>on</strong>g>r as triangulated categories. In fact this equivalence<br />

is given by using <str<strong>on</strong>g>the</str<strong>on</strong>g> lemma <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Knörrer’s periodicity (cf. [5]), since d is even. Let<br />

Ω : CM(R) → CM(R ′ ) be a triangle functor which gives <str<strong>on</strong>g>the</str<strong>on</strong>g> equivalence. Then, by virtue<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Corollary 14, we have Ω(M) ≤ st Ω(N) in CM(R ′ ). Since R ′ is an artinian algebra, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

equivalence (1) ⇔ (3) holds in Theorem 13, <strong>and</strong> thus we have ˜M ⊕ R ′m ≤ deg Ñ ⊕ R ′n ,<br />

where ˜M (resp. Ñ) is a module in CM(R ′ ) with ˜M ∼ = Ω(M) (resp. Ñ ∼ = Ω(N)) <strong>and</strong> m, n<br />

are n<strong>on</strong>-negative integers. It <str<strong>on</strong>g>the</str<strong>on</strong>g>n follows from Corollary 11 that ˜M ⊕ R ′m ≤ ext Ñ ⊕ R ′n .<br />

Hence, by Propositi<strong>on</strong> 17, we have that Ω(M) ≤ tri Ω(N) in CM(R ′ ). Noting that <str<strong>on</strong>g>the</str<strong>on</strong>g> partial<br />

order ≤ tri is preserved under a triangle functor, we see that M ≤ tri N in CM(R). Since<br />

[M] = [N] in K 0 (mod(R)), applying Propositi<strong>on</strong> 17, we finally obtain that M ≤ ext N. □<br />

Example 18. Let R = k[[x 0 , x 1 , x 2 ]]/(x 3 0 + x 2 1 + x 2 2), where k is an algebraically closed<br />

field <str<strong>on</strong>g>of</str<strong>on</strong>g> characteristic 0. Let p <strong>and</strong> q be <str<strong>on</strong>g>the</str<strong>on</strong>g> ideals generated by (x 0 , x 1 − √ −1 x 2 ) <strong>and</strong><br />

(x 2 0, x 1 + √ −1 x 2 ) respectively. It is known that <str<strong>on</strong>g>the</str<strong>on</strong>g> set {R, p, q} is a complete list <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

isomorphism classes <str<strong>on</strong>g>of</str<strong>on</strong>g> indecomposable maximal Cohen-Macaulay modules over R. The<br />

Hasse diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> degenerati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> maximal Cohen-Macaulay R-modules <str<strong>on</strong>g>of</str<strong>on</strong>g> rank 3 is a<br />

disjoint uni<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> following diagrams:<br />

p ⊕ p ⊕ p<br />

❄ ❄❄❄❄❄<br />

8 88888<br />

R ⊕ p ⊕ q<br />

q ⊕ q ⊕ q<br />

p ⊕ p ⊕ q<br />

R ⊕ q ⊕ q<br />

p ⊕ q ⊕ q<br />

R ⊕ p ⊕ p<br />

R 3 ,<br />

–65–<br />

R 2 ⊕ p,<br />

R 2 ⊕ q.


3. Extended orders<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> rest <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper R denotes a (commutative) Cohen-Macaulay complete local<br />

k-algebra, where k is any field.<br />

We shall show that any extended degenerati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> maximal Cohen-Macaulay R-modules<br />

are generated by extended degenerati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Ausl<strong>and</strong>er-Reiten (abbr.AR) sequences if R is<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> finite Cohen-Macaulay representati<strong>on</strong> type. For <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> AR sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> maximal<br />

Cohen-Macaulay modules, we refer to [5]. First <str<strong>on</strong>g>of</str<strong>on</strong>g> all we recall <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

extended orders generated respectively by degenerati<strong>on</strong>s, extensi<strong>on</strong>s <strong>and</strong> AR sequences.<br />

Definiti<strong>on</strong> 19. [6, Definiti<strong>on</strong> 4.11, 4.13] The relati<strong>on</strong> ≤ DEG <strong>on</strong> CM(R), which is called<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> extended degenerati<strong>on</strong> order, is a partial order generated by <str<strong>on</strong>g>the</str<strong>on</strong>g> following rules:<br />

(1) If M ≤ deg N <str<strong>on</strong>g>the</str<strong>on</strong>g>n M ≤ DEG N.<br />

(2) If M ≤ DEG N <strong>and</strong> if M ′ ≤ DEG N ′ <str<strong>on</strong>g>the</str<strong>on</strong>g>n M ⊕ M ′ ≤ DEG N ⊕ N ′<br />

(3) If M ⊕ L ≤ DEG N ⊕ L for some L ∈ CM(R) <str<strong>on</strong>g>the</str<strong>on</strong>g>n M ≤ DEG N.<br />

(4) If M n ≤ DEG N n for some natural number n <str<strong>on</strong>g>the</str<strong>on</strong>g>n M ≤ DEG N.<br />

Definiti<strong>on</strong> 20. [6, Definiti<strong>on</strong> 3.6] The relati<strong>on</strong> ≤ EXT <strong>on</strong> CM(R), which is called <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

extended extensi<strong>on</strong> order, is a partial order generated by <str<strong>on</strong>g>the</str<strong>on</strong>g> following rules:<br />

(1) If M ≤ ext N <str<strong>on</strong>g>the</str<strong>on</strong>g>n M ≤ EXT N.<br />

(2) If M ≤ EXT N <strong>and</strong> if M ′ ≤ EXT N ′ <str<strong>on</strong>g>the</str<strong>on</strong>g>n M ⊕ M ′ ≤ EXT N ⊕ N ′<br />

(3) If M ⊕ L ≤ EXT N ⊕ L for some L ∈ CM(R) <str<strong>on</strong>g>the</str<strong>on</strong>g>n M ≤ EXT N.<br />

(4) If M n ≤ EXT N n for some natural number n <str<strong>on</strong>g>the</str<strong>on</strong>g>n M ≤ EXT N.<br />

Definiti<strong>on</strong> 21. [6, Definiti<strong>on</strong> 5.1] The relati<strong>on</strong> ≤ AR <strong>on</strong> CM(R), which is called <str<strong>on</strong>g>the</str<strong>on</strong>g> extended<br />

AR order, is a partial order generated by <str<strong>on</strong>g>the</str<strong>on</strong>g> following rules:<br />

(1) If 0 → X → E → Y → 0 is an AR sequence in CM(R), <str<strong>on</strong>g>the</str<strong>on</strong>g>n E ≤ AR X ⊕ Y .<br />

(2) If M ≤ AR N <strong>and</strong> if M ′ ≤ AR N ′ <str<strong>on</strong>g>the</str<strong>on</strong>g>n M ⊕ M ′ ≤ AR N ⊕ N ′<br />

(3) If M ⊕ L ≤ AR N ⊕ L for some L ∈ CM(R) <str<strong>on</strong>g>the</str<strong>on</strong>g>n M ≤ AR N.<br />

(4) If M n ≤ AR N n for some natural number n <str<strong>on</strong>g>the</str<strong>on</strong>g>n M ≤ AR N.<br />

The following is <str<strong>on</strong>g>the</str<strong>on</strong>g> main <str<strong>on</strong>g>the</str<strong>on</strong>g>orem <str<strong>on</strong>g>of</str<strong>on</strong>g> this secti<strong>on</strong>.<br />

Theorem 22. Let R be a Cohen-Macaulay complete local k-algebra as above. Adding to<br />

this, we assume that R is <str<strong>on</strong>g>of</str<strong>on</strong>g> finite Cohen-Macaulay representati<strong>on</strong> type.Then <str<strong>on</strong>g>the</str<strong>on</strong>g> following<br />

c<strong>on</strong>diti<strong>on</strong>s are equivalent for M, N ∈ CM(R):<br />

(1) M ≤ DEG N,<br />

(2) M ≤ EXT N,<br />

(3) M ≤ AR N.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. The implicati<strong>on</strong>s (3) ⇒ (2) ⇒ (1) are clear from <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong>s.<br />

To prove (1) ⇒ (2), it suffices to show that M ≤ EXT N whenever M degenerates to<br />

N. If M degenerates to N, <str<strong>on</strong>g>the</str<strong>on</strong>g>n, by virtue <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 2, we have a short exact sequence<br />

0 → Z → M ⊕ Z → N → 0 with Z ∈ CM(R). Thus M ⊕ Z ≤ ext N ⊕ Z, hence<br />

M ≤ EXT N.<br />

It remains to prove that (2) ⇒ (3), for which we need <str<strong>on</strong>g>the</str<strong>on</strong>g> following lemma which is<br />

essentially due to Ausl<strong>and</strong>er <strong>and</strong> Reiten [1].<br />

–66–


Lemma 23. Under <str<strong>on</strong>g>the</str<strong>on</strong>g> same assumpti<strong>on</strong>s <strong>on</strong> R as in Theorem 22, let 0 → L → M →<br />

N → 0 be a short exact sequence in CM(R). Then <str<strong>on</strong>g>the</str<strong>on</strong>g>re are a finite number <str<strong>on</strong>g>of</str<strong>on</strong>g> AR<br />

sequences in CM(R);<br />

0 → X i → E i → Y i → 0 (1 ≤ i ≤ n),<br />

such that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is an equality in G(CM(R));<br />

n∑<br />

L − M + N = (X i − E i + Y i ).<br />

i=1<br />

Here, G(CM(R)) = ⊕ Z · X where X runs through all isomorphism classes <str<strong>on</strong>g>of</str<strong>on</strong>g> indecomposable<br />

objects in CM(R).<br />

To prove this lemma, we c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> functor category Mod(CM(R)) <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Ausl<strong>and</strong>er<br />

category mod(CM(R)) <str<strong>on</strong>g>of</str<strong>on</strong>g> CM(R).<br />

□<br />

Remark 24. In <str<strong>on</strong>g>the</str<strong>on</strong>g> paper [6], Yoshino introduced <str<strong>on</strong>g>the</str<strong>on</strong>g> order relati<strong>on</strong> ≤ hom as well. Adding<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> assumpti<strong>on</strong> that R is <str<strong>on</strong>g>of</str<strong>on</strong>g> finite Cohen-Macaulay representati<strong>on</strong> type, if we assume<br />

fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> R, such as R is an integral domain <str<strong>on</strong>g>of</str<strong>on</strong>g> dimensi<strong>on</strong> 1 or R is <str<strong>on</strong>g>of</str<strong>on</strong>g> dimensi<strong>on</strong><br />

2, <str<strong>on</strong>g>the</str<strong>on</strong>g>n he showed that ≤ hom is also equal to any <str<strong>on</strong>g>of</str<strong>on</strong>g> ≤ AR , ≤ EXT <strong>and</strong> ≤ DEG .<br />

References<br />

1. M. Ausl<strong>and</strong>er <strong>and</strong> I. Reiten, Gro<str<strong>on</strong>g>the</str<strong>on</strong>g>ndieck groups <str<strong>on</strong>g>of</str<strong>on</strong>g> algebras <strong>and</strong> orders. J. Pure Appl. Algebra<br />

39 (1986), 1–51.<br />

2. K. B<strong>on</strong>gartz, On degenerati<strong>on</strong>s <strong>and</strong> extensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> finite-dimensi<strong>on</strong>al modules. Adv. Math. 121<br />

(1996), 245–287.<br />

3. N. Hiramatsu <strong>and</strong> Y. Yoshino, Examples <str<strong>on</strong>g>of</str<strong>on</strong>g> degenerati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Cohen-Macaulay modules, to appear<br />

in Proc. Amer. Math. Soc., arXiv1012.5346.<br />

4. I.G.Macd<strong>on</strong>ald, Symmetric functi<strong>on</strong>s <strong>and</strong> Hall polynomials, Sec<strong>on</strong>d editi<strong>on</strong>. With c<strong>on</strong>tributi<strong>on</strong>s by<br />

A. Zelevinsky, Oxford Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical M<strong>on</strong>ographs. Oxford Science Publicati<strong>on</strong>s. The Clarend<strong>on</strong> Press,<br />

Oxford University Press, New York, 1995. x+475 pp.<br />

5. Y. Yoshino, Cohen-Macaulay Modules over Cohen-Macaulay <strong>Ring</strong>s, L<strong>on</strong>d<strong>on</strong> Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical Society<br />

Lecture Note Series 146. Cambridge University Press, Cambridge, 1990. viii+177 pp.<br />

6. Y. Yoshino, On degenerati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Cohen-Macaulay modules. J. Algebra 248 (2002), 272–290.<br />

7. Y. Yoshino, On degenerati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> modules. J. Algebra 278 (2004), 217–226.<br />

8. Y. Yoshino, Degenerati<strong>on</strong> <strong>and</strong> G-dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> modules. Lecture Notes Pure Applied Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics<br />

vol. 244, ‘Commutative algebra’ Chapman <strong>and</strong> Hall/CRC (2006), 259–265.<br />

9. Y. Yoshino, Stable degenerati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Cohen-Macaulay modules, to appear in J. Algebra (2011),<br />

arXiv1012.4531.<br />

10. G. Zwara, Degenerati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> finite-dimensi<strong>on</strong>al modules are given by extensi<strong>on</strong>s. Compositio Math.<br />

121 (2000), 205–218.<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> general educati<strong>on</strong>,<br />

Kure Nati<strong>on</strong>al College <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology,<br />

2-2-11 Agaminami, Kure, Hiroshima, 737-8506 JAPAN<br />

E-mail address: hiramatsu@kure-nct.ac.jp<br />

–67–


WEAK GORENSTEIN DIMENSION FOR MODULES AND<br />

GORENSTEIN ALGEBRAS<br />

MITSUO HOSHINO AND HIROTAKA KOGA<br />

Abstract. We will generalize <str<strong>on</strong>g>the</str<strong>on</strong>g> noti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Gorenstein dimensi<strong>on</strong> <strong>and</strong> introduce that <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

weak Gorenstein dimensi<strong>on</strong>. Using this noti<strong>on</strong>, we will characterize Gorenstein algebras.<br />

1. Introducti<strong>on</strong><br />

1.1. Notati<strong>on</strong> <strong>and</strong> definiti<strong>on</strong>s. For a ring A we denote by rad(A) <str<strong>on</strong>g>the</str<strong>on</strong>g> Jacobs<strong>on</strong> radical<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> A. Also, we denote by Mod-A <str<strong>on</strong>g>the</str<strong>on</strong>g> category <str<strong>on</strong>g>of</str<strong>on</strong>g> right A-modules, by mod-A <str<strong>on</strong>g>the</str<strong>on</strong>g> full subcategory<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Mod-A c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> finitely presented modules <strong>and</strong> by P A <str<strong>on</strong>g>the</str<strong>on</strong>g> full subcategory<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> mod-A c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> projective modules. For each X ∈ Mod-A we denote by E A (X)<br />

its injective envelope. Left A-modules are c<strong>on</strong>sidered as right A op -modules, where A op<br />

denotes <str<strong>on</strong>g>the</str<strong>on</strong>g> opposite ring <str<strong>on</strong>g>of</str<strong>on</strong>g> A. In particular, we denote by inj dim A (resp., inj dim A op )<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> injective dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> A as a right (resp., left) A-module <strong>and</strong> by Hom A (−, −) (resp.,<br />

Hom A op(−, −)) <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> homomorphisms in Mod-A (resp., Mod-A op ). Sometimes, we<br />

use <str<strong>on</strong>g>the</str<strong>on</strong>g> notati<strong>on</strong> X A (resp., A X) to stress that <str<strong>on</strong>g>the</str<strong>on</strong>g> module c<strong>on</strong>sidered is a right (resp.,<br />

left) A-module.<br />

In this note, complexes are cochain complexes <strong>and</strong> modules are c<strong>on</strong>sidered as complexes<br />

c<strong>on</strong>centrated in degree zero. For a complex X • <strong>and</strong> an integer n ∈ Z, we denote by H n (X • )<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> nth cohomology. We denote by K(Mod-A) <str<strong>on</strong>g>the</str<strong>on</strong>g> homotopy category <str<strong>on</strong>g>of</str<strong>on</strong>g> complexes<br />

over Mod-A, by K − (P A ) (resp., K b (P A )) <str<strong>on</strong>g>the</str<strong>on</strong>g> full triangulated subcategory <str<strong>on</strong>g>of</str<strong>on</strong>g> K(Mod-A)<br />

c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> bounded above (resp., bounded) complexes over P A <strong>and</strong> by K −,b (P A ) <str<strong>on</strong>g>the</str<strong>on</strong>g> full<br />

triangulated subcategory <str<strong>on</strong>g>of</str<strong>on</strong>g> K − (P A ) c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> complexes with bounded cohomology.<br />

We denote by D(Mod-A) <str<strong>on</strong>g>the</str<strong>on</strong>g> derived category <str<strong>on</strong>g>of</str<strong>on</strong>g> complexes over Mod-A. Also, we denote<br />

by Hom • A(−, −) (resp., − ⊗ • −) <str<strong>on</strong>g>the</str<strong>on</strong>g> associated single complex <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> double hom (resp.,<br />

tensor) complex <strong>and</strong> by RHom • A(−, A) <str<strong>on</strong>g>the</str<strong>on</strong>g> right derived functor <str<strong>on</strong>g>of</str<strong>on</strong>g> Hom • A(−, A). We refer<br />

to [4], [9] <strong>and</strong> [15] for basic results in <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> derived categories.<br />

Definiti<strong>on</strong> 1 ([5]). A module X ∈ Mod-A is said to be coherent if it is finitely generated<br />

<strong>and</strong> every finitely generated submodule <str<strong>on</strong>g>of</str<strong>on</strong>g> it is finitely presented. A ring A is said to be<br />

left (resp., right) coherent if it is coherent as a left (resp., right) A-module.<br />

Throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> first three secti<strong>on</strong>s, A is a left <strong>and</strong> right coherent ring. Note that<br />

mod-A c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> coherent modules <strong>and</strong> is a thick abelian subcategory <str<strong>on</strong>g>of</str<strong>on</strong>g> Mod-A in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> sense <str<strong>on</strong>g>of</str<strong>on</strong>g> [9].<br />

We denote by D b (mod-A) <str<strong>on</strong>g>the</str<strong>on</strong>g> full triangulated subcategory <str<strong>on</strong>g>of</str<strong>on</strong>g> D(Mod-A) c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

complexes over mod-A with bounded cohomology.<br />

The detailed versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper will be submitted for publicati<strong>on</strong> elsewhere.<br />

–68–


Definiti<strong>on</strong> 2 ([9]). A complex X • ∈ D b (mod-A) is said to have finite projective dimensi<strong>on</strong><br />

if Hom D(Mod-A) (X • [i], −) vanishes <strong>on</strong> mod-A for i ≪ 0. We denote by D b (mod-A) fpd <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

épaisse subcategory <str<strong>on</strong>g>of</str<strong>on</strong>g> D b (mod-A) c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> complexes <str<strong>on</strong>g>of</str<strong>on</strong>g> finite projective dimensi<strong>on</strong>.<br />

Note that <str<strong>on</strong>g>the</str<strong>on</strong>g> can<strong>on</strong>ical functor K(Mod-A) → D(Mod-A) gives rise to equivalences <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

triangulated categories<br />

K −,b (P A ) ∼ → D b (mod-A) <strong>and</strong> K b (P A ) ∼ → D b (mod-A) fpd .<br />

We denote by D(−) both RHom • A(−, A) <strong>and</strong> RHom • Aop(−, A). There exists a bifunctorial<br />

isomorphism<br />

θ M • ,X • : Hom D(Mod-A op )(M • , DX • ) ∼ → Hom D(Mod-A) (X • , DM • )<br />

for X • ∈ D(Mod-A) <strong>and</strong> M • ∈ D(Mod-A op ). For each X • ∈ D(Mod-A) we set<br />

η X • = θ DX • ,X •(id DX •) : X• → D 2 X • = D(DX • ).<br />

Definiti<strong>on</strong> 3. A complex X • ∈ D b (mod-A) is said to have bounded dual cohomology if<br />

DX • ∈ D b (mod-A op ). We denote by D b (mod-A) bdh <str<strong>on</strong>g>the</str<strong>on</strong>g> full triangulated subcategory <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

D b (mod-A) c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> complexes with bounded dual cohomology.<br />

Definiti<strong>on</strong> 4 ([2] <strong>and</strong> [12]). A complex X • ∈ D b (mod-A op ) bdh is said to have finite<br />

Gorenstein dimensi<strong>on</strong> if η X • is an isomorphism. We denote by D b (mod-A) fGd <str<strong>on</strong>g>the</str<strong>on</strong>g> full<br />

triangulated subcategory <str<strong>on</strong>g>of</str<strong>on</strong>g> D b (mod-A) c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> complexes <str<strong>on</strong>g>of</str<strong>on</strong>g> finite Gorenstein dimensi<strong>on</strong>.<br />

For a module X ∈ D b (mod-A) fGd , we set<br />

G-dim X = sup{ i ≥ 0 | Ext i A(X, A) ≠ 0}<br />

if X ≠ 0, <strong>and</strong> G-dim X = 0 if X = 0. Also, we set G-dim X = ∞ for a module<br />

X ∈ mod-A with X /∈ D b (mod-A) fGd . Then G-dim X is called <str<strong>on</strong>g>the</str<strong>on</strong>g> Gorenstein dimensi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> X ∈ mod-A. We denote by G A <str<strong>on</strong>g>the</str<strong>on</strong>g> full additive subcategory <str<strong>on</strong>g>of</str<strong>on</strong>g> mod-A c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

modules <str<strong>on</strong>g>of</str<strong>on</strong>g> Gorenstein dimensi<strong>on</strong> zero.<br />

Remark 5. A module X ∈ mod-A has Gorenstein dimensi<strong>on</strong> zero if <strong>and</strong> <strong>on</strong>ly if X is<br />

reflexive, i.e., <str<strong>on</strong>g>the</str<strong>on</strong>g> can<strong>on</strong>ical homomorphism<br />

X → Hom A op(Hom A (X, A), A), x ↦→ (f ↦→ f(x))<br />

is an isomorphism <strong>and</strong> Ext i A(X, A) = Ext i A op(Hom A(X, A), A) = 0 for i ≠ 0.<br />

Remark 6. The following hold.<br />

(1) D b (mod-A) fpd ⊆ D b (mod-A) fGd ⊆ D b (mod-A) bdh <strong>and</strong> P A ⊆ G A .<br />

(2) The pair <str<strong>on</strong>g>of</str<strong>on</strong>g> functors RHom • A(−, A) <strong>and</strong> RHom • Aop(−, A) defines a duality between<br />

D b (mod-A) fGd <strong>and</strong> D b (mod-A op ) fGd <strong>and</strong> a duality between D b (mod-A) fpd<br />

<strong>and</strong> D b (mod-A op ) fpd .<br />

(3) The pair <str<strong>on</strong>g>of</str<strong>on</strong>g> functors Hom A (−, A) <strong>and</strong> Hom A op(−, A) defines a duality between G A<br />

<strong>and</strong> G A op <strong>and</strong> a duality between P A <strong>and</strong> P A op.<br />

–69–


1.2. Introducti<strong>on</strong>. The noti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Gorenstein dimensi<strong>on</strong> has played an important role in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> study <str<strong>on</strong>g>of</str<strong>on</strong>g> Gorenstein algebras (see e.g. [2], [10], [11] <strong>and</strong> so <strong>on</strong>). In this note, generalizing<br />

this, we will introduce <str<strong>on</strong>g>the</str<strong>on</strong>g> noti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> weak Gorenstein dimensi<strong>on</strong> <strong>and</strong> characterize<br />

Gorenstein algebras in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> weak Gorenstein dimensi<strong>on</strong>.<br />

A complex X • ∈ D b (mod-A) bdh with sup{ i | H i (X • ) ≠ 0} = d < ∞ is said to<br />

have finite weak Gorenstein dimensi<strong>on</strong> if H i (η X •) is an isomorphism for all i < d <strong>and</strong><br />

H d (η X •) is a m<strong>on</strong>omorphism. Obviously, every X • ∈ D b (mod-A) fGd has finite weak<br />

Gorenstein dimensi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>verse <str<strong>on</strong>g>of</str<strong>on</strong>g> which does not hold true in general (see Example 9<br />

<strong>and</strong> Propositi<strong>on</strong> 15). Extending <str<strong>on</strong>g>the</str<strong>on</strong>g> fact announced by Avramov [3], we will characterize<br />

complexes <str<strong>on</strong>g>of</str<strong>on</strong>g> finite weak Gorenstein dimensi<strong>on</strong>. Denote by G A /P A <str<strong>on</strong>g>the</str<strong>on</strong>g> residue category<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> G A over P A . Also, denote by D b (mod-A) fGd /D b (mod-A) fpd <str<strong>on</strong>g>the</str<strong>on</strong>g> quotient category <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

D b (mod-A) fGd over <str<strong>on</strong>g>the</str<strong>on</strong>g> épaisse subcategory D b (mod-A) fpd . Avramov [3] announced that<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> embedding G A → D b (mod-A) fGd gives rise to an equivalence<br />

G A /P A ∼ → D b (mod-A) fGd /D b (mod-A) fpd .<br />

We will extend this fact. Denote by ĜA <str<strong>on</strong>g>the</str<strong>on</strong>g> full additive subcategory <str<strong>on</strong>g>of</str<strong>on</strong>g> mod-A c<strong>on</strong>sisting<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> modules X ∈ mod-A with Ext i A(X, A) = 0 for i ≠ 0, by ĜA/P A <str<strong>on</strong>g>the</str<strong>on</strong>g> residue category <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Ĝ A over P A <strong>and</strong> by D b (mod-A) bdh /D b (mod-A) fpd <str<strong>on</strong>g>the</str<strong>on</strong>g> quotient category <str<strong>on</strong>g>of</str<strong>on</strong>g> D b (mod-A) bdh<br />

over <str<strong>on</strong>g>the</str<strong>on</strong>g> épaisse subcategory D b (mod-A) fpd . We will show that <str<strong>on</strong>g>the</str<strong>on</strong>g> embedding ĜA →<br />

D b (mod-A) bdh gives rise to a full embedding<br />

F : ĜA/P A → D b (mod-A) bdh /D b (mod-A) fpd<br />

(see Propositi<strong>on</strong> 8), that a complex X • ∈ D b (mod-A) bdh has finite weak Gorenstein<br />

dimensi<strong>on</strong> if <strong>and</strong> <strong>on</strong>ly if <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a homomorphism Z[m] → X • in D b (mod-A) bdh<br />

inducing an isomorphism in D b (mod-A) bdh /D b (mod-A) fpd for some Z ∈ ĜA <strong>and</strong> m ∈ Z<br />

(see Lemma 12) <strong>and</strong> that F is an equivalence if <strong>and</strong> <strong>on</strong>ly if ĜA = G A (see Propositi<strong>on</strong> 15).<br />

Using <str<strong>on</strong>g>the</str<strong>on</strong>g> noti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> weak Gorenstein dimensi<strong>on</strong>, we will characterize Gorenstein algebras.<br />

Let R be a commutative noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian local ring <strong>and</strong> A a noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian R-algebra,<br />

i.e., A is a ring endowed with a ring homomorphism R → A whose image is c<strong>on</strong>tained<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> center <str<strong>on</strong>g>of</str<strong>on</strong>g> A <strong>and</strong> A is finitely generated as an R-module. We say that A satisfies<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong> (G) if <str<strong>on</strong>g>the</str<strong>on</strong>g> following equivalent c<strong>on</strong>diti<strong>on</strong>s are satisfied: (1) Every simple<br />

X ∈ mod-A has finite weak Gorenstein dimensi<strong>on</strong>; <strong>and</strong> (2) A/rad(A) has finite weak<br />

Gorenstein dimensi<strong>on</strong> (see Definiti<strong>on</strong> 18). Our main <str<strong>on</strong>g>the</str<strong>on</strong>g>orem states that <str<strong>on</strong>g>the</str<strong>on</strong>g> following<br />

are equivalent: (1) inj dim A = inj dim A op < ∞; <strong>and</strong> (2) A p satisfies <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong> (G)<br />

for all p ∈ Supp R (A) (see Theorem 19). Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, in case A is a local ring, we will<br />

show that for any d ≥ 0 <str<strong>on</strong>g>the</str<strong>on</strong>g> following are equivalent: (1) inj dim A = inj dim A op = d;<br />

(2) inj dim A = depth A = d; <strong>and</strong> (3) A/rad(A) has weak Gorenstein dimensi<strong>on</strong> d (see<br />

Theorem 20). Note that if inj dim A = depth A < ∞ <str<strong>on</strong>g>the</str<strong>on</strong>g>n A is a Gorenstein R-algebra<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> sense <str<strong>on</strong>g>of</str<strong>on</strong>g> Goto <strong>and</strong> Nishida [8].<br />

This note is organized as follows. In Secti<strong>on</strong> 2, we will extend <str<strong>on</strong>g>the</str<strong>on</strong>g> fact announced by<br />

Avramov [3] quoted above. Also, we will include an example <str<strong>on</strong>g>of</str<strong>on</strong>g> A with ĜA ≠ G A which<br />

is due to J.-I. Miyachi. In Secti<strong>on</strong> 3, we will introduce <str<strong>on</strong>g>the</str<strong>on</strong>g> noti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> weak Gorenstein<br />

dimensi<strong>on</strong> <strong>and</strong> study finitely presented modules <str<strong>on</strong>g>of</str<strong>on</strong>g> finite weak Gorenstein dimensi<strong>on</strong>. In<br />

Secti<strong>on</strong> 4, we will study noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> finite selfinjective dimensi<strong>on</strong> <strong>and</strong> prove <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

–70–


main <str<strong>on</strong>g>the</str<strong>on</strong>g>orem. In Secti<strong>on</strong> 5, we will characterize local noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> finite selfinjective<br />

dimensi<strong>on</strong>. Also, we will provide several examples showing what rich properties<br />

local noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> finite selfinjective dimensi<strong>on</strong> enjoy.<br />

2. Full embedding<br />

Let G A /P A be <str<strong>on</strong>g>the</str<strong>on</strong>g> residue category <str<strong>on</strong>g>of</str<strong>on</strong>g> G A over <str<strong>on</strong>g>the</str<strong>on</strong>g> full additive subcategory P A <strong>and</strong><br />

D b (mod-A) fGd /D b (mod-A) fpd <str<strong>on</strong>g>the</str<strong>on</strong>g> quotient category <str<strong>on</strong>g>of</str<strong>on</strong>g> D b (mod-A) fGd over <str<strong>on</strong>g>the</str<strong>on</strong>g> épaisse<br />

subcategory D b (mod-A) fpd . Then, as Avramov [3] announced, <str<strong>on</strong>g>the</str<strong>on</strong>g> embedding G A →<br />

D b (mod-A) fGd gives rise to an equivalence<br />

In this secti<strong>on</strong>, we will extend this fact.<br />

G A /P A ∼ → D b (mod-A) fGd /D b (mod-A) fpd .<br />

Definiti<strong>on</strong> 7. We denote by ĜA <str<strong>on</strong>g>the</str<strong>on</strong>g> full additive subcategory <str<strong>on</strong>g>of</str<strong>on</strong>g> mod-A c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

modules X ∈ mod-A with Ext i A(X, A) = 0 for i ≠ 0.<br />

We denote by ĜA/P A <str<strong>on</strong>g>the</str<strong>on</strong>g> residue category <str<strong>on</strong>g>of</str<strong>on</strong>g> ĜA over <str<strong>on</strong>g>the</str<strong>on</strong>g> full additive subcategory P A<br />

<strong>and</strong> by D b (mod-A)/D b (mod-A) fpd <str<strong>on</strong>g>the</str<strong>on</strong>g> quotient category <str<strong>on</strong>g>of</str<strong>on</strong>g> D b (mod-A) over <str<strong>on</strong>g>the</str<strong>on</strong>g> épaisse<br />

subcategory D b (mod-A) fpd . Also, we denote by D b (mod-A) bdh /D b (mod-A) fpd <str<strong>on</strong>g>the</str<strong>on</strong>g> quotient<br />

category <str<strong>on</strong>g>of</str<strong>on</strong>g> D b (mod-A) bdh over <str<strong>on</strong>g>the</str<strong>on</strong>g> épaisse subcategory D b (mod-A) fpd .<br />

Propositi<strong>on</strong> 8. The embedding ĜA → D b (mod-A) bdh gives rise to a full embedding<br />

F : ĜA/P A → D b (mod-A) bdh /D b (mod-A) fpd .<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> next secti<strong>on</strong>, we will characterize a complex X • ∈ D b (mod-A) bdh which admits<br />

a homomorphism Z[m] → X • in D b ∼<br />

(mod-A) bdh inducing an isomorphism Z[m] −→ X •<br />

in D b (mod-A) bdh /D b (mod-A) fpd for some Z ∈ ĜA <strong>and</strong> m ∈ Z. Such a complex does not<br />

necessarily bel<strong>on</strong>g to D b (mod-A) fGd . Namely, Ĝ A ≠ G A in general (see Propositi<strong>on</strong> 15<br />

below), which has been pointed out by J.-I. Miyachi in oral communicati<strong>on</strong>.<br />

Example 9 (Miyachi). Let k be a field <strong>and</strong> fix a n<strong>on</strong>zero element c ∈ k which is not<br />

a root <str<strong>on</strong>g>of</str<strong>on</strong>g> unity. Let S = k < x, y > be a n<strong>on</strong>-commutative polynomial ring <strong>and</strong> I =<br />

(x 2 , y 2 , cxy + yx) a two-sided ideal generated by x 2 , y 2 <strong>and</strong> cxy + yx. Set R = S/I,<br />

z n = x + c n y + I ∈ R for n ∈ Z <strong>and</strong> w = xy + I ∈ R. Then R is a selfinjective algebra <strong>and</strong><br />

for each n ∈ Z <str<strong>on</strong>g>the</str<strong>on</strong>g>re exist exact sequences R z n+1<br />

−−→ R z n<br />

−→ R in mod-R <strong>and</strong> R z n<br />

−→ R z n+1<br />

−−→ R<br />

in mod-R op . Since c is not a root <str<strong>on</strong>g>of</str<strong>on</strong>g> unity, z n R ≁ = zm R <strong>and</strong> Hom R (z n R, z m R) ∼ = k unless<br />

n = m. Thus, since we have a projective resoluti<strong>on</strong> · · · → R z 3<br />

−→ R z 2<br />

−→ R z 1<br />

−→ z 1 R → 0 in<br />

mod-R, applying Hom R (−, z 0 R) we have Ext i R(z 1 R, z 0 R) = 0 for all i ≥ 1 (see [14]).<br />

Now, we set<br />

A =<br />

( )<br />

k z0 R<br />

0 R<br />

<strong>and</strong> e 1 =<br />

( )<br />

1 0<br />

, e<br />

0 0 2 =<br />

( )<br />

0 0<br />

∈ A.<br />

0 1<br />

Then a module X ∈ mod-A is given by a triple (X 1 , X 2 ; φ) <str<strong>on</strong>g>of</str<strong>on</strong>g> X 1 ∈ mod-k, X 2 ∈ mod-R<br />

<strong>and</strong> φ ∈ Hom R (X 1 ⊗ k z 0 R, X 2 ), <strong>and</strong> a module M ∈ mod-A op is given by a triple<br />

(M 1 , M 2 ; ψ) <str<strong>on</strong>g>of</str<strong>on</strong>g> M 1 ∈ mod-k, M 2 ∈ mod-R op <strong>and</strong> ψ ∈ Hom k (z 0 R ⊗ R M 2 , M 1 ) (see [7]).<br />

z<br />

Set X = (0, z 1 R; 0) ∈ mod-A. Since we have a projective resoluti<strong>on</strong> · · · −→<br />

3<br />

e2 A z 2<br />

−→<br />

–71–


e 2 A z 1<br />

−→ X → 0 in mod-A, it follows that Ext i A(X, e 1 A) ∼ = Ext i R(z 1 R, z 0 R) = 0 <strong>and</strong><br />

Ext i A(X, e 2 A) ∼ = Ext i R(z 1 R, R) = 0 for i > 0. Thus X ∈ ĜA. On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r h<strong>and</strong>, we have<br />

Hom A (X, A) ∼ z<br />

= Ker(Ae<br />

2<br />

2 −→ Ae2 )<br />

∼ = (wR, Rz1 ; 0)<br />

∼ = (wR, 0; 0) ⊕ (0, Rz1 ; 0)<br />

in mod-A op <strong>and</strong> hence Hom A op(Hom A (X, A), A) is decomposable, so that we have X ≇<br />

Hom A op(Hom A (X, A), A) <strong>and</strong> X /∈ G A .<br />

3. Weak Gorenstein dimensi<strong>on</strong><br />

In this secti<strong>on</strong>, we will introduce <str<strong>on</strong>g>the</str<strong>on</strong>g> noti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> weak Gorenstein dimensi<strong>on</strong> for finitely<br />

presented modules <strong>and</strong> study finitely presented modules <str<strong>on</strong>g>of</str<strong>on</strong>g> finite weak Gorenstein dimensi<strong>on</strong>.<br />

Definiti<strong>on</strong> 10. A complex X • ∈ D b (mod-A) with sup{ i | H i (X • ) ≠ 0} = d < ∞<br />

is said to have finite weak Gorenstein dimensi<strong>on</strong> if X • ∈ D b (mod-A) bdh , H i (η X •) is an<br />

isomorphism for i < d <strong>and</strong> H d (η X •) is a m<strong>on</strong>omorphism.<br />

For a module X ∈ mod-A <str<strong>on</strong>g>of</str<strong>on</strong>g> finite weak Gorenstein dimensi<strong>on</strong> we set<br />

Ĝ-dim X = sup{ i | Ext i A(X, A) ≠ 0}<br />

if X ≠ 0 <strong>and</strong> Ĝ-dim X = 0 if X = 0. Also, we set Ĝ-dim X = ∞ if X ∈ mod-A does<br />

not have finite weak Gorenstein dimensi<strong>on</strong>. Then Ĝ-dim X is called <str<strong>on</strong>g>the</str<strong>on</strong>g> weak Gorenstein<br />

dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> X ∈ mod-A.<br />

Remark 11. For any X ∈ mod-A <str<strong>on</strong>g>the</str<strong>on</strong>g> following hold.<br />

(1) Ĝ-dim X = 0 if <strong>and</strong> <strong>on</strong>ly if X is embedded in some P ∈ P A, i.e., <str<strong>on</strong>g>the</str<strong>on</strong>g> can<strong>on</strong>ical<br />

homomorphism<br />

X → Hom A op(Hom A (X, A), A), x ↦→ (f ↦→ f(x))<br />

is a m<strong>on</strong>omorphism <strong>and</strong> X ∈ ĜA.<br />

(2) If G-dim X = d < ∞ <str<strong>on</strong>g>the</str<strong>on</strong>g>n Ĝ-dim X = d.<br />

(3) If Ĝ-dim X = d < ∞ <str<strong>on</strong>g>the</str<strong>on</strong>g>n Ĝ-dim X′ ≤ d for all X ′ ∈ add(X), <str<strong>on</strong>g>the</str<strong>on</strong>g> full additive<br />

subcategory <str<strong>on</strong>g>of</str<strong>on</strong>g> mod-A c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> direct summ<strong>and</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> finite direct sums <str<strong>on</strong>g>of</str<strong>on</strong>g> copies<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> X.<br />

Lemma 12. A complex X • ∈ D b (mod-A) with sup{ i | H i (X • ) ≠ 0} = d < ∞ has<br />

finite weak Gorenstein dimensi<strong>on</strong> if <strong>and</strong> <strong>on</strong>ly if <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a distinguished triangle in<br />

D b (mod-A)<br />

X • → Y • → Z[−d] →<br />

with Y • ∈ K b (P A ), Y i = 0 for i > d, <strong>and</strong> Z ∈ ĜA.<br />

Corollary 13 (cf. [6, Lemma 2.17]). For any X ∈ mod-A with Ĝ-dim X < ∞ <str<strong>on</strong>g>the</str<strong>on</strong>g>re<br />

exists an exact sequence 0 → X → Y → Z → 0 in mod-A with Ĝ-dim X = proj dim Y<br />

<strong>and</strong> Z ∈ ĜA.<br />

Lemma 14. For any exact sequence 0 → X → Y → Z → 0 in mod-A <str<strong>on</strong>g>the</str<strong>on</strong>g> following hold.<br />

–72–


(1) If Ĝ-dim Z < ∞, <str<strong>on</strong>g>the</str<strong>on</strong>g>n Ĝ-dim X < ∞ if <strong>and</strong> <strong>on</strong>ly if Ĝ-dim Y < ∞.<br />

(2) If Ĝ-dim Y < ∞, <str<strong>on</strong>g>the</str<strong>on</strong>g>n Ĝ-dim X < ∞ if <strong>and</strong> <strong>on</strong>ly if Z ∈ Db (mod-A) bdh <strong>and</strong><br />

H i (D 2 Z) = 0 for i < −1.<br />

(3) If Ĝ-dim X < ∞ <strong>and</strong> H0 (η X ) is an isomorphism, <str<strong>on</strong>g>the</str<strong>on</strong>g>n Ĝ-dim Y < ∞ if <strong>and</strong> <strong>on</strong>ly<br />

if Ĝ-dim Z < ∞.<br />

Propositi<strong>on</strong> 15. The following are equivalent.<br />

(1) G A = ĜA.<br />

(2) Ĝ-dim X = 0 for all X ∈ ĜA.<br />

(3) D b (mod-A) fGd = D b (mod-A) bdh .<br />

(4) The embedding ĜA/P A → D b (mod-A) bdh /D b (mod-A) fpd is dense.<br />

4. Finiteness <str<strong>on</strong>g>of</str<strong>on</strong>g> selfinjective dimensi<strong>on</strong><br />

Throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> rest <str<strong>on</strong>g>of</str<strong>on</strong>g> this note, A is a left <strong>and</strong> right noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian ring.<br />

In this secti<strong>on</strong>, using <str<strong>on</strong>g>the</str<strong>on</strong>g> noti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> weak Gorenstein dimensi<strong>on</strong>, we will characterize<br />

noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> finite selfinjective dimensi<strong>on</strong>.<br />

Lemma 16. For any injective I ∈ Mod-A <str<strong>on</strong>g>the</str<strong>on</strong>g> following hold.<br />

(1) flat dim I ≤ inj dim A op <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> equality holds if I is an injective cogenerator.<br />

(2) Let d ≥ 0 <strong>and</strong> assume that <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a direct system ({X λ }, {fµ λ }) in mod-A<br />

over a directed set Λ such that lim X −→ λ<br />

∼ = I <strong>and</strong> Ĝ-dim X λ ≤ d for all λ ∈ Λ.<br />

Then flat dim I ≤ d.<br />

Corollary 17. For any d ≥ 0 <str<strong>on</strong>g>the</str<strong>on</strong>g> following are equivalent.<br />

(1) inj dim A = inj dim A op ≤ d.<br />

(2) Ĝ-dim X ≤ d for all X ∈ mod-A.<br />

Throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> rest <str<strong>on</strong>g>of</str<strong>on</strong>g> this note, R is a commutative noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian local ring with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

maximal ideal m <strong>and</strong> A is a noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian R-algebra, i.e., A is a ring endowed with a ring<br />

homomorphism R → A whose image is c<strong>on</strong>tained in <str<strong>on</strong>g>the</str<strong>on</strong>g> center <str<strong>on</strong>g>of</str<strong>on</strong>g> A <strong>and</strong> A is finitely<br />

generated as an R-module. It should be noted that A/mA is a finite dimensi<strong>on</strong>al algebra<br />

over a field R/m.<br />

We denote by Spec(R) <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> prime ideals <str<strong>on</strong>g>of</str<strong>on</strong>g> R. For each p ∈ Spec(R) we denote<br />

by (−) p <str<strong>on</strong>g>the</str<strong>on</strong>g> localizati<strong>on</strong> at p <strong>and</strong> for each X ∈ Mod-R we denote by Supp R (X) <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

p ∈ Spec(R) with X p ≠ 0. Also, we denote by dim X <str<strong>on</strong>g>the</str<strong>on</strong>g> Krull dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> X ∈ mod-R.<br />

We refer to [13] for basic commutative ring <str<strong>on</strong>g>the</str<strong>on</strong>g>ory.<br />

Definiti<strong>on</strong> 18. We say that A satisfies <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong> (G) if <str<strong>on</strong>g>the</str<strong>on</strong>g> following equivalent<br />

c<strong>on</strong>diti<strong>on</strong>s are satisfied:<br />

(1) Ĝ-dim X < ∞ for all simple X ∈ mod-A.<br />

(2) Ĝ-dim A/rad(A) < ∞.<br />

Theorem 19. The following are equivalent.<br />

(1) inj dim A = inj dim A op < ∞.<br />

(2) A p satisfies <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong> (G) for all p ∈ Supp R (A).<br />

–73–


5. Gorenstein algebras<br />

In this secti<strong>on</strong>, we will deal with <str<strong>on</strong>g>the</str<strong>on</strong>g> case where inj dim A = inj dim A op = depth A.<br />

In that case, A is a Gorenstein R-algebra in <str<strong>on</strong>g>the</str<strong>on</strong>g> sense <str<strong>on</strong>g>of</str<strong>on</strong>g> Goto <strong>and</strong> Nishida (see [8]). Also,<br />

we will characterize local Gorenstein algebras in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> weak Gorenstein dimensi<strong>on</strong>.<br />

We set S = A/rad(A) <strong>and</strong> denote by depth X <str<strong>on</strong>g>the</str<strong>on</strong>g> depth <str<strong>on</strong>g>of</str<strong>on</strong>g> X ∈ mod-R. Throughout<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> rest <str<strong>on</strong>g>of</str<strong>on</strong>g> this note, we assume that A is a local ring, i.e., S is a divisi<strong>on</strong> ring. Note that<br />

S ∈ mod-A is a unique simple module up to isomorphism <strong>and</strong> that every X ∈ mod-A<br />

admits a minimal projective resoluti<strong>on</strong>.<br />

Theorem 20. For any d ≥ 0 <str<strong>on</strong>g>the</str<strong>on</strong>g> following are equivalent.<br />

(1) inj dim A = inj dim A op = d.<br />

(2) inj dim A = depth A = d.<br />

(3) Ĝ-dim S A = d.<br />

Corollary 21. Assume that inj dim A = inj dim A op = d < ∞. Then A is Cohen-<br />

Macaulay as an R-module <strong>and</strong> I d ∼ = HomR (A, E R (R/m)) for a minimal injective resoluti<strong>on</strong><br />

A → I • in Mod-A.<br />

Example 22. Even if inj dim A = inj dim A op < ∞, it may happen that A is not Cohen-<br />

Macaulay as an R-module. For instance, let R be a Gorenstein local ring with dim R ≥ 1<br />

<strong>and</strong> set<br />

( )<br />

R R/xR<br />

A =<br />

0 R/xR<br />

with x ∈ m a regular element. Then A is not Cohen-Macaulay as an R-module but<br />

inj dim A = inj dim A op < ∞ (see [1, Example 4.7]).<br />

Example 23. Even if A is a Cohen-Macaulay R-module <strong>and</strong> inj dim A = inj dim A op <<br />

∞, it may happen that inj dim A ≠ depth A. For instance, let R be a Gorenstein local<br />

ring with dim R = d <strong>and</strong> set<br />

( )<br />

R R<br />

A = .<br />

0 R<br />

Then A is a Cohen-Macaulay R-module with depth A = d but inj dim A = inj dim A op =<br />

d + 1.<br />

Example 24. Even if A is a Cohen-Macaulay R-module <strong>and</strong> inj dim A = inj dim A op =<br />

depth A = d < ∞, it may happen that I d ≇ Hom R (A, E R (R/m)) for a minimal injective<br />

resoluti<strong>on</strong> A → I • in Mod-A. For instance, let R be a Gorenstein local ring with dim R =<br />

d <strong>and</strong> A a free R-module with a basis {e ij } 1≤i,j≤3 . Define a multiplicati<strong>on</strong> <strong>on</strong> A subject<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> following axioms: (A1) e ij e kl = 0 unless j = k; (A2) e ii e ij = e ij = e ij e jj for all<br />

i, j; (A3) e 12 e 21 = e 11 <strong>and</strong> e 21 e 12 = e 22 ; <strong>and</strong> (A4) e i3 e 3j = e 3j e i3 = 0 for all i, j ≠ 3. Set<br />

e i = e ii for all i. Then A is an R-algebra with 1 = e 1 + e 2 + e 3 <strong>and</strong> Cohen-Macaulay<br />

as an R-module. Also, setting Ω = Hom R (A, R), we have e 1 A ∼ = e 2 A ∼ = e 3 Ω <strong>and</strong> e 1 Ω ∼ =<br />

e 2 Ω ∼ = e 3 A. It follows that inj dim A = inj dim A op = d but I d ∼ = HomR (Ω, E R (R/m)) ≇<br />

Hom R (A, E R (R/m)) in Mod-A.<br />

–74–


References<br />

[1] H. Abe <strong>and</strong> M. Hoshino, Derived equivalences <strong>and</strong> Gorenstein algebras, J. Pure Appl. Algebra 211,<br />

55–69 (2007).<br />

[2] M. Ausl<strong>and</strong>er <strong>and</strong> M. Bridger, Stable module <str<strong>on</strong>g>the</str<strong>on</strong>g>ory, Mem. Amer. Math. Soc., 94, Amer. Math. Soc.,<br />

Providence, R.I., 1969.<br />

[3] L. L. Avramov, Gorenstein dimensi<strong>on</strong> <strong>and</strong> complete resoluti<strong>on</strong>s. C<strong>on</strong>ference <strong>on</strong> commutative algebra<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> memory <str<strong>on</strong>g>of</str<strong>on</strong>g> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor Hideyuki Matsumura, Nagoya, Aug 26-28, 1996, Nagoya University:<br />

Nagoya, Japan, 1996, 28–31.<br />

[4] M. Bökstedt <strong>and</strong> A. Neeman, Homotopy limits in triangulated categories, Compositio Math. 86<br />

(1993), no. 2, 209–234.<br />

[5] S. U. Chase, Direct products <str<strong>on</strong>g>of</str<strong>on</strong>g> modules, Trans. Amer. Math. Soc. 97 (1960), 457–473.<br />

[6] L. W. Christensen, A. Frankild <strong>and</strong> H. Holm, On Gorenstein projective, injective <strong>and</strong> flat<br />

dimensi<strong>on</strong>s—a functorial descripti<strong>on</strong> with applicati<strong>on</strong>s, J. Algebra 302 (2006), no. 1, 231–279.<br />

[7] R. M. Fossum, Ph. A. Griffith <strong>and</strong> I. Reiten, Trivial extensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> abelian categories, Lecture Notes<br />

in Math., 456, Springer, Berlin, 1976.<br />

[8] S. Goto <strong>and</strong> K. Nishida, Towards a <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> Bass numbers with applicati<strong>on</strong> to Gorenstein algebras,<br />

Colloquium Math. 91 (2002), 191–253.<br />

[9] R. Hartshorne, Residues <strong>and</strong> duality, Lecture Notes in Math., 20, Springer, Berlin, 1966.<br />

[10] M. Hoshino, Algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> finite self-injective dimensi<strong>on</strong>, Proc. Amer. Math. Soc. 112 (1991), 619–622.<br />

[11] M. Hoshino <strong>and</strong> H. Koga, Zaks’ lemma for coherent rings, preprint<br />

[12] Y. Kato, On derived equivalent coherent rings, Comm. Algebra 30 (2002), no. 9, 4437–4454.<br />

[13] H. Matsumura, Commutative <strong>Ring</strong> <strong>Theory</strong> (M. Reid, Trans.), Cambridge Univ. Press, Cambridge,<br />

1986 (original work in Japanese).<br />

[14] R. Schulz, A n<strong>on</strong>projective module without self-extensi<strong>on</strong>s, Arch. Math. (Basel) 62 (1994), no. 6,<br />

497–500.<br />

[15] J. L. Verdier, Catégories dérivées, état 0, in: Cohomologie étale, 262–311, Lecture Notes in Math.,<br />

569, Springer, Berlin, 1977.<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Tsukuba<br />

Ibaraki, 305-8571, Japan<br />

E-mail address: hoshino@math.tsukuba.ac.jp<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Tsukuba<br />

Ibaraki, 305-8571, Japan<br />

E-mail address: koga@math.tsukuba.ac.jp<br />

–75–


ON Ω-PERFECT MODULES AND SEQUENCES OF BETTI NUMBERS<br />

OTTO KERNER AND DAN ZACHARIA<br />

Abstract. Let R be a selfinjective algebra. In this paper we c<strong>on</strong>sider Ω-perfect modules<br />

<strong>and</strong> show how to use <str<strong>on</strong>g>the</str<strong>on</strong>g>m to get informati<strong>on</strong> about <str<strong>on</strong>g>the</str<strong>on</strong>g> shapes <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Ausl<strong>and</strong>er-Reiten<br />

comp<strong>on</strong>ents c<strong>on</strong>taining modules <str<strong>on</strong>g>of</str<strong>on</strong>g> finite complexity. We also look at <str<strong>on</strong>g>the</str<strong>on</strong>g> growth <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> Betti numbers for modules bel<strong>on</strong>ging to certain types <str<strong>on</strong>g>of</str<strong>on</strong>g> Ausl<strong>and</strong>er-Reiten<br />

comp<strong>on</strong>ents.<br />

1. Introducti<strong>on</strong>, background <strong>and</strong> motivati<strong>on</strong><br />

The noti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> complexity <str<strong>on</strong>g>of</str<strong>on</strong>g> a module has been around for more than thirty years. In<br />

depth studies have started in parallel at around <str<strong>on</strong>g>the</str<strong>on</strong>g> same time for group representati<strong>on</strong>s<br />

(see [1, 2, 7, 8, 21] for instance) <strong>and</strong> also in commutative algebra (see [4, 5, 16, 23] <strong>and</strong><br />

[24]). In both cases <str<strong>on</strong>g>the</str<strong>on</strong>g> interest in complexity arose from <str<strong>on</strong>g>the</str<strong>on</strong>g> desire to underst<strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

growth <str<strong>on</strong>g>of</str<strong>on</strong>g> minimal projective resoluti<strong>on</strong>s.<br />

We will recall now <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> complexity. For this definiti<strong>on</strong> we d<strong>on</strong>’t need to<br />

restrict ourselves to finite dimensi<strong>on</strong>al algebras, so R can be ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r a finite dimensi<strong>on</strong>al<br />

algebra over a field k, or R = (R, m, k) can be a local noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian ring with maximal ideal<br />

m <strong>and</strong> residue field k. Let M be a finitely generated R-module <strong>and</strong> let<br />

P • : · · · −→ P 2 δ 2<br />

−→ P 1 δ 1<br />

−→ P 0 δ 0<br />

−→ M → 0<br />

be a minimal projective (free in <str<strong>on</strong>g>the</str<strong>on</strong>g> local case) resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> M. The i-th Betti number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> M, denoted β i (M), is <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> indecomposable summ<strong>and</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> P i . Then, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

complexity <str<strong>on</strong>g>of</str<strong>on</strong>g> M is defined as<br />

cx M = inf{n ∈ N|β i (M) ≤ ci n−1 for some positive c ∈ Q <strong>and</strong> all i ≥ 0}<br />

For instance cx M = 0 is equivalent to M having finite projective dimensi<strong>on</strong>, <strong>and</strong> cx M = 1<br />

means that <str<strong>on</strong>g>the</str<strong>on</strong>g> Betti numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> M are all bounded. If no such n exists, <str<strong>on</strong>g>the</str<strong>on</strong>g>n we say that<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> complexity <str<strong>on</strong>g>of</str<strong>on</strong>g> M is infinite (at some point in time people also used to say that <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

complexity does not exist in this case). Let Ω denote <str<strong>on</strong>g>the</str<strong>on</strong>g> syzygy operator. Then it is clear<br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong> that if M is a finitely generated R-module, <str<strong>on</strong>g>the</str<strong>on</strong>g>n cx M = cx ΩM, <strong>and</strong><br />

2000 Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics Subject Classificati<strong>on</strong>. Primary 16G70. Sec<strong>on</strong>dary 16D50, 16E05.<br />

The paper is in a final form <strong>and</strong> no versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> it will be submitted for publicati<strong>on</strong> elsewhere. Most <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> results <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper were presented by <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d author at <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>44th</str<strong>on</strong>g> <str<strong>on</strong>g>Symposium</str<strong>on</strong>g> <strong>on</strong> <strong>Ring</strong> <strong>Theory</strong><br />

<strong>and</strong> Representati<strong>on</strong> <strong>Theory</strong> in September 2011 in Okayama. He thanks <str<strong>on</strong>g>the</str<strong>on</strong>g> organizers for <str<strong>on</strong>g>the</str<strong>on</strong>g> invitati<strong>on</strong><br />

<strong>and</strong> for giving him <str<strong>on</strong>g>the</str<strong>on</strong>g> opportunity to present <str<strong>on</strong>g>the</str<strong>on</strong>g>se results. Part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> results were obtained while both<br />

authors were visiting <str<strong>on</strong>g>the</str<strong>on</strong>g> University <str<strong>on</strong>g>of</str<strong>on</strong>g> Bielefeld in 2010 <strong>and</strong> 2011 as part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> SFB’s “Topologische und<br />

spektrale Strukturen in der Darstellungs<str<strong>on</strong>g>the</str<strong>on</strong>g>orie” program. The sec<strong>on</strong>d author is supported by <str<strong>on</strong>g>the</str<strong>on</strong>g> NSA<br />

grant H98230-11-1-0152.<br />

–76–


an immediate applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> horseshoe lemma also shows that if 0 → A → B → C → 0<br />

is a short exact sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> R-modules, <str<strong>on</strong>g>the</str<strong>on</strong>g>n cx B ≤ max{cx A, cx C}.<br />

Note also that every Ω-periodic module (that is a module M with <str<strong>on</strong>g>the</str<strong>on</strong>g> property that<br />

Ω k M ∼ = M for some positive integer k) has complexity 1. In fact, Eisenbud has proved<br />

that if R = kG is <str<strong>on</strong>g>the</str<strong>on</strong>g> group algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> a finite group, or if R is a complete intersecti<strong>on</strong>,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>n every module <str<strong>on</strong>g>of</str<strong>on</strong>g> complexity 1 is Ω-periodic [10]. The c<strong>on</strong>verse need not hold in<br />

general, not even in <str<strong>on</strong>g>the</str<strong>on</strong>g> symmetric local case; we have <str<strong>on</strong>g>the</str<strong>on</strong>g> following example due to Liu<br />

<strong>and</strong> Schulz, [22]: C<strong>on</strong>sider R = k〈x, y〉/〈x 2 , y 2 , xy + qyx〉 where 0 ≠ q ∈ k is not a root<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 1, <strong>and</strong> let T be <str<strong>on</strong>g>the</str<strong>on</strong>g> trivial extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> R by Hom k (R, k). Then T is a local symmetric<br />

algebra. Let M be <str<strong>on</strong>g>the</str<strong>on</strong>g> T -module (x+y)T . For all i ∈ Z <str<strong>on</strong>g>the</str<strong>on</strong>g> modules Ω i M have dimensi<strong>on</strong><br />

4, <strong>and</strong> are pairwise n<strong>on</strong>-isomorphic. Since T is symmetric, τM = Ω 2 M holds, where τ is<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Ausl<strong>and</strong>er-Reiten translati<strong>on</strong>. Hence <str<strong>on</strong>g>the</str<strong>on</strong>g> module M has complexity 1 <strong>and</strong> is nei<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

Ω- nor τ-symmetric. The module M <str<strong>on</strong>g>the</str<strong>on</strong>g>refore is c<strong>on</strong>tained in a ZA ∞ comp<strong>on</strong>ent. There<br />

are also counterexamples in <str<strong>on</strong>g>the</str<strong>on</strong>g> commutative case (see Gasharov <strong>and</strong> Peeva [15]).<br />

Throughout this paper, R will denote a finite dimensi<strong>on</strong>al selfinjective algebra over<br />

an algebraically closed field k with Jacobs<strong>on</strong> radical r. Then, by an inducti<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Loewy length, it follows readily from <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong> <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> above remarks, that for<br />

every finitely generated R-module M, we have cx M ≤ cx R/r. D will denote <str<strong>on</strong>g>the</str<strong>on</strong>g> usual<br />

dualityD = Hom k (−, k), <strong>and</strong> ν will denote <str<strong>on</strong>g>the</str<strong>on</strong>g> Nakayama equivalence<br />

ν = DHom R (−, R)<br />

Also, since R is selfinjective, <str<strong>on</strong>g>the</str<strong>on</strong>g>n νΩ = Ων. Moreover in this case, <str<strong>on</strong>g>the</str<strong>on</strong>g> Ausl<strong>and</strong>er-Reiten<br />

translate τ is given by τ = νΩ 2 . Since ν is a dimensi<strong>on</strong> preserving equivalence that<br />

takes projective modules into projective modules, we have that cx M = cx νM, hence<br />

cx M = cx τM for every finitely generated R-module M.<br />

The paper is organized as follows. In <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d secti<strong>on</strong> we talk about <str<strong>on</strong>g>the</str<strong>on</strong>g> shape <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Ausl<strong>and</strong>er-Reiten comp<strong>on</strong>ents c<strong>on</strong>taining modules <str<strong>on</strong>g>of</str<strong>on</strong>g> finite complexity as obtained in [20]<br />

<strong>and</strong> about <str<strong>on</strong>g>the</str<strong>on</strong>g> methods used in approaching this problem. In particular, we talk about<br />

a very special class <str<strong>on</strong>g>of</str<strong>on</strong>g> modules called Ω-perfect. In secti<strong>on</strong> three, we study <str<strong>on</strong>g>the</str<strong>on</strong>g> existence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Ω-perfect modules. Finally, in <str<strong>on</strong>g>the</str<strong>on</strong>g> last secti<strong>on</strong> we look at some special cases where we<br />

analyze <str<strong>on</strong>g>the</str<strong>on</strong>g> growth <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Betti numbers.<br />

2. Ausl<strong>and</strong>er-Reiten comp<strong>on</strong>ents c<strong>on</strong>taining modules <str<strong>on</strong>g>of</str<strong>on</strong>g> finite complexity<br />

We start this secti<strong>on</strong> with <str<strong>on</strong>g>the</str<strong>on</strong>g> following easy observati<strong>on</strong>:<br />

Lemma 1. Let R be a selfinjective algebra <strong>and</strong> let C s be a stable comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> its<br />

Ausl<strong>and</strong>er-Reiten quiver. The complexity is c<strong>on</strong>stant <strong>on</strong> C s .<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Let B → C ∈ C s be an irreducible morphism. Then <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists an Ausl<strong>and</strong>er-<br />

Reiten sequence 0 → τC → B ⊕ E → C → 0 for some module E. Hence we have<br />

cx B ≤ cx(B ⊕ C) ≤ max{cx C, cx τC} = cx C. Since <str<strong>on</strong>g>the</str<strong>on</strong>g>re is an irreducible morphism<br />

from τC to B we use <str<strong>on</strong>g>the</str<strong>on</strong>g> same reas<strong>on</strong>ing to get <str<strong>on</strong>g>the</str<strong>on</strong>g> reverse inequality. There is also an<br />

“extreme” case to prove: <str<strong>on</strong>g>the</str<strong>on</strong>g> case when <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>ly irreducible morphisms to modules C ∈ C s<br />

are from projective modules. But it is not hard to prove that this corresp<strong>on</strong>ds to <str<strong>on</strong>g>the</str<strong>on</strong>g> case<br />

–77–


when R is a Nakayama algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> Loewy length two. In that case, <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>ly n<strong>on</strong> projective<br />

modules are <str<strong>on</strong>g>the</str<strong>on</strong>g> simple modules <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>y are all periodic, hence <str<strong>on</strong>g>the</str<strong>on</strong>g>ir complexity is 1. □<br />

In order to describe <str<strong>on</strong>g>the</str<strong>on</strong>g> shapes <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> stable Ausl<strong>and</strong>er-Reiten comp<strong>on</strong>ents c<strong>on</strong>taining<br />

modules <str<strong>on</strong>g>of</str<strong>on</strong>g> finite complexity we recall first <str<strong>on</strong>g>the</str<strong>on</strong>g> noti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Ω-perfect modules introduced<br />

in [17, 18]. We observe first that if g : B → C is an irreducible epimorphism between<br />

two n<strong>on</strong>projective modules, <str<strong>on</strong>g>the</str<strong>on</strong>g>n we have an induced irreducible map Ωg : ΩB → ΩC,<br />

see [3] for instance These modules have a particularly nice behaviour under <str<strong>on</strong>g>the</str<strong>on</strong>g> syzygy<br />

operator. However, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is no reas<strong>on</strong> why Ωg should be again an epimorphism. Being<br />

irreducible, we know though that it must be ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r an epimorphism or a m<strong>on</strong>omorphism.<br />

And <strong>on</strong>e could ask <str<strong>on</strong>g>the</str<strong>on</strong>g> same questi<strong>on</strong> about an irreducible m<strong>on</strong>omorphism f: when can<br />

we guarantee that its syzygy Ωf is gain an irreducible m<strong>on</strong>omorphism? We have <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

following definiti<strong>on</strong>:<br />

Definiti<strong>on</strong>. An irreducible map g : B → C is called Ω-perfect if for all n ≥ 0 <str<strong>on</strong>g>the</str<strong>on</strong>g> induced<br />

maps Ω n g : Ω n B → Ω n C are all m<strong>on</strong>omorphisms or are all epimorphisms. An irreducible<br />

map g is eventually Ω-perfect if, for some i > 0, <str<strong>on</strong>g>the</str<strong>on</strong>g> induced map Ω i g : Ω i B → Ω i C<br />

is Ω-perfect. An indecomposable n<strong>on</strong> projective R-module C is called Ω-perfect, if each<br />

irreducible map into C is Ω-perfect. We say that C is it eventually Ω-perfect if some<br />

syzygy <str<strong>on</strong>g>of</str<strong>on</strong>g> C is an Ω-perfect module.<br />

It was proved in [17] that if g : B → C is an irreducible epimorphism, <str<strong>on</strong>g>the</str<strong>on</strong>g>n Ωg is again an<br />

epimorphism if <strong>and</strong> <strong>on</strong>ly if its kernel is not a simple module. Thus, an irreducible map<br />

g : B → C is eventually Ω-perfect, if <strong>and</strong> <strong>on</strong>ly if <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a positive integer n such that<br />

for each i ≥ n, <str<strong>on</strong>g>the</str<strong>on</strong>g> induced map Ω i g : Ω i B → Ω i C has a n<strong>on</strong> simple kernel. We have <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

following c<strong>on</strong>sequence, see [18]:<br />

Propositi<strong>on</strong> 2. Let R be a selfinjective algebra having no periodic simple modules. Then<br />

every n<strong>on</strong>projective R-module is eventually Ω-perfect.<br />

□<br />

We can specialize to <str<strong>on</strong>g>the</str<strong>on</strong>g> local finite dimensi<strong>on</strong>al case to obtain <str<strong>on</strong>g>the</str<strong>on</strong>g> following:<br />

Corollary 3. Let R = (R, m, k) be a local selfinjective algebra, <strong>and</strong> assume that <str<strong>on</strong>g>the</str<strong>on</strong>g>re are<br />

modules <str<strong>on</strong>g>of</str<strong>on</strong>g> complexity two or higher. Then every indecomposable n<strong>on</strong> projective R-module<br />

is eventually Ω-perfect.<br />

□<br />

One very nice feature <str<strong>on</strong>g>of</str<strong>on</strong>g> Ω-perfect maps is that <str<strong>on</strong>g>the</str<strong>on</strong>g>y behave very nice under <str<strong>on</strong>g>the</str<strong>on</strong>g> syzygy<br />

operator. We have <str<strong>on</strong>g>the</str<strong>on</strong>g> following (see [17]):<br />

Propositi<strong>on</strong> 4. Let R be a selfinjective algebra, <strong>and</strong> let 0 → A → B → g C → 0 be a<br />

short exact sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> R-modules where g is an irreducible Ω-perfect map. Then, for<br />

each i ≥ 0 we have induced exact sequences 0 → Ω i A → Ω i B Ωi g<br />

→ Ω i C −→ 0, <strong>and</strong> thus<br />

β i (B) = β i (A) + β i (C) for each i ≥ 0.<br />

□<br />

It turns out that every indecomposable not τ-periodic module <str<strong>on</strong>g>of</str<strong>on</strong>g> complexity <strong>on</strong>e is eventually<br />

Ω-perfect ([17]). The pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> this result is somehow involved <strong>and</strong> it would be<br />

interesting to have a more direct <strong>and</strong> possibly elementary pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Note also that a recent<br />

result <str<strong>on</strong>g>of</str<strong>on</strong>g> Dugas ([9]), proves that if a simple module over a selfinjective algebra has complexity<br />

1, <str<strong>on</strong>g>the</str<strong>on</strong>g>n it must be periodic. As menti<strong>on</strong>ed above in <str<strong>on</strong>g>the</str<strong>on</strong>g> introducti<strong>on</strong>, this need<br />

–78–


not hold for all modules with bounded Betti numbers so <str<strong>on</strong>g>the</str<strong>on</strong>g> assumpti<strong>on</strong> that <str<strong>on</strong>g>the</str<strong>on</strong>g> module<br />

is simple, is essential.<br />

We would also like to menti<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> following facts. Let C be an Ω-perfect module. Then<br />

it is easy to show that τC is also Ω-perfect. Let now B be an indecomposable module,<br />

<strong>and</strong> assume that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is an irreducible m<strong>on</strong>omorphism B → C. Then it was shown in<br />

[17] that B must also be Ω-perfect. We would like to know <str<strong>on</strong>g>the</str<strong>on</strong>g> answer to <str<strong>on</strong>g>the</str<strong>on</strong>g> following<br />

questi<strong>on</strong>:<br />

Questi<strong>on</strong> 5. Let B <strong>and</strong> C be two indecomposable R-modules, let B → C be an irreducible<br />

epimorphism <strong>and</strong> assume C is Ω-perfect. Is B also Ω-perfect?<br />

We will first look at Ausl<strong>and</strong>er-Reiten comp<strong>on</strong>ents c<strong>on</strong>taining modules that are not eventually<br />

Ω-perfect since this is <str<strong>on</strong>g>the</str<strong>on</strong>g> much easier case. We will show that <str<strong>on</strong>g>the</str<strong>on</strong>g>se comp<strong>on</strong>ents<br />

must have a very predictable shape. First, we recall <str<strong>on</strong>g>the</str<strong>on</strong>g> following definiti<strong>on</strong> <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>orem,<br />

see [19].<br />

Definiti<strong>on</strong>. Let R be an artin algebra <strong>and</strong> let C s be a stable comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> its Ausl<strong>and</strong>er-<br />

Reiten quiver. A functi<strong>on</strong> d: C s → Q is additive if it satisfies <str<strong>on</strong>g>the</str<strong>on</strong>g> following properties:<br />

(a) d(C) > 0 for each C ∈ C s .<br />

(b) 2d(C) = ∑ i d(E i) for each indecomposable n<strong>on</strong> projective module C, where <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

sequence 0 → τC → ⊕ i E i<br />

⊕ P → C → 0 is an Ausl<strong>and</strong>er-Reiten sequence <strong>and</strong> P is a<br />

(possibly 0) projective R-module.<br />

(c) d(C) = d(τC) for each C ∈ C s .<br />

The following <str<strong>on</strong>g>the</str<strong>on</strong>g>orem was proved by Happel-Preiser-<strong>Ring</strong>el in [19]:<br />

Theorem 6. Let R be an artin algebra over an algebraically closed field <strong>and</strong> let C s be<br />

a stable comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> its Ausl<strong>and</strong>er-Reiten quiver. Assume that <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists an additive<br />

functi<strong>on</strong> <strong>on</strong> C s . Then <str<strong>on</strong>g>the</str<strong>on</strong>g> tree class <str<strong>on</strong>g>of</str<strong>on</strong>g> C s is ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r an extended Dynkin diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> type<br />

à n , ˜D n , Ẽ6, Ẽ7, Ẽ8, or an infinite Dynkin tree <str<strong>on</strong>g>of</str<strong>on</strong>g> type A ∞ , D ∞ or A ∞ ∞.<br />

Assume that a n<strong>on</strong>-periodic stable comp<strong>on</strong>ent C s c<strong>on</strong>tains a module C that is not eventually<br />

Ω-perfect. This means that some syzygy <str<strong>on</strong>g>of</str<strong>on</strong>g> C is a simple periodic module. Let<br />

us denote that module by S, <strong>and</strong> let n be <str<strong>on</strong>g>the</str<strong>on</strong>g> Ω-period <str<strong>on</strong>g>of</str<strong>on</strong>g> S. It is clear that S is also<br />

ν-periodic since <str<strong>on</strong>g>the</str<strong>on</strong>g> Nakayama functor preserves lengths, so let m denote <str<strong>on</strong>g>the</str<strong>on</strong>g> ν-period <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

S. Let T = S ⊕ ΩS ⊕ . . . ⊕ Ω n−1 S, <strong>and</strong> let W = T ⊕ νT ⊕ . . . ⊕ ν m−1 T . It is now immediate<br />

that τW = W . Also, it is not hard to show that <str<strong>on</strong>g>the</str<strong>on</strong>g> functi<strong>on</strong> d: C s → Q given by<br />

d(M) = dimHom R (W, M) is an additive functi<strong>on</strong>, see [13, 20]. Using <str<strong>on</strong>g>the</str<strong>on</strong>g> Happel-Preiser-<br />

<strong>Ring</strong>el <str<strong>on</strong>g>the</str<strong>on</strong>g>orem <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> above observati<strong>on</strong>s we have <str<strong>on</strong>g>the</str<strong>on</strong>g> following surprising applicati<strong>on</strong><br />

(see [20]):<br />

Theorem 7. Let R be a selfinjective algebra <strong>and</strong> let C s be a stable comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Ausl<strong>and</strong>er-Reiten quiver <str<strong>on</strong>g>of</str<strong>on</strong>g> R c<strong>on</strong>taining a module that is not eventually Ω-perfect. Assume<br />

in additi<strong>on</strong> that <str<strong>on</strong>g>the</str<strong>on</strong>g> comp<strong>on</strong>ent is not τ-periodic. Then C s is <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> form Z∆ where<br />

∆ is <str<strong>on</strong>g>of</str<strong>on</strong>g> type Ãn, ˜D n , Ẽ6, Ẽ7, Ẽ8, or an infinite Dynkin tree <str<strong>on</strong>g>of</str<strong>on</strong>g> type D ∞ or A ∞ ∞. □<br />

We should make a few remarks here. First, note <str<strong>on</strong>g>the</str<strong>on</strong>g> excluded case when <str<strong>on</strong>g>the</str<strong>on</strong>g> comp<strong>on</strong>ent<br />

is τ-periodic is also well understood. They are ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r infinite tubes or <str<strong>on</strong>g>the</str<strong>on</strong>g>y are periodic<br />

comp<strong>on</strong>ents whose tree class is a Dynkin diagram (see [19, 26]). Note also that <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>orem<br />

–79–


says that comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> type ZA ∞ cannot occur. In fact, we shall see in <str<strong>on</strong>g>the</str<strong>on</strong>g> next secti<strong>on</strong><br />

that we cannot have comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> type Z∆ for ∆ = Ã1, Ẽ6, Ẽ7, or Ẽ8 ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r. At this<br />

point we would like to state a sec<strong>on</strong>d questi<strong>on</strong> that has actually been around in <str<strong>on</strong>g>the</str<strong>on</strong>g> area<br />

for some time.<br />

Questi<strong>on</strong> 8. Let R be a selfinjective algebra <strong>and</strong> assume that its Ausl<strong>and</strong>er-Reiten quiver<br />

c<strong>on</strong>tains a comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> type Z∆ where ∆ = Ãn, ˜D n , Ẽ6, Ẽ7, Ẽ8, D ∞ or A ∞ ∞. Does this<br />

imply that R is a tame algebra?<br />

The answer to <str<strong>on</strong>g>the</str<strong>on</strong>g> above questi<strong>on</strong> is affirmative in <str<strong>on</strong>g>the</str<strong>on</strong>g> group algebra case, see [12]. Therefore<br />

it seems that given a selfinjective algebra, almost all <str<strong>on</strong>g>the</str<strong>on</strong>g> indecomposable modules are<br />

eventually Ω-perfect. We will discuss more about this phenomen<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> next secti<strong>on</strong>.<br />

C<strong>on</strong>sidering Theorem 2.7, it turns out that a similar result holds for comp<strong>on</strong>ents c<strong>on</strong>taining<br />

modules <str<strong>on</strong>g>of</str<strong>on</strong>g> finite complexity. The following result was proved in [20]. It is a<br />

generalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Webb’s <str<strong>on</strong>g>the</str<strong>on</strong>g>orem who had proved it first for group algebras [28].<br />

Theorem 9. Let R be a selfinjective algebra <strong>and</strong> let C s be a stable comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Ausl<strong>and</strong>er-Reiten quiver <str<strong>on</strong>g>of</str<strong>on</strong>g> R c<strong>on</strong>taining a module <str<strong>on</strong>g>of</str<strong>on</strong>g> finite complexity. Assume in additi<strong>on</strong><br />

that <str<strong>on</strong>g>the</str<strong>on</strong>g> comp<strong>on</strong>ent is not τ-periodic. Then C s is <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> form Z∆ where ∆ is <str<strong>on</strong>g>of</str<strong>on</strong>g> type<br />

à n , ˜D n , Ẽ6, Ẽ7, Ẽ8, or an infinite Dynkin tree <str<strong>on</strong>g>of</str<strong>on</strong>g> type A ∞ , D ∞ or A ∞ ∞.<br />

□<br />

3. Ω-perfect modules<br />

In this secti<strong>on</strong> we c<strong>on</strong>tinue <str<strong>on</strong>g>the</str<strong>on</strong>g> study <str<strong>on</strong>g>of</str<strong>on</strong>g> Ω-perfect modules over a selfinjective algebra<br />

<strong>and</strong> show that every comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> type ZẼi for i = 6, 7, 8 or ZÃ1 c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> eventually<br />

Ω-perfect modules. We also give an example <str<strong>on</strong>g>of</str<strong>on</strong>g> a comp<strong>on</strong>ent c<strong>on</strong>taining <strong>on</strong>ly modules<br />

that are not Ω-perfect, <strong>and</strong> discuss possible values for complexities. We also pose some<br />

new questi<strong>on</strong>s. We will need <str<strong>on</strong>g>the</str<strong>on</strong>g> noti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> τ-perfect irreducible map. It is obviously very<br />

similar to <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> Ω-perfect map: we say that an irreducible map g : B → C is called<br />

τ-perfect if for all n ≥ 0 <str<strong>on</strong>g>the</str<strong>on</strong>g> induced maps τ n g : τ n B → τ n C are all m<strong>on</strong>omorphisms or<br />

are all epimorphisms.<br />

If C is a comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Ausl<strong>and</strong>er-Reiten quiver <str<strong>on</strong>g>of</str<strong>on</strong>g> R, we will denote by C s its stable<br />

part, <strong>and</strong> by ΩC <str<strong>on</strong>g>the</str<strong>on</strong>g> comp<strong>on</strong>ent c<strong>on</strong>taining all <str<strong>on</strong>g>the</str<strong>on</strong>g> modules <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> form ΩX for X ∈ C<br />

n<strong>on</strong> projective. We have <str<strong>on</strong>g>the</str<strong>on</strong>g> following:<br />

Propositi<strong>on</strong> 10. Let R be a selfinjective artin algebra <strong>and</strong> let C be an Ausl<strong>and</strong>er-Reiten<br />

comp<strong>on</strong>ent. If <str<strong>on</strong>g>the</str<strong>on</strong>g> module X ∈ C does not have any projective or simple predecessors in<br />

C, <str<strong>on</strong>g>the</str<strong>on</strong>g>n ΩX does not have ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r any simple or projective predecessors in ΩC.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Assume that ΩX has a simple predecessor S in <str<strong>on</strong>g>the</str<strong>on</strong>g> comp<strong>on</strong>ent ΩC. By applying<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> inverse syzygy operator we obtain in C a chain <str<strong>on</strong>g>of</str<strong>on</strong>g> irreducible maps Ω −1 S → · · · → X.<br />

Denote by P <str<strong>on</strong>g>the</str<strong>on</strong>g> indecomposable projective-injective with socle S. We have an Ausl<strong>and</strong>er-<br />

Reiten sequence 0 → rP → P ⊕ rP/S → P/S → 0, <strong>and</strong> since P/S ∼ = Ω −1 S, we see that<br />

P is a predecessor <str<strong>on</strong>g>of</str<strong>on</strong>g> X in C. Assume now that ΩX has a projective predecessor in its<br />

comp<strong>on</strong>ent, so <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a chain <str<strong>on</strong>g>of</str<strong>on</strong>g> irreducible maps P → P/S → · · · → ΩX where S<br />

is <str<strong>on</strong>g>the</str<strong>on</strong>g> socle <str<strong>on</strong>g>of</str<strong>on</strong>g> P . As before, we have that P/S ∼ = Ω −1 S, so <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a chain <str<strong>on</strong>g>of</str<strong>on</strong>g> irreducible<br />

maps in Ω 2 C from S to Ω 2 X. Applying <str<strong>on</strong>g>the</str<strong>on</strong>g> Nakayama functor, we obtain that τX, <strong>and</strong><br />

hence X have a simple predecessor since <str<strong>on</strong>g>the</str<strong>on</strong>g> Nakayama functor preserves lengths. □<br />

–80–


One can prove in a similar fashi<strong>on</strong> that for a selfinjective algebra, a comp<strong>on</strong>ent C c<strong>on</strong>tains<br />

a simple (projective) module, if <strong>and</strong> <strong>on</strong>ly if <str<strong>on</strong>g>the</str<strong>on</strong>g> comp<strong>on</strong>ent ΩC c<strong>on</strong>tains a projective<br />

(respectively simple) module.<br />

Remark 11. Let C be an Ausl<strong>and</strong>er-Reiten comp<strong>on</strong>ent having a boundary, that is, a<br />

comp<strong>on</strong>ent c<strong>on</strong>taining indecomposable modules whose Ausl<strong>and</strong>er-Reiten sequences have<br />

indecomposable middle terms. Assume that C is not a tube, <strong>and</strong> let C be an indecomposable<br />

module lying <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> boundary <str<strong>on</strong>g>of</str<strong>on</strong>g> C. Without loss <str<strong>on</strong>g>of</str<strong>on</strong>g> generality we may assume<br />

that nei<str<strong>on</strong>g>the</str<strong>on</strong>g>r C nor ΩC has a simple module in <str<strong>on</strong>g>the</str<strong>on</strong>g> positive directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir τ-orbit. This<br />

means that if 0 → τC → B → C → 0 is <str<strong>on</strong>g>the</str<strong>on</strong>g> Ausl<strong>and</strong>er-Reiten sequence ending at C,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>n both maps τC → B <strong>and</strong> B → C are Ω-perfect <strong>and</strong> so C is an Ω-perfect module. So<br />

we see that n<strong>on</strong>periodic comp<strong>on</strong>ents with boundaries, always c<strong>on</strong>tain Ω-perfect maps <strong>and</strong><br />

Ω-perfect modules. As we will see so<strong>on</strong>, this need not happen in comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> type<br />

ZA ∞ ∞.<br />

Lemma 12. Let g : B → C be an irreducible map that is not eventually Ω-perfect, where<br />

nei<str<strong>on</strong>g>the</str<strong>on</strong>g>r B nor C has a n<strong>on</strong>zero projective summ<strong>and</strong>. Then, <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a positive integer<br />

α such that for each i ≥ 0 we have |l(Ω i B) − l(Ω i C)| ≤ α.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. By taking enough powers <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Ausl<strong>and</strong>er-Reiten translate τ, we may assume<br />

without loss <str<strong>on</strong>g>of</str<strong>on</strong>g> generality that g is <strong>on</strong>to, <strong>and</strong> that its kernel S is a simple periodic module.<br />

Note that by applying Ω we obtain an induced exact sequence 0 → ΩB −→ Ωg<br />

ΩC → S → 0.<br />

If <str<strong>on</strong>g>the</str<strong>on</strong>g> induced map Ω 2 g is again a m<strong>on</strong>omorphism, <str<strong>on</strong>g>the</str<strong>on</strong>g>n we get <str<strong>on</strong>g>the</str<strong>on</strong>g> commutative exact<br />

diagram<br />

0<br />

0<br />

0<br />

0 Ω 2 B<br />

Ω 2 g Ω 2 C<br />

L<br />

0<br />

0 P ΩB<br />

0 ΩB<br />

Ωg<br />

P ΩC<br />

ΩC<br />

Q<br />

S<br />

0 0 0<br />

0<br />

0<br />

hence <str<strong>on</strong>g>the</str<strong>on</strong>g> two modules L <strong>and</strong> ΩS are isomorphic, <strong>and</strong> we have a short exact sequence<br />

0 → Ω 2 B → Ω 2 C → ΩS → 0. If <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r h<strong>and</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> map Ω 2 g is an epimorphism,<br />

–81–


<str<strong>on</strong>g>the</str<strong>on</strong>g>n we obtain a commutative diagram<br />

0<br />

0 L Ω 2 B<br />

0 L P ΩB<br />

0 ΩB<br />

0<br />

Ω 2 g Ω 2 C<br />

Ωg<br />

P ΩC<br />

ΩC<br />

0 0<br />

0<br />

S 0<br />

S 0<br />

<strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>refore we obtain a short exact sequence 0 → Ω 2 S → Ω 2 B → Ω 2 C → 0. C<strong>on</strong>tinuing<br />

in this fashi<strong>on</strong> we see that for each integer i ≥ 0 we get ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r short exact sequences<br />

0 → Ω i S → Ω i B → Ω i C → 0, or <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> form 0 → Ω i+1 B → Ω i+1 C → Ω i S → 0. By<br />

letting α = max i∈N {l(Ω i S)}, our result follows, since <str<strong>on</strong>g>the</str<strong>on</strong>g> simple module S is periodic. □<br />

The following (most probably) well-known lemma will be used to characterize Ω-perfect<br />

maps in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> “τ-perfect” property. As usual, if M is an indecomposable n<strong>on</strong>projective<br />

module, α(M) denotes <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-projective indecomposable direct<br />

summ<strong>and</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> middle term <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Ausl<strong>and</strong>er-Reiten sequence ending in M.<br />

Lemma 13. Let Λ be a selfinjective artin algebra <strong>and</strong> let M be an indecomposable n<strong>on</strong><br />

projective <strong>and</strong> n<strong>on</strong> simple Λ-module with α(M) = 2 with n = l(M) = l(τM). Assume<br />

also that <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists an irreducible map E → M where E is indecomposable <strong>and</strong> that<br />

l(E) = l(M) − 1.<br />

(a) The middle term <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Ausl<strong>and</strong>er-Reiten sequence ending at M has no n<strong>on</strong>zero<br />

projective summ<strong>and</strong>.<br />

(b) If E, M <strong>and</strong> τM are uniserial, <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> remaining summ<strong>and</strong> F <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Ausl<strong>and</strong>er-<br />

Reiten sequence ending at M is uniserial too <strong>and</strong> its length is l(F ) = l(M) + 1.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Let 0 → τM → E ⊕ F ⊕ P → M → 0 be <str<strong>on</strong>g>the</str<strong>on</strong>g> Ausl<strong>and</strong>er-Reiten sequence ending<br />

at M, where F is indecomposable n<strong>on</strong> projective, <strong>and</strong> P is a n<strong>on</strong>zero projective module.<br />

Note first that P must be indecomposable since <str<strong>on</strong>g>the</str<strong>on</strong>g> algebra is selfinjective. Using now<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> fact that τM = rP , a length argument shows that<br />

l(F ) = 2n − l(E) − l(P ) = 2n − (n − 1) − (n + 1) = 0<br />

c<strong>on</strong>tradicting our assumpti<strong>on</strong>. This proves <str<strong>on</strong>g>the</str<strong>on</strong>g> first part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> lemma.<br />

For part (b), note first that <str<strong>on</strong>g>the</str<strong>on</strong>g> Ausl<strong>and</strong>er-Reiten sequence ending at M has <str<strong>on</strong>g>the</str<strong>on</strong>g> form<br />

0 → τM → E ⊕ F → M → 0 where E <strong>and</strong> F are both indecomposable <strong>and</strong> l(F ) = n + 1.<br />

Hence τM is a maximal submodule <str<strong>on</strong>g>of</str<strong>on</strong>g> F . To prove <str<strong>on</strong>g>the</str<strong>on</strong>g> uniseriality <str<strong>on</strong>g>of</str<strong>on</strong>g> F , it suffices to<br />

show that τM = rF . It is folklore (see also [17], Propositi<strong>on</strong> 2.5.) that, since τM is not<br />

simple, we have an induced exact sequence<br />

0 → rτM → rE ⊕ rF → rM → 0.<br />

Counting lengths, we get l(rF ) = 2(n − 1) − (n − 2) = n. Since <str<strong>on</strong>g>the</str<strong>on</strong>g> image <str<strong>on</strong>g>of</str<strong>on</strong>g> τM in F<br />

c<strong>on</strong>tains <str<strong>on</strong>g>the</str<strong>on</strong>g> radical <str<strong>on</strong>g>of</str<strong>on</strong>g> F , it follows that τM ∼ = rF , <strong>and</strong> F is also an uniserial module. □<br />

–82–


We are now ready to prove <str<strong>on</strong>g>the</str<strong>on</strong>g> promised characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Ω-perfect maps.<br />

Propositi<strong>on</strong> 14. Let R be a selfinjective algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> infinite representati<strong>on</strong> type, <strong>and</strong> let<br />

C be an indecomposable module <strong>and</strong> let g : B → C be an irreducible map. Then g is<br />

eventually Ω-perfect if <strong>and</strong> <strong>on</strong>ly if both g <strong>and</strong> Ωg are eventually τ-perfect.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Obviously, if g is eventually Ω-perfect <str<strong>on</strong>g>the</str<strong>on</strong>g>n both maps g <strong>and</strong> Ωg are eventually<br />

τ-perfect. For <str<strong>on</strong>g>the</str<strong>on</strong>g> reverse directi<strong>on</strong>, assume that both maps g <strong>and</strong> Ωg are eventually<br />

τ-perfect, but that g is not eventually Ω-perfect. By applying enough powers <str<strong>on</strong>g>of</str<strong>on</strong>g> Ω, we<br />

may assume that g, Ωg are both τ-perfect, <strong>and</strong> that for each i ≥ 0, <str<strong>on</strong>g>the</str<strong>on</strong>g> maps τ i g are <strong>on</strong>to<br />

<strong>and</strong> Ω i τg are <strong>on</strong>e-to-<strong>on</strong>e. Thus, for each i ≥ 0, <str<strong>on</strong>g>the</str<strong>on</strong>g>re exist simple modules S i <strong>and</strong> exact<br />

sequences 0 → S i → Ω 2i B Ω2i g<br />

−→ Ω 2i C → 0 <strong>and</strong> 0 → Ω 2i+1 B Ω2i+1 g<br />

−→ Ω 2i+1 C → S i → 0. But<br />

Ω 2i+2 g is again surjective so we infer from <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> lemma 13 that for each i ≥ 0,<br />

Ω 2 S i<br />

∼ = Si+1 . Since <str<strong>on</strong>g>the</str<strong>on</strong>g>re are <strong>on</strong>ly finitely many n<strong>on</strong>isomorphic simple modules, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

sequence {S 1 , νS 2 = τS 1 , ν 2 S 3 = τ 2 S 1 , · · · } is eventually periodic. Therefore without loss<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> generality we may assume that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a periodic simple module S, say <str<strong>on</strong>g>of</str<strong>on</strong>g> period n,<br />

whose τ-powers are all simple.<br />

We claim first that <str<strong>on</strong>g>the</str<strong>on</strong>g> simple modules S, τS, · · · , τ n−1 S lie <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> boundary <str<strong>on</strong>g>of</str<strong>on</strong>g> a regular<br />

tube C. To see this, observe first that we can deduce that <str<strong>on</strong>g>the</str<strong>on</strong>g> middle term E <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Ausl<strong>and</strong>er-Reiten sequence 0 → τS → E → S → 0 is indecomposable. Moreover, E<br />

cannot be projective, since o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise <str<strong>on</strong>g>the</str<strong>on</strong>g> middle term <str<strong>on</strong>g>of</str<strong>on</strong>g> each Ausl<strong>and</strong>er-Reiten sequence<br />

ending at a τ i S would be an indecomposable projective-injective module <str<strong>on</strong>g>of</str<strong>on</strong>g> length two.<br />

This would imply that our algebra is selfinjective Nakayama <str<strong>on</strong>g>of</str<strong>on</strong>g> Loewy length two, c<strong>on</strong>tradicting<br />

our assumpti<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> representati<strong>on</strong> type <str<strong>on</strong>g>of</str<strong>on</strong>g> R. By c<strong>on</strong>structi<strong>on</strong>, all <str<strong>on</strong>g>the</str<strong>on</strong>g> modules<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> same τ-orbit <str<strong>on</strong>g>of</str<strong>on</strong>g> C have <str<strong>on</strong>g>the</str<strong>on</strong>g> same length, <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>se lengths increase by <strong>on</strong>e from<br />

a τ-orbit to <str<strong>on</strong>g>the</str<strong>on</strong>g> next <strong>on</strong>e. We may apply now <str<strong>on</strong>g>the</str<strong>on</strong>g> previous lemma <strong>and</strong> infer that <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

comp<strong>on</strong>ent is a regular comp<strong>on</strong>ent. By <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> lemma we get that all<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> modules in C are uniserial, a c<strong>on</strong>tradicti<strong>on</strong> since we cannot have uniserial module <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

arbitrary large length.<br />

□<br />

Let ∆ be a quiver. A vertex x <str<strong>on</strong>g>of</str<strong>on</strong>g> ∆ is called a tip, if <strong>on</strong>ly <strong>on</strong>e arrow <str<strong>on</strong>g>of</str<strong>on</strong>g> ∆ starts or ends<br />

at x. If C is a comp<strong>on</strong>ent whose stable part is <str<strong>on</strong>g>of</str<strong>on</strong>g> type Z∆, <str<strong>on</strong>g>the</str<strong>on</strong>g>n a module M corresp<strong>on</strong>ds<br />

to a tip <str<strong>on</strong>g>of</str<strong>on</strong>g> ∆ if <strong>and</strong> <strong>on</strong>ly if <str<strong>on</strong>g>the</str<strong>on</strong>g> Ausl<strong>and</strong>er-Reiten sequence ending at M is <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> form:<br />

0 → τM → Y ⊕ P → M → 0<br />

for some projective (possibly zero) module P <strong>and</strong> indecomposable n<strong>on</strong> projective module<br />

Y . Assume that C is a c<strong>on</strong>nected comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Ausl<strong>and</strong>er-Reiten quiver, <strong>and</strong> that<br />

we have C s<br />

∼ = Z∆ for some quiver ∆. Since an Ausl<strong>and</strong>er-Reiten comp<strong>on</strong>ent c<strong>on</strong>tains at<br />

most finitely many indecomposable projective or simple modules, for each indecomposable<br />

module M ∈ C s <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a positive integer r such that τ r M has no projective or simple<br />

predecessors in C. We have <str<strong>on</strong>g>the</str<strong>on</strong>g> following immediate c<strong>on</strong>sequence:<br />

Corollary 15. Let C s be a stable comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> type Z∆ <strong>and</strong> let M be an indecomposable<br />

module in C s . Assume that M corresp<strong>on</strong>ds to a tip <str<strong>on</strong>g>of</str<strong>on</strong>g> ∆. Then M is eventually Ω-<br />

perfect.<br />

□<br />

We have <str<strong>on</strong>g>the</str<strong>on</strong>g> following:<br />

–83–


Propositi<strong>on</strong> 16. Let C s be a stable comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> type Z∆ where ∆ is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> Ẽ6, Ẽ7, Ẽ8,<br />

à 1 , A ∞ . Then every module in C s is eventually Ω-perfect.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. The case where ∆ = A ∞ was treated in [20], (Theorem 2.11. <strong>and</strong> Lemma 2.6.).<br />

C<strong>on</strong>sider now <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>ly case when <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>nected comp<strong>on</strong>ent Z∆ has no tip, that is <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

case when ∆ = Ã1, that is, <str<strong>on</strong>g>the</str<strong>on</strong>g> Kr<strong>on</strong>ecker quiver. Let M ∈ C s with no projective or<br />

simple predecessors. The Ausl<strong>and</strong>er-Reiten sequence ending at M is <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> form<br />

0 → τM [f 1,f 2 ] t<br />

−→ E ⊕ E [g 1,g 2 ]<br />

−→ M → 0<br />

<strong>and</strong> it is obvious that all <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> irreducible maps f 1 , f 2 , g 1 , g 2 are epimorphisms, or all are<br />

m<strong>on</strong>omorphisms. We claim that <str<strong>on</strong>g>the</str<strong>on</strong>g>y are all epimorphisms. If <str<strong>on</strong>g>the</str<strong>on</strong>g>y are m<strong>on</strong>omorphisms,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>n in <str<strong>on</strong>g>the</str<strong>on</strong>g> Ausl<strong>and</strong>er-Reiten sequence<br />

0 → τE [τg 1,τg 2 ] t<br />

−→ τM ⊕ τM [f 1,f 2 ]<br />

−→ E → 0<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> maps τg 1 , τg 2 are also m<strong>on</strong>omorphisms. C<strong>on</strong>tinuing in <str<strong>on</strong>g>the</str<strong>on</strong>g> positive τ directi<strong>on</strong> we<br />

obtain an arbitrary l<strong>on</strong>g chain or irreducible m<strong>on</strong>omorphisms<br />

· · · τ i E ↩→ τ i M ↩→ τ i−1 E ↩→ · · · ↩→ E ↩→ M<br />

which is absurd. We can make <str<strong>on</strong>g>the</str<strong>on</strong>g> same argument for ΩM, <strong>and</strong> it follows that M is<br />

Ω-perfect.<br />

Assume now that ∆ is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> remaining finite quiver Ẽi, take M in C s with α(M) = 3,<br />

such that M has no projective or simple predecessor in C <strong>and</strong> let C M be <str<strong>on</strong>g>the</str<strong>on</strong>g> full subquiver<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> C, defined by <str<strong>on</strong>g>the</str<strong>on</strong>g> vertices which are predecessors <str<strong>on</strong>g>of</str<strong>on</strong>g> M. If X ∈ C M with α(X) = 1<br />

(hence X corresp<strong>on</strong>ds to <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 3 tips <str<strong>on</strong>g>of</str<strong>on</strong>g> ∆, <str<strong>on</strong>g>the</str<strong>on</strong>g>n X is Ω-perfect by Remark 3.2, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

irreducible map Y → τX is an Ω-perfect epimorphism, <strong>and</strong> τX → Y is injective <strong>and</strong><br />

Ω-perfect. C<strong>on</strong>sequently all irreducible maps between indecomposable modules in C M are<br />

Ω-perfect, hence all indecomposable modules N ∈ C M with α(N) ≤ 2 are Ω-perfect. Take<br />

finally V ∈ C M with α(V ) = 3 <strong>and</strong> let<br />

0 → τV [f 1,f 2 ,f 3 ] t<br />

−→ ⊕ 3 i=1X i<br />

[g 1 ,g 2 ,g 3 ]<br />

−→ V → 0<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Ausl<strong>and</strong>er-Reiten sequence ending in V . The irreducible maps f i all are surjective,<br />

while <str<strong>on</strong>g>the</str<strong>on</strong>g> g i are injective. Choose j ≤ 3, let ⊕ i X i = Y ⊕ X j <strong>and</strong> let [g, g j ] : Y ⊕ X j → V<br />

be <str<strong>on</strong>g>the</str<strong>on</strong>g> sink map. Since f j is an Ω-perfect epimorphism, <str<strong>on</strong>g>the</str<strong>on</strong>g> same holds for <str<strong>on</strong>g>the</str<strong>on</strong>g> ”parallel”<br />

morphism g, hence V is Ω-perfect, too.<br />

□<br />

As we will see very so<strong>on</strong>, it turns out that if C is a comp<strong>on</strong>ent in which no irreducible<br />

map is Ω-perfect, <str<strong>on</strong>g>the</str<strong>on</strong>g>n every n<strong>on</strong> projective module in C has complexity at most 2. In<br />

fact, we have a slightly more general result. We start with <str<strong>on</strong>g>the</str<strong>on</strong>g> following:<br />

Propositi<strong>on</strong> 17. Let C be an indecomposable n<strong>on</strong> projective, <strong>and</strong> n<strong>on</strong> τ-periodic module<br />

<strong>and</strong> assume that <str<strong>on</strong>g>the</str<strong>on</strong>g>re exist irreducible morphisms B → C <strong>and</strong> τC → B that are not<br />

eventually Ω-perfect. Then, <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a positive integer α such that for each n ≥ 0,<br />

l(Ω 2n C) ≤ l(C) + nα. In particular, C <strong>and</strong> every n<strong>on</strong>projective module in <str<strong>on</strong>g>the</str<strong>on</strong>g> same<br />

Ausl<strong>and</strong>er-Reiten comp<strong>on</strong>ent has complexity 2.<br />

–84–


Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Observe first that for each indecomposable n<strong>on</strong> projective R-module M, we have<br />

l(Ω 2 M) = l(τM). Now, applying <str<strong>on</strong>g>the</str<strong>on</strong>g> previous Lemma 3.3, we obtain for each i ≥ 0<br />

that l(Ω i B) ≤ l(Ω i C) + α/2, <strong>and</strong> l(Ω i+2 C) ≤ l(Ω i B) + α/2 for some positive number α.<br />

Hence, for each i ≥ 0 we have l(Ω i+2 C) − l(Ω i C) ≤ α. In particular, for each n ≥ 0 we<br />

have l(Ω 2n C) − l(C) ≤ nα. This means that <str<strong>on</strong>g>the</str<strong>on</strong>g> complexity <str<strong>on</strong>g>of</str<strong>on</strong>g> C is bounded by 2. If<br />

cx C = 1, <str<strong>on</strong>g>the</str<strong>on</strong>g>n, since it is not τ periodic, <str<strong>on</strong>g>the</str<strong>on</strong>g> module C must lie in a ZA ∞ -comp<strong>on</strong>ent<br />

by [17], but for <str<strong>on</strong>g>the</str<strong>on</strong>g>se comp<strong>on</strong>ents every irreducible map is eventually Ω-perfect. Hence<br />

cx C = 2.<br />

□<br />

We obtain <str<strong>on</strong>g>the</str<strong>on</strong>g> following immediate c<strong>on</strong>sequence: assume that we have a comp<strong>on</strong>ent C,<br />

whose stable part C s is <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> form ZA ∞ ∞, <strong>and</strong> assume also that <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists an Ausl<strong>and</strong>er-<br />

Reiten sequence 0 → τC → E ⊕ F → C → 0 where E <strong>and</strong> F are indecomposable, <strong>and</strong><br />

nei<str<strong>on</strong>g>the</str<strong>on</strong>g>r E → C nor F → C is eventually Ω-perfect. Observe also that in this case, no<br />

irreducible map in C s between indecomposable modules is eventually Ω-perfect. It follows<br />

immediately from <str<strong>on</strong>g>the</str<strong>on</strong>g> previous propositi<strong>on</strong> that every n<strong>on</strong> projective module in C has<br />

complexity 2. This situati<strong>on</strong> can actually occur. The following example is due to <strong>Ring</strong>el.<br />

Example 18. Let R be <str<strong>on</strong>g>the</str<strong>on</strong>g> finite dimensi<strong>on</strong>al selfinjective string algebra given by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

quiver<br />

α<br />

β<br />

1 2 3<br />

γ<br />

modulo <str<strong>on</strong>g>the</str<strong>on</strong>g> relati<strong>on</strong>s αβ = 0, δγ = 0, γαγα = βδβδ <strong>and</strong> αγαγα = δβδβδ = 0. There<br />

exists a ZA ∞ ∞ comp<strong>on</strong>ent where n<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> irreducible maps between <str<strong>on</strong>g>the</str<strong>on</strong>g> indecomposable<br />

modules is eventually Ω-perfect, (or even τ-perfect). For instance, c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> string<br />

module M = r 3 P 2 . It is easy to see that M is not eventually Ω-perfect, that α(M) = 2,<br />

<strong>and</strong> that no irreducible map from an indecomposable module to M is eventually Ω-perfect.<br />

Moreover, by [6], M lies in a comp<strong>on</strong>ent c<strong>on</strong>sisting entirely <str<strong>on</strong>g>of</str<strong>on</strong>g> string modules. But <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<strong>on</strong>ly string modules lying <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> boundary <str<strong>on</strong>g>of</str<strong>on</strong>g> an Ausl<strong>and</strong>er-Reiten comp<strong>on</strong>ent can lie <strong>on</strong><br />

tubes (see [12], II.6.4), so this module bel<strong>on</strong>gs to a ZA ∞ ∞ comp<strong>on</strong>ent. Note also that <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

simple modules S 1 <strong>and</strong> S 3 are Ω-periodic <str<strong>on</strong>g>of</str<strong>on</strong>g> period 6, <strong>and</strong> that <str<strong>on</strong>g>the</str<strong>on</strong>g>y both lie <strong>on</strong> tubes <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

rank 3.<br />

Example 19. Following Erdmann [12], for each positive integer m, we denote by Λ m <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

local symmetric string algebra over a field K,<br />

Λ m = K〈x, y〉/〈x 2 , (xy) m+1 − (yx) m+1 , x 2 − (yx) m y, x 3 〉<br />

If <str<strong>on</strong>g>the</str<strong>on</strong>g> characteristic <str<strong>on</strong>g>of</str<strong>on</strong>g> K is 2, <strong>and</strong> m+1 = 2 n ≥ 4, <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> algebra Λ m modulo its socle is<br />

isomorphic to <str<strong>on</strong>g>the</str<strong>on</strong>g> group algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> semidihedral group <str<strong>on</strong>g>of</str<strong>on</strong>g> order 2 n+2 modulo its socle.<br />

Motivated by this fact, Erdmann calls this algebra semidihedral. She proves that Λ m has<br />

infinitely many stable comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> type ZA ∞ ∞ <strong>and</strong> ZD ∞ ([12], Propositi<strong>on</strong>s II,10.1 <strong>and</strong><br />

II,10.2), <strong>and</strong> that <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r stable comp<strong>on</strong>ents are tubes <str<strong>on</strong>g>of</str<strong>on</strong>g> rank 1 <strong>and</strong> 2. Moreover, she<br />

shows that <str<strong>on</strong>g>the</str<strong>on</strong>g> unique simple module lies in a comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> type ZD ∞ so it is not periodic.<br />

Therefore, every indecomposable n<strong>on</strong> projective Λ m -module is eventually Ω-perfect by<br />

[18]. Note that in <str<strong>on</strong>g>the</str<strong>on</strong>g> same book, Erdmann generalizes <str<strong>on</strong>g>the</str<strong>on</strong>g> noti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> semidihedral algebra<br />

to that <str<strong>on</strong>g>of</str<strong>on</strong>g> algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> semidihedral type <strong>and</strong> <strong>on</strong>e also obtains interesting examples for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

n<strong>on</strong> local case ([12], Lemma VIII. 2.1.).<br />

–85–<br />

δ


3.1. ZD ∞ -comp<strong>on</strong>ents. We assume for <str<strong>on</strong>g>the</str<strong>on</strong>g> remainder <str<strong>on</strong>g>of</str<strong>on</strong>g> this secti<strong>on</strong> that C is a c<strong>on</strong>nected<br />

Ausl<strong>and</strong>er-Reiten comp<strong>on</strong>ent whose stable part is <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> form ZD ∞ . Let C be an<br />

indecomposable module lying <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> boundary <str<strong>on</strong>g>of</str<strong>on</strong>g> C. Then, without loss <str<strong>on</strong>g>of</str<strong>on</strong>g> generality we<br />

may assume that C is Ω-perfect, by Remark 11. In this c<strong>on</strong>text we have <str<strong>on</strong>g>the</str<strong>on</strong>g> following:<br />

Lemma 20. Let A <strong>and</strong> B be two indecomposable modules lying <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> boundary <str<strong>on</strong>g>of</str<strong>on</strong>g> C with<br />

Ausl<strong>and</strong>er-Reiten sequences 0 → τA f 1<br />

−→ M g 1<br />

−→ A → 0 <strong>and</strong> 0 → τB f 2<br />

−→ M g 2<br />

−→ B → 0.<br />

Then <str<strong>on</strong>g>the</str<strong>on</strong>g> irreducible map [g 1 , g 2 ] t : M → A ⊕ B is an epimorphism if <strong>and</strong> <strong>on</strong>ly if <str<strong>on</strong>g>the</str<strong>on</strong>g> map<br />

[f 1 , f 2 ]: τA ⊕ τB → M is also an epimorphism.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Counting lengths, we have l(τA)+l(A)+l(τB)+l(B) = 2l(M). This means that<br />

l(A) + l(B) < l(M) if <strong>and</strong> <strong>on</strong>ly if l(τA) + l(τB) > l(M). The result follows, since an<br />

irreducible map is ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r a m<strong>on</strong>omorphism, or an epimorphism.<br />

□<br />

Keeping <str<strong>on</strong>g>the</str<strong>on</strong>g> notati<strong>on</strong> from <str<strong>on</strong>g>the</str<strong>on</strong>g> lemma, we may clearly assume that <str<strong>on</strong>g>the</str<strong>on</strong>g> modules A <strong>and</strong><br />

B lying <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> boundary <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> comp<strong>on</strong>ent are Ω-perfect, <strong>and</strong> that <str<strong>on</strong>g>the</str<strong>on</strong>g> Ausl<strong>and</strong>er-Reiten<br />

sequence ending at M is 0 → τM → τA ⊕ τB ⊕ τX → M → 0 for some indecomposable<br />

module X. Since <str<strong>on</strong>g>the</str<strong>on</strong>g> irreducible epimorphisms M → A <strong>and</strong> M → B are Ω-perfect, <str<strong>on</strong>g>the</str<strong>on</strong>g>n<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> irreducible epimorphisms τA ⊕ τX → M <strong>and</strong> τB ⊕ τX → M are also Ω-perfect<br />

being “parallel” to Ω-perfect epimorphisms. Similarly, <str<strong>on</strong>g>the</str<strong>on</strong>g> irreducible m<strong>on</strong>omorphisms<br />

τM → τX ⊕ τA <strong>and</strong> τM → τX ⊕ τB are also Ω-perfect. Putting toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r our remarks,<br />

we have:<br />

Propositi<strong>on</strong> 21. Let C be an Ausl<strong>and</strong>er-Reiten comp<strong>on</strong>ent whose stable part is <str<strong>on</strong>g>of</str<strong>on</strong>g> type<br />

ZD ∞ . Assume that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is an irreducible map between indecomposable n<strong>on</strong> projective<br />

modules X → Y that is not eventually Ω-perfect. Then each n<strong>on</strong> projective module in C<br />

has complexity 2.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. From <str<strong>on</strong>g>the</str<strong>on</strong>g> shape <str<strong>on</strong>g>of</str<strong>on</strong>g> our comp<strong>on</strong>ent, it follows by looking at “parallel” maps <strong>on</strong>e at a<br />

time, that we may assume that <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists an irreducible map <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> form τM → τA⊕τB<br />

or τA ⊕ τB → M that is not eventually Ω-perfect, where A <strong>and</strong> B are indecomposable<br />

modules lying <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> boundary <str<strong>on</strong>g>of</str<strong>on</strong>g> C, <strong>and</strong> M is an indecomposable module. Observe that,<br />

nei<str<strong>on</strong>g>the</str<strong>on</strong>g>r τM → τA ⊕ τB nor τA ⊕ τB → M can be eventually Ω-perfect by Lemma 20.<br />

Being <str<strong>on</strong>g>of</str<strong>on</strong>g> type ZD ∞ means also that C cannot c<strong>on</strong>tain modules <str<strong>on</strong>g>of</str<strong>on</strong>g> complexity 1 by [17].<br />

We apply now 17. <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> result follows.<br />

□<br />

We would like to propose <str<strong>on</strong>g>the</str<strong>on</strong>g> following questi<strong>on</strong>s summarizing <str<strong>on</strong>g>the</str<strong>on</strong>g> discussi<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> first<br />

three secti<strong>on</strong>s. The first <strong>on</strong>e has been around for some time <strong>and</strong> is due to Rickard [25].<br />

Questi<strong>on</strong>s 22. Let R be a selfinjective algebra.<br />

(1) Assume that <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists an indecomposable R-module <str<strong>on</strong>g>of</str<strong>on</strong>g> complexity greater than<br />

2. Is R is <str<strong>on</strong>g>of</str<strong>on</strong>g> wild representati<strong>on</strong> type?<br />

(2) Assume that R has stable comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> type ZD ∞ or ZA ∞ ∞. Is R <str<strong>on</strong>g>of</str<strong>on</strong>g> tame representati<strong>on</strong><br />

type? Must <str<strong>on</strong>g>the</str<strong>on</strong>g>se comp<strong>on</strong>ents have complexity 2?<br />

(3) Assume that R has a stable comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> type ZA ∞ . Is R necessarily <str<strong>on</strong>g>of</str<strong>on</strong>g> wild<br />

representati<strong>on</strong> type?<br />

The answer to <str<strong>on</strong>g>the</str<strong>on</strong>g> first questi<strong>on</strong> is known to be yes if R admits a <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> support<br />

varieties, for instance in <str<strong>on</strong>g>the</str<strong>on</strong>g> group algebras case. See also [14]. The answer to <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d<br />

–86–


<strong>and</strong> third questi<strong>on</strong> is also known to be affirmative in <str<strong>on</strong>g>the</str<strong>on</strong>g> group algebra case [12] but<br />

almost nothing is known outside this case.<br />

4. Growth <str<strong>on</strong>g>of</str<strong>on</strong>g> Betti numbers. The local case<br />

Let us return to <str<strong>on</strong>g>the</str<strong>on</strong>g> situati<strong>on</strong> where R = (R, m, k) is a local noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian k-algebra. The<br />

following questi<strong>on</strong>s were am<strong>on</strong>g questi<strong>on</strong>s posed in <str<strong>on</strong>g>the</str<strong>on</strong>g> late 1970s <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> early 1980s.<br />

They are still open even in <str<strong>on</strong>g>the</str<strong>on</strong>g> commutative artinian case, <strong>and</strong> even if we also add <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

selfinjective assumpti<strong>on</strong>.<br />

Questi<strong>on</strong>s 23. Let R = (R, m, k) be a local noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian k-algebra. Let M be an indecomposable<br />

finitely generated R-module <str<strong>on</strong>g>of</str<strong>on</strong>g> infinite projective dimensi<strong>on</strong>.<br />

(1) Assume that M has complexity 1. Is <str<strong>on</strong>g>the</str<strong>on</strong>g> sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> Betti numbers {β i (M)} i<br />

eventually c<strong>on</strong>stant?<br />

(2) Is <str<strong>on</strong>g>the</str<strong>on</strong>g> sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> Betti numbers {β i (M)} i eventually n<strong>on</strong>decreasing?<br />

The first questi<strong>on</strong> has an affirmative answer if R is a complete intersecti<strong>on</strong> ([10]). In <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

radical square zero case <str<strong>on</strong>g>the</str<strong>on</strong>g> answer is also affirmative. We sketch <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> below (see<br />

also [15])<br />

Propositi<strong>on</strong> 24. Let R = (R, m, k) is a local artinian ring with m 2 = 0 <strong>and</strong> let M be a<br />

finitely generated R-module with cx M = 1. Then <str<strong>on</strong>g>the</str<strong>on</strong>g> Betti numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> M are eventually<br />

c<strong>on</strong>stant.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Let F be a finitely generated free R-module. We observe first that since m 2 = 0,<br />

every submodule <str<strong>on</strong>g>of</str<strong>on</strong>g> mF is semisimple [3], so all <str<strong>on</strong>g>the</str<strong>on</strong>g> syzygies <str<strong>on</strong>g>of</str<strong>on</strong>g> M must be semisimple. Let<br />

k denote <str<strong>on</strong>g>the</str<strong>on</strong>g> largest possible value <str<strong>on</strong>g>of</str<strong>on</strong>g> a Betti number <str<strong>on</strong>g>of</str<strong>on</strong>g> M <strong>and</strong> assume that it corresp<strong>on</strong>ds<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> i-th Betti number, that is β i (M) = k. This means that <str<strong>on</strong>g>the</str<strong>on</strong>g> i-th syzygy <str<strong>on</strong>g>of</str<strong>on</strong>g> M is a<br />

direct sum <str<strong>on</strong>g>of</str<strong>on</strong>g> k simple modules, hence β i+1 (M) ≥ k. Our choice <str<strong>on</strong>g>of</str<strong>on</strong>g> k implies now that<br />

β i+j (M) = k for all j ≥ 0 <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> result follows.<br />

□<br />

Questi<strong>on</strong> 1 also has an affirmative answer in <str<strong>on</strong>g>the</str<strong>on</strong>g> case where R = (R, m, k) is a commutative<br />

Gorenstein artinian ring with m 3 = 0, see [15]. Questi<strong>on</strong> 2 is also pretty much<br />

unresolved. In <str<strong>on</strong>g>the</str<strong>on</strong>g> local commutative artinian case, Gasharov <strong>and</strong> Peeva have shown<br />

([15]) that for a finitely generated module M, we have <str<strong>on</strong>g>the</str<strong>on</strong>g> following:<br />

β i+1 (M) ≥ (2e − l(R) + h − 1)β i (M)<br />

for large enough i. Here e = dim k m/m 2 , h is <str<strong>on</strong>g>the</str<strong>on</strong>g> Loewy length <str<strong>on</strong>g>of</str<strong>on</strong>g> R, <strong>and</strong> l(R) is <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

length <str<strong>on</strong>g>of</str<strong>on</strong>g> R. They have also shown that if <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>stant 2e − l(R) + h − 1 ≥ 2, <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> Betti numbers has exp<strong>on</strong>ential growth. However it is not hard to produce<br />

examples <str<strong>on</strong>g>of</str<strong>on</strong>g> local commutative artinian rings where <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>stant 2e − l(R) + h − 1 is<br />

a negative number. We also want to menti<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> following two results due to Ramras<br />

[23, 24]:<br />

Theorem 25. Let (R, m, k) be a regular local ring <str<strong>on</strong>g>of</str<strong>on</strong>g> dimensi<strong>on</strong> at least two, <strong>and</strong> let<br />

S = R/m k for some k ≥ 2. Let M be a finitely generated n<strong>on</strong> free S-module. Then, for<br />

each i ≥ 1 we have βi+2(M) S > βi S (M).<br />

□<br />

<strong>and</strong><br />

–87–


Theorem 26. Let R be a local artinian ring, <strong>and</strong> let M be a finitely generated n<strong>on</strong> free<br />

R-module. Then, for each i ≥ 1 we have<br />

l(R)β i (M) > β i+1 (M) > l(socR) β i (M)<br />

l(R)<br />

Observe that if we assume in <str<strong>on</strong>g>the</str<strong>on</strong>g> last <str<strong>on</strong>g>the</str<strong>on</strong>g>orem that R is also selfinjective, <str<strong>on</strong>g>the</str<strong>on</strong>g>n its socle<br />

has length equal to 1, so we d<strong>on</strong>’t get any extremely useful informati<strong>on</strong> about <str<strong>on</strong>g>the</str<strong>on</strong>g> growth<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> Betti numbers.<br />

It turns out that in certain cases we can prove a similar <str<strong>on</strong>g>the</str<strong>on</strong>g>orem to Ramras’ first<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>orem. For this type <str<strong>on</strong>g>of</str<strong>on</strong>g> result we might restrict ourselves <strong>on</strong>ly to <str<strong>on</strong>g>the</str<strong>on</strong>g> local selfinjective<br />

case R = (R, m, k) but this is not necessary. Recall that since R is selfinjective, <str<strong>on</strong>g>the</str<strong>on</strong>g>n<br />

for each integer n ≥ 0 we have that β i (τM) = β i+2 (M) if M is an indecomposable n<strong>on</strong><br />

projective R-module. We will assume that cx M > 1. Next we want to make sure that <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

stable comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> M c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> modules that are eventually Ω-perfect. As menti<strong>on</strong>ed<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> introducti<strong>on</strong>, this can be easily achieved if we assume that every simple R-module<br />

is n<strong>on</strong> periodic (cx k > 1 for <str<strong>on</strong>g>the</str<strong>on</strong>g> local case) by [18].<br />

We have <str<strong>on</strong>g>the</str<strong>on</strong>g> following:<br />

Lemma 27. Let R be a selfinjective algebra <strong>and</strong> let M be a finitely generated n<strong>on</strong> projective<br />

indecomposable R-module. Assume that <str<strong>on</strong>g>the</str<strong>on</strong>g> stable comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Ausl<strong>and</strong>er-Reiten<br />

quiver c<strong>on</strong>taining M is <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> form ZA ∞ ∞ <strong>and</strong> that it c<strong>on</strong>sists entirely <str<strong>on</strong>g>of</str<strong>on</strong>g> eventually Ω-<br />

perfect modules. Then <str<strong>on</strong>g>the</str<strong>on</strong>g> sequences {β 2n (M)} n <strong>and</strong> {β 2n+1 (M)} n are eventually strictly<br />

increasing.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Let M be a module in this comp<strong>on</strong>ent. We may assume that M is Ω-perfect by<br />

taking enough powers <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>Ausl<strong>and</strong>er-Reiten translate. The Ausl<strong>and</strong>er-Reiten sequence<br />

ending at M must have <str<strong>on</strong>g>the</str<strong>on</strong>g> following form [18, 20]<br />

X ■ ■ <br />

τM M<br />

<br />

❑❑❑❑❑ ✉<br />

Y<br />

✉✉✉<br />

so we have an epimorphism τM → M that is <str<strong>on</strong>g>the</str<strong>on</strong>g> compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> two Ω-perfect epimorphisms.<br />

But we can infer from 4 that whenever we have an Ω-perfect epimorphism<br />

f : B → C, <str<strong>on</strong>g>the</str<strong>on</strong>g>n for each i we have β i (B) > β i (C) since β i (Kerf) > 0. This implies that<br />

β i+2 (M) = β i (τM) > β i (X) > β i (M) for all i ≥ 0 <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> result follows.<br />

□<br />

We now treat <str<strong>on</strong>g>the</str<strong>on</strong>g> D ∞ case.<br />

Lemma 28. Let R be a selfinjective algebra. Let C s be a stable comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Ausl<strong>and</strong>er-<br />

Reiten quiver <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> form ZD ∞ c<strong>on</strong>sisting entirely <str<strong>on</strong>g>of</str<strong>on</strong>g> eventually Ω-perfect modules.<br />

(1) Let M be a module in C s not lying <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> border <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> comp<strong>on</strong>ent. Then <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

sequences {β 2n (M)} n <strong>and</strong> {β 2n+1 (M)} n are eventually strictly increasing.<br />

(2) Let Y <strong>and</strong> Z be two indecomposable modules in C s lying in <str<strong>on</strong>g>the</str<strong>on</strong>g> two different τ-<br />

orbits that form <str<strong>on</strong>g>the</str<strong>on</strong>g> border <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> comp<strong>on</strong>ent. Then <str<strong>on</strong>g>the</str<strong>on</strong>g> sequences {β 2n (Y ⊕ Z)} n<br />

<strong>and</strong> {β 2n+1 (Y ⊕ Z)} n are eventually strictly increasing.<br />

–88–


Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Let M be an indecomposable module in this comp<strong>on</strong>ent. We may assume that M<br />

is Ω-perfect by taking enough powers <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Ausl<strong>and</strong>er-Reiten translate. If <str<strong>on</strong>g>the</str<strong>on</strong>g> Ausl<strong>and</strong>er-<br />

Reiten sequence ending at M has three indecomposable terms in <str<strong>on</strong>g>the</str<strong>on</strong>g> middle, <str<strong>on</strong>g>the</str<strong>on</strong>g> Ausl<strong>and</strong>er-<br />

Reiten sequence ending at M must have <str<strong>on</strong>g>the</str<strong>on</strong>g> following form [18, 20]<br />

X ■■<br />

■ <br />

τM ❑<br />

Y <br />

M<br />

❑❑❑❑ <br />

Z <br />

✉ ✉✉✉<br />

so as in <str<strong>on</strong>g>the</str<strong>on</strong>g> previous lemma we have an epimorphism τM → M that is <str<strong>on</strong>g>the</str<strong>on</strong>g> compositi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> two Ω-perfect epimorphisms. <strong>and</strong> β i+2 (M) = β i (τM) > β i (M) for all i ≥ 0. So<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> odd ,<strong>and</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> even Betti numbers for M are strictly increasing. Next we<br />

look at <str<strong>on</strong>g>the</str<strong>on</strong>g> module X. It is clear that we may assume that X is also Ω-perfect. The<br />

Ausl<strong>and</strong>er-Reiten sequence ending at X is <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> form<br />

0 → τX → τM ⊕ X 1 → X → 0<br />

where <str<strong>on</strong>g>the</str<strong>on</strong>g> irreducible map X 1 → X is an epimorphism. We proceed as in <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> previous lemma <strong>and</strong> obtain that for large enough n, <str<strong>on</strong>g>the</str<strong>on</strong>g> sequences {β 2n (X)} n <strong>and</strong><br />

{β 2n+1 (X)} n are strictly increasing. We proceed by inducti<strong>on</strong> al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> secti<strong>on</strong>al path <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

irreducible epimorphisms<br />

· · · X n → · · · → X 2 → X 1 → X<br />

<strong>and</strong> we c<strong>on</strong>clude that for each module X j <str<strong>on</strong>g>the</str<strong>on</strong>g> two sequences {β 2n (X j )} n <strong>and</strong> {β 2n+1 (X j )} n<br />

are eventually strictly increasing. This implies that <str<strong>on</strong>g>the</str<strong>on</strong>g> result holds for every module in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> comp<strong>on</strong>ent, whose Ausl<strong>and</strong>er-Reiten sequence has <str<strong>on</strong>g>the</str<strong>on</strong>g> middle term decomposing into<br />

two indecomposable summ<strong>and</strong>s. This proves <str<strong>on</strong>g>the</str<strong>on</strong>g> first part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> lemma. By 20 we see<br />

that we have a compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> two irreducible epimorphisms fro τY ⊕ τZ → Y ⊕ Z <strong>and</strong><br />

we may also assume that both Y <strong>and</strong> Z are Ω-perfect. This shows that {β 2n (Y ⊕ Z)} n<br />

<strong>and</strong> {β 2n+1 (Y ⊕ Z)} n are eventually strictly increasing.<br />

□<br />

For <str<strong>on</strong>g>the</str<strong>on</strong>g> case when <str<strong>on</strong>g>the</str<strong>on</strong>g> stable comp<strong>on</strong>ent is <str<strong>on</strong>g>of</str<strong>on</strong>g> type ZÃn or Z ˜D n we proceed as above. We<br />

have <str<strong>on</strong>g>the</str<strong>on</strong>g> following similar propositi<strong>on</strong>:<br />

Propositi<strong>on</strong> 29. Let R be a selfinjective algebra <strong>and</strong> let M be a finitely generated n<strong>on</strong><br />

projective indecomposable R-module. Assume that <str<strong>on</strong>g>the</str<strong>on</strong>g> stable comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Ausl<strong>and</strong>er-<br />

Reiten quiver c<strong>on</strong>taining M is <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> form ZÃn or Z ˜D n <strong>and</strong> c<strong>on</strong>sists entirely <str<strong>on</strong>g>of</str<strong>on</strong>g> eventually<br />

Ω-perfect modules. Assume that <str<strong>on</strong>g>the</str<strong>on</strong>g> Ausl<strong>and</strong>er-Reiten sequence ending at M has a decomposable<br />

middle term. Then <str<strong>on</strong>g>the</str<strong>on</strong>g> sequences {β 2n (M)} n <strong>and</strong> {β 2n+1 (M)} n are eventually<br />

increasing.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Note first that M has complexity 2, by [20]. We use now <str<strong>on</strong>g>the</str<strong>on</strong>g> fact that a comp<strong>on</strong>ent<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> type ZÃn is <str<strong>on</strong>g>of</str<strong>on</strong>g> tree type A ∞ ∞ <strong>and</strong> use <str<strong>on</strong>g>the</str<strong>on</strong>g> same argument as above. For <str<strong>on</strong>g>the</str<strong>on</strong>g> case when<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> comp<strong>on</strong>ent is <str<strong>on</strong>g>of</str<strong>on</strong>g> type Z ˜D n with n > 4, we can use <str<strong>on</strong>g>the</str<strong>on</strong>g> same pro<str<strong>on</strong>g>of</str<strong>on</strong>g> as in <str<strong>on</strong>g>the</str<strong>on</strong>g> Z ˜D ∞ case,<br />

so it remains to look at <str<strong>on</strong>g>the</str<strong>on</strong>g> case when n = 4. In that case, if M is an Ω-perfect module,<br />

by [18] <str<strong>on</strong>g>the</str<strong>on</strong>g> Ausl<strong>and</strong>er-Reiten sequence ending at M has <str<strong>on</strong>g>the</str<strong>on</strong>g> form<br />

0 → τM [ f 1,f 2 ,f 3 ,f 4 ] T<br />

−−−−−−−−→ E 1 ⊕ E 2 ⊕ E 3 ⊕ E 4<br />

[ g 1 ,g 2 ,g 3 ,g 4 ]<br />

−−−−−−−→ M → 0<br />

–89–


where each f i is an irreducible epimorphism <strong>and</strong> each g i is an irreducible m<strong>on</strong>omorphism.<br />

We show first that at least <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> two induced irreducible maps E 1 ⊕ E 2 → M or<br />

E 3 ⊕ E 4 → M is an irreducible epimorphism. Assume <str<strong>on</strong>g>the</str<strong>on</strong>g>y are both m<strong>on</strong>omorphisms.<br />

Then both l(E 1 ⊕ E 2 ) < l(M) <strong>and</strong> l(E 3 ⊕ E 4 ) < l(M) hence<br />

l(M) + l(τM) = l(E 1 ) + l(E 2 ) + l(E 3 ) + l(E 4 ) < 2l(M)<br />

implying l(τM) < l(M). Since M is Ω-perfect we can repeat this argument <strong>and</strong> we obtain<br />

that <str<strong>on</strong>g>the</str<strong>on</strong>g> sequence {l(τ n M)} is strictly decreasing; clearly a c<strong>on</strong>tradicti<strong>on</strong>. Therefore we<br />

may assume that E 3 ⊕ E 4 → M is an irreducible epimorphism. This means that we can<br />

look at our sequence as being<br />

0 → τM [ f 1,f 2 ,f 3<br />

−−−−−−→ ′ ]T<br />

E 1 ⊕ E 2 ⊕ E 3<br />

′ [ g 1 ,g 2 ,g 3<br />

−−−−−→ ′ ]<br />

M → 0<br />

where E 3 ′ = E 3 ⊕ E 4 . Now we obtain again from [18] that <str<strong>on</strong>g>the</str<strong>on</strong>g> induced map f 3 ′ is an<br />

irreducible epimorphism <strong>and</strong> since M is Ω-perfect, β i (τM) > β i (M) for all i ≥ 0. The<br />

result follows now immediately.<br />

□<br />

References<br />

[1] J. L. Alperin, Periodicity in groups. Illinois J. Math. 21(4) (1977), 776–783.<br />

[2] J. L. Alperin, L. Evens, Representati<strong>on</strong>s, resoluti<strong>on</strong>s <strong>and</strong> Quillen’s dimensi<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>orem. J. Pure Appl.<br />

Algebra 22(1) (1981), 1–9.<br />

[3] M. Ausl<strong>and</strong>er, I. Reiten, S. Smalø, Representati<strong>on</strong> <strong>Theory</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Artin Algebras, Cambridge Studies in<br />

Advanced Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics, vol 36, (1997).<br />

[4] L. L. Avramov, Modules <str<strong>on</strong>g>of</str<strong>on</strong>g> finite virtual projective dimensi<strong>on</strong>, Invent. Math. 96 (1989), 71–101.<br />

[5] L. L. Avramov, Homological asymptotics <str<strong>on</strong>g>of</str<strong>on</strong>g> modules over local rings, Commutative Algebra, Berkeley,<br />

1987 (M. Hochster, C. Huneke, J. Sally, eds), MSRI Publ. 15, Springer, New York, (1989), 33-62.<br />

[6] M. C. R. Butler, C. M. <strong>Ring</strong>el, Ausl<strong>and</strong>er-Reiten sequences with few middle terms <strong>and</strong> applicati<strong>on</strong>s<br />

to string algebras. Comm. Algebra 15(1-2) (1987), 145–179.<br />

[7] J. F. Carls<strong>on</strong>, Complexity <strong>and</strong> Krull dimensi<strong>on</strong>. Representati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> algebras (Puebla, 1980), 62-67,<br />

Lecture Notes in Math., 903, Springer, Berlin-New York, (1981).<br />

[8] J. F. Carls<strong>on</strong>, The complexity <strong>and</strong> varieties <str<strong>on</strong>g>of</str<strong>on</strong>g> modules. Integral representati<strong>on</strong>s <strong>and</strong> applicati<strong>on</strong>s<br />

(Oberwolfach, 1980), 415–422, Lecture Notes in Math., 882, Springer, Berlin-New York, (1981).<br />

[9] A. Dugas, preprint (2011).<br />

[10] D. Eisenbud, Homological algebra <strong>on</strong> a complete intersecti<strong>on</strong>, with an applicati<strong>on</strong> to group representati<strong>on</strong>s.<br />

Trans. Amer. Math. Soc. 260(1) (1980), 35–64.<br />

[11] K. Erdmann,On Ausl<strong>and</strong>er-Reiten comp<strong>on</strong>ents for group algebras, J. Pure Appl.Algebra 104 (1995),<br />

149–160.<br />

[12] K. Erdmann, Blocks <str<strong>on</strong>g>of</str<strong>on</strong>g> tame representati<strong>on</strong> type <strong>and</strong> related algebras, Lecture Notes in Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics<br />

1428. Springer-Verlag, Berlin, (1990).<br />

[13] K. Erdmann, A. Skowroński, On Ausl<strong>and</strong>er-Reiten comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> blocks <strong>and</strong> self-injective biserial<br />

algebras, Trans. Amer. Math. Soc. 330 (1992), 165–189.<br />

[14] R. Farnsteiner, Tameness <strong>and</strong> complexity <str<strong>on</strong>g>of</str<strong>on</strong>g> finite group schemes. Bull. L<strong>on</strong>d. Math. Soc. 39(1)<br />

(2007), 63–70.<br />

[15] V. N. Gasharov, I. V. Peeva, Boundedness versus periodicity over commutative local rings. Trans.<br />

Amer. Math. Soc. 320(2) (1990), 569–580.<br />

[16] E. H. Gover, M. Ramras, Increasing sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> Betti Numbers, Pacific J. <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics 87 (1980),<br />

65–68.<br />

[17] E. L. Green, D. Zacharia, Ausl<strong>and</strong>er-Reiten comp<strong>on</strong>ents c<strong>on</strong>taining modules with bounded Betti numbers,<br />

Trans. Amer. Math. Soc., 361 (2009), 4195–4214.<br />

–90–


[18] E. L. Green, D. Zacharia, On modules <str<strong>on</strong>g>of</str<strong>on</strong>g> finite complexity over selfinjective artin algebras. Algebras<br />

<strong>and</strong> Representati<strong>on</strong> <strong>Theory</strong>., 5 (2011), 857–868.<br />

[19] D. Happel, U. Preiser, C. M. <strong>Ring</strong>el, Vinberg’s characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Dynkin diagrams using subadditive<br />

functi<strong>on</strong>s with applicati<strong>on</strong> to DTr-periodic modules. Representati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory II, pp. 280–294, Lecture<br />

Notes in Math., vol 832, Springer, Berlin, (1980).<br />

[20] O. Kerner, D. Zacharia, Ausl<strong>and</strong>er-Reiten <str<strong>on</strong>g>the</str<strong>on</strong>g>ory for modules <str<strong>on</strong>g>of</str<strong>on</strong>g> finite complexity over self-injective<br />

algebras, Bull. L<strong>on</strong>d<strong>on</strong>. Math. Soc., 43(1) (2011), 44–56.<br />

[21] O. Kroll, Complexity <strong>and</strong> elementary abelian p-groups. J. Algebra 88(1) (1984), 155–172.<br />

[22] S. Liu, R. Schulz, The existence <str<strong>on</strong>g>of</str<strong>on</strong>g> bounded infinite DTr-orbits. Proc. Amer. Math. Soc. 122(4)<br />

(1994), 1003–1005.<br />

[23] M. Ramras, Sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> Betti numbers. J. Algebra 66 (1980), 193–204.<br />

[24] M. Ramras, Bounds <strong>on</strong> Betti numbers. Canad. J. <str<strong>on</strong>g>of</str<strong>on</strong>g> Math. 34 (1982), 589–592.<br />

[25] J. Rickard, The representati<strong>on</strong> type <str<strong>on</strong>g>of</str<strong>on</strong>g> self-injective algebras. Bull. L<strong>on</strong>d<strong>on</strong> Math. Soc. 22(6) (1990),<br />

540–546.<br />

[26] C. Riedtmann, Algebren, Darstellungsköcher, Ueberlagerungen und zurück. Comment. Math. Helv.<br />

55(2) (1980), 199–224.<br />

[27] C. M. <strong>Ring</strong>el, Tame algebras <strong>and</strong> integral quadratic forms. Lecture Notes in Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics, 1099.<br />

Springer-Verlag, Berlin, (1984).<br />

[28] P. Webb, The Ausl<strong>and</strong>er-Reiten quiver <str<strong>on</strong>g>of</str<strong>on</strong>g> a finite group, Math. Z. 179(1) (1982), 97–121.<br />

Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matisches Institut<br />

Heinrich-Heine-Universität<br />

40225 Düsseldorf, Germany<br />

E-mail address: kerner@math.uni-duesseldorf.de<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics<br />

Syracuse University<br />

Syracuse, NY 13244, USA<br />

E-mail address: zacharia@syr.edu<br />

–91–


QUANTUM UNIPOTENT SUBGROUP AND DUAL CANONICAL<br />

BASIS<br />

YOSHIYUKI KIMURA<br />

Abstract. In a series <str<strong>on</strong>g>of</str<strong>on</strong>g> works [13, 16, 14, 15, 18, 19], Geiß-Leclerc-Schröer defined<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> cluster algebra structure <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> coordinate ring C[N(w)] <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> unipotent subgroup,<br />

associated with a Weyl group element w. And <str<strong>on</strong>g>the</str<strong>on</strong>g>y proved cluster m<strong>on</strong>omials are c<strong>on</strong>tained<br />

in Lusztig’s dual semican<strong>on</strong>ical basis S ∗ . We give a set up for <str<strong>on</strong>g>the</str<strong>on</strong>g> quantizati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir results <strong>and</strong> propose a c<strong>on</strong>jecture which relates <str<strong>on</strong>g>the</str<strong>on</strong>g> quantum cluster algebras in<br />

[3] to <str<strong>on</strong>g>the</str<strong>on</strong>g> dual can<strong>on</strong>ical basis B up . In particular, we prove that <str<strong>on</strong>g>the</str<strong>on</strong>g> quantum analogue<br />

O q [N(w)] <str<strong>on</strong>g>of</str<strong>on</strong>g> C[N(w)] has <str<strong>on</strong>g>the</str<strong>on</strong>g> induced basis from B up , which c<strong>on</strong>tains quantum flag minors<br />

<strong>and</strong> satisfies a factorizati<strong>on</strong> property with respect to <str<strong>on</strong>g>the</str<strong>on</strong>g> ‘q-center’ <str<strong>on</strong>g>of</str<strong>on</strong>g> O q [N(w)].<br />

This generalizes Caldero’s results [4, 5, 6] from finite type to an arbitrary symmetrizable<br />

Kac-Moody Lie algebra.<br />

1. Introducti<strong>on</strong><br />

1.1. The can<strong>on</strong>ical basis B <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> dual can<strong>on</strong>ical basis B up . Let g be a symmetrizable<br />

Kac-Moody Lie algebra, U q (g) its associated quantized enveloping algebra,<br />

<strong>and</strong> U − q (g) its negative part. In [24], Lusztig c<strong>on</strong>structed <str<strong>on</strong>g>the</str<strong>on</strong>g> can<strong>on</strong>ical basis B <str<strong>on</strong>g>of</str<strong>on</strong>g> U − q (g)<br />

by a geometric method when g is symmetric. In [21], Kashiwara c<strong>on</strong>structed <str<strong>on</strong>g>the</str<strong>on</strong>g> (lower)<br />

global basis G low (B(∞)) by a purely algebraic method. Grojnowski-Lusztig [20] showed<br />

that <str<strong>on</strong>g>the</str<strong>on</strong>g> two bases coincide when g is symmetric. We call <str<strong>on</strong>g>the</str<strong>on</strong>g> basis <str<strong>on</strong>g>the</str<strong>on</strong>g> can<strong>on</strong>ical basis.<br />

There are two remarkable properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> can<strong>on</strong>ical basis, <strong>on</strong>e is <str<strong>on</strong>g>the</str<strong>on</strong>g> positivity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

structure c<strong>on</strong>stants <str<strong>on</strong>g>of</str<strong>on</strong>g> multiplicati<strong>on</strong> <strong>and</strong> comultiplicati<strong>on</strong>, <strong>and</strong> ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r is Kashiwara’s<br />

crystal structure B(∞), which is a combinatorial machinery useful for applicati<strong>on</strong>s to<br />

representati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory, such as tensor product decompositi<strong>on</strong>.<br />

Since U − q (g) has a natural pairing which makes it into a (twisted) self-dual bialgebra, we<br />

c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> dual basis B up <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> can<strong>on</strong>ical basis in U − q (g). We call it <str<strong>on</strong>g>the</str<strong>on</strong>g> dual can<strong>on</strong>ical<br />

basis.<br />

1.2. Cluster algebras. Cluster algebras were introduced by Fomin <strong>and</strong> Zelevinsky [10]<br />

<strong>and</strong> intensively studied also with Berenstein [11, 1, 12] with an aim <str<strong>on</strong>g>of</str<strong>on</strong>g> providing a c<strong>on</strong>crete<br />

<strong>and</strong> combinatorial setting for <str<strong>on</strong>g>the</str<strong>on</strong>g> study <str<strong>on</strong>g>of</str<strong>on</strong>g> Lusztig’s (dual) can<strong>on</strong>ical basis <strong>and</strong> total positivity.<br />

Quantum cluster algebras were also introduced by Berenstein <strong>and</strong> Zelevinsky [3],<br />

Fock <strong>and</strong> G<strong>on</strong>charov [8, 9, 7] independently. The definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> (quantum) cluster algebra<br />

was motivated by Berenstein <strong>and</strong> Zelevinsky’s earlier work [2] where combinatorial <strong>and</strong><br />

multiplicative structures <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dual can<strong>on</strong>ical basis were studied for g = sl n (2 ≤ n ≤ 4).<br />

In [1], it was shown that <str<strong>on</strong>g>the</str<strong>on</strong>g> coordinate ring <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> double Bruhat cell c<strong>on</strong>tains a cluster<br />

algebra as a subalgebra, which is c<strong>on</strong>jecturally equal to <str<strong>on</strong>g>the</str<strong>on</strong>g> whole algebra.<br />

The detailed versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper [22] will be published from Kyoto Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics.<br />

–92–


A cluster algebra A is a subalgebra <str<strong>on</strong>g>of</str<strong>on</strong>g> rati<strong>on</strong>al functi<strong>on</strong> field Q(x 1 , x 2 , · · · , x r ) <str<strong>on</strong>g>of</str<strong>on</strong>g> r<br />

indeterminates which is equipped with a distinguished set <str<strong>on</strong>g>of</str<strong>on</strong>g> generators (cluster variables)<br />

which is grouped into overlapping subsets (clusters) c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> precisely r elements.<br />

Each subset is defined inductively by a sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> certain combinatorial operati<strong>on</strong> (seed<br />

mutati<strong>on</strong>s) from <str<strong>on</strong>g>the</str<strong>on</strong>g> initial seed. The m<strong>on</strong>omials in <str<strong>on</strong>g>the</str<strong>on</strong>g> variables <str<strong>on</strong>g>of</str<strong>on</strong>g> a given single cluster<br />

are called cluster m<strong>on</strong>omials. However, it is not known whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r a cluster algebra have a<br />

basis, related to <str<strong>on</strong>g>the</str<strong>on</strong>g> dual can<strong>on</strong>ical basis, which includes all cluster m<strong>on</strong>omials in general.<br />

1.3. Cluster algebra <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> semican<strong>on</strong>ical basis. In a series <str<strong>on</strong>g>of</str<strong>on</strong>g> works [13, 16, 14,<br />

15, 18, 19], Geiß, Leclerc <strong>and</strong> Schröer introduced a cluster algebra structure <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> coordinate<br />

ring C[N(w)] <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> unipotent subgroup associated with a Weyl group element w.<br />

Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore <str<strong>on</strong>g>the</str<strong>on</strong>g>y show that <str<strong>on</strong>g>the</str<strong>on</strong>g> dual semican<strong>on</strong>ical basis S ∗ is compatible with <str<strong>on</strong>g>the</str<strong>on</strong>g> inclusi<strong>on</strong><br />

C[N(w)] ⊂ U(n) ∗ gr <strong>and</strong> c<strong>on</strong>tains all cluster m<strong>on</strong>omials. Here <str<strong>on</strong>g>the</str<strong>on</strong>g> dual semican<strong>on</strong>ical<br />

basis is <str<strong>on</strong>g>the</str<strong>on</strong>g> dual basis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> semican<strong>on</strong>ical basis <str<strong>on</strong>g>of</str<strong>on</strong>g> U(n), introduced by Lusztig [25, 28],<br />

<strong>and</strong> “compatible” means that S ∗ ∩ C[N(w)] forms a C-basis <str<strong>on</strong>g>of</str<strong>on</strong>g> C[N(w)]. It is known<br />

that can<strong>on</strong>ical <strong>and</strong> semican<strong>on</strong>ical bases share similar combinatorial properties (crystal<br />

structure), but <str<strong>on</strong>g>the</str<strong>on</strong>g>y are different. Geiß, Leclerc <strong>and</strong> Schröer c<strong>on</strong>jecture that certain dual<br />

semican<strong>on</strong>ical basis elements are specializati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding dual can<strong>on</strong>ical basis<br />

elements. This is called <str<strong>on</strong>g>the</str<strong>on</strong>g> open orbit c<strong>on</strong>jecture.<br />

Acknowledgement. The author is grateful to Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor Osamu Iyama for giving opportunity<br />

to talk in Okayama University.<br />

2. Quantum unipotent subgroup <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> dual can<strong>on</strong>ical basis<br />

2.1. Notati<strong>on</strong>s. Let g be a symmetrizable Kac-Moody Lie algebra <strong>and</strong> g = n + ⊕h⊕n − =<br />

h⊕ ⊕ α∈∆ g α be its triangular decompositi<strong>on</strong> <strong>and</strong> its root decompositi<strong>on</strong>. Let W be a Weyl<br />

group which is associated with g. Let ∆ ± be <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> positive (resp. negative) roots. For<br />

a Weyl group element w ∈ W , we set ∆(w) := ∆ + ∩ w∆ − = {α ∈ ∆ + | w −1 α < 0} ⊂ ∆ + .<br />

For a Weyl group element w, let −→ w = (i 1 , i 2 , . . . , i l ) be a reduced expressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> w. We set<br />

β k := s i1 . . . s ik−1 (α ik ) for each 1 ≤ k ≤ l. Then it is known that ∆(w) = {β k | 1 ≤ k ≤ l}.<br />

Let n(w) be <str<strong>on</strong>g>the</str<strong>on</strong>g> nilpotent Lie subalgebra which is associated with ∆(w), that is<br />

n(w) = ⊕<br />

g βk .<br />

1≤k≤l<br />

For i ∈ I, we have Lusztig’s braid symmetry T i <strong>on</strong> U q (g), see [26, Chapter 32] for<br />

more details. It is known that {T i } i∈I satisfies braid relati<strong>on</strong>s. Hence <str<strong>on</strong>g>the</str<strong>on</strong>g> composite<br />

T w := T i1 · · · T il does not depend <strong>on</strong> a choice <str<strong>on</strong>g>of</str<strong>on</strong>g> reduced word −→ w = (i 1 , i 2 , . . . , i l ) <str<strong>on</strong>g>of</str<strong>on</strong>g> w. In<br />

this article, we set T i = T i,−1.<br />

′<br />

2.2. Poincaré-Birkh<str<strong>on</strong>g>of</str<strong>on</strong>g>f-Witt basis. Let g be a symmetrizable Kac-Moody Lie algebra<br />

<strong>and</strong> U q (g) be <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding quantized enveloping algebra. We have a st<strong>and</strong>ard generators<br />

{E i } i∈I ∪ {q h } ∪ {F i } i∈I Let U − q (g) be <str<strong>on</strong>g>the</str<strong>on</strong>g> Q(q)-subalgebra which is generated<br />

by {F i } i∈I . It is known that U − q (g) is isomophic to <str<strong>on</strong>g>the</str<strong>on</strong>g> Q(q)-algebra which is defined by<br />

–93–


{F i } i∈I <strong>and</strong> q-Serre relati<strong>on</strong>s<br />

1−a ij<br />

∑<br />

k=0<br />

(−1) k F (k)<br />

i F j F (1−a ij−k)<br />

i ,<br />

where {a ij } is <str<strong>on</strong>g>the</str<strong>on</strong>g> generalized Cartamn matrix which defines g <strong>and</strong> F (k)<br />

i is <str<strong>on</strong>g>the</str<strong>on</strong>g> divided<br />

power which is defined by F (k)<br />

i := Fi k /[k] i !. Let U − q (g) Q be <str<strong>on</strong>g>the</str<strong>on</strong>g> Q[q ±1 ]-subalgebra which<br />

is generated by {F (n)<br />

i } i∈I,n∈Z≥0 . This Q[q ±1 ]-algebra is called Lusztig’s Q[q ±1 ]-form.<br />

We define root vectors associated with a reduced word −→ w = (i 1 , i 2 , . . . , i l ) for a Weyl<br />

group element w ∈ W . See [26, Propositi<strong>on</strong> 40.1.3, Propositi<strong>on</strong> 41.1.4] for more detail.<br />

For a Weyl group elementw ∈ W <strong>and</strong> a reduced word −→ w = (i 1 , i 2 , . . . , i l ) , we define β k<br />

as above. We define <str<strong>on</strong>g>the</str<strong>on</strong>g> root vectors F (β k ) associated with β k ∈ ∆(w)<br />

F (β k ) = T i1 . . . T ik−1 (F ik ).<br />

It is known that F (β k ) ∈ U − q (g) for all 1 ≤ k ≤ l. We also define its divided power by<br />

F (cβ k ) = T i1 . . . T ik−1 (F (c)<br />

i k<br />

). For an l tuple <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-negative integers c = (c 1 , c 2 , . . . , c l ), we<br />

set<br />

It is known that F (c, −→ w ) ∈ U − q (g) Q .<br />

F (c, −→ w ) := F (c l β l ) · · · F (c 1 β 1 ).<br />

Theorem 1 ([26, Propositi<strong>on</strong> 40.2.1, Propositi<strong>on</strong> 41.1.3]).<br />

Theorem 2. (1) Then {F (c, −→ w )} c∈Z l<br />

≥0<br />

forms a Q(q)-basis <str<strong>on</strong>g>of</str<strong>on</strong>g> a subspace defined to be<br />

U − q (w) <str<strong>on</strong>g>of</str<strong>on</strong>g> U − q (g) which does not depend <strong>on</strong> −→ w .<br />

(2) We have F (c, −→ w ) ∈ U − q (g) Q for all c ∈ Z l ≥0.<br />

We c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> total order <strong>on</strong> ∆(w) as follows:<br />

β 1 < β 2 < · · · < β l .<br />

We have <str<strong>on</strong>g>the</str<strong>on</strong>g> following c<strong>on</strong>vex properties <strong>on</strong> {F (β k )} 1≤k≤l .<br />

Theorem 3 ([29, Propositi<strong>on</strong> 3.6], [23, 5.5.2 Propositi<strong>on</strong>]). For j < k, let us write<br />

F (c j β j )F (c k β k ) − q −(c jβ j ,c k β k ) F (c k β k )F (c j β j ) = ∑<br />

f c ′F (c ′ , −→ w )<br />

c ′ ∈Z l ≥0<br />

f c ′ ∈ Q(q). If f c ′ ≠ 0, <str<strong>on</strong>g>the</str<strong>on</strong>g>n c ′ j < c j <strong>and</strong> c ′ k < c k with ∑ j≤m≤k c′ mβ m = c j β j + c k β k .<br />

By <str<strong>on</strong>g>the</str<strong>on</strong>g> above formula, it is shown that U − q (w) is a Q(q)-algebra which is generated by<br />

{F (β k )} 1≤k≤l .<br />

2.3. PBW basis <strong>and</strong> crystal basis. Let L(∞) be <str<strong>on</strong>g>the</str<strong>on</strong>g> crystal lattice <str<strong>on</strong>g>of</str<strong>on</strong>g> U − q (g) <strong>and</strong><br />

B(∞) be <str<strong>on</strong>g>the</str<strong>on</strong>g> crystal basis <strong>and</strong> B <str<strong>on</strong>g>the</str<strong>on</strong>g> can<strong>on</strong>cial basis.<br />

The following result is due to Saito <strong>and</strong> Lusztig.<br />

–94–


Theorem 4 ([30, Theorem 4.1.2], [27, Propositi<strong>on</strong> 8.2]). (1) We have F (c, −→ w ) ∈ L(∞)<br />

<strong>and</strong><br />

b(c, −→ w ) := F (c, −→ w ) mod qL(∞) ∈ B(∞).<br />

(2) The map Z l ≥0 → B(∞) which is defined by c ↦→ b(c, −→ w ) is injective <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> image<br />

B(w) does not depend <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> choice <str<strong>on</strong>g>of</str<strong>on</strong>g> −→ w .<br />

2.4. Dual can<strong>on</strong>ical basis. Let ( , ) K be <str<strong>on</strong>g>the</str<strong>on</strong>g> inner product <strong>on</strong> U − q (g) defined by Kashiwara<br />

<strong>and</strong> U − q (g) up<br />

Q<br />

be <str<strong>on</strong>g>the</str<strong>on</strong>g> dual Q[q±1 ]-lattice <str<strong>on</strong>g>of</str<strong>on</strong>g> U − q (g) Q . Let B up be <str<strong>on</strong>g>the</str<strong>on</strong>g> dual basis <str<strong>on</strong>g>of</str<strong>on</strong>g> B<br />

with respect to ( , ) K <strong>and</strong> this is called dual can<strong>on</strong>ical basis. We set<br />

F up (c, −→ w ) :=<br />

1<br />

(F (c, −→ w ), F (c, −→ w )) K<br />

F (c, −→ w ).<br />

Propositi<strong>on</strong> 5. (1) We have F up (β k ) ∈ B up .<br />

(2) Let U − q (w) up<br />

Q<br />

be <str<strong>on</strong>g>the</str<strong>on</strong>g> Q[q±1 ]-span <str<strong>on</strong>g>of</str<strong>on</strong>g> {F up (c, −→ w )} c∈Z l<br />

≥0<br />

. Then U − q (w) up<br />

Q is <str<strong>on</strong>g>the</str<strong>on</strong>g> Q[q±1 ]-<br />

algebra generated by {F up (β k )} 1≤k≤l .<br />

Using <str<strong>on</strong>g>the</str<strong>on</strong>g> above propositi<strong>on</strong> we obtain <str<strong>on</strong>g>the</str<strong>on</strong>g> following compabitility. This is a quantum<br />

analogue <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Geiß-Leclerc-Schroër’s result.<br />

Theorem 6. Let B up (w) := B up ∩ U − q (w) up<br />

Q . Then Bup (w) is a Q[q ±1 ]-basis <str<strong>on</strong>g>of</str<strong>on</strong>g> B up (w).<br />

2.5. Specializati<strong>on</strong> at q = 1. For <str<strong>on</strong>g>the</str<strong>on</strong>g> Lusztig form, we have <str<strong>on</strong>g>the</str<strong>on</strong>g> specilizati<strong>on</strong> isomorphism<br />

C⊗ Q[q ±1 ]U − q (g) Q ≃ U(n). Dually, we have <str<strong>on</strong>g>the</str<strong>on</strong>g> C-algebra isomorphism Φ up : C⊗ Q[q ±1 ]<br />

U − q (g) up<br />

Q<br />

≃ C[N].<br />

Under <str<strong>on</strong>g>the</str<strong>on</strong>g> isomorphism C ⊗ Q[q ±1 ] U − q (g) up<br />

Q<br />

≃ C[N], as a corollay <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> above <str<strong>on</strong>g>the</str<strong>on</strong>g>orem,<br />

we obtain <str<strong>on</strong>g>the</str<strong>on</strong>g> following result for U − q (w) which c<strong>on</strong>cerns <str<strong>on</strong>g>the</str<strong>on</strong>g> specializati<strong>on</strong> at q = 1.<br />

Corollary 7. Under <str<strong>on</strong>g>the</str<strong>on</strong>g> C-algebra isomorphism Φ up , we have<br />

C ⊗ Q[q ±1 ] U − q (w) up<br />

Q<br />

≃ C[N(w)],<br />

where N(w) is <str<strong>on</strong>g>the</str<strong>on</strong>g> unipotent subgroup associated with <str<strong>on</strong>g>the</str<strong>on</strong>g> nilpotent Lie algebra n(w).<br />

3. Quantum closed unipotent subgroup <strong>and</strong> Dual can<strong>on</strong>ical basis<br />

For a Weyl group element w ∈ W <strong>and</strong> a reduced word −→ w = (i 1 , . . . , i l ), we set<br />

∑<br />

U − w :=<br />

Q(q)F (a 1)<br />

i 1<br />

. . . F (a l)<br />

i l<br />

.<br />

a=(a 1 ,...,a l )∈Z l ≥0<br />

This is called Demazure-Schubert filtrati<strong>on</strong>. It is known that U − w is compatible with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

can<strong>on</strong>ical basis B, that is B ∩ U − w is a Q[q ±1 ]-basis <str<strong>on</strong>g>of</str<strong>on</strong>g> U − w. We denote <str<strong>on</strong>g>the</str<strong>on</strong>g> correp<strong>on</strong>ding<br />

subset by B(w, ∞). Hence we set<br />

O q [N w ] := U − q (g)/(U − w) ⊥ ,<br />

where (U − w) ⊥ is <str<strong>on</strong>g>the</str<strong>on</strong>g> annhilator <str<strong>on</strong>g>of</str<strong>on</strong>g> U − w with respect to Kashiwara’s bilinear form ( , ) K .<br />

Since (U − w) ⊥ is compatible with B up , <str<strong>on</strong>g>the</str<strong>on</strong>g> can<strong>on</strong>ical projecti<strong>on</strong> induces <str<strong>on</strong>g>the</str<strong>on</strong>g> dual can<strong>on</strong>ical<br />

basis <strong>on</strong> O q [N w ].<br />

–95–


Theorem 8. (1)Let U − q (w) → U − q (g) → O q [N w ] be <str<strong>on</strong>g>the</str<strong>on</strong>g> inclusi<strong>on</strong> <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> can<strong>on</strong>ical<br />

projectin<strong>on</strong>. Then <str<strong>on</strong>g>the</str<strong>on</strong>g> composite is m<strong>on</strong>omorphism <str<strong>on</strong>g>of</str<strong>on</strong>g> algebra.<br />

(2) We have B(w) ⊂ B(w, ∞).<br />

4. Quantum flag minor <strong>and</strong> Its multiplicative proprerties<br />

For a dominant integral weight λ ∈ P + , let V (λ) be <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding integrable highest<br />

weight module with highest weight vector u λ . We have symmetric bilinear form ( , ) λ <strong>on</strong><br />

V (λ). Let π λ : U − q (g) ↠ V (λ) be <str<strong>on</strong>g>the</str<strong>on</strong>g> projecti<strong>on</strong> defined by x ↦→ xu λ . Let j λ be dual <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

π λ , that is j λ : V (λ) ↩→ U − q (g). For a Weyl group element w ∈ W , we have <str<strong>on</strong>g>the</str<strong>on</strong>g> extremal<br />

vector u wλ <str<strong>on</strong>g>of</str<strong>on</strong>g> weight λ. It is known that u wλ is c<strong>on</strong>tained in <str<strong>on</strong>g>the</str<strong>on</strong>g> canoical basis <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

dual can<strong>on</strong>cial basis. We set quantum unipotent minro D wλ,λ by<br />

D wλ,λ := j λ (u wλ ).<br />

It is known that D wλ,λ ∈ B up . The following is main result in our study.<br />

Theorem 9. (1) For w ∈ W <strong>and</strong> λ ∈ P + , we have D wλ,λ ∈ U − q (w).<br />

(2) For arbitrary b ∈ B(w), <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists N ∈ Z such that q N G up (b)D wλ,λ ∈ B up (w),<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>re G up (b) is <str<strong>on</strong>g>the</str<strong>on</strong>g> dual can<strong>on</strong>ical basis element which is associated with b ∈ B(w).<br />

Using <str<strong>on</strong>g>the</str<strong>on</strong>g> above <str<strong>on</strong>g>the</str<strong>on</strong>g>orem, we obtain <str<strong>on</strong>g>the</str<strong>on</strong>g> following quantum seed.<br />

For a Weyl group element w, a reduced word −→ w = (i 1 , i 2 , . . . , i l ) <strong>and</strong> c = (c 1 , . . . , c l ) ∈<br />

Z l ≥0, we set<br />

D −→w (c) := ∏<br />

D si1 ...s ik c k ϖ ik ,c k ϖ ik<br />

.<br />

1≤k≤l<br />

Then {D −→w (c)} c∈Z l<br />

≥0<br />

forms a mutually commmuting familty <strong>and</strong> {D −→w (c)} c∈Z l<br />

≥0<br />

is linear<br />

independent over Z[q ±1 ]. {D −→w (c)} c∈Z l<br />

≥0<br />

can be c<strong>on</strong>sidered as a quantum analogue <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

initial seed in [18] <strong>and</strong> we can form <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding quantum cluster algebra by it. Our<br />

c<strong>on</strong>jecture is an Q[q ±1 ]-algebra isomorphism between <str<strong>on</strong>g>the</str<strong>on</strong>g> quantum cluster algebra <strong>and</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> quantum unipotent subgroup O q [N(w)] <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum cluster m<strong>on</strong>omials is<br />

c<strong>on</strong>tained by <str<strong>on</strong>g>the</str<strong>on</strong>g> dual can<strong>on</strong>ical basis B up (w). This is just a quantum analogue <str<strong>on</strong>g>of</str<strong>on</strong>g> [18]<br />

<strong>and</strong> this is compatible with <str<strong>on</strong>g>the</str<strong>on</strong>g>ir open orbit c<strong>on</strong>jecture for symmetric g. Recently <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Q(q)-algebra isomorphism is obtained by [17].<br />

References<br />

[1] A. Berenstein, S. Fomin, <strong>and</strong> A. Zelevinsky. Cluster algebras. III. Upper bounds <strong>and</strong> double Bruhat<br />

cells. Duke Math. J., 126(1):1–52, 2005.<br />

[2] A. Berenstein <strong>and</strong> A. Zelevinsky. String bases for quantum groups <str<strong>on</strong>g>of</str<strong>on</strong>g> type A r . In I. M. Gelf<strong>and</strong><br />

Seminar, volume 16 <str<strong>on</strong>g>of</str<strong>on</strong>g> Adv. Soviet Math., pages 51–89. Amer. Math. Soc., Providence, RI, 1993.<br />

[3] A. Berenstein <strong>and</strong> A. Zelevinsky. Quantum cluster algebras. Adv. Math., 195(2):405–455, 2005.<br />

[4] P. Caldero. On <str<strong>on</strong>g>the</str<strong>on</strong>g> q-commutati<strong>on</strong>s in U q (n) at roots <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e. J. Algebra, 210(2):557–576, 1998.<br />

[5] P. Caldero. Adapted algebras for <str<strong>on</strong>g>the</str<strong>on</strong>g> Berenstein-Zelevinsky c<strong>on</strong>jecture. Transform. Groups, 8(1):37–<br />

50, 2003.<br />

[6] P. Caldero. A multiplicative property <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum flag minors. Represent. <strong>Theory</strong>, 7:164–176 (electr<strong>on</strong>ic),<br />

2003.<br />

[7] V. V. Fock <strong>and</strong> A. B. G<strong>on</strong>charov. The quantum dilogarithm <strong>and</strong> representati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum cluster<br />

varieties. Invent. Math., 175(2):223–286, 2009.<br />

–96–


[8] V.V. Fock <strong>and</strong> A.B. G<strong>on</strong>charov. Cluster ensembles, quantizati<strong>on</strong> <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> dilogarithm. Ann. Sci. Éc.<br />

Norm. Supér. (4), 42(6):865–930, 2009.<br />

[9] V.V. Fock <strong>and</strong> A.B. G<strong>on</strong>charov. Cluster ensembles, quantizati<strong>on</strong> <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> dilogarithm. II. <str<strong>on</strong>g>the</str<strong>on</strong>g> intertwiner.<br />

In Algebra, arithmetic, <strong>and</strong> geometry: in h<strong>on</strong>or <str<strong>on</strong>g>of</str<strong>on</strong>g> Yu. I. Manin. Vol. I, volume 269 <str<strong>on</strong>g>of</str<strong>on</strong>g> Progr.<br />

Math., pages 655–673. Birkhäuser Bost<strong>on</strong> Inc., Bost<strong>on</strong>, MA, 2009.<br />

[10] S. Fomin <strong>and</strong> A. Zelevinsky. Cluster algebras. I. Foundati<strong>on</strong>s. J. Amer. Math. Soc., 15(2):497–529<br />

(electr<strong>on</strong>ic), 2002.<br />

[11] S. Fomin <strong>and</strong> A. Zelevinsky. Cluster algebras. II. Finite type classificati<strong>on</strong>. Invent. Math., 154(1):63–<br />

121, 2003.<br />

[12] S. Fomin <strong>and</strong> A. Zelevinsky. Cluster algebras. IV. Coefficients. Compos. Math., 143(1):112–164, 2007.<br />

[13] C. Geiß, B. Leclerc, <strong>and</strong> J. Schröer. Semican<strong>on</strong>ical bases <strong>and</strong> preprojective algebras. Ann. Sci. École<br />

Norm. Sup. (4), 38(2):193–253, 2005.<br />

[14] C. Geiß, B. Leclerc, <strong>and</strong> J. Schröer. Verma modules <strong>and</strong> preprojective algebras. Nagoya Math. J.,<br />

182:241–258, 2006.<br />

[15] C. Geiß, B. Leclerc, <strong>and</strong> J. Schröer. Cluster algebra structures <strong>and</strong> semican<strong>on</strong>ical bases for unipotent<br />

groups. E-print arXiv http://arxiv.org/abs/math/0703039, 2007.<br />

[16] C. Geiß, B. Leclerc, <strong>and</strong> J. Schröer. Semican<strong>on</strong>ical bases <strong>and</strong> preprojective algebras. II. A multiplicati<strong>on</strong><br />

formula. Compos. Math., 143(5):1313–1334, 2007.<br />

[17] C. Geiss, B. Leclerc, <strong>and</strong> J. Schröer. Cluster structures <strong>on</strong> quantum coordinate rings. E-print arXiv<br />

http://arxiv.org/abs/1104.0531v2, 04 2011.<br />

[18] C. Geiß, B. Leclerc, <strong>and</strong> J. Schröer. Kac–moody groups <strong>and</strong> cluster algebras. Advances in Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics,<br />

228(1):329–433, Sep 2011.<br />

[19] Christ<str<strong>on</strong>g>of</str<strong>on</strong>g> Geiß, Bernard Leclerc, <strong>and</strong> Jan Schröer. Generic bases for cluster algebras <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> chamber<br />

ansatz. J. Amer. Math. Soc. 25 (2012), 21-76, 04 2010.<br />

[20] I. Grojnowski <strong>and</strong> G. Lusztig. A comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> bases <str<strong>on</strong>g>of</str<strong>on</strong>g> quantized enveloping algebras. In Linear<br />

algebraic groups <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir representati<strong>on</strong>s (Los Angeles, CA, 1992), volume 153 <str<strong>on</strong>g>of</str<strong>on</strong>g> C<strong>on</strong>temp. Math.,<br />

pages 11–19. Amer. Math. Soc., Providence, RI, 1993.<br />

[21] M. Kashiwara. On crystal bases <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Q-analogue <str<strong>on</strong>g>of</str<strong>on</strong>g> universal enveloping algebras. Duke Math. J.,<br />

63(2):465–516, 1991.<br />

[22] Y. Kimura. Quantum unipotent subgroup <strong>and</strong> dual can<strong>on</strong>ical basis. E-print arXiv<br />

http://arxiv.org/abs/1010.4242, to appear in Kyoto J. <str<strong>on</strong>g>of</str<strong>on</strong>g> Math., 2010.<br />

[23] S. Levendorskiĭ <strong>and</strong> Y. Soĭbelman. Algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> functi<strong>on</strong>s <strong>on</strong> compact quantum groups, Schubert cells<br />

<strong>and</strong> quantum tori. Comm. Math. Phys., 139(1):141–170, 1991.<br />

[24] G. Lusztig. Quivers, perverse sheaves, <strong>and</strong> quantized enveloping algebras. J. Amer. Math. Soc.,<br />

4(2):365–421, 1991.<br />

[25] G. Lusztig. Affine quivers <strong>and</strong> can<strong>on</strong>ical bases. Inst. Hautes Études Sci. Publ. Math., (76):111–163,<br />

1992.<br />

[26] G. Lusztig. Introducti<strong>on</strong> to quantum groups, volume 110 <str<strong>on</strong>g>of</str<strong>on</strong>g> Progress in Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics. Birkhäuser<br />

Bost<strong>on</strong> Inc., Bost<strong>on</strong>, MA, 1993.<br />

[27] G. Lusztig. Braid group acti<strong>on</strong> <strong>and</strong> can<strong>on</strong>ical bases. Adv. Math., 122(2):237–261, 1996.<br />

[28] G. Lusztig. Semican<strong>on</strong>ical bases arising from enveloping algebras. Adv. Math., 151(2):129–139, 2000.<br />

[29] H. Nakajima. Quiver varieties <strong>and</strong> can<strong>on</strong>ical bases <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum affine algebras. Available at<br />

http://www4.ncsu.edu/ jing/c<strong>on</strong>f/CBMS/cbms10.html, 2010.<br />

[30] Y. Saito. PBW basis <str<strong>on</strong>g>of</str<strong>on</strong>g> quantized universal enveloping algebras. Publ. Res. Inst. Math. Sci.,<br />

30(2):209–232, 1994.<br />

Research Insitute for Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical Sciences<br />

Graduate School <str<strong>on</strong>g>of</str<strong>on</strong>g> Science<br />

Kyoto University<br />

Kitashiwakawa Oiwake-cho, Sakyo-ku, Kyoto, Yamanashi 606-8502 JAPAN<br />

–97–


E-mail address: ykimura@kurims.kyoto-u.ac.jp<br />

–98–


WEAKLY CLOSED GRAPH<br />

KAZUNORI MATSUDA<br />

Abstract. We introduce <str<strong>on</strong>g>the</str<strong>on</strong>g> noti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> weak closedness for c<strong>on</strong>nected simple graphs.<br />

This noti<strong>on</strong> is a generalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> closedness introduced by Herzog-Hibi-Hreindóttir-<br />

Kahle-Rauh. We give a characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> weakly closed graphs <strong>and</strong> prove that <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

binomial edge ideal J G is F -pure for weakly closed graph G.<br />

Key Words:<br />

binomial edge ideal, F-purity, weakly closed graph.<br />

2000 Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics Subject Classificati<strong>on</strong>: 05C25, 05E40, 13A35, 13C05.<br />

1. Introducti<strong>on</strong><br />

This article is based <strong>on</strong> [6].<br />

Throughout this article, let k be an F -finite field <str<strong>on</strong>g>of</str<strong>on</strong>g> positive characteristic. Let G be<br />

a graph <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> vertex set V (G) = [n] with edge set E(G). We assume that a graph G<br />

is always c<strong>on</strong>nected <strong>and</strong> simple, that is, G is c<strong>on</strong>nected <strong>and</strong> has no loops <strong>and</strong> multiple<br />

edges. And <str<strong>on</strong>g>the</str<strong>on</strong>g> term “labeling” means numbering <str<strong>on</strong>g>of</str<strong>on</strong>g> V (G) from 1 to n.<br />

For each graph G, we call J G := ([i, j] = X i Y j − X j Y i | {i, j} ∈ E(G)) <str<strong>on</strong>g>the</str<strong>on</strong>g> binomial<br />

edge ideal <str<strong>on</strong>g>of</str<strong>on</strong>g> G (see [4], [8]). J G is an ideal <str<strong>on</strong>g>of</str<strong>on</strong>g> S := k[X 1 , . . . , X n , Y 1 , . . . , Y n ].<br />

2. Weakly closed graph<br />

In this secti<strong>on</strong>, we give <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> weakly closed graphs <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> first main <str<strong>on</strong>g>the</str<strong>on</strong>g>orem<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> this chapter, which is a characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> weakly closed graphs.<br />

Until we define <str<strong>on</strong>g>the</str<strong>on</strong>g> noti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> weak closedness, we fix a graph G <strong>and</strong> a labeling <str<strong>on</strong>g>of</str<strong>on</strong>g> V (G).<br />

Let (a 1 , . . . , a n ) be a sequence such that 1 ≤ a i ≤ n <strong>and</strong> a i ≠ a j if i ≠ j.<br />

Definiti<strong>on</strong> 1. We say that a i is interchangeable with a i+1 if {a i , a i+1 } ∈ E(G). And we<br />

call <str<strong>on</strong>g>the</str<strong>on</strong>g> following operati<strong>on</strong> {a i , a i+1 }-interchanging :<br />

(a 1 , . . . , a i−1 , a i , a i+1 , a i+2 , . . . , a n ) → (a 1 , . . . , a i−1 , a i+1 , a i , a i+2 , . . . , a n )<br />

Definiti<strong>on</strong> 2. Let {i, j} ∈ E(G). We say that i is adjacentable with j if <str<strong>on</strong>g>the</str<strong>on</strong>g> following<br />

asserti<strong>on</strong> holds: for a sequence (1, 2, . . . , n), by repeating interchanging, <strong>on</strong>e can find a<br />

sequence (a 1 , . . . , a n ) such that a k = i <strong>and</strong> a k+1 = j for some k.<br />

Example 3. About <str<strong>on</strong>g>the</str<strong>on</strong>g> following graph G, 1 is adjacentable with 4:<br />

1 2<br />

3<br />

4 <br />

<br />

The detailed versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper will be submitted for publicati<strong>on</strong> elsewhere.<br />

–99–


Indeed,<br />

(1, 2, 3, 4) {1,2}<br />

−−→ (2, 1, 3, 4) {3,4}<br />

−−→ (2, 1, 4, 3).<br />

Now, we can define <str<strong>on</strong>g>the</str<strong>on</strong>g> noti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> weakly closed graph.<br />

Definiti<strong>on</strong> 4. Let G be a graph. G is said to be weakly closed if <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a labeling<br />

which satisfies <str<strong>on</strong>g>the</str<strong>on</strong>g> following c<strong>on</strong>diti<strong>on</strong>: for all i, j such that {i, j} ∈ E(G), i is adjacentable<br />

with j.<br />

Example 5. The following graph G is weakly closed:<br />

Indeed,<br />

4 <br />

♦♦♦♦♦♦♦ ❖❖❖❖❖❖❖<br />

5 1<br />

6 2<br />

❖❖❖❖❖❖❖<br />

♦♦♦♦♦♦♦<br />

3<br />

(1, 2, 3, 4, 5, 6) {1,2}<br />

−−→ (2, 1, 3, 4, 5, 6) {3,4}<br />

−−→ (2, 1, 4, 3, 5, 6),<br />

(1, 2, 3, 4, 5, 6) {3,4}<br />

−−→ (1, 2, 4, 3, 5, 6) {5,6}<br />

−−→ (1, 2, 4, 3, 6, 5).<br />

Hence 1 is adjacentable with 4 <strong>and</strong> 3 is adjacentable with 6.<br />

Before stating <str<strong>on</strong>g>the</str<strong>on</strong>g> first main <str<strong>on</strong>g>the</str<strong>on</strong>g>orem <str<strong>on</strong>g>of</str<strong>on</strong>g> this chapter, which is a characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

weakly closed graphs, we recall that <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> closed graphs.<br />

Definiti<strong>on</strong> 6 (See [4]). G is closed with respect to <str<strong>on</strong>g>the</str<strong>on</strong>g> given labeling if <str<strong>on</strong>g>the</str<strong>on</strong>g> following<br />

c<strong>on</strong>diti<strong>on</strong> is satisfied: for all {i, j}, {k, l} ∈ E(G) with i < j <strong>and</strong> k < l <strong>on</strong>e has {j, l} ∈<br />

E(G) if i = k but j ≠ l, <strong>and</strong> {i, k} ∈ E(G) if j = l but i ≠ k.<br />

In particular, G is closed if <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a labeling for which it is closed.<br />

Remark 7. (1) [4, Theorem 1.1] G is closed if <strong>and</strong> <strong>on</strong>ly if J G has a quadratic Gröbner<br />

basis. Hence if G is closed <str<strong>on</strong>g>the</str<strong>on</strong>g>n S/J G is Koszul algebra.<br />

(2) [2, Theorem 2.2] Let G be a graph. Then <str<strong>on</strong>g>the</str<strong>on</strong>g> following c<strong>on</strong>diti<strong>on</strong>s are equivalent:<br />

(a) G is closed.<br />

(b) There exists a labeling <str<strong>on</strong>g>of</str<strong>on</strong>g> V (G) such that all facets <str<strong>on</strong>g>of</str<strong>on</strong>g> ∆(G) are intervals<br />

[a, b] ⊂ [n], where ∆(G) is <str<strong>on</strong>g>the</str<strong>on</strong>g> clique complex <str<strong>on</strong>g>of</str<strong>on</strong>g> G.<br />

The following characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> closed graphs is a reinterpretati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Crupi <strong>and</strong> Rinaldo’s<br />

<strong>on</strong>e. This is relevant to <str<strong>on</strong>g>the</str<strong>on</strong>g> first main <str<strong>on</strong>g>the</str<strong>on</strong>g>orem <str<strong>on</strong>g>of</str<strong>on</strong>g> this chapter deeply.<br />

Propositi<strong>on</strong> 8 (See [1, Propositi<strong>on</strong> 2.6]). Let G be a graph. Then <str<strong>on</strong>g>the</str<strong>on</strong>g> following c<strong>on</strong>diti<strong>on</strong>s<br />

are equivalent:<br />

–100–


(1) G is closed.<br />

(2) There exists a labeling which satisfies <str<strong>on</strong>g>the</str<strong>on</strong>g> following c<strong>on</strong>diti<strong>on</strong>: for all i, j such that<br />

{i, j} ∈ E(G) <strong>and</strong> j > i + 1, <str<strong>on</strong>g>the</str<strong>on</strong>g> following asserti<strong>on</strong> holds: for all i < k < j,<br />

{i, k} ∈ E(G) <strong>and</strong> {k, j} ∈ E(G).<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. (1) ⇒ (2): Let {i, j} ∈ E(G). Since G is closed, <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a labeling satisfying<br />

{i, i + 1}, {i + 1, i + 2}, . . . , {j − 1, j} ∈ E(G) by [HeHiHrKR, Propositi<strong>on</strong> 1.4]. Then<br />

we have that {i, i + 2}, . . . , {i, j − 2}, {i, j − 1} ∈ E(G) by <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> closedness.<br />

Similarly, we also have that {k, j} ∈ E(G) for all i < k < j.<br />

(2) ⇒ (1): Assume that i < k < j. If {i, k}, {i, j} ∈ E(G), <str<strong>on</strong>g>the</str<strong>on</strong>g>n {k, j} ∈ E(G)<br />

by assumpti<strong>on</strong>. Similarly, if {i, j}, {k, j} ∈ E(G), <str<strong>on</strong>g>the</str<strong>on</strong>g>n {i, k} ∈ E(G). Therefore G is<br />

closed.<br />

□<br />

The following <str<strong>on</strong>g>the</str<strong>on</strong>g>orem characterizes weakly closed graph.<br />

Theorem 9. Let G be a graph. Then <str<strong>on</strong>g>the</str<strong>on</strong>g> following c<strong>on</strong>diti<strong>on</strong>s are equivalent:<br />

(1) G is weakly closed.<br />

(2) There exists a labeling which satisfies <str<strong>on</strong>g>the</str<strong>on</strong>g> following c<strong>on</strong>diti<strong>on</strong>: for all i, j such that<br />

{i, j} ∈ E(G) <strong>and</strong> j > i + 1, <str<strong>on</strong>g>the</str<strong>on</strong>g> following asserti<strong>on</strong> holds: for all i < k < j,<br />

{i, k} ∈ E(G) or {k, j} ∈ E(G).<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. (1) ⇒ (2): Assume that {i, j} ∈ E(G), {i, k} ∉ E(G) <strong>and</strong> {k, j} ∉ E(G) for<br />

some i < k < j. Then i is not adjacentable with j, which is in c<strong>on</strong>tradicti<strong>on</strong> with weak<br />

closedness <str<strong>on</strong>g>of</str<strong>on</strong>g> G.<br />

(2) ⇒ (1): Let {i, j}E(G). By repeating interchanging al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> following algorithm,<br />

we can see that i is adjacentable with j:<br />

(a): Let A := {k | {k, j} ∈ E(G), i < k < j} <strong>and</strong> C := ∅.<br />

(b): If A = ∅ <str<strong>on</strong>g>the</str<strong>on</strong>g>n go to (g), o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise let s := max{A}.<br />

(c): Let B := {t | {s, t} ∈ E(G), s < t ≤ j} \ C = {t 1 , . . . , t m = j}, where t 1 < . . . <<br />

t m = j.<br />

(d): Take {s, t 1 }-interchanging, {s, t 2 }-interchanging, . . . , {s, t m = j}-interchanging in<br />

turn.<br />

(e): Let A := A \ {s} <strong>and</strong> C := C ∪ {s}.<br />

(f): Go to (b).<br />

(g): Let U := {u | i < u < j, {i, u} ∈ E(G) <strong>and</strong> {u, j} ∉ E(G)} <strong>and</strong> W := ∅.<br />

(h): If U = ∅ <str<strong>on</strong>g>the</str<strong>on</strong>g>n go to (m), o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise let u := min{U}.<br />

(i): Let V := {v | {v, u} ∈ E(G), i ≤ v < u} \ W = {v 1 = i, . . . , v l }, where v 1 = i <<br />

. . . < v l .<br />

(j): Take {v 1 = i, u}-interchanging, {v 2 , u}-interchanging, . . . , {v l , u}-interchanging in<br />

turn.<br />

(k): Let U := U \ {u} <strong>and</strong> W := W ∪ {u}.<br />

(l): Go to (h).<br />

(m): Finished.<br />

□<br />

–101–


By comparing this <str<strong>on</strong>g>the</str<strong>on</strong>g>orem <strong>and</strong> Propositi<strong>on</strong> 8, we get <str<strong>on</strong>g>the</str<strong>on</strong>g> following corollary. A graph<br />

G is said to be complete r-partite if <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a partiti<strong>on</strong> V (G) = ∐ r<br />

i=1 V i such that<br />

{i, j} ∈ E(G) if <strong>and</strong> <strong>on</strong>ly <str<strong>on</strong>g>of</str<strong>on</strong>g> a ≠ b for all i ∈ V a <strong>and</strong> j ∈ V b .<br />

Corollary 10. Closed graphs <strong>and</strong> complete r-partite graphs are weakly closed.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Assume that G is complete r-partite <strong>and</strong> V (G) = ∐ r<br />

i=1 V i. Let {i, j} ∈ E(G) with<br />

i ∈ V a <strong>and</strong> j ∈ V b . Then a ≠ b. Hence for all i < k < j, k ∉ V a or k /∈ V b . This implies<br />

that {i, k} ∈ E(G) or {k, j} ∈ E(G).<br />

□<br />

3. F -purity <str<strong>on</strong>g>of</str<strong>on</strong>g> binomial edge ideals<br />

In this secti<strong>on</strong>, we study about F -purity <str<strong>on</strong>g>of</str<strong>on</strong>g> binomial edge ideals. Firstly, we recall that<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> F -purity <str<strong>on</strong>g>of</str<strong>on</strong>g> a ring R.<br />

Definiti<strong>on</strong> 11 (See [5]). Let R be an F -finite reduced Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian ring <str<strong>on</strong>g>of</str<strong>on</strong>g> characteristic<br />

p > 0. R is said to be F-pure if <str<strong>on</strong>g>the</str<strong>on</strong>g> Frobenius map R → R, x ↦→ x p is pure, equivalently,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> natural inclusi<strong>on</strong> τ : R ↩→ R 1/p , (x ↦→ (x p ) 1/p ) is pure, that is, M → M ⊗ R R 1/p ,<br />

m ↦→ m ⊗ 1 is injective for every R-module M.<br />

The following propositi<strong>on</strong>, which is called <str<strong>on</strong>g>the</str<strong>on</strong>g> Fedder’s criteri<strong>on</strong>, is useful to determine<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> F -purity <str<strong>on</strong>g>of</str<strong>on</strong>g> a ring R.<br />

Propositi<strong>on</strong> 12 (See [3]). Let (S, m) be a regular local ring <str<strong>on</strong>g>of</str<strong>on</strong>g> characteristic p > 0. Let<br />

I be an ideal <str<strong>on</strong>g>of</str<strong>on</strong>g> S. Put R = S/I. Then R is F -pure if <strong>and</strong> <strong>on</strong>ly if I [p] : I ⊈ m [p] , where<br />

J [p] = (x p | x ∈ J) for an ideal J <str<strong>on</strong>g>of</str<strong>on</strong>g> S.<br />

In this secti<strong>on</strong>, we c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> following questi<strong>on</strong>:<br />

Questi<strong>on</strong>. When is S/J G F -pure ?<br />

In [8], Ohtani proved that if G is complete r-partite graph <str<strong>on</strong>g>the</str<strong>on</strong>g>n S/J G is F -pure. Moreover,<br />

it is easy to show that if G is closed <str<strong>on</strong>g>the</str<strong>on</strong>g>n S/J G is F -pure. However, <str<strong>on</strong>g>the</str<strong>on</strong>g>re are many<br />

examples <str<strong>on</strong>g>of</str<strong>on</strong>g> G such that G is nei<str<strong>on</strong>g>the</str<strong>on</strong>g>r complete r-partite nor closed but S/J G is F -pure.<br />

Namely, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is room for improvement about <str<strong>on</strong>g>the</str<strong>on</strong>g> above studies.<br />

The sec<strong>on</strong>d main <str<strong>on</strong>g>the</str<strong>on</strong>g>orem <str<strong>on</strong>g>of</str<strong>on</strong>g> this chapter is as follows:<br />

Theorem 13. If G is weakly closed, <str<strong>on</strong>g>the</str<strong>on</strong>g>n S/J G is F -pure.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. For a sequence v 1 , v 2 , . . . , v s , we put<br />

Y v1 (v 1 , v 2 , . . . , v s )X vs := (Y v1 [v 1 , v 2 ][v 2 , v 3 ] · · · [v s−1 , v s ]X vs ) p−1 .<br />

Let m = (X 1 , . . . , X n , Y 1 , . . . , Y n )S. By taking completi<strong>on</strong> <strong>and</strong> using Propositi<strong>on</strong> 2.2, it<br />

is enough to show that Y 1 (1, 2, . . . , n)X n ∈ (J [p]<br />

G : J G) \ m [p] . It is easy to show that<br />

Y 1 (1, 2, . . . , n)X n ∉ m [p] by c<strong>on</strong>sidering its initial m<strong>on</strong>omial.<br />

Next, we use <str<strong>on</strong>g>the</str<strong>on</strong>g> following lemmas (see [8]):<br />

–102–


Lemma 14 ([8, Formula 1]). If {a, b} ∈ E(G), <str<strong>on</strong>g>the</str<strong>on</strong>g>n<br />

modulo J [p]<br />

G .<br />

Y v1 (v 1 , . . . , c, a, b, d, . . . , v n )X vn ≡ Y v1 (v 1 , . . . , c, b, a, d, . . . , v n )X vn<br />

Lemma 15 ([8, Formula 2]). If {a, b} ∈ E(G), <str<strong>on</strong>g>the</str<strong>on</strong>g>n<br />

modulo J [p]<br />

G .<br />

Y a (a, b, c, . . . , v n )X vn ≡ Y b (b, a, c, . . . , v n )X vn ,<br />

Y v1 (v 1 , . . . , c, a, b)X b ≡ Y v1 (v 1 , . . . , c, b, a)X a<br />

Let {i, j} ∈ E(G). Since G is weakly closed, i is adjacentable with j. Hence <str<strong>on</strong>g>the</str<strong>on</strong>g>re<br />

exists a polynomial g ∈ S such that<br />

modulo J [p]<br />

G<br />

Y 1 (1, 2, . . . , n)X n ≡ g · [i, j] p−1<br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> above lemmas. This implies Y 1(1, 2, . . . , n)X n ∈ (J [p]<br />

G : J G). □<br />

4. Difference between closedness <strong>and</strong> weak closedness <strong>and</strong> some<br />

examples<br />

In this secti<strong>on</strong>, we state <str<strong>on</strong>g>the</str<strong>on</strong>g> difference between closedness <strong>and</strong> weak closedness <strong>and</strong> give<br />

some examples.<br />

Propositi<strong>on</strong> 16. Let G be a graph.<br />

(1) [4, Propositi<strong>on</strong> 1.2] If G is closed, <str<strong>on</strong>g>the</str<strong>on</strong>g>n G is chordal, that is, every cycle <str<strong>on</strong>g>of</str<strong>on</strong>g> G with<br />

length t > 3 has a chord.<br />

(2) If G is weakly closed, <str<strong>on</strong>g>the</str<strong>on</strong>g>n every cycle <str<strong>on</strong>g>of</str<strong>on</strong>g> G with length t > 4 has a chord.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. (2) It is enough to show that <str<strong>on</strong>g>the</str<strong>on</strong>g> pentag<strong>on</strong> graph G with edges {a, b}, {b, c}, {c, d},<br />

{d, e} <strong>and</strong> {a, e} is not weakly closed. Suppose that G is weakly closed. We may assume<br />

that a = min{a, b, c, d, e} without loss <str<strong>on</strong>g>of</str<strong>on</strong>g> generality. Then b ≠ max{a, b, c, d, e}. Indeed,<br />

if b = max{a, b, c, d, e}, <str<strong>on</strong>g>the</str<strong>on</strong>g>n c, d, e are c<strong>on</strong>nected with a or b by <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> weak<br />

closedness, but this is a c<strong>on</strong>tradicti<strong>on</strong>. Similarly, e ≠ max{a, b, c, d, e}. Hence we may<br />

assume that c = max{a, b, c, d, e} by symmetry. If b = min{b, c, d}, <str<strong>on</strong>g>the</str<strong>on</strong>g>n d, e are c<strong>on</strong>nected<br />

with b or c, a c<strong>on</strong>tradicti<strong>on</strong>. Therefore, b ≠ min{b, c, d}. Similarly, b ≠ max{b, c, d}.<br />

Hence we may assume that d = min{b, c, d} <strong>and</strong> e = max{b, c, d} by symmetry. Then<br />

{a, b} <strong>and</strong> a < d < b, but {a, d}, {d, b} ∉ E(G). This is a c<strong>on</strong>tradicti<strong>on</strong>.<br />

□<br />

Next, we give a characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> closed (resp. weakly closed) tree graphs in terms <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

claw (resp. bigclaw). A graph G is said to be tree if G has no cycles. We c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

following graphs (a) <strong>and</strong> (b). We call <str<strong>on</strong>g>the</str<strong>on</strong>g> graph (a) a claw <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> graph (b) a bigclaw.<br />

–103–


(a)<br />

(b)<br />

Propositi<strong>on</strong> 17. Let G be a tree.<br />

(1) [4, Corollary 1.3] The following c<strong>on</strong>diti<strong>on</strong>s are equivalent:<br />

(a) G is closed.<br />

(b) G is a path.<br />

(c) G is a claw-free graph.<br />

(2) The following c<strong>on</strong>diti<strong>on</strong>s are equivalent:<br />

(a) G is weakly closed.<br />

(b) G is a caterpillar, that is, a tree for which removing <str<strong>on</strong>g>the</str<strong>on</strong>g> leaves <strong>and</strong> incident<br />

edges produces a path graph.<br />

(c) G is a bigclaw-free graph.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. (2) One can see that a bigclaw graph is not weakly closed.<br />

Remark 18. From Propositi<strong>on</strong> 17(2), we have that chordal graphs are not always weakly<br />

closed. As o<str<strong>on</strong>g>the</str<strong>on</strong>g>r examples, <str<strong>on</strong>g>the</str<strong>on</strong>g> following graphs are chordal, but not weakly closed:<br />

✹<br />

✹<br />

♦♦♦♦♦♦♦<br />

❖❖❖❖❖❖❖ ✹<br />

✹<br />

✹ <br />

✹<br />

✹<br />

✹<br />

✡ <br />

❖❖❖❖❖❖❖<br />

✡✡✡✡✡✡✡✡✡✡<br />

✹<br />

✹ ✹<br />

♦♦♦♦♦♦♦<br />

References<br />

✹<br />

✹<br />

♦♦♦♦♦♦♦<br />

✹<br />

✹<br />

✹ <br />

✹<br />

✹<br />

✹<br />

✡ <br />

❖❖❖❖❖❖❖<br />

✡✡✡✡✡✡✡✡✡✡<br />

✹<br />

✹ ✹<br />

<br />

[1] M. Crupi <strong>and</strong> G. Rinaldo, Koszulness <str<strong>on</strong>g>of</str<strong>on</strong>g> binomial edge ideals, arXiv:1007.4383.<br />

[2] V. Ene, J. Herzog <strong>and</strong> T. Hibi, Cohen-Macaulay binomial edge ideals, arXiv:1004.0143.<br />

[3] R. Fedder, F-purity <strong>and</strong> rati<strong>on</strong>al singularity, Trans. Amer. Math. Soc., 278 (1983), 461–480.<br />

[4] J. Herzog, T. Hibi, F. Hreindóttir, T. Kahle <strong>and</strong> J. Rauh, Binomial edge ideals <strong>and</strong> c<strong>on</strong>diti<strong>on</strong>al<br />

independence statements, Adv. Appl. Math., 45 (2010), 317–333.<br />

[5] M. Hochster <strong>and</strong> J. L. Roberts, The purity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Frobenius <strong>and</strong> Local Cohomology, Adv. in Math.,<br />

21 (1976), 117–172.<br />

[6] K. Matsuda, Weakly closed graph, preprint.<br />

[7] M. Ohtani, Graphs <strong>and</strong> ideals generated by some 2-minors, Comm. Alg., 39 (2011), 905–917.<br />

[8] , Binomial edge ideals <str<strong>on</strong>g>of</str<strong>on</strong>g> complete r-partite graphs, <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> The 32th <str<strong>on</strong>g>Symposium</str<strong>on</strong>g> The<br />

6th Japan-Vietnam Joint Seminar <strong>on</strong> Commtative Algebra (2010), 149–155.<br />

□<br />

Graduate School <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics<br />

Nagoya University<br />

–104–


Frocho, Chikusaku, Nagoya 464-8602 JAPAN<br />

E-mail address: d09003p@math.nagoya-u.ac.jp<br />

–105–


POLYCYCLIC CODES AND SEQUENTIAL CODES<br />

MANABU MATSUOKA<br />

Abstract. In this paper we generalize <str<strong>on</strong>g>the</str<strong>on</strong>g> noti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cyclicity <str<strong>on</strong>g>of</str<strong>on</strong>g> codes, that is, polycyclic<br />

codes <strong>and</strong> sequential codes. We study <str<strong>on</strong>g>the</str<strong>on</strong>g> relati<strong>on</strong> between polycyclic codes <strong>and</strong><br />

sequential codes over finite commutative QF rings. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, we characterized <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

family <str<strong>on</strong>g>of</str<strong>on</strong>g> some c<strong>on</strong>stacyclic codes.<br />

Key Words:<br />

finite rings, (θ, δ)-codes, skew polynomial rings.<br />

2010 Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics Subject Classificati<strong>on</strong>: Primary 94B60; Sec<strong>on</strong>dary 94B15.<br />

1. Introducti<strong>on</strong><br />

Let R be a finite commutative ring. A linear code C <str<strong>on</strong>g>of</str<strong>on</strong>g> length n over R is a submodule<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> R-module R n = {(a 0 , · · · , a n−1 )|a i ∈ R}. If C is a free R-module, C is<br />

said to be a free code. A linear code C ⊆ R n is called cyclic if (a 0 , a 1 , · · · , a n−1 ) ∈ C<br />

implies (a n−1 , a 0 , a 1 , · · · , a n−2 ) ∈ C. The noti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cyclicity has been extended in various<br />

directi<strong>on</strong>s.<br />

In [6], S. R. López-Permouth, B. R. Parra-Avila <strong>and</strong> S. Szabo studied <str<strong>on</strong>g>the</str<strong>on</strong>g> duality<br />

between polycyclic codes <strong>and</strong> sequential codes. By <str<strong>on</strong>g>the</str<strong>on</strong>g> way, J. A. Wood establish <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>orem <strong>and</strong> MacWilliams identities over finite frobenius rings in [9]. M. Greferath<br />

<strong>and</strong> M. E. O’Sullivan study bounds for block codes <strong>on</strong> finite frobenius rings in [2]. In this<br />

paper, we generalize <str<strong>on</strong>g>the</str<strong>on</strong>g> result <str<strong>on</strong>g>of</str<strong>on</strong>g> [6] to codes with finite commutative QF rings.<br />

In secti<strong>on</strong> 2 we define polycyclic codes over finite commutative rings. And we study<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> properties <str<strong>on</strong>g>of</str<strong>on</strong>g> polycyclic codes. In secti<strong>on</strong> 3 we define sequential codes <strong>and</strong> c<strong>on</strong>sider<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> properties <str<strong>on</strong>g>of</str<strong>on</strong>g> sequential codes. In secti<strong>on</strong> 4 we study <str<strong>on</strong>g>the</str<strong>on</strong>g> relati<strong>on</strong> between polycyclic<br />

codes <strong>and</strong> sequential codes over finite commutative QF rings. And we characterized <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

family <str<strong>on</strong>g>of</str<strong>on</strong>g> some c<strong>on</strong>stacyclic codes.<br />

Throughout this paper, R denotes a finite commutative ring with 1 ≠ 0, n denotes a<br />

natural number with n ≥ 2, unless o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise stated.<br />

2. Polycyclic codes<br />

A linear [n, k]-code over a finite commutative ring R is a submodule C ⊆ R n <str<strong>on</strong>g>of</str<strong>on</strong>g> rank<br />

k. We define polycyclic codes over a finite commutative ring.<br />

Definiti<strong>on</strong> 1. Let C be a linear code <str<strong>on</strong>g>of</str<strong>on</strong>g> length n over R. C is a polycyclic code induced by<br />

c if <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a vector c = (c 0 , c 1 , · · · , c n−1 ) ∈ R n such that for every (a 0 , a 1 , · · · , a n−1 ) ∈<br />

C, (0, a 0 , a 1 , · · · , a n−2 ) + a n−1 (c 0 , c 1 , · · · , c n−1 ) ∈ C. In this case we call c an associated<br />

vector <str<strong>on</strong>g>of</str<strong>on</strong>g> C.<br />

The detailed versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper will be submitted for publicati<strong>on</strong> elsewhere.<br />

–106–


As cyclic codes, polycyclic codes may be understood in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> ideals in quotient<br />

rings <str<strong>on</strong>g>of</str<strong>on</strong>g> polynomial rings. Given c = (c 0 , c 1 , · · · , c n−1 ) ∈ R n , if we let f(X) = X n −<br />

c(X), where c(X) = c n−1 X n−1 + · · · + c 1 X + c 0 <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> R-module homomorphism ρ :<br />

R n → R[X]/(f(X)) sending <str<strong>on</strong>g>the</str<strong>on</strong>g> vector a = (a 0 , a 1 , · · · , a n−1 ) to <str<strong>on</strong>g>the</str<strong>on</strong>g> equivalence class <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

polynomial a n−1 X n−1 + · · · + a 1 X + a 0 , allows us to identify <str<strong>on</strong>g>the</str<strong>on</strong>g> polycyclic codes induced<br />

by c with <str<strong>on</strong>g>the</str<strong>on</strong>g> ideal <str<strong>on</strong>g>of</str<strong>on</strong>g> R[X]/(f(X)).<br />

Definiti<strong>on</strong> 2. Let C be a polycyclic code in R[X]/(f(X)). If <str<strong>on</strong>g>the</str<strong>on</strong>g>re exist m<strong>on</strong>ic polynomials<br />

g <strong>and</strong> h such that ρ(C) = (g)/(f) <strong>and</strong> f = hg, <str<strong>on</strong>g>the</str<strong>on</strong>g>n C is called a principal polycyclic<br />

code.<br />

Propositi<strong>on</strong> 3. A code C ⊆ R n is a principal polycyclic code induced by some c ∈ C if<br />

<strong>and</strong> <strong>on</strong>ly if C is a free R-module <strong>and</strong> has a k × n generator matrix <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> form<br />

⎛<br />

⎞<br />

g 0 g 1 · · · g n−k 0 · · · 0<br />

0 g 0 g 1 · · · g n−k · · · 0<br />

.<br />

G =<br />

0 .. . .. . .. . .. . .. 0<br />

⎜<br />

⎟<br />

⎝ .<br />

. ⎠<br />

0 · · · 0 g 0 g 1 · · · g n−k<br />

with an invertible g n−k . In this case<br />

)<br />

ρ(C) =<br />

(g n−k X n−k + · · · + g 1 X + g 0<br />

is <str<strong>on</strong>g>the</str<strong>on</strong>g> ideal <str<strong>on</strong>g>of</str<strong>on</strong>g> R[X]/(f(X)).<br />

Definiti<strong>on</strong> 4. Let C = (g)/(f) ⊆ R[X]/(f(X)) be a principal polycyclic code. If <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

c<strong>on</strong>stant term <str<strong>on</strong>g>of</str<strong>on</strong>g> g is invertible, <str<strong>on</strong>g>the</str<strong>on</strong>g>n C is called a principal polycyclic code with an<br />

invertible c<strong>on</strong>stant term.<br />

For a c = (c 0 , c 1 , · · · , c n−1 ) ∈ R n , let D c be <str<strong>on</strong>g>the</str<strong>on</strong>g> following square matrix;<br />

⎛<br />

⎞<br />

0 1 0<br />

.<br />

D c = ⎜ ..<br />

⎟<br />

⎝ 0 1 ⎠ .<br />

c 0 c 1 · · · c n−1<br />

It follows that a code C ⊆ R n is polycyclic with an associated vector c ∈ R n if <strong>and</strong><br />

<strong>on</strong>ly if it is invariant under right multiplicati<strong>on</strong> by D c .<br />

3. Sequential codes<br />

Definiti<strong>on</strong> 5. Let C be a linear code <str<strong>on</strong>g>of</str<strong>on</strong>g> length n over R. C is a sequential code induced by<br />

c if <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a vector c = (c 0 , c 1 , · · · , c n−1 ) ∈ R n such that for every (a 0 , a 1 , · · · , a n−1 ) ∈<br />

C, (a 1 , a 2 , · · · , a n−1 , a 0 c 0 + a 1 c 1 + · · · + a n−1 c n−1 ) ∈ C. In this case we call c an associated<br />

vector <str<strong>on</strong>g>of</str<strong>on</strong>g> C.<br />

Let C be a sequential code with an associated vector c = (c 0 , c 1 , · · · , c n−1 ). Then C is<br />

invariant under right multiplicati<strong>on</strong> by <str<strong>on</strong>g>the</str<strong>on</strong>g> matrix<br />

–107–


⎛<br />

⎞<br />

0 0 c 0<br />

1 c t D c = ⎜<br />

1<br />

⎝ .<br />

⎟<br />

.. .<br />

⎠<br />

0 1 c n−1<br />

On R n define <str<strong>on</strong>g>the</str<strong>on</strong>g> st<strong>and</strong>ard inner product by<br />

< x, y >= ∑ n−1<br />

i=0 x iy i<br />

for x = (x 0 , x 1 , · · · , x n−1 ), y = (y 0 , y 1 , · · · , y n−1 ) ∈ R n .<br />

The dual code C ⊥ <str<strong>on</strong>g>of</str<strong>on</strong>g> a linear code C is defined by<br />

Clearly, C ⊥ is a linear code over R.<br />

C ⊥ = {a ∈ R n | < c, a >= 0 for any c ∈ C}.<br />

Theorem 6. For a code C ⊆ R n , we have <str<strong>on</strong>g>the</str<strong>on</strong>g> following asserti<strong>on</strong>s:<br />

(1) If C is polycyclic, <str<strong>on</strong>g>the</str<strong>on</strong>g>n C ⊥ is sequential.<br />

(2) If C is sequential, <str<strong>on</strong>g>the</str<strong>on</strong>g>n C ⊥ is polycyclic.<br />

4. Codes over finite commutative QF rings<br />

Let R be a (not necessarily commutative) ring. A left R-module P is projective if for<br />

every R-epimorphism g : M → N <strong>and</strong> every R-homomorphism f : P → N, <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a<br />

R-homomorphism h : P → M with f = g◦h.<br />

A left R-module Q is injective if for every R-m<strong>on</strong>omorphism g : N → M <strong>and</strong> every<br />

R-homomorphism f : N → Q, <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a R-homomorphism h : M → Q with f = h◦g.<br />

The ring R is said to be left (resp. right) self-injective if R itself is injective as left<br />

(resp. right) R-module. If both c<strong>on</strong>diti<strong>on</strong>s hold, R is said to be a self-injective ring.<br />

A left R-module M is Artinian if M is satisfies <str<strong>on</strong>g>the</str<strong>on</strong>g> descending chain c<strong>on</strong>diti<strong>on</strong> <strong>on</strong><br />

submodules. A ring R is left (resp. right) Artinian if R itself is Artinian as left (resp.<br />

right) R-module. If both c<strong>on</strong>diti<strong>on</strong>s hold, R is said to be an Artinian ring.<br />

It is clear that a finite ring is an Artinian ring.<br />

Definiti<strong>on</strong> 7. For a (not necessarily commutative) ring R, R is called a QF (quasi-<br />

Frobenius) ring if R is left Artinian <strong>and</strong> left self-injective.<br />

It is well-known that <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a QF ring is left-right symmetric.<br />

For any R-submodule C ⊆ R n , C ◦ is defined by<br />

C ◦ = {λ ∈ Hom R (R n , R)|λ(C) = 0}.<br />

Theorem 8. For a (not necessarily commutative) ring R, <str<strong>on</strong>g>the</str<strong>on</strong>g> following c<strong>on</strong>diti<strong>on</strong>s are<br />

equivalent:<br />

(1) R is a QF ring.<br />

(2) For submodules M ⊆ R n , M ◦◦ = M.<br />

Theorem 9. For a (not necessarily commutative) ring R, <str<strong>on</strong>g>the</str<strong>on</strong>g> following are equivalent:<br />

(1) R is a QF ring.<br />

(2) A left module is projective if <strong>and</strong> <strong>on</strong>ly if it is injective.<br />

We define an R-module homomorphism δ x : R n → R as δ x (y) =< y, x > for any x ∈ R n .<br />

–108–


Propositi<strong>on</strong> 10. The homomorphism δ : C ⊥ → C ◦ sending x to δ x is an isomorphism<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> R-modules.<br />

Theorem 11. Let R be a finite commutative QF ring. For a submodule C ⊆ R n , (C ⊥ ) ⊥ =<br />

C.<br />

By Theorem 1 <strong>and</strong> Theorem 4, we can get <str<strong>on</strong>g>the</str<strong>on</strong>g> following corollary.<br />

Corollary 12. Let R be a finite commutative QF ring. Then C is a polycyclic code if<br />

<strong>and</strong> <strong>on</strong>ly if C ⊥ is a sequential code.<br />

Theorem 13. Let R be a finite commutative QF ring. If C ⊆ R n is a free R-module <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

finite rank, <str<strong>on</strong>g>the</str<strong>on</strong>g>n C ⊥ is a free R-module <str<strong>on</strong>g>of</str<strong>on</strong>g> rankC ⊥ = n − rankC.<br />

We determine <str<strong>on</strong>g>the</str<strong>on</strong>g> parity check matrix <str<strong>on</strong>g>of</str<strong>on</strong>g> a c<strong>on</strong>stacyclic code.<br />

Propositi<strong>on</strong> 14. Let R be a finite commutative QF ring <strong>and</strong> f = X n − α ∈ R[X].<br />

Suppose f = hg ∈ R[X] where g <strong>and</strong> h are polynomials <str<strong>on</strong>g>of</str<strong>on</strong>g> degree n−k <strong>and</strong> k, respectively.<br />

Let C be <str<strong>on</strong>g>the</str<strong>on</strong>g> linear [n, k]-code corresp<strong>on</strong>ding to <str<strong>on</strong>g>the</str<strong>on</strong>g> ideal generated by g in R[X]/(X n − α)<br />

<strong>and</strong> h(X) = h k X k + h k−1 X k−1 + · · · + h 1 X + h 0 . Then C has <str<strong>on</strong>g>the</str<strong>on</strong>g> (n − k) × n parity check<br />

matrix H given by<br />

⎛<br />

⎞<br />

h k · · · h 1 h 0 0 · · · 0<br />

0 h k · · · h 1 h 0 · · · 0<br />

.<br />

H =<br />

0 . .<br />

. . .<br />

. . .<br />

. . .<br />

. . . 0<br />

.<br />

⎜<br />

⎟<br />

⎝ .<br />

. ⎠<br />

0 · · · 0 h k · · · h 1 h 0<br />

Definiti<strong>on</strong> 15. Let R be a finite commutative QF ring. For a sequential code C ⊆ R n , C<br />

is called a principal sequential code if C ⊥ is a principal polycyclic code. And C is called a<br />

principal sequential code with an invertible c<strong>on</strong>stant term if C ⊥ is a principal polycyclic<br />

code with an invertible c<strong>on</strong>stant term.<br />

Now we can get <str<strong>on</strong>g>the</str<strong>on</strong>g> main <str<strong>on</strong>g>the</str<strong>on</strong>g>orem.<br />

Theorem 16. Let R be a finite commutative QF ring. Suppose C is a free codes <str<strong>on</strong>g>of</str<strong>on</strong>g> R n .<br />

Then <str<strong>on</strong>g>the</str<strong>on</strong>g> following c<strong>on</strong>diti<strong>on</strong>s are equivalent:<br />

(1) Both C <strong>and</strong> C ⊥ are principal polycyclic codes with invertible c<strong>on</strong>stant terms.<br />

(2) Both C <strong>and</strong> C ⊥ are principal sequential codes with invertible c<strong>on</strong>stant terms.<br />

(3) C is a principal polycyclic <strong>and</strong> sequential code with an invertible c<strong>on</strong>stant term.<br />

(4) C ⊥ is a principal polycyclic <strong>and</strong> sequential code with an invertible c<strong>on</strong>stant term.<br />

(5) C = (g)/(X n − α) is a c<strong>on</strong>stacyclic code with an invertible α.<br />

(6) C ⊥ = (q)/(X n − β) is a c<strong>on</strong>stacyclic code with an invertible β.<br />

Acknowledgement. The author wishes to thank Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Y. Hirano, Naruto University <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Educati<strong>on</strong>, for his helpful suggesti<strong>on</strong>s <strong>and</strong> valuable comments.<br />

–109–


References<br />

[1] D. Boucher <strong>and</strong> P. Solé, Skew c<strong>on</strong>stacyclic codes over Galois rings, Advances in Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Communicati<strong>on</strong>s, Volume 2, No. 3 (2008), 273–292.<br />

[2] M. Greferath, M. E. O’Sullivan, On bounds for codes over Frobenius rings under homogeneous weights,<br />

Discrete Math, 289 (2004), 11–24.<br />

[3] Y. Hirano, On admissible rings, Indag. Math. 8 (1997), 55–59.<br />

[4] S. Ikehata, On separable polynomials <strong>and</strong> Frobenius polynomials in skew polynomial rings, Math. J.<br />

Okayama. Univ. 22 (1980), 115–129.<br />

[5] T. Y. Lam, Lectures <strong>on</strong> Modules <strong>and</strong> <strong>Ring</strong>s, Graduate Texts in Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics, Vol. 189, Springer-Verlag,<br />

New York, 1999.<br />

[6] S. R. López-Permouth, B. R. Parra-Avila <strong>and</strong> S. Szabo, Dual generalizati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> cyclicity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> codes, Advances in Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics <str<strong>on</strong>g>of</str<strong>on</strong>g> Communicati<strong>on</strong>s, Volume 3, No. 3 (2009), 227–234.<br />

[7] M. Matsuoka, θ-polycyclic codes <strong>and</strong> θ-sequential codes over finite fields, Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Algebra, Vol. 5 (2011), no. 2, 65–70.<br />

[8] B. R. McD<strong>on</strong>ald, Finite <strong>Ring</strong>s With Identity, Pure <strong>and</strong> Applied Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics, Vol. 28, Marcel Dekker,<br />

Inc., New York, 1974.<br />

[9] J. A. Wood, Duality for modules over finite rings <strong>and</strong> applicati<strong>on</strong>s to coding <str<strong>on</strong>g>the</str<strong>on</strong>g>ory, Amer. J. Math,<br />

121 (1999), 555–575.<br />

Kuwanakita-Highscool<br />

2527 Shim<str<strong>on</strong>g>of</str<strong>on</strong>g>ukayabe Kuwana Mie 511-0808 Japan<br />

E-mail address: e-white@hotmail.co.jp<br />

–110–


A NOTE ON DIMENSION OF TRIANGULATED CATEGORIES.<br />

HIROYUKI MINAMOTO<br />

Abstract. In this note we study <str<strong>on</strong>g>the</str<strong>on</strong>g> behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> perfect derived<br />

category Perf(A) <str<strong>on</strong>g>of</str<strong>on</strong>g> a dg-algebra A over a field k under a base field extensi<strong>on</strong> K/k. In<br />

particular we show that <str<strong>on</strong>g>the</str<strong>on</strong>g> dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a perfect derived category is invariant under a<br />

separable algebraic extensi<strong>on</strong> K/k. As an applicati<strong>on</strong> we prove <str<strong>on</strong>g>the</str<strong>on</strong>g> following statement:<br />

Let A be a self-injective algebra over a perfect field k. If <str<strong>on</strong>g>the</str<strong>on</strong>g> dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> stable<br />

category modA is 0, <str<strong>on</strong>g>the</str<strong>on</strong>g>n A is <str<strong>on</strong>g>of</str<strong>on</strong>g> finite representati<strong>on</strong> type. This <str<strong>on</strong>g>the</str<strong>on</strong>g>orem is proved by<br />

M. Yoshiwaki in <str<strong>on</strong>g>the</str<strong>on</strong>g> case when k is an algebraically closed field. Our pro<str<strong>on</strong>g>of</str<strong>on</strong>g> depends <strong>on</strong><br />

his result.<br />

1. Introducti<strong>on</strong><br />

In [3] R. Rouquier introduced <str<strong>on</strong>g>the</str<strong>on</strong>g> dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> triangulated categories <strong>and</strong> showed that<br />

it gives an upper bound or a lower bound <str<strong>on</strong>g>of</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r dimensi<strong>on</strong>s in algebraic geometry or<br />

in representati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory(see also [4]). The dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> triangulated categories is studied<br />

by many researchers.<br />

In this note we study <str<strong>on</strong>g>the</str<strong>on</strong>g> behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> perfect derived category<br />

Perf(A) <str<strong>on</strong>g>of</str<strong>on</strong>g> a dg-algebra A over a field k under a base field extensi<strong>on</strong> K/k. For a field<br />

extensi<strong>on</strong> K/k, we denote A ⊗ k K by A K .<br />

Theorem 1.<br />

(1) For an algebraic extensi<strong>on</strong> K/k, we have<br />

tridim Perf(A) ≤ tridim Perf(A K ).<br />

(2) If moreover K/k is separable, <str<strong>on</strong>g>the</str<strong>on</strong>g>n equality holds.<br />

As an applicati<strong>on</strong> we prove <str<strong>on</strong>g>the</str<strong>on</strong>g> following <str<strong>on</strong>g>the</str<strong>on</strong>g>orem, which gives evidence that dimensi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> triangulated categories captures some representati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>oretic properties.<br />

The stable category modA plays an important role in <str<strong>on</strong>g>the</str<strong>on</strong>g> study <str<strong>on</strong>g>of</str<strong>on</strong>g> self-injective algebra<br />

A (cf. [2, 4]). If a self-injective algebra A is <str<strong>on</strong>g>of</str<strong>on</strong>g> finite representati<strong>on</strong> type <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> dimensi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> stable category modA is zero. Then a natural questi<strong>on</strong> arises as to whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

c<strong>on</strong>verse should also hold.<br />

Theorem 2. Let A be a self-injective finite dimensi<strong>on</strong>al algebra over a perfect field k. If<br />

tridim modA = 0, <str<strong>on</strong>g>the</str<strong>on</strong>g>n A is <str<strong>on</strong>g>of</str<strong>on</strong>g> finite representati<strong>on</strong> type.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> case when k is an algebraically closed field, this <str<strong>on</strong>g>the</str<strong>on</strong>g>orem is proved by M. Yoshiwaki<br />

in [5]. Our pro<str<strong>on</strong>g>of</str<strong>on</strong>g> depends <strong>on</strong> his result.<br />

The final versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper has been submitted for publicati<strong>on</strong> elsewhere.<br />

–111–


2. Dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> triangulated categories.<br />

We review <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> triangulated categories due to R. Rouquier<br />

We need to prepare a bit <str<strong>on</strong>g>of</str<strong>on</strong>g> notati<strong>on</strong>s.<br />

Let T be a triangulated category. For a full subcategory I <str<strong>on</strong>g>of</str<strong>on</strong>g> T we denote by 〈I〉<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> smallest full subcategory <str<strong>on</strong>g>of</str<strong>on</strong>g> T c<strong>on</strong>taining I which is closed under taking shifts, finite<br />

direct sums, direct summ<strong>and</strong>s <strong>and</strong> isomorphisms. For full subcategories I <strong>and</strong> J <str<strong>on</strong>g>of</str<strong>on</strong>g> T we<br />

denote by I ∗ J <str<strong>on</strong>g>the</str<strong>on</strong>g> full subcategory <str<strong>on</strong>g>of</str<strong>on</strong>g> T c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> those object M ∈ T such that<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>re exists an exact triangle I → M → J −→ [1]<br />

with I ∈ I <strong>and</strong> J ∈ J . Set I ⋄J := 〈I ∗J 〉.<br />

For n ≥ 1 we define inductively<br />

{<br />

〈I〉 for n = 1;<br />

〈I〉 n :=<br />

〈I〉 ⋄ 〈I〉 n−1 for n ≥ 2.<br />

Now we define <str<strong>on</strong>g>the</str<strong>on</strong>g> dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a triangulated category T to be<br />

tridim T := min{n | 〈E〉 n+1 = T for some E ∈ T }.<br />

3. Sketch <str<strong>on</strong>g>of</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 1 <strong>and</strong> 2<br />

First we c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> case when K/k is a finite extensi<strong>on</strong>. Let E be an object <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Perf(A K ) such that 〈E〉 n = Perf(A K ) for some n ∈ N. Then we see that 〈UE〉 n = Perf(A)<br />

where U : Perf(A K ) → Perf(A) is <str<strong>on</strong>g>the</str<strong>on</strong>g> forgetful functor.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> case K/k is an infinite algebraic extensi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> key <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> is <str<strong>on</strong>g>the</str<strong>on</strong>g> following<br />

lemma.<br />

Lemma 3. Let K/k be an algebraic extensi<strong>on</strong> <strong>and</strong> E an object <str<strong>on</strong>g>of</str<strong>on</strong>g> D(A).<br />

If an object G <str<strong>on</strong>g>of</str<strong>on</strong>g> D(A K ) bel<strong>on</strong>gs to 〈E ⊗ k K〉 n , <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists an intermediate field<br />

k ⊂ K 0 ⊂ K which is finite dimensi<strong>on</strong>al over k such that <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists an object G ′ <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

〈E ⊗ k K 0 〉 n , such that G ′ ⊗ K0 K ∼ = G in D(A K ).<br />

Let E be an object <str<strong>on</strong>g>of</str<strong>on</strong>g> Perf(A K ) such that 〈E〉 n = Perf(A K ) for some n ∈ N. Since<br />

Perf(A K ) = ∪ i∈N 〈A K 〉 i , by <str<strong>on</strong>g>the</str<strong>on</strong>g> above lemma <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists an intermediate field k ⊂ K 0 ⊂ K<br />

which is finite dimensi<strong>on</strong>al over k such that <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists an object E ′ <str<strong>on</strong>g>of</str<strong>on</strong>g> Perf(A K0 ) such that<br />

E ′ ⊗ K0 K ≃ E. Then we see that 〈U 0 (E ′ )〉 n = Perf(A) where U 0 : Perf(A K0 ) → Perf(A)<br />

is <str<strong>on</strong>g>the</str<strong>on</strong>g> forgetful functor.<br />

To prove <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d statement, we use <str<strong>on</strong>g>the</str<strong>on</strong>g> fact that when K/k is a finite separable<br />

field extensi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> can<strong>on</strong>ical morphism K ⊗ k K → K splits as K − K bimodules. In <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

case when K/k is an infinite separable field extensi<strong>on</strong>, we reduce to <str<strong>on</strong>g>the</str<strong>on</strong>g> finite separable<br />

extensi<strong>on</strong> case by <str<strong>on</strong>g>the</str<strong>on</strong>g> above lemma.<br />

Theorem 2 is reduced to <str<strong>on</strong>g>the</str<strong>on</strong>g> case when <str<strong>on</strong>g>the</str<strong>on</strong>g> base field k is an algebraically closed field<br />

by Theorem 1 <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> following lemma.<br />

Lemma 4. Let A be a finite dimensi<strong>on</strong>al k-algebra. If A k<br />

is <str<strong>on</strong>g>of</str<strong>on</strong>g> finite representati<strong>on</strong> type,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>n A is <str<strong>on</strong>g>of</str<strong>on</strong>g> finite representati<strong>on</strong> type.<br />

–112–


4. Examples which show that we need to impose c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> Theorem 1<br />

To c<strong>on</strong>clude this note we give examples which show that we need to impose c<strong>on</strong>diti<strong>on</strong>s<br />

<strong>on</strong> Theorem 1.<br />

Example 5. If an algebraic extensi<strong>on</strong> K/k is not separable, <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> dimensi<strong>on</strong> tridim Perf(A K )<br />

is possibly larger than <str<strong>on</strong>g>the</str<strong>on</strong>g> dimensi<strong>on</strong> tridim Perf(A).<br />

Here is an example. Let F be a field <str<strong>on</strong>g>of</str<strong>on</strong>g> characteristic p > 0. Let K := F (t) be a rati<strong>on</strong>al<br />

functi<strong>on</strong> field in <strong>on</strong>e variable <strong>and</strong> define k := F (t p ) ⊂ K = F (t). Set A := K. Then it is<br />

easy to see A K<br />

∼ = K[x]/(x p ). Since gldim A K = ∞, we see that tridim Perf(A K ) = ∞ by<br />

[3, Propositi<strong>on</strong> 7.26]. However since A = K is a field, we have tridim Perf(A) = 0.<br />

Example 6. In <str<strong>on</strong>g>the</str<strong>on</strong>g> case when <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> K/k is not algebraic, <str<strong>on</strong>g>the</str<strong>on</strong>g> dimensi<strong>on</strong> tridim Perf(A K )<br />

is possibly larger than tridim Perf(A) even if an extensi<strong>on</strong> K/k is separable.<br />

Here is an example. Assume that for simplicity k is algebraically closed. Let K = k(y)<br />

<strong>and</strong> A = k(x) be rati<strong>on</strong>al functi<strong>on</strong> fields in <strong>on</strong>e variable over k. Then we can easily see<br />

that tridim Perf(A K ) = 1 by <str<strong>on</strong>g>the</str<strong>on</strong>g> method <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> [3, Theorem 7.17]. However since<br />

A = k(x) is a field, we see that tridim Perf(A) = 0.<br />

References<br />

[1] M. Bökstedt <strong>and</strong> A. Neeman, Homotopy limits in triangulated categories, Compositio Math., 86(2)<br />

(1993), 209-234.<br />

[2] D. Happel, Triangulated categories in <str<strong>on</strong>g>the</str<strong>on</strong>g> representati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> finite dimensi<strong>on</strong>al algebras, L<strong>on</strong>d<strong>on</strong><br />

Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical Society Lecture Note Series 119, Cambridge University Press, Cambridge, 1988.<br />

[3] R. Rouquier. Dimensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> triangulated categories, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> K-<str<strong>on</strong>g>the</str<strong>on</strong>g>ory 1 (2008), 193-256<br />

[4] R. Rouquier, Representati<strong>on</strong> dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> exterior algebras, Invent. Math. 165 (2006), no. 2, 357–367.<br />

[5] M. Yoshiwaki. On selfinjective algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> stable dimensi<strong>on</strong> zero, Nagoya Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical Journal (accepted<br />

for publicati<strong>on</strong>).<br />

Research Institute for Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical Sciences,<br />

Kyoto University,<br />

Kyoto 606-8502, JAPAN<br />

E-mail address: minamoto@kurims.kyoto-u.ac.jp<br />

–113–


APR TILTING MODULES AND QUIVER MUTATIONS<br />

YUYA MIZUNO<br />

Abstract. We study <str<strong>on</strong>g>the</str<strong>on</strong>g> quiver with relati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> endomorphism algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> an APR<br />

tilting module. We give an explicit descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> quiver with relati<strong>on</strong>s by graded<br />

quivers with potential (QPs) <strong>and</strong> mutati<strong>on</strong>s. C<strong>on</strong>sequently, mutati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> QPs provide a<br />

rich source <str<strong>on</strong>g>of</str<strong>on</strong>g> derived equivalence classes <str<strong>on</strong>g>of</str<strong>on</strong>g> algebras.<br />

1. Introducti<strong>on</strong><br />

Derived categories have been <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> important tools in <str<strong>on</strong>g>the</str<strong>on</strong>g> study <str<strong>on</strong>g>of</str<strong>on</strong>g> many areas<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics. In <str<strong>on</strong>g>the</str<strong>on</strong>g> representati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> algebras, tilting modules play an essential<br />

role to give an equivalence <str<strong>on</strong>g>of</str<strong>on</strong>g> derived categories. More precisely, <str<strong>on</strong>g>the</str<strong>on</strong>g> endomorphism<br />

algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> a tilting module is derived equivalent to <str<strong>on</strong>g>the</str<strong>on</strong>g> original algebra. Therefore <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

relati<strong>on</strong>ship <str<strong>on</strong>g>of</str<strong>on</strong>g> quivers with relati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se algebras has been investigated for a l<strong>on</strong>g<br />

time.<br />

The first well-known result <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se studies appears in <str<strong>on</strong>g>the</str<strong>on</strong>g> work <str<strong>on</strong>g>of</str<strong>on</strong>g> [5]. It is <str<strong>on</strong>g>the</str<strong>on</strong>g> origin<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> tilting <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <strong>and</strong> formulated in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> an APR tilting module now [4]. Let us recall<br />

an important property <str<strong>on</strong>g>of</str<strong>on</strong>g> APR tilting modules.<br />

Theorem 1. [4] Let KQ be a path algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> a finite acyclic quiver Q <strong>and</strong> T k be <str<strong>on</strong>g>the</str<strong>on</strong>g> APR<br />

tilting KQ-module associated with a source k ∈ Q. Then we have an algebra isomorphism<br />

where µ k is a mutati<strong>on</strong> at k.<br />

End KQ (T k ) ∼ = K(µ k Q),<br />

Thus <str<strong>on</strong>g>the</str<strong>on</strong>g> quiver <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> endomorphism algebra is completely determined by combinatorial<br />

methods <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> mutati<strong>on</strong> can be c<strong>on</strong>sidered as a generalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> BGP reflecti<strong>on</strong>.<br />

The noti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mutati<strong>on</strong> was introduced by Fomin-Zelevinsky [11], which is an important<br />

ingredient <str<strong>on</strong>g>of</str<strong>on</strong>g> cluster algebras, <strong>and</strong> many links with o<str<strong>on</strong>g>the</str<strong>on</strong>g>r subjects have been discovered<br />

<strong>and</strong> widely investigated. In particular, Derksen-Weyman-Zelevinsky applied mutati<strong>on</strong>s<br />

to quivers with potential (QPs). It has been found that mutati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> QPs have close<br />

c<strong>on</strong>necti<strong>on</strong>s with tilting <str<strong>on</strong>g>the</str<strong>on</strong>g>ory, for example [9, 17].<br />

The main purposes <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper is to generalize <str<strong>on</strong>g>the</str<strong>on</strong>g> above result for a more general<br />

class <str<strong>on</strong>g>of</str<strong>on</strong>g> algebras by using mutati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> QPs. Since we have gl.dimKQ ≤ 1, it is natural<br />

to c<strong>on</strong>sider algebras Λ with gl.dimΛ ≤ 2. In this case, we can describe <str<strong>on</strong>g>the</str<strong>on</strong>g> quiver <strong>and</strong><br />

relati<strong>on</strong>s by <str<strong>on</strong>g>the</str<strong>on</strong>g> following steps.<br />

1. Define <str<strong>on</strong>g>the</str<strong>on</strong>g> associated graded QP (Q Λ , W Λ , C Λ ).<br />

2. Apply left mutati<strong>on</strong> µ L k to (Q Λ, W Λ , C Λ ).<br />

3. Take <str<strong>on</strong>g>the</str<strong>on</strong>g> truncated Jacobian algebras P(µ L k (Q Λ, W Λ , C Λ )).<br />

The detailed versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper will be submitted for publicati<strong>on</strong> elsewhere.<br />

–114–


Then we have <str<strong>on</strong>g>the</str<strong>on</strong>g> following result.<br />

Theorem 2. (Theorem 7) Let Λ be a finite dimensi<strong>on</strong>al algebra with gl.dimΛ ≤ 2 <strong>and</strong><br />

T k be <str<strong>on</strong>g>the</str<strong>on</strong>g> APR tilting Λ-module associated with a source k. Then we have an algebra<br />

isomorphism<br />

End Λ (T k ) ∼ = P(µ L k (Q Λ , W Λ , C Λ )).<br />

We give three remarks about <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>orem. First, we can show that P(µ L k (Q Λ, W Λ , C Λ ))<br />

coincides with K(µ k Q) if gl.dimΛ = 1, so that Theorem 2 gives a generalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem<br />

1. Sec<strong>on</strong>d, <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong> gl.dimΛ ≤ 2 is actually not necessary, <strong>and</strong> it is enough<br />

to assume that <str<strong>on</strong>g>the</str<strong>on</strong>g> associated projective module has <str<strong>on</strong>g>the</str<strong>on</strong>g> injective dimensi<strong>on</strong> at most 2.<br />

Finally, this isomorphic provides a bridge <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> two noti<strong>on</strong>s which have entirely different<br />

origins, <strong>and</strong> it implies that <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>temporary c<strong>on</strong>cepts have a pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ound c<strong>on</strong>necti<strong>on</strong> with<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> classical <strong>on</strong>es.<br />

C<strong>on</strong>venti<strong>on</strong>s <strong>and</strong> notati<strong>on</strong>s. We always suppose that K is an algebraically closed field<br />

for simplicity. All modules are left modules <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> compositi<strong>on</strong> fg <str<strong>on</strong>g>of</str<strong>on</strong>g> morphisms means<br />

first f, <str<strong>on</strong>g>the</str<strong>on</strong>g>n g. We denote <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> vertices by Q 0 <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> arrows by Q 1 <str<strong>on</strong>g>of</str<strong>on</strong>g> a quiver<br />

Q. We denote by a : s(a) → e(a) <str<strong>on</strong>g>the</str<strong>on</strong>g> start <strong>and</strong> end vertices <str<strong>on</strong>g>of</str<strong>on</strong>g> an arrow or path a.<br />

2. Preliminaries<br />

In this secti<strong>on</strong>, we give a brief summary <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong>s <strong>and</strong> results we will use in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

next secti<strong>on</strong>s. See references for more detailed arguments <strong>and</strong> precise definiti<strong>on</strong>s.<br />

2.1. Quivers with potentials. We review <str<strong>on</strong>g>the</str<strong>on</strong>g> noti<strong>on</strong>s initiated in [10].<br />

• Let Q be a finite c<strong>on</strong>nected quiver. We denote by KQ i <str<strong>on</strong>g>the</str<strong>on</strong>g> K-vector space with basis<br />

c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> paths <str<strong>on</strong>g>of</str<strong>on</strong>g> length i in Q, <strong>and</strong> by KQ i,cyc <str<strong>on</strong>g>the</str<strong>on</strong>g> subspace <str<strong>on</strong>g>of</str<strong>on</strong>g> KQ i spanned by all<br />

cycles. We denote complete path algebra by<br />

̂KQ = ∏ i≥0<br />

KQ i .<br />

A quiver with potential (QP) is a pair (Q, W ) c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> a quiver Q <strong>and</strong> an element<br />

W ∈ ∏ i≥2 KQ i,cyc, called a potential. For each arrow a in Q, <str<strong>on</strong>g>the</str<strong>on</strong>g> cyclic derivative<br />

∂ a : ̂KQ cyc → ̂KQ is defined by <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tinuous linear map which sends ∂ a (a 1 · · · a d ) =<br />

∑<br />

a i =a a i+1 · · · a d a 1 · · · a i−1 . For a QP (Q, W ), we define <str<strong>on</strong>g>the</str<strong>on</strong>g> Jacobian algebra by<br />

P(Q, W ) = ̂KQ/J (W ),<br />

where J (W ) = 〈∂ a W | a ∈ Q 1 〉 is <str<strong>on</strong>g>the</str<strong>on</strong>g> closure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ideal generated by ∂ a W with respect<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> J ̂KQ<br />

-adic topology.<br />

• A QP (Q, W ) is called reduced if W ∈ ∏ i≥3 KQ i,cyc.<br />

• For two QPs (Q ′ , W ′ ) <strong>and</strong> (Q ′′ , W ′′ ), we define a<br />

∐<br />

new QP (Q, W ) as a direct sum<br />

(Q ′ , W ′ ) ⊕ (Q ′′ , W ′′ ), where Q 0 = Q ′ 0(= Q ′′<br />

0), Q 1 = Q ′ 1 Q<br />

′′<br />

1 <strong>and</strong> W = W ′ + W ′′ .<br />

Definiti<strong>on</strong> 3. For each vertex k in Q not lying <strong>on</strong> a loop nor 2-cycle, we define a mutati<strong>on</strong><br />

µ k (Q, W ) as a reduced part <str<strong>on</strong>g>of</str<strong>on</strong>g> ˜µ k (Q, W ) = (Q ′ , W ′ ), where (Q ′ , W ′ ) is given as follows.<br />

–115–


(1) Q ′ is a quiver obtained from Q by <str<strong>on</strong>g>the</str<strong>on</strong>g> following changes.<br />

• Replace each arrow a : k → v in Q by a new arrow a ∗ : v → k.<br />

• Replace each arrow b : u → k in Q by a new arrow b ∗ : k → u.<br />

• For each pair <str<strong>on</strong>g>of</str<strong>on</strong>g> arrows u b → k a → v, add a new arrow [ba] : u → v<br />

(2) W ′ = [W ] + ∆ is defined as follows.<br />

• [W ] is obtained from <str<strong>on</strong>g>the</str<strong>on</strong>g> potential W by replacing all compositi<strong>on</strong>s ba by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

new arrows [ba]<br />

∑<br />

for each pair <str<strong>on</strong>g>of</str<strong>on</strong>g> arrows u → b k → a v.<br />

• ∆ = [ba]a ∗ b ∗ .<br />

a,b∈Q 1<br />

e(b)=k=s(a)<br />

2.2. Truncated Jacobian algebras. We introduce <str<strong>on</strong>g>the</str<strong>on</strong>g> noti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cuts <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> truncated<br />

Jacobian algebras.<br />

Definiti<strong>on</strong> 4. [14] Let (Q, W ) be a QP. A subset C ⊂ Q 1 is called a cut if each cycle<br />

appearing W c<strong>on</strong>tains exactly <strong>on</strong>e arrow <str<strong>on</strong>g>of</str<strong>on</strong>g> C. Then we define <str<strong>on</strong>g>the</str<strong>on</strong>g> truncated Jacobian<br />

algebra by<br />

P(Q, W, C) := P(Q, W )/〈C〉 = ̂KQ C /〈∂ c W | c ∈ C〉,<br />

where Q C is <str<strong>on</strong>g>the</str<strong>on</strong>g> subquiver <str<strong>on</strong>g>of</str<strong>on</strong>g> Q with vertex set Q 0 <strong>and</strong> arrow set Q 1 \ C.<br />

Then, we can naturally define a QP with a cut from a given algebra as follows.<br />

Definiti<strong>on</strong> 5. [16] Let Q be a finite c<strong>on</strong>nected quiver <strong>and</strong> Λ = ̂KQ/〈R〉 be a finite<br />

dimensi<strong>on</strong>al algebra with a minimal set <str<strong>on</strong>g>of</str<strong>on</strong>g> relati<strong>on</strong>s.<br />

Then we define a QP (Q Λ , W Λ ) as follows:<br />

(1) (Q Λ ) 0 = Q 0<br />

(2) (Q Λ ) 1 = Q 1<br />

∐<br />

CΛ , where C Λ := {ρ r : e(r) → s(r) | r ∈ R}.<br />

(3) W Λ = ∑ r∈Rρ r r.<br />

Then <str<strong>on</strong>g>the</str<strong>on</strong>g> set C Λ gives a cut <str<strong>on</strong>g>of</str<strong>on</strong>g> (Q Λ , W Λ ).<br />

2.3. APR tilting modules. We call a Λ-module T tilting module if proj.dim Λ T ≤ 1,<br />

Ext 1 Λ(T, T ) = 0, <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a short exact sequence 0 → Λ → T 0 → T 1 → 0 with<br />

T 0 , T 1 in addT .<br />

Definiti<strong>on</strong> 6. Let Λ be a basic finite dimensi<strong>on</strong>al algebra <strong>and</strong> P k be a simple projective<br />

n<strong>on</strong>-injective Λ-module associated with a source k <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> quiver Λ. Then Λ-module<br />

T := τ − P k ⊕ Λ/P k is called an APR tilting module, where τ − denotes <str<strong>on</strong>g>the</str<strong>on</strong>g> inverse <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Ausl<strong>and</strong>er-Reiten translati<strong>on</strong>.<br />

3. Main <str<strong>on</strong>g>the</str<strong>on</strong>g>orem<br />

3.1. Main result. Let Q be a finite c<strong>on</strong>nected quiver <strong>and</strong> Λ = ̂KQ/〈R〉 be a finite<br />

dimensi<strong>on</strong>al algebra with a minimal set <str<strong>on</strong>g>of</str<strong>on</strong>g> relati<strong>on</strong>s. Assume that P k is <str<strong>on</strong>g>the</str<strong>on</strong>g> simple projective<br />

n<strong>on</strong>-injective Λ-module associated with a source k ∈ Q. Our aim is to determine<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> quiver <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> relati<strong>on</strong>s giving End Λ (T k ).<br />

–116–


C<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> associated QP (Q Λ , W Λ , C Λ ) <str<strong>on</strong>g>of</str<strong>on</strong>g> Λ <strong>and</strong> we put ˜µ k (Q Λ , W Λ ) = (Q ′ , W ′ ).<br />

Then W ′ is given by<br />

W ′ = [ ∑ ∑<br />

r r] + [ρ r a]a<br />

r∈Rρ ∗ ρ ∗ r,<br />

<strong>and</strong> it is easy to check that subset<br />

a∈Q 1 ,r∈R<br />

s(a)=k=s(r)<br />

C ′ = { ρ r | r ∈ R, s(r) ≠ k} ∐ { [ρ r a] | a ∈ Q 1 , r ∈ R, s(a) = k = s(r)}<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Q ′ is a cut <str<strong>on</strong>g>of</str<strong>on</strong>g> (Q ′ , W ′ ).<br />

Then we have <str<strong>on</strong>g>the</str<strong>on</strong>g> following.<br />

Theorem 7. Let Λ = ̂KQ/〈R〉 be a finite dimensi<strong>on</strong>al algebra with a minimal set <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

relati<strong>on</strong>s. Let T k := τ − P k ⊕ Λ/P k be <str<strong>on</strong>g>the</str<strong>on</strong>g> APR tilting module. Then if inj.dimP k ≤ 2, we<br />

have an algebra isomorphism<br />

End Λ (T k ) ∼ = P(˜µ k (Q Λ , W Λ ), C ′ ).<br />

Notice that <str<strong>on</strong>g>the</str<strong>on</strong>g> assumpti<strong>on</strong> inj.dimP k ≤ 2 is automatic if gl.dimΛ = 2. Thus our<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>orem give a generalizati<strong>on</strong> from gl.dimΛ = 1 to gl.dimΛ = 2.<br />

Here we will explain <str<strong>on</strong>g>the</str<strong>on</strong>g> choice <str<strong>on</strong>g>of</str<strong>on</strong>g> C ′ . In fact C ′ is naturally obtained by using graded<br />

mutati<strong>on</strong>s. For this purpose, we recall graded QPs, as introduced by [1].<br />

Graded quivers with potentials. Let (Q, W ) be a QP <strong>and</strong> we define a map d : Q 1 → Z.<br />

We call a QP (Q, W, d) Z-graded QP if each arrow a ∈ Q 1 has a degree d(a) ∈ Z, <strong>and</strong><br />

homogeneous <str<strong>on</strong>g>of</str<strong>on</strong>g> degree l if each term in W is a degree l.<br />

Definiti<strong>on</strong> 8. Let QP (Q, W, d) be a Z-graded QP <str<strong>on</strong>g>of</str<strong>on</strong>g> degree l. For each vertex k in Q<br />

not lying <strong>on</strong> a loop nor 2-cycle, we define a left mutati<strong>on</strong> µ L k (Q, W, d) as a reduced part<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ˜µ L k (Q, W, d) = (Q′ , W ′ , d ′ ), where (Q ′ , W ′ , d ′ ) is given as follows.<br />

(1) (Q ′ , W ′ ) = ˜µ k (Q, W )<br />

(2) The new degree d ′ is defined as follows:<br />

• d ′ (a) = d(a) for each arrow a ∈ Q ∩ Q ′ .<br />

• d ′ (a ∗ ) = −d(a) for each arrow a : k → v in Q.<br />

• d ′ (b ∗ ) = −d(b) + l for each arrow b : u → k in Q.<br />

• d ′ ([ba]) = d(a) + d(b) for each pair <str<strong>on</strong>g>of</str<strong>on</strong>g> arrows u → b k → a v in Q.<br />

In particular, ˜µ L k (Q, W, d) also has a potential <str<strong>on</strong>g>of</str<strong>on</strong>g> degree l. Similarly, we can define<br />

˜µ R k at k. In this case, we define d′ (b ∗ ) = −d(b) for each arrow b : u → k in Q <strong>and</strong><br />

d ′ (a ∗ ) = −d(a) + l for each arrow a : k → v in Q.<br />

If (Q, W ) has a cut C, we can identify <str<strong>on</strong>g>the</str<strong>on</strong>g> QP with a Z-graded QP <str<strong>on</strong>g>of</str<strong>on</strong>g> degree 1 associating<br />

a grading <strong>on</strong> Q by<br />

{<br />

1 a ∈ C<br />

d C (a) =<br />

0 a ∉ C.<br />

We denote by (Q, W, C) <str<strong>on</strong>g>the</str<strong>on</strong>g> graded QP <str<strong>on</strong>g>of</str<strong>on</strong>g> degree 1 with this grading. If any arrow <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

˜µ L k (Q, W, C) has degree 0 or 1, degree 1 arrows give a cut <str<strong>on</strong>g>of</str<strong>on</strong>g> ˜µ k(Q, W ) since ˜µ L k (Q, W, C)<br />

is homogeneous <str<strong>on</strong>g>of</str<strong>on</strong>g> degree 1. Therefore a cut <str<strong>on</strong>g>of</str<strong>on</strong>g> ˜µ k (Q Λ , W Λ ) is naturally induced as degree<br />

–117–


1 arrows <str<strong>on</strong>g>of</str<strong>on</strong>g> ˜µ L k (Q Λ, W Λ , C Λ ) <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> above C ′ is obtained in this way. Thus we identify<br />

degree 1 arrows as a cut.<br />

Because we have P(˜µ L k (Q Λ, W Λ , C Λ )) ∼ = P(µ L k (Q Λ, W Λ , C Λ )), we can rewrite Theorem 7<br />

that we have an algebra isomorphism<br />

End Λ (T k ) ∼ = P(µ L k (Q Λ , W Λ , C Λ )).<br />

3.2. Examples. We explain <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>orem with some examples.<br />

Example 9. We keep <str<strong>on</strong>g>the</str<strong>on</strong>g> assumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 7.<br />

Λ = KQ <strong>and</strong><br />

P(µ L k (Q Λ , W Λ , C Λ )) = P(µ L k (Q, 0, 0)) = K(µ k Q),<br />

If gl.dimΛ = 1, <str<strong>on</strong>g>the</str<strong>on</strong>g>n we have<br />

so that <str<strong>on</strong>g>the</str<strong>on</strong>g> mutati<strong>on</strong> procedure is just reversing arrows having k. Thus <str<strong>on</strong>g>the</str<strong>on</strong>g> above <str<strong>on</strong>g>the</str<strong>on</strong>g>orem<br />

coincides with <str<strong>on</strong>g>the</str<strong>on</strong>g> classical result (Theorem 1).<br />

Example 10. Let Λ = ̂KQ/〈R〉 be a finite dimensi<strong>on</strong>al algebra given by <str<strong>on</strong>g>the</str<strong>on</strong>g> following<br />

quiver with a relati<strong>on</strong>.<br />

2 ●<br />

a ●●●● b<br />

✇<br />

1<br />

✇✇✇✇<br />

❊ 4<br />

❊❊❊❊<br />

c 2 d<br />

3<br />

22222<br />

〈R〉 = 〈ab〉.<br />

Then we c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> APR tilting module T 1 := τ − P 1 ⊕ Λ/P 1 <strong>and</strong> calculate Q ′ <strong>and</strong> R ′<br />

satisfying ̂KQ ′ /〈R ′ 〉 ∼ = End Λ (T 1 ) by <str<strong>on</strong>g>the</str<strong>on</strong>g> following steps.<br />

2 ❈<br />

a ❈❈❈❈❈ b<br />

4<br />

1<br />

44444<br />

❈ 4<br />

❈❈❈❈<br />

c 4 d<br />

3<br />

44444<br />

(Q Λ ,W Λ ,C Λ )<br />

=⇒<br />

2 ❈<br />

a ❈❈❈❈❈ b<br />

4<br />

1<br />

44444 ρ<br />

❈ 4<br />

❈❈❈❈<br />

c 4 d<br />

3<br />

44444<br />

˜µ L 1<br />

=⇒<br />

[ρa]<br />

2<br />

a ∗ ● ●●●●<br />

✇ ✇✇✇✇ b<br />

ρ<br />

1<br />

∗ ●<br />

●●●●<br />

4<br />

d<br />

c ∗ ✇<br />

3<br />

✇✇✇✇<br />

[ρc]<br />

〈R〉 = 〈ab〉. W Λ = ρab. W ′ = [ρa]b+[ρa]a ∗ ρ ∗ +[ρc]c ∗ ρ ∗ .<br />

µ L 1<br />

=⇒ 1<br />

2<br />

2<br />

a ∗<br />

a ∗<br />

5 55555 ρ ∗ P(µ<br />

4<br />

L 1 (Q ✇ ✇✇✇✇ ρ<br />

Λ,W Λ ,C Λ ))<br />

❇ =⇒ Q ′ ❇❇❇❇❇<br />

=<br />

1<br />

∗ ●<br />

●●●●<br />

4<br />

d<br />

✇ ✇✇✇✇<br />

c ∗<br />

3<br />

d<br />

5 55555<br />

[ρc]<br />

W ′ = [ρc]c ∗ ρ ∗ 〈R ′ 〉 = 〈c ∗ ρ ∗ 〉.<br />

Similarly from <str<strong>on</strong>g>the</str<strong>on</strong>g> left-h<strong>and</strong> side algebra Λ, we obtain <str<strong>on</strong>g>the</str<strong>on</strong>g> quiver <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> relati<strong>on</strong>s<br />

giving End Λ (T 1 ), which is given by right-h<strong>and</strong> side picture.<br />

–118–<br />

c ∗<br />

3


(1)<br />

1<br />

41<br />

ρ ∗ 2<br />

4<br />

ρ ∗ 1<br />

a 2 a 1<br />

c =⇒<br />

a ∗ 2 a ∗ 1<br />

c<br />

2<br />

b b<br />

3<br />

2<br />

3<br />

〈R〉 = 〈a 1 bc, a 2 bc〉 〈R ′ 〉 = 〈a ∗ 1ρ ∗ 1+bc, a ∗ 2ρ ∗ 2+bc, a ∗ 1ρ ∗ 2, a ∗ 2ρ ∗ 1〉.<br />

(2) (i)<br />

1<br />

a 1 2<br />

a<br />

1 ❙ 2<br />

2 3<br />

a 1<br />

∗<br />

a 1 3<br />

a 3 =⇒<br />

b 1<br />

<br />

4<br />

b 2<br />

5<br />

b 3<br />

6<br />

b 1<br />

∗<br />

4<br />

ρ<br />

❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙<br />

∗<br />

5<br />

b 2<br />

b 3<br />

6<br />

〈R〉 = 〈a 1 a 2 a 3 〉 〈R ′ 〉 = 〈a 2 a 3 + a 1 ∗ ρ ∗ , b 1 ∗ ρ ∗ 〉.<br />

(ii)<br />

a 3<br />

1<br />

a 1 2<br />

a<br />

1 ❙ 2<br />

2 3<br />

a 1<br />

∗<br />

a 1 3<br />

a 3 =⇒<br />

b 1<br />

<br />

4<br />

b 2<br />

5<br />

b 3<br />

6<br />

b 1<br />

∗<br />

4<br />

ρ<br />

❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙<br />

∗<br />

5<br />

b 2<br />

b 3<br />

6<br />

〈R〉 = 〈a 1 a 2 a 3 = b 1 b 2 b 3 〉 〈R ′ 〉 = 〈a 2 a 3 + a 1 ∗ ρ ∗ , b 2 b 3 + b 1 ∗ ρ ∗ 〉.<br />

As examples show, we interpret <str<strong>on</strong>g>the</str<strong>on</strong>g> degree 1 arrows as relati<strong>on</strong>s.<br />

References<br />

[1] C. Amiot, S. Oppermann, Cluster equivalence <strong>and</strong> graded derived equivalence, preprint (2010),<br />

arXiv:1003.4916.<br />

[2] C. Amiot, S. Oppermann, Algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> tame acyclic cluster type, preprint (2010), arXiv:1009.4065.<br />

[3] I. Assem, D. Sims<strong>on</strong>, A. Skowroński, Elements <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Representati<strong>on</strong> <strong>Theory</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Associative Algebras.<br />

Vol. 1, L<strong>on</strong>d<strong>on</strong> Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical Society Student Texts 65, Cambridge university press (2006).<br />

[4] M. Ausl<strong>and</strong>er, M. I. Platzeck, I. Reiten, Coxeter functors without diagrams, Trans. Amer. Math. Soc.<br />

250 (1979), 1–46.<br />

[5] I. N. Bernstein, I. M. Gelf<strong>and</strong>, V. A. P<strong>on</strong>omarev, Coxeter functors <strong>and</strong> Gabriel’s <str<strong>on</strong>g>the</str<strong>on</strong>g>orem, Uspehi<br />

Mat. Nauk 28 (1973), no. 2(170), 19–33.<br />

[6] M. A. Bertani-Økl<strong>and</strong>, S. Oppermann, Mutating loops <strong>and</strong> 2-cycles in 2-CY triangulated categories,<br />

J. Algebra 334 (2011), 195–218,<br />

[7] M. A. Bertani-Økl<strong>and</strong>, S. Oppermann, A. Wrålsen, Graded mutati<strong>on</strong> in cluster categories coming<br />

from hereditary categories with a tilting object, preprint (2010), arXiv:1009.4812.<br />

[8] S. Brenner, M. C. R. Butler, Generalisati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Bernstein–Gelf<strong>and</strong>–P<strong>on</strong>omarev reflecti<strong>on</strong> functors,<br />

in Proc. ICRA II (Ottawa,1979), Lecture Notes in Math. No. 832, Springer-Verlag, Berlin, Heidelberg,<br />

New York, 1980, pp. 103–69.<br />

[9] A. B. Buan, O. Iyama, I. Reiten, D. Smith, Mutati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cluster-tilting objects <strong>and</strong> potentials, Amer.<br />

J. Math. 133 (2011), no. 4, 835–887.<br />

[10] H. Derksen, J. Weyman, A. Zelevinsky, Quivers with potentials <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir representati<strong>on</strong>s. I. Mutati<strong>on</strong>s,<br />

Selecta Math. (N.S.) 14 (2008), no. 1, 59–119.<br />

–119–<br />

a 3


[11] S. Fomin, A. Zelevinsky, Cluster algebras. I. Foundati<strong>on</strong>s, J. Amer. Math. Soc. 15 (2002), no. 2,<br />

497–529 (electr<strong>on</strong>ic).<br />

[12] C. Geiss, B. Leclerc, J. Schröer, Rigid modules over preprojective algebras, Invent. Math. 165 (2006),<br />

no. 3, 589–632.<br />

[13] D. Happel, L. Unger Almost complete tilting modules, Proc. Amer. Math. Soc. 107 (1989), no. 3,<br />

603–610.<br />

[14] M. Herschend, O. Iyama, Selfinjective quivers with potential <strong>and</strong> 2-representati<strong>on</strong>-finite algebras,<br />

preprint (2010), arXiv:1006.1917.<br />

[15] O. Iyama, I. Reiten, Fomin-Zelevinsky mutati<strong>on</strong> <strong>and</strong> tilting modules over Calabi-Yau algebras, Amer.<br />

J. Math. 130 (2008), no. 4, 1087–1149.<br />

[16] B. Keller, Deformed Calabi-Yau completi<strong>on</strong>s, preprint (2009), arXiv:0908.3499.<br />

[17] B. Keller, D. Yang, Derived equivalences from mutati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> quivers with potential, Adv. Math. 226<br />

(2011), no. 3, 2118–2168.<br />

[18] S. Ladkani, Perverse equivalences, BB-tilting, mutati<strong>on</strong>s <strong>and</strong> applicati<strong>on</strong>s, preprint (2010),<br />

arXiv:1001.4765.<br />

[19] C. Riedtmann, A. Sch<str<strong>on</strong>g>of</str<strong>on</strong>g>ield, On a simplicial complex associated with tilting modules, Comment.<br />

Math. Helv.66 (1991), no. 1, 70–78.<br />

[20] H. Tachikawa, Self-injective algebras <strong>and</strong> tilting <str<strong>on</strong>g>the</str<strong>on</strong>g>ory, Representati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory, I (Ottawa, Ont.,<br />

1984), 272–307, Lecture Notes in Math., 1177, Springer, Berlin, 1986.<br />

Graduate School <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics<br />

Nagoya University<br />

Frocho, Chikusaku, Nagoya 464-8602 Japan<br />

E-mail address: yuya.mizuno@math.nagoya-u.ac.jp<br />

–120–


THE EXAMPLE BY STEPHENS<br />

KAORU MOTOSE<br />

Abstract. C<strong>on</strong>cerning <str<strong>on</strong>g>the</str<strong>on</strong>g> Feit-Thomps<strong>on</strong> C<strong>on</strong>jecture, Stephens found <str<strong>on</strong>g>the</str<strong>on</strong>g> serious<br />

example. Using Artin map (see [9]), we shall show that numbers 17 <strong>and</strong> 3313 in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

example by Stephen are comm<strong>on</strong> index divisors <str<strong>on</strong>g>of</str<strong>on</strong>g> some subfields <str<strong>on</strong>g>of</str<strong>on</strong>g> a cyclotomic field<br />

Q(ζ r ) where r = 112643 <strong>and</strong> ζ r = e 2πi<br />

r , <strong>and</strong> some results in [7, 8] shall be again proved.<br />

Key Words: Artin map, comm<strong>on</strong> index divisors, Gauss sums.<br />

2000 Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics Subject Classificati<strong>on</strong>: Primary 11A15, 11R04; Sec<strong>on</strong>dary 20D05.<br />

Let p < q be primes <strong>and</strong> we set<br />

f := qp − 1<br />

q − 1 <strong>and</strong> t := pq − 1<br />

p − 1 .<br />

Feit <strong>and</strong> Thomps<strong>on</strong> [3] c<strong>on</strong>jectured that f never divides t. If it would be proved,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir odd order <str<strong>on</strong>g>the</str<strong>on</strong>g>orem [4] would be greatly simplified (see [1] <strong>and</strong> [5]).<br />

Throughout this note, we assume that r is a comm<strong>on</strong> prime divisor <str<strong>on</strong>g>of</str<strong>on</strong>g> f <strong>and</strong> t.<br />

Using computer, Stephens [10] found <str<strong>on</strong>g>the</str<strong>on</strong>g> example about r as follows: for p = 17 <strong>and</strong><br />

q = 3313, r = 112643 = 2pq + 1 is <str<strong>on</strong>g>the</str<strong>on</strong>g> greatest comm<strong>on</strong> divisor <str<strong>on</strong>g>of</str<strong>on</strong>g> f <strong>and</strong> t. This example<br />

is so far <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>ly <strong>on</strong>e.<br />

In this note, using <str<strong>on</strong>g>the</str<strong>on</strong>g> Artin map, we shall show that both 17 <strong>and</strong> 3313 are comm<strong>on</strong><br />

index divisors (gemeinsamer ausserwesentlicher Discriminantenteiler) <str<strong>on</strong>g>of</str<strong>on</strong>g> some subfields <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a cyclotomic field Q(ζ r ) where r = 112643 <strong>and</strong> ζ r = e 2πi<br />

r , <strong>and</strong> some results in [7, 8] shall<br />

be again proved from our Theorem.<br />

The assumpti<strong>on</strong> <strong>on</strong> r yields from [7, Lemma, (1) <strong>and</strong> (3)] that p <strong>and</strong> q are orders <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

q mod r <strong>and</strong> p mod r, respectively. Thus r ≡ 1 mod 2pq since r is odd.<br />

We set q ∗ q := r − 1 <strong>and</strong> ζ = e 2πi<br />

r . Let n be a divisor <str<strong>on</strong>g>of</str<strong>on</strong>g> q ∗ , let L n be a subfield <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

K = Q(ζ) with [L n : Q] = n <strong>and</strong> let O n be <str<strong>on</strong>g>the</str<strong>on</strong>g> algebraic integer ring <str<strong>on</strong>g>of</str<strong>on</strong>g> L n . Using <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

exact sequence by <str<strong>on</strong>g>the</str<strong>on</strong>g> Artin map (see [9, p.99 <strong>and</strong> secti<strong>on</strong> 2.16] ) <strong>and</strong> Kummer’s <str<strong>on</strong>g>the</str<strong>on</strong>g>orem.<br />

We have d(µ) = I(µ) 2 d(L n ) for µ ∈ O n where I(µ) ∈ Z, d(µ) <strong>and</strong> d(L n ) are discriminants<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> µ <strong>and</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> field L n , respectively.<br />

The example by Stephens shows from <str<strong>on</strong>g>the</str<strong>on</strong>g> next Theorem that p = 17 <strong>and</strong> q = 3313 are<br />

comm<strong>on</strong> index divisors <str<strong>on</strong>g>of</str<strong>on</strong>g> L 34 <strong>and</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> L 6626 , respectively, since we can exchange p for q.<br />

The detailed versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper will be submitted for publicati<strong>on</strong> elsewhere.<br />

–121–


Theorem. Assume r is a comm<strong>on</strong> prime divisor <str<strong>on</strong>g>of</str<strong>on</strong>g> f <strong>and</strong> t, <strong>and</strong> n is a divisor <str<strong>on</strong>g>of</str<strong>on</strong>g> q ∗ ,<br />

where q ∗ q = r − 1. Then p splits completely in O n <strong>and</strong> if <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists µ ∈ O n such that p<br />

does not divide I(µ), <str<strong>on</strong>g>the</str<strong>on</strong>g>n n ≦ p. In particular, for n > p, p is a comm<strong>on</strong> index divisor <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

O n namely, p divides I(γ) for all γ ∈ O n .<br />

Let c be a primitive root for r, let χ be a character <str<strong>on</strong>g>of</str<strong>on</strong>g> order n defined by χ(c) = ω<br />

where ω = e 2πi<br />

n <strong>and</strong> let g(χ) = ∑ a∈F r<br />

χ(a)ζ a be <str<strong>on</strong>g>the</str<strong>on</strong>g> Gauss sum <str<strong>on</strong>g>of</str<strong>on</strong>g> χ where F r is a finite<br />

field <str<strong>on</strong>g>of</str<strong>on</strong>g> order r. Let σ(ζ) = ζ c be a generator <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Galois group G <str<strong>on</strong>g>of</str<strong>on</strong>g> K over Q <strong>and</strong> set<br />

T n := 〈σ n 〉.<br />

For simplicity, we set g 0 = −1, g k = g(χ k ) for n > k > 0 <strong>and</strong> θ k = θ σk for n > k ≧ 0<br />

where θ = ∑ τ∈T n<br />

ζ τ is a trace <str<strong>on</strong>g>of</str<strong>on</strong>g> ζ.<br />

It is known that L n = Q(θ) <strong>and</strong> θ is a normal basis element <str<strong>on</strong>g>of</str<strong>on</strong>g> O n over Z (see [9, p.61,<br />

p.74])<br />

The next Lemma is useful to our object. It <strong>on</strong>ly needs to assume r is prime <strong>and</strong> n is a<br />

divisor <str<strong>on</strong>g>of</str<strong>on</strong>g> r − 1 in this Lemma. This pro<str<strong>on</strong>g>of</str<strong>on</strong>g> is essentially in <str<strong>on</strong>g>the</str<strong>on</strong>g> first equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> (1) due<br />

to [9, p.62]. This idea <str<strong>on</strong>g>of</str<strong>on</strong>g> classifying primitive roots goes back to Gauss; <str<strong>on</strong>g>the</str<strong>on</strong>g> regular 17<br />

polyg<strong>on</strong> c<strong>on</strong>structi<strong>on</strong> by ruler <strong>and</strong> compass.<br />

Lemma.<br />

(1) g k = ∑ n−1<br />

s=0 ωks θ s for 0 ≦ k < n <strong>and</strong> nθ k = ∑ n−1<br />

s=0 ¯ωks g s for 0 ≦ k < n where ¯ω is<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> complex c<strong>on</strong>jugate <str<strong>on</strong>g>of</str<strong>on</strong>g> ω.<br />

(2) Using (1), determinants <str<strong>on</strong>g>of</str<strong>on</strong>g> cyclic matrices A n , B n are given by<br />

∣ ∣ θ 0 θ 1 . . . θ n−1 ∣∣∣∣∣∣∣ g<br />

n−1<br />

0 g 1 . . . g n−1 ∣∣∣∣∣∣∣ θ<br />

|A n | :=<br />

n−1 θ 0 . . . θ n−2<br />

∏<br />

n−1<br />

g . . . ..<br />

= g k <strong>and</strong> |B n | :=<br />

n−1 g 0 . . . g n−2<br />

∏<br />

.<br />

.<br />

k=0<br />

. . ..<br />

= n n θ k .<br />

.<br />

k=0<br />

∣<br />

θ 1 θ 2 . . . θ<br />

∣<br />

0 g 1 g 2 . . . g 0<br />

(3) We have<br />

{<br />

r n−1 if n is odd,<br />

d(L n ) =<br />

(−1) r−1<br />

2 r n−1 if n is even.<br />

Some results in [7, 8] are proved again in <str<strong>on</strong>g>the</str<strong>on</strong>g> next<br />

Corollary. Let r be a comm<strong>on</strong> prime divisor <str<strong>on</strong>g>of</str<strong>on</strong>g> f <strong>and</strong> t. Then we have<br />

(1) p ≡ 1 or r ≡ 1 mod 4 (see [7, Lemma, (4) ]).<br />

(2) q ≡ −1 mod 9 in case p = 3 <strong>and</strong> f divides t (see [8, Corollary, (a)]).<br />

–122–


Pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> (2). We c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> case n = p = 3. If f is composite, <str<strong>on</strong>g>the</str<strong>on</strong>g>n f does not<br />

divide t. Thus we may assume f is prime <strong>and</strong> so r = f (see [7]). f has a primary prime<br />

decompositi<strong>on</strong> f = η¯η in Z[ω] where ω = e 2πi<br />

3 <strong>and</strong> η = ω(ω − q), (see [6, 8]). In this case,<br />

we set χ is <str<strong>on</strong>g>the</str<strong>on</strong>g> cubic residue character modulo η. Let h(x) be <str<strong>on</strong>g>the</str<strong>on</strong>g> minimal polynomial <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

θ over Q.<br />

h(x) := x 3 + a 1 x 2 + a 2 x + a 3 = (x − θ 0 )(x − θ 1 )(x − θ 2 ).<br />

where a 1 = −θ 0 − θ 1 − θ 2 = 1. If 3 does not divide I(θ), <str<strong>on</strong>g>the</str<strong>on</strong>g>n h(x) ≡ x 3 − x mod 3 by<br />

Kummer’s <str<strong>on</strong>g>the</str<strong>on</strong>g>orem <strong>and</strong> our Theorem. This c<strong>on</strong>tradicts to a 1 = 1. Thus d(θ) ≡ 0 mod 3.<br />

Using g 1 g 2 = g 1 ḡ 1 = |g 1 | 2 = r, we have<br />

∣ 1 θ 1 θ 2 ∣∣∣∣∣<br />

f = r = −|A 3 | = −(θ 0 + θ 1 + θ 2 )<br />

1 θ 0 θ 1 = θ0 2 + θ1 2 + θ2 2 − a 2 = 1 − 3a 2 .<br />

∣ 1 θ 2 θ 0<br />

Thus we obtain 3a 2 = 1 − f = −q(q + 1). On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r h<strong>and</strong>, using g 2 = ḡ 1 , f = η¯η <strong>and</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Stickelberger relati<strong>on</strong> g1 3 = rη = fη (see [6]), we have<br />

∣ g 0 g 1 g 2 ∣∣∣∣∣<br />

−27a 3 = 27θ 0 θ 1 θ 2 = |B 3 | =<br />

g 2 g 0 g 1 = g0 3 + g1 3 + g2 3 − 3g 0 g 1 g 2<br />

∣ g 1 g 2 g 0<br />

= −1 + f(η + ¯η) + 3f = −1 + f(q − 1) + 3f = (q + 1) 3 .<br />

Thus we have 3 3 q 3 a 3 = (−q(q + 1)) 3 = 3 3 a 3 2 <strong>and</strong> so a 2 + a 3 ≡ a 3 2 − q 3 a 3 = 0 mod 3.<br />

Noting h ′ (θ) ≡ a 2 − θ mod 3 where h ′ (x) is <str<strong>on</strong>g>the</str<strong>on</strong>g> derivati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> h(x), we obtain<br />

0 ≡ −d(θ) = N L3 /Q(h ′ (θ)) ≡ h(a 2 ) ≡ a 2 − a 2 2 + a 3 ≡ −a 2 2 mod 3.<br />

Thus we have 0 ≡ 3a 2 = −q(q + 1) mod 9.<br />

Remark. Using <strong>on</strong>ly <str<strong>on</strong>g>the</str<strong>on</strong>g> quadratic reciprocity law, we can prove<br />

q ≡ −1 mod 8 in case p = 3 <strong>and</strong> f divides t.<br />

It simplifies <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Propositi<strong>on</strong> 3.2 by Lemma 3.3 <strong>on</strong> p.172 in <str<strong>on</strong>g>the</str<strong>on</strong>g> paper<br />

K. Dilcher <strong>and</strong> J. Knauer, On a c<strong>on</strong>jecture <str<strong>on</strong>g>of</str<strong>on</strong>g> Feit <strong>and</strong> Thomps<strong>on</strong>, pp.169-178 in <str<strong>on</strong>g>the</str<strong>on</strong>g> book,<br />

High primes <strong>and</strong> misdemeanours, edited by A. van der Poorten, A. Stein, Fields Institute<br />

Communicati<strong>on</strong>s 41, Amer. Math. Soc., 2004.<br />

We can underst<strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir pro<str<strong>on</strong>g>of</str<strong>on</strong>g> through <str<strong>on</strong>g>the</str<strong>on</strong>g> next some results in this order :<br />

• Ex. 11 <strong>on</strong> p.231, <strong>and</strong> p.103 in <str<strong>on</strong>g>the</str<strong>on</strong>g> book, B. C. Berndt, R.J. Evans, K. S. Williams,<br />

Gauss <strong>and</strong> Jacobi Sums, Wiley, New York, 1998.<br />

• Pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 2 <strong>on</strong> p.139 in <str<strong>on</strong>g>the</str<strong>on</strong>g> paper, R. Huds<strong>on</strong> <strong>and</strong> K. S. Williams, Some<br />

new residuacity criteria, Pacific J. <str<strong>on</strong>g>of</str<strong>on</strong>g> Math. 91(1980), 135-143.<br />

• The tables for <str<strong>on</strong>g>the</str<strong>on</strong>g> cyclotomic numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> order 6 <strong>and</strong> p.68 in <str<strong>on</strong>g>the</str<strong>on</strong>g> paper, A. L.<br />

Whiteman, The cyclotomic numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> order twelve, Acta. Arithmetica 6 (1960),<br />

53-76.<br />

✷<br />

–123–


References<br />

[1] Apostol, T. M., The resultant <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> cyclotomic polynomials F m (ax) <strong>and</strong> F n (bx), Math. Comput. 29<br />

(1975), 1-6.<br />

[2] Artin, E., <strong>Theory</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> algebraic numbers, notes by Gerhard Würges, Göttingen, Germany (1956).<br />

[3] Feit, W. <strong>and</strong> Thomps<strong>on</strong>, J. G., A solvability criteri<strong>on</strong> for finite groups <strong>and</strong> some c<strong>on</strong>sequences, Proc.<br />

Nat. Acad. Sci. USA 48 (1962), 968-970.<br />

[4] Feit, W. <strong>and</strong> Thomps<strong>on</strong>, J. G.,Solvability <str<strong>on</strong>g>of</str<strong>on</strong>g> groups <str<strong>on</strong>g>of</str<strong>on</strong>g> odd order, Pacific J. Math. 13 (1963), 775-1029.<br />

[5] Guy, R. K., Unsolved problems in number <str<strong>on</strong>g>the</str<strong>on</strong>g>ory, Springer, 3rd ed., 2004.<br />

[6] Irel<strong>and</strong>, K. <strong>and</strong> Rosen, M., A classical introducti<strong>on</strong> to modern number <str<strong>on</strong>g>the</str<strong>on</strong>g>ory. Springer, 2nd ed.,<br />

1990.<br />

[7] Motose, K., Notes to <str<strong>on</strong>g>the</str<strong>on</strong>g> Feit-Thomps<strong>on</strong> c<strong>on</strong>jecture, Proc. Japan, Acad., ser A, 85(2009), 16-17.<br />

[8] Motose, K., Notes to <str<strong>on</strong>g>the</str<strong>on</strong>g> Feit-Thomps<strong>on</strong> c<strong>on</strong>jecture. II, Proc. Japan, Acad., ser A, 86(2010), 131-132.<br />

[9] Ono, T., An introducti<strong>on</strong> to algebraic number <str<strong>on</strong>g>the</str<strong>on</strong>g>ory, Plenum Press 1990 (a translati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Sur<strong>on</strong><br />

Josetsu, Shokabo, 2nd ed., 1988).<br />

[10] Stephens, N. M., On <str<strong>on</strong>g>the</str<strong>on</strong>g> Feit-Thomps<strong>on</strong> c<strong>on</strong>jecture, Math. Comput. 25 (1971), 625.<br />

Emeritus Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor, Hirosaki University<br />

Toriage 5-13-5, Hirosaki, 036-8171, JAPAN<br />

E-mail address: moka.mocha_no_kaori@snow.ocn.ne.jp<br />

–124–


HOM-ORTHOGONAL PARTIAL TILTING MODULES<br />

FOR DYNKIN QUIVERS<br />

HIROSHI NAGASE AND MAKOTO NAGURA<br />

Abstract. We count <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> isomorphic classes <str<strong>on</strong>g>of</str<strong>on</strong>g> basic hom-orthog<strong>on</strong>al<br />

partial tilting modules for an arbitrary Dynkin quiver. This number is independent <strong>on</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> choice <str<strong>on</strong>g>of</str<strong>on</strong>g> an orientati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> arrows, <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> number for A n or D n -type can be expressed<br />

as a special value <str<strong>on</strong>g>of</str<strong>on</strong>g> a hypergeometric functi<strong>on</strong>. As a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> our <str<strong>on</strong>g>the</str<strong>on</strong>g>orem, we<br />

obtain a minimum value <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> basic relative invariants <str<strong>on</strong>g>of</str<strong>on</strong>g> corresp<strong>on</strong>ding<br />

regular prehomogeneous vector spaces.<br />

Introducti<strong>on</strong><br />

Let Q = (Q 0 , Q 1 ) be a Dynkin quiver having n vertices (i.e., its base graph is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Dynkin diagrams <str<strong>on</strong>g>of</str<strong>on</strong>g> type A n with n ≥ 1, D n with n ≥ 4, or E n with n = 6, 7, 8), where Q 0 ,<br />

Q 1 is <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> vertices, arrows <str<strong>on</strong>g>of</str<strong>on</strong>g> Q, respectively. We denote by Λ = KQ its path algebra<br />

over an algebraically closed field K <str<strong>on</strong>g>of</str<strong>on</strong>g> characteristic zero, <strong>and</strong> by mod Λ <str<strong>on</strong>g>the</str<strong>on</strong>g> category <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

finitely generated right Λ-modules.<br />

Let X ∼ = ⊕ s<br />

k=1 m kX k be <str<strong>on</strong>g>the</str<strong>on</strong>g> decompositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> X ∈ mod Λ into indecomposable direct<br />

summ<strong>and</strong>s, where m k X k means <str<strong>on</strong>g>the</str<strong>on</strong>g> direct sum <str<strong>on</strong>g>of</str<strong>on</strong>g> m k copies <str<strong>on</strong>g>of</str<strong>on</strong>g> X k , <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> X k ’s are<br />

pairwise n<strong>on</strong>-isomorphic. Then X is called basic if m k = 1 for all indices k. We call X<br />

to be hom-orthog<strong>on</strong>al if Hom Λ (X i , X j ) = 0 for all i ≠ j. This noti<strong>on</strong> is equivalent to that<br />

X is locally semi-simple in <str<strong>on</strong>g>the</str<strong>on</strong>g> sense <str<strong>on</strong>g>of</str<strong>on</strong>g> Shmelkin [8] when Q is a Dynkin quiver. In <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

case where X is indecomposable, we will say that X itself is hom-orthog<strong>on</strong>al. Since Λ is<br />

hereditary, we say that X ∈ mod Λ is a partial tilting module if it satisfies Ext 1 Λ(X, X) = 0.<br />

Each X ∈ mod Λ with dimensi<strong>on</strong> vector d = dim X can be regarded as a representati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Q; that is, a point <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> variety Rep(Q, d) that c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> representati<strong>on</strong>s with<br />

dimensi<strong>on</strong> vector d = (d (i) ) i∈Q0 ∈ Z n ≥0. Then <str<strong>on</strong>g>the</str<strong>on</strong>g> direct product GL(d) = ∏ i∈Q 0<br />

GL(d (i) )<br />

acts naturally <strong>on</strong> Rep(Q, d); see, for example, [3, §2]. Since Λ is representati<strong>on</strong>-finite,<br />

Rep(Q, d) has a unique dense GL(d)-orbit; thus (GL(d), Rep(Q, d)) is a prehomogeneous<br />

vector space (abbreviated PV). It follows from <str<strong>on</strong>g>the</str<strong>on</strong>g> Artin–Voigt <str<strong>on</strong>g>the</str<strong>on</strong>g>orem [3, Theorem<br />

4.3] that <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong> that X is a partial tilting module can be interpreted to that<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> GL(d)-orbit c<strong>on</strong>taining X is dense in Rep(Q, d); On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r h<strong>and</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong><br />

that X is hom-orthog<strong>on</strong>al corresp<strong>on</strong>ds to that <str<strong>on</strong>g>the</str<strong>on</strong>g> isotropy subgroup (or, stabilizer) at<br />

X ∈ Rep(Q, d) is reductive. Therefore we are interested in hom-orthog<strong>on</strong>al partial tilting<br />

Λ-modules, because <str<strong>on</strong>g>the</str<strong>on</strong>g>y corresp<strong>on</strong>d to generic points <str<strong>on</strong>g>of</str<strong>on</strong>g> regular PVs associated with Q;<br />

see [5, Theorem 2.28].<br />

In this paper, we count up <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> isomorphic classes <str<strong>on</strong>g>of</str<strong>on</strong>g> basic hom-orthog<strong>on</strong>al<br />

partial tilting Λ-modules for an arbitrary Dynkin quiver Q. In o<str<strong>on</strong>g>the</str<strong>on</strong>g>r words, this is nothing<br />

The detailed versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper has been submitted for publicati<strong>on</strong> elsewhere.<br />

–125–


e(n, s) n = 6 7 8<br />

s = 1 36 63 120<br />

2 108 315 945<br />

3 72 336 1575<br />

4 0 63 675<br />

e 0 (n, s) n = 6 7 8<br />

s = 1 7 16 44<br />

2 35 120 462<br />

3 35 170 924<br />

4 0 40 462<br />

Table 0.1. The values <str<strong>on</strong>g>of</str<strong>on</strong>g> e(n, s) <strong>and</strong> e 0 (n, s)<br />

but essentially counting <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> regular PVs associated with. Our main <str<strong>on</strong>g>the</str<strong>on</strong>g>orem<br />

is <str<strong>on</strong>g>the</str<strong>on</strong>g> following:<br />

Theorem 0.1. Let Q be a quiver <str<strong>on</strong>g>of</str<strong>on</strong>g> type A n with n ≥ 1 (resp. D n with n ≥ 4, E n with<br />

n = 6, 7, 8). Then <str<strong>on</strong>g>the</str<strong>on</strong>g> number a(n, s) (resp. d(n, s), e(n, s)) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> isomorphic classes <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

basic hom-orthog<strong>on</strong>al tilting KQ-modules having s pairwise n<strong>on</strong>-isomorphic indecomposable<br />

direct summ<strong>and</strong>s is given explicitely by <str<strong>on</strong>g>the</str<strong>on</strong>g> following:<br />

(0.1)<br />

(0.2)<br />

(n + 1)!<br />

a(n, s) =<br />

s! (s + 1)! (n + 1 − 2s)!<br />

= C s · ( n+1<br />

2s )<br />

if 1 ≤ s ≤ (n + 1)/2, <strong>and</strong> a(n, s) = 0 if o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise. Here C s = ( 2s<br />

s ) /(s + 1) denotes <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

s-th Catalan number.<br />

d(n, s) =<br />

(n − 1)!<br />

(s!) 2 (n + 2 − 2s)! · {s 2 (s − 1) + n(n + 1 − 2s)(n + 2 − 2s) }<br />

if 1 ≤ s ≤ (n + 2)/2, <strong>and</strong> d(n, s) = 0 if o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise. The values <str<strong>on</strong>g>of</str<strong>on</strong>g> e(n, s) for 1 ≤ s ≤<br />

(n + 1)/2 are given in Table 0.1, <strong>and</strong> we have e(n, s) = 0 if o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise.<br />

Our approach to this <str<strong>on</strong>g>the</str<strong>on</strong>g>orem, which was inspired by Seidel’s paper [7], is based <strong>on</strong><br />

an observati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> perpendicular categories introduced by Sch<str<strong>on</strong>g>of</str<strong>on</strong>g>ield [6]. Here we point<br />

out that <str<strong>on</strong>g>the</str<strong>on</strong>g> totality <str<strong>on</strong>g>of</str<strong>on</strong>g> a(n, s) or d(n, s) for fixed n can be expressed as a special value<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a hypergeometric functi<strong>on</strong>. As menti<strong>on</strong>ed in Remark 2.4, <str<strong>on</strong>g>the</str<strong>on</strong>g> formula (0.2) has a<br />

combinatorial interpretati<strong>on</strong>.<br />

According to Happel [4], if a Λ-module corresp<strong>on</strong>ding to a point c<strong>on</strong>tained in <str<strong>on</strong>g>the</str<strong>on</strong>g> dense<br />

orbit <str<strong>on</strong>g>of</str<strong>on</strong>g> a PV (GL(d), Rep(Q, d)) has s pairwise n<strong>on</strong>-isomorphic indecomposable direct<br />

summ<strong>and</strong>s, <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> PV has exactly n − s basic relative invariants. Thus we obtain a<br />

c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 0.1.<br />

Corollary 0.2. Each regular PV associated with a quiver <str<strong>on</strong>g>of</str<strong>on</strong>g> type A n (resp. D n , E 6 , E 7 ,<br />

<strong>and</strong> E 8 ) has at least (n − 1)/2 (resp. (n − 2)/2, 3, 3, <strong>and</strong> 4) basic relative invariants.<br />

We say that X ∈ mod Λ is sincere if its dimensi<strong>on</strong> vector dim X does not have zero entry.<br />

Sincere modules are fairly interesting to <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> PVs, because (GL(d), Rep(Q, d))<br />

with n<strong>on</strong>-sincere dimensi<strong>on</strong> can be regarded as a direct sum <str<strong>on</strong>g>of</str<strong>on</strong>g> at least two PVs associated<br />

with proper subgraphs <str<strong>on</strong>g>of</str<strong>on</strong>g> Q. So we have counted <str<strong>on</strong>g>the</str<strong>on</strong>g>m:<br />

Theorem 0.3. Let Q be a quiver <str<strong>on</strong>g>of</str<strong>on</strong>g> type A n with n ≥ 1 (resp. D n with n ≥ 4, E n with<br />

n = 6, 7, 8). Then <str<strong>on</strong>g>the</str<strong>on</strong>g> number a 0 (n, s) (resp. d 0 (n, s), e 0 (n, s)) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> isomorphic classes<br />

–126–


<str<strong>on</strong>g>of</str<strong>on</strong>g> basic sincere hom-orthog<strong>on</strong>al tilting KQ-modules having s pairwise n<strong>on</strong>-isomorphic indecomposables<br />

is given explicitely by <str<strong>on</strong>g>the</str<strong>on</strong>g> following:<br />

a 0 (n − 1)!<br />

(n, s) =<br />

s! (s − 1)! (n + 1 − 2s)! = C s−1 · ( )<br />

n−1<br />

(0.3)<br />

2s−2<br />

if 1 ≤ s ≤ (n + 1)/2, <strong>and</strong> a 0 (n, s) = 0 if o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise.<br />

d 0 (n, s) =<br />

(n − 2)!<br />

s! (s − 1)! (n + 2 − 2s)!<br />

× { n(n − 1 − 2s)(n − 2s) + 2n(n − 2) + (s − 1)(s 2 − 9s + 4) }<br />

if 1 ≤ s ≤ (n + 2)/2, <strong>and</strong> d 0 (n, s) = 0 if o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise. The values <str<strong>on</strong>g>of</str<strong>on</strong>g> e 0 (n, s) for 1 ≤ s ≤<br />

(n + 1)/2 are given in Table 0.1, <strong>and</strong> we have e 0 (n, s) = 0 if o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise.<br />

Now we will excepti<strong>on</strong>ally define some values <str<strong>on</strong>g>of</str<strong>on</strong>g> a(m, t) for simplicity:<br />

a(m, −1) = 0, a(m, 0) = 1, <strong>and</strong> a(l, t) = 0 for l ≤ 0 <strong>and</strong> t ≠ 0.<br />

Then we can express d(n, s), a 0 (n, s), <strong>and</strong> d 0 (n, s) as <str<strong>on</strong>g>the</str<strong>on</strong>g> following simpler forms:<br />

(0.4)<br />

(0.5)<br />

d(n, s) = (n − 1) · a(n − 3, s − 2) + (s + 1) · a(n − 1, s),<br />

a 0 (n, s) = a(n − 2, s − 1),<br />

d 0 (n, s) = (s − 1) · a(n − 3, s − 2) + (n − 2) · a(n − 3, s − 1).<br />

As will be menti<strong>on</strong>ed in §1, <str<strong>on</strong>g>the</str<strong>on</strong>g> numbers presented in Theorems 0.1 <strong>and</strong> 0.3 are independent<br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> choice <str<strong>on</strong>g>of</str<strong>on</strong>g> an orientati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> arrows <str<strong>on</strong>g>of</str<strong>on</strong>g> Q. Thus we may assume that its<br />

arrows are c<strong>on</strong>veniently oriented.<br />

1. Preliminaries<br />

Let Q be a Dynkin quiver having n vertices, Λ = KQ its path algebra. For an indecomposable<br />

Λ-module M, its right perpendicular category M ⊥ is defined by<br />

M ⊥ = {X ∈ mod Λ; Hom Λ (M, X) = 0 <strong>and</strong> Ext 1 Λ(M, X) = 0}.<br />

The left perpendicular category ⊥ M is also defined similarly. To investigate hom-orthog<strong>on</strong>al<br />

partial tilting modules (or, regular PVs), we are interested in <str<strong>on</strong>g>the</str<strong>on</strong>g>ir intersecti<strong>on</strong> Per M =<br />

⊥ M ∩ M ⊥ ; we will simply call it <str<strong>on</strong>g>the</str<strong>on</strong>g> perpendicular category <str<strong>on</strong>g>of</str<strong>on</strong>g> M. Now we recall <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<strong>Ring</strong>el form, which is defied <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Gro<str<strong>on</strong>g>the</str<strong>on</strong>g>ndieck group K 0 (Λ) ∼ = Z n :<br />

〈dim X, dim Y 〉 = dim Hom Λ (X, Y ) − dim Ext 1 Λ(X, Y )<br />

= t (dim X) · R Q · (dim Y )<br />

for X, Y ∈ mod Λ, where R Q = (r ij ) i,j∈Q0 is <str<strong>on</strong>g>the</str<strong>on</strong>g> representati<strong>on</strong> matrix with respect to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

basis e 1 , e 2 , . . . , e n <str<strong>on</strong>g>of</str<strong>on</strong>g> K 0 (Λ) ∼ = Z n (here we put e k = dim S(k), which is <str<strong>on</strong>g>the</str<strong>on</strong>g> dimensi<strong>on</strong><br />

vector <str<strong>on</strong>g>of</str<strong>on</strong>g> a simple module corresp<strong>on</strong>ding to a vertex k ∈ Q 0 ). This is defined as r ii = 1<br />

for all i ∈ Q 0 ; r ij = −1 if <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists an arrow i → j in Q; <strong>and</strong> r ij = 0 if o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise.<br />

Lemma 1.1. For indecomposable Λ-modules X <strong>and</strong> Y , we have 〈dim X, dim Y 〉 = 0 if<br />

<strong>and</strong> <strong>on</strong>ly if Hom Λ (X, Y ) = 0 <strong>and</strong> Ext 1 Λ(X, Y ) = 0.<br />

–127–


Now we will show that <str<strong>on</strong>g>the</str<strong>on</strong>g> numbers that are presented in our <str<strong>on</strong>g>the</str<strong>on</strong>g>orems do not depend<br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> choice <str<strong>on</strong>g>of</str<strong>on</strong>g> an orientati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> arrows <str<strong>on</strong>g>of</str<strong>on</strong>g> Q. To do this, we need <str<strong>on</strong>g>the</str<strong>on</strong>g> following lemma:<br />

Lemma 1.2. For any sink a ∈ Q 0 <strong>and</strong> any Λ-module M, if Hom Λ (S(a), M) = 0 <strong>and</strong><br />

Ext 1 Λ(M, S(a)) = 0, <str<strong>on</strong>g>the</str<strong>on</strong>g>n we have Hom Λ (P (tα), M) = 0 for any arrow α : tα → a in Q.<br />

Let σ = σ a be <str<strong>on</strong>g>the</str<strong>on</strong>g> reflecti<strong>on</strong> functor (with <str<strong>on</strong>g>the</str<strong>on</strong>g> APR-tilting module T , see [2, VII Theorem<br />

5.3]) at a sink a ∈ Q 0 , <strong>and</strong> Q ′ <str<strong>on</strong>g>the</str<strong>on</strong>g> quiver obtained by reversing all arrows c<strong>on</strong>necting<br />

with a in Q. For a basic hom-orthog<strong>on</strong>al partial tilting Λ-module X ∼ = ⊕ s<br />

k=1 X k, we<br />

define a Λ ′ -module as follows (here we put Λ ′ = KQ ′ ):<br />

σX := S(a) Λ ′ ⊕ σX 2 ⊕ · · · ⊕ σX s<br />

if X has a direct summ<strong>and</strong> (say, X 1 ) isomorphic to <str<strong>on</strong>g>the</str<strong>on</strong>g> simple module S(a) Λ ; <strong>and</strong><br />

σX := σX 1 ⊕ σX 2 ⊕ · · · ⊕ σX s<br />

if X does not, where we put σX k = Hom Λ (T, X k ) for each indecomposable X k . Let R,<br />

R ′ be <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> isomorphic classes <str<strong>on</strong>g>of</str<strong>on</strong>g> basic hom-orthog<strong>on</strong>al partial tilting Λ-modules,<br />

Λ ′ -modules, having exactly s indecomposable direct summ<strong>and</strong>s, respectively. Then we<br />

have <str<strong>on</strong>g>the</str<strong>on</strong>g> following:<br />

Propositi<strong>on</strong> 1.3. For a basic hom-orthog<strong>on</strong>al partial tilting Λ-module X having s indecomposable<br />

direct summ<strong>and</strong>s, so is Λ ′ -module σX. The corresp<strong>on</strong>dence [X] ↦→ [σX] gives<br />

a bijecti<strong>on</strong> from R to R ′ . In particular, <str<strong>on</strong>g>the</str<strong>on</strong>g> numbers that are presented in Theorem 0.1<br />

do not depend <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> choice <str<strong>on</strong>g>of</str<strong>on</strong>g> an orientati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> arrows.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Let R Q , R Q ′ be <str<strong>on</strong>g>the</str<strong>on</strong>g> representati<strong>on</strong> matrix <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Ring</strong>el form <str<strong>on</strong>g>of</str<strong>on</strong>g> Λ, Λ ′ , respectively.<br />

Let r = r a be <str<strong>on</strong>g>the</str<strong>on</strong>g> simple reflecti<strong>on</strong> <strong>on</strong> Z n corresp<strong>on</strong>ding to <str<strong>on</strong>g>the</str<strong>on</strong>g> vertex a (we also denote by<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> same r its representati<strong>on</strong> matrix). Then we have R Q ′ = t r · R Q · r. On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r h<strong>and</strong>,<br />

we have dim σX k = r·(dim X k ) for X k that is not isomorphic to S(a) Λ , <strong>and</strong> r(e a ) = −e a .<br />

Hence, by calculating with <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Ring</strong>el form (recall Lemma 1.1), we see that σX is also<br />

a basic hom-orthog<strong>on</strong>al partial tilting Λ ′ -module. This corresp<strong>on</strong>dence [X] ↦→ [σX] is<br />

obviously a bijecti<strong>on</strong>.<br />

□<br />

Next we define two subsets <str<strong>on</strong>g>of</str<strong>on</strong>g> R as follows:<br />

R 1 = { [X] ∈ R; X is sincere, but σX is not sincere } ,<br />

R 2 = { [X] ∈ R; X is not sincere, but σX is sincere } .<br />

It follows from Lemma 1.2 that <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong> “sincere” implies that any representative <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

each class <str<strong>on</strong>g>of</str<strong>on</strong>g> R 1 or R 2 does not have a direct summ<strong>and</strong> isomorphic to <str<strong>on</strong>g>the</str<strong>on</strong>g> simple module<br />

S(a) Λ .<br />

Propositi<strong>on</strong> 1.4. We have ♯R 1 = ♯R 2 . In particular, <str<strong>on</strong>g>the</str<strong>on</strong>g> numbers for sincere modules<br />

that are presented in Theorem 0.3 do not depend <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> choice <str<strong>on</strong>g>of</str<strong>on</strong>g> an orientati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> arrows.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Take <str<strong>on</strong>g>the</str<strong>on</strong>g> isomorphic class [X] ∈ R 1 <strong>and</strong> let X ∼ = ⊕ s<br />

k=1 X k be its indecomposable<br />

decompositi<strong>on</strong>. Then, since σX is not sincere, <strong>on</strong>ly <str<strong>on</strong>g>the</str<strong>on</strong>g> a-th entry <str<strong>on</strong>g>of</str<strong>on</strong>g> dim σX = r·(dim X)<br />

is zero. Hence so is <str<strong>on</strong>g>the</str<strong>on</strong>g> a-th entry <str<strong>on</strong>g>of</str<strong>on</strong>g> each r(α k ), where we put α k = dim X k . On<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r h<strong>and</strong>, since σX is a basic hom-orthog<strong>on</strong>al partial tilting Λ ′ -module, we have<br />

t r(α i )·R Q ′ ·r(α j ) = 0 for any pair <str<strong>on</strong>g>of</str<strong>on</strong>g> distinct indices. Then we see that t r(α i )·R Q·r(α j ) =<br />

–128–


0, because R Q <strong>and</strong> R Q ′ are identical o<str<strong>on</strong>g>the</str<strong>on</strong>g>r than <str<strong>on</strong>g>the</str<strong>on</strong>g> a-th row <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> a-th column. Let ˜X<br />

be a Λ-module corresp<strong>on</strong>ding to <str<strong>on</strong>g>the</str<strong>on</strong>g> sum <str<strong>on</strong>g>of</str<strong>on</strong>g> positive roots ∑ s<br />

k=1 r(α k); this is not sincere,<br />

but σ ˜X is sincere. Thus we see that <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>dence [X] ↦→ [ ˜X] gives a bijecti<strong>on</strong> from<br />

R 1 to R 2 .<br />

□<br />

2. A n -type<br />

Let Q be <str<strong>on</strong>g>the</str<strong>on</strong>g> equi-oriented quiver 1 ◦ −→ 2 ◦ −→ · · · −→ n ◦ <str<strong>on</strong>g>of</str<strong>on</strong>g> A n -type. In <str<strong>on</strong>g>the</str<strong>on</strong>g> following,<br />

we will sometimes c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding things <str<strong>on</strong>g>of</str<strong>on</strong>g> “A 0 -type” or “A −1 -type” to be<br />

trivial for simplicity; for example, “A n−2 × A −1 -type” means just “A n−2 -type”, <strong>and</strong> so <strong>on</strong>.<br />

Propositi<strong>on</strong> 2.1. For each k = 1, 2, . . . , n, <str<strong>on</strong>g>the</str<strong>on</strong>g> perpendicular category Per I(k) is equivalent<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> module category <str<strong>on</strong>g>of</str<strong>on</strong>g> a path algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> type A k−2 × A n−1−k .<br />

Propositi<strong>on</strong> 2.2. Let n <strong>and</strong> s be positive integers.<br />

following recurrence formula:<br />

(2.1) a(n, s) = a(n − 1, s) +<br />

∑s−1<br />

∑n−2<br />

t=0 m=−1<br />

The number a(n, s) satisfies <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

a(m, t) · a(n − 3 − m, s − 1 − t).<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Let X = ⊕ s<br />

j=1 X j be a basic hom-orthog<strong>on</strong>al partial tilting Λ-module having<br />

s distinct indecomposable summ<strong>and</strong>s. Note that X has at most <strong>on</strong>e injective direct<br />

summ<strong>and</strong>. If X does not have any injective, <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> first entry <str<strong>on</strong>g>of</str<strong>on</strong>g> dim X is zero;<br />

that is, it is a sum <str<strong>on</strong>g>of</str<strong>on</strong>g> positive roots that come from A n−1 -type. So <str<strong>on</strong>g>the</str<strong>on</strong>g> number for<br />

such modules is equal to a(n − 1, s). Assume that X has just <strong>on</strong>e injective summ<strong>and</strong>,<br />

say I(k). Then, according to Propositi<strong>on</strong> 2.1, X has t <strong>and</strong> s − 1 − t direct summ<strong>and</strong>s<br />

∑<br />

that come from A k−2 -type <strong>and</strong> A n−1−k -type, respectively. Thus we see that <str<strong>on</strong>g>the</str<strong>on</strong>g>re exist<br />

s−1<br />

t=0<br />

a(k − 2, t) · a(n − 1 − k, s − 1 − t) such modules. Since k runs from 1 to n, we obtain<br />

our asserti<strong>on</strong>.<br />

□<br />

By using <str<strong>on</strong>g>the</str<strong>on</strong>g> recurrence formula above, we prove Theorem 0.1 for A n -type. Here we<br />

notice that <str<strong>on</strong>g>the</str<strong>on</strong>g> generating functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a(n, s) = C s · ( n+1<br />

2s<br />

) can be immediately obtained<br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> generalized binomial expansi<strong>on</strong>.<br />

Lemma 2.3. The generating functi<strong>on</strong> F s (x) = ∑ ∞<br />

n=0 a(n, s)xn <str<strong>on</strong>g>of</str<strong>on</strong>g> a(n, s) for fixed s is<br />

given by<br />

F s (x) = C s · x 2s−1<br />

(1 − x) 2s+1 .<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 0.1 for A n -type. First we note that a(n, 1) is nothing but <str<strong>on</strong>g>the</str<strong>on</strong>g> number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> positive roots <str<strong>on</strong>g>of</str<strong>on</strong>g> A n -type, which is equal to n(n + 1)/2 = C 1 · ( n+1<br />

2<br />

). In <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

n = 1, our asserti<strong>on</strong> is trivial. So we assume that <str<strong>on</strong>g>the</str<strong>on</strong>g> asserti<strong>on</strong> (0.2) holds for all positive<br />

integers less than n (≥ 2). In <str<strong>on</strong>g>the</str<strong>on</strong>g> recurrence formula (2.1), we note that a(m, t) (resp.<br />

a(n − 3 − m, s − 1 − t)) is <str<strong>on</strong>g>the</str<strong>on</strong>g> coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g> degree m (resp. n − 3 − m) <str<strong>on</strong>g>of</str<strong>on</strong>g> F t (x) (resp.<br />

F s−1−t (x)). The coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g> degree n − 3 <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Taylor expansi<strong>on</strong> at <str<strong>on</strong>g>the</str<strong>on</strong>g> origin (x = 0)<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g><br />

x 2s−4<br />

F t (x) × F s−1−t (x) = C t · C s−1−t ·<br />

(1 − x) 2s<br />

–129–


is equal to ( n<br />

2s−1 ); hence we have<br />

(2.2)<br />

∑n−2<br />

m=−1<br />

a(m, t) · a(n − 3 − m, s − 1 − t) = C t · C s−1−t · ( n<br />

2s−1 ) .<br />

By <str<strong>on</strong>g>the</str<strong>on</strong>g> recurrence formula (2.1) <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> assumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> inducti<strong>on</strong>, we have<br />

a(n, s) = a(n − 1, s) + ( n<br />

s−1<br />

2s−1 )<br />

∑<br />

C t · C s−1−t<br />

t=0<br />

= C s · ( n 2s ) + ( n<br />

2s−1 ) · C s = C s · ( n+1<br />

2s ) .<br />

Next we prove that a(n, s) = 0 if s > (n + 1)/2. Let s be such an integer. Then<br />

we have a(n − 1, s) = 0 by <str<strong>on</strong>g>the</str<strong>on</strong>g> assumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> inducti<strong>on</strong> because s > n/2. Suppose that<br />

t ≤ (m+1)/2 <strong>and</strong> s−1−t ≤ (n−3−m+1)/2 for fixed t. Then we have s−1 ≤ (n−1)/2;<br />

a c<strong>on</strong>tradicti<strong>on</strong>. Hence t > (m + 1)/2 or s − 1 − t > (n − 3 − m + 1)/2, <strong>and</strong> so that<br />

a(m, t) = 0 or a(n − 3 − m, s − 1 − t) = 0. Thus we c<strong>on</strong>clude a(n, s) = 0 by <str<strong>on</strong>g>the</str<strong>on</strong>g> recurrence<br />

formula (2.1). Therefore we obtain our asserti<strong>on</strong> for A n -type.<br />

□<br />

Remark 2.4. The formula (0.2) has a combinatorial interpretati<strong>on</strong>. According to Araya<br />

[1, Lemma 3.2], for distinct indecomposables X, Y ∈ mod Λ, <str<strong>on</strong>g>the</str<strong>on</strong>g>ir direct sum X ⊕ Y is a<br />

hom-orthog<strong>on</strong>al partial tilting module (or, both (X, Y ) <strong>and</strong> (Y, X) are excepti<strong>on</strong>al pairs)<br />

if <strong>and</strong> <strong>on</strong>ly if <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding codes <str<strong>on</strong>g>of</str<strong>on</strong>g> a circle with n +1 points do not meet each o<str<strong>on</strong>g>the</str<strong>on</strong>g>r.<br />

It follows from a well-known combinatorics <strong>on</strong> codes that <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> such codes is<br />

equal to C 2 · ( n+1<br />

4<br />

) = a(n, 2). The formula for general s ≥ 2 can be similarly obtained.<br />

Propositi<strong>on</strong> 2.5. Let X be a basic sincere hom-orthog<strong>on</strong>al partial tilting Λ-module. Then<br />

X has exactly <strong>on</strong>e direct summ<strong>and</strong> isomorphic to I(n).<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 0.3 for A n -type. Let X be a basic sincere hom-orthog<strong>on</strong>al partial tilting<br />

Λ-module. In <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> s = 1 (that is, X itself is indecomposable), it must be isomorphic<br />

to I(n). Hence we have a 0 (n, 1) = 1 for any n. If n = 1 or n = 2, our asserti<strong>on</strong> can<br />

be proved directly. So let n ≥ 3 <strong>and</strong> s ≥ 2. By Propositi<strong>on</strong>s 2.2 <strong>and</strong> 2.5, <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

summ<strong>and</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> X should be taken from a module category <str<strong>on</strong>g>of</str<strong>on</strong>g> A n−2 -type. The number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

such c<strong>and</strong>idates is equal to a(n − 2, s − 1). We can prove a 0 (n, s) = 0 for s > (n + 1)/2<br />

by a similar manner to <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 0.1.<br />

□<br />

Theorems for D n -type <strong>and</strong> E n -type are shown in a similar way. The detailed pro<str<strong>on</strong>g>of</str<strong>on</strong>g> is<br />

given in our paper which has been submitted for publicati<strong>on</strong> elsewhere<br />

References<br />

[1] T. Araya, Excepti<strong>on</strong>al sequences over path algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> type A n <strong>and</strong> n<strong>on</strong>-crossing spanning trees,<br />

arXiv:0904.2831v1 [math.RT].<br />

[2] I. Assem, D. Sims<strong>on</strong>, <strong>and</strong> A. Skowroński, Elements <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> representati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> associative algebras.<br />

Vol. 1, L<strong>on</strong>d<strong>on</strong> Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical Society Student Texts 65, Cambridge University Press, 2006.<br />

MR 2197389 (2006j:16020)<br />

[3] G. Bobiński, C. Riedtmann, <strong>and</strong> A. Skowroński, Semi-invariants <str<strong>on</strong>g>of</str<strong>on</strong>g> quivers <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir zero sets, Trends<br />

in representati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> algebras <strong>and</strong> related topics, EMS Ser. C<strong>on</strong>gr. Rep., Eur. Math. Soc., 2008,<br />

pp. 49–99. MR 2484724 (2009m:16030)<br />

–130–


[4] D. Happel, Relative invariants <strong>and</strong> subgeneric orbits <str<strong>on</strong>g>of</str<strong>on</strong>g> quivers <str<strong>on</strong>g>of</str<strong>on</strong>g> finite <strong>and</strong> tame type, J. Algebra 78<br />

(1982), 445–459. MR 680371 (84a:16052)<br />

[5] T. Kimura, Introducti<strong>on</strong> to prehomogeneous vector spaces, Translati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical M<strong>on</strong>ographs<br />

215, American Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical Society, 2003, Translated from <str<strong>on</strong>g>the</str<strong>on</strong>g> 1998 Japanese original by Makoto<br />

Nagura <strong>and</strong> Tsuyoshi Niitani <strong>and</strong> revised by <str<strong>on</strong>g>the</str<strong>on</strong>g> author. MR 1944442 (2003k:11180)<br />

[6] A. Sch<str<strong>on</strong>g>of</str<strong>on</strong>g>ield, Semi-invariants <str<strong>on</strong>g>of</str<strong>on</strong>g> quivers, J. L<strong>on</strong>d<strong>on</strong> Math. Soc. (2) 43 (1991), 385–395. MR 1113382<br />

(92g:16019)<br />

[7] U. Seidel, Excepti<strong>on</strong>al sequences for quivers <str<strong>on</strong>g>of</str<strong>on</strong>g> Dynkin type, Comm. Algebra 29 (2001), 1373–1386.<br />

MR 1842420 (2002j:16016)<br />

[8] D. A. Shmelkin, Locally semi-simple representati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> quivers, Transform. Groups 12 (2007), 153–<br />

173. MR 2308034 (2008b:16017)<br />

Tokyo Gakugei University<br />

4-1-1, Nukuikitamachi, Koganei<br />

Tokyo 184-8501 JAPAN<br />

E-mail address: nagase@u-gakugei.ac.jp<br />

Nara Nati<strong>on</strong>al College <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

Yamato-Koriyama<br />

Nara 639-1080 JAPAN<br />

E-mail address: nagura@libe.nara-k.ac.jp<br />

–131–


THE NOETHERIAN PROPERTIES OF THE RINGS OF<br />

DIFFERENTIAL OPERATORS ON CENTRAL 2-ARRANGEMENTS<br />

NORIHIRO NAKASHIMA<br />

Abstract. P. Holm began to study <str<strong>on</strong>g>the</str<strong>on</strong>g> ring <str<strong>on</strong>g>of</str<strong>on</strong>g> differential operators <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> coordinate<br />

ring <str<strong>on</strong>g>of</str<strong>on</strong>g> a hyperplane arrangement. In this paper, we introduce Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian properties <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> ring differential operators <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> coordinate ring <str<strong>on</strong>g>of</str<strong>on</strong>g> a central 2-arrangement <strong>and</strong> its<br />

graded ring associated to <str<strong>on</strong>g>the</str<strong>on</strong>g> order filtrati<strong>on</strong>.<br />

<strong>Ring</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> differential operators, Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian property, Hyperplane ar-<br />

Key Words:<br />

rangement.<br />

2010 Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics Subject Classificati<strong>on</strong>: Primary 13N10; Sec<strong>on</strong>dary 32S22.<br />

1. Introducti<strong>on</strong><br />

For a commutative algebra R over a field K <str<strong>on</strong>g>of</str<strong>on</strong>g> characteristic zero, define vector spaces<br />

inductively by<br />

D 0 (R) := {θ ∈ End K (R) | a ∈ R, θa − aθ = 0},<br />

D m (R) := { θ ∈ End K (R) | a ∈ R, θa − aθ ∈ D m−1 (R) } (m ≥ 1).<br />

We define <str<strong>on</strong>g>the</str<strong>on</strong>g> ring D(R) := ∪ m≥0 D m (R) <str<strong>on</strong>g>of</str<strong>on</strong>g> differential operators <str<strong>on</strong>g>of</str<strong>on</strong>g> R.<br />

Let S := K[x 1 , . . . , x n ] be <str<strong>on</strong>g>the</str<strong>on</strong>g> polynomial ring. The ring D(S) is <str<strong>on</strong>g>the</str<strong>on</strong>g> n-th Weyl algebra<br />

K[x 1 , . . . , x n ]〈∂ 1 , . . . , ∂ n 〉 where ∂ i :=<br />

∂<br />

∂x i<br />

(see for example [3]). We use <str<strong>on</strong>g>the</str<strong>on</strong>g> multi-index<br />

noteti<strong>on</strong>s, for example, ∂ α := ∂ α 1<br />

1 · · · ∂ α n<br />

n <strong>and</strong> |α| := α 1 + · · · + α n for α = (α 1 , . . . , α n ) ∈<br />

N n . Define D (m) (S) := ⊕ |α|=m . Then D(S) = ⊕ m≥0 D (m) (S). It is well known D(R)<br />

that D(R) is Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian, if R is a regular domain (see [3]).<br />

Holm [2] showed that D(R) is finitely generated as a K-algebra when R is a coordinate<br />

ring <str<strong>on</strong>g>of</str<strong>on</strong>g> a generic hyperplane arrangement. Holm [1] also proved that <str<strong>on</strong>g>the</str<strong>on</strong>g> ring <str<strong>on</strong>g>of</str<strong>on</strong>g> differential<br />

operators <str<strong>on</strong>g>of</str<strong>on</strong>g> a central 2-arrangement is a free S-module, <strong>and</strong> gave a basis <str<strong>on</strong>g>of</str<strong>on</strong>g> it. We can<br />

write any ellement in D(R) as a linearly combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this basis ellements.<br />

In this paper, we introduce <str<strong>on</strong>g>the</str<strong>on</strong>g> Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian property <str<strong>on</strong>g>of</str<strong>on</strong>g> D(R) when R is <str<strong>on</strong>g>the</str<strong>on</strong>g> coordinate<br />

ring <str<strong>on</strong>g>of</str<strong>on</strong>g> a central arrangement. In particular, <str<strong>on</strong>g>the</str<strong>on</strong>g> case n = 2, D(R) is a Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian ring .<br />

We give an example <str<strong>on</strong>g>of</str<strong>on</strong>g> a finitely generated ideal in <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper.<br />

The details <str<strong>on</strong>g>of</str<strong>on</strong>g> this note are in [4].<br />

2. Hyperplane arrangement<br />

In this secti<strong>on</strong>, we fix some notati<strong>on</strong>, <strong>and</strong> we introduce some properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ring <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

differential operators <str<strong>on</strong>g>of</str<strong>on</strong>g> a central arrangement. Let A = {H i | i = 1, . . . , r} be a central<br />

(hyperplane) arrangement (i.e., every hyperplane in A c<strong>on</strong>tains <str<strong>on</strong>g>the</str<strong>on</strong>g> origin) in K n . Fix a<br />

The detailed versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper will be submitted for publicati<strong>on</strong> elsewhere.<br />

–132–


polynomial p i with ker(p i ) = H i , <strong>and</strong> put Q := p 1 · · · p r . Thus Q is a product <str<strong>on</strong>g>of</str<strong>on</strong>g> certain<br />

homogeneous polynomials <str<strong>on</strong>g>of</str<strong>on</strong>g> degree 1. Let I denote <str<strong>on</strong>g>the</str<strong>on</strong>g> principal ideal <str<strong>on</strong>g>of</str<strong>on</strong>g> S generated by<br />

Q. Then S/I is <str<strong>on</strong>g>the</str<strong>on</strong>g> coordinate ring <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> hyperplane arrangement defined by Q.<br />

For any ideal J <str<strong>on</strong>g>of</str<strong>on</strong>g> S, we define an S-submodule D (m) (J) <str<strong>on</strong>g>of</str<strong>on</strong>g> D (m) (S) <strong>and</strong> a subring<br />

D(J) <str<strong>on</strong>g>of</str<strong>on</strong>g> D(S) by<br />

Holm [2] proved <str<strong>on</strong>g>the</str<strong>on</strong>g> following propositi<strong>on</strong>.<br />

Propositi<strong>on</strong> 1 (Propositi<strong>on</strong> 4.3 in [2]).<br />

D (m) (J) := {θ ∈ D (m) (S) | θ(J) ⊆ J},<br />

D(J) := {θ ∈ D(S) | θ(J) ⊆ J}.<br />

D(I) = ⊕ m≥0<br />

D (m) (I).<br />

There is a ring isomorphism D(S/J) ≃ D(J)/JD(S) (see [3, Theorem 15.5.13]). Thus<br />

we can express D(S/J) as a subquotient <str<strong>on</strong>g>of</str<strong>on</strong>g> Weyl algebra.<br />

We can prove that D(J)/JD(S) is right Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian if <strong>and</strong> <strong>on</strong>ly if D(J)/JD(S) is left<br />

Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian when J ≠ 0 is a principal ideal. Therefore we c<strong>on</strong>clude that D(S/I) is right<br />

Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian if <strong>and</strong> <strong>on</strong>ly if D(S/I) is left Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian.<br />

Theorem 2. Let h ≠ 0 be a polynomial, <strong>and</strong> let J = hS. Then <str<strong>on</strong>g>the</str<strong>on</strong>g> ring D(J)/JD(S) is<br />

right Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian if <strong>and</strong> <strong>on</strong>ly if D(J)/JD(S) is left Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian.<br />

Corollary 3. Let I be <str<strong>on</strong>g>the</str<strong>on</strong>g> defining ideal <str<strong>on</strong>g>of</str<strong>on</strong>g> a central arrangement. Then <str<strong>on</strong>g>the</str<strong>on</strong>g> ring D(S/I)<br />

is right Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian if <strong>and</strong> <strong>on</strong>ly if D(S/I) is left Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian.<br />

To prove that D(S/I) is a Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian ring, we <strong>on</strong>ly need to prove that D(S/I) is a<br />

right Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian ring.<br />

The operator<br />

ε m := ∑ m!<br />

α! xα ∂ α<br />

|α|=m<br />

is called <str<strong>on</strong>g>the</str<strong>on</strong>g> Euler operator <str<strong>on</strong>g>of</str<strong>on</strong>g> order m where α! = (α 1 !) · · · (α n !) for α = (α 1 , . . . , α n ).<br />

Then ε m = ε 1 (ε 1 − 1) · · · (ε 1 − m + 1) [2, Lemma 4.9].<br />

3. n = 2<br />

In this secti<strong>on</strong>, we assume n = 2 <strong>and</strong> S = K[x, y]. We introduce <str<strong>on</strong>g>the</str<strong>on</strong>g> Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian<br />

property <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ring D(S/I) ≃ D(I)/ID(S). In c<strong>on</strong>trast, <str<strong>on</strong>g>the</str<strong>on</strong>g> graded ring Gr D(S/I)<br />

associated to <str<strong>on</strong>g>the</str<strong>on</strong>g> order filtrati<strong>on</strong> is not Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian when r ≥ 2.<br />

Put P i := Q p i<br />

for i = 1, . . . , r, <strong>and</strong> define<br />

{<br />

∂ y if p i = ax (a ∈ K × )<br />

δ i :=<br />

∂ x + a i ∂ y if p i = a(y − a i x) (a ∈ K × ).<br />

Then δ i (p j ) = 0 if <strong>and</strong> <strong>on</strong>ly if i = j.<br />

–133–


Propositi<strong>on</strong> 4 (Paper III, Propositi<strong>on</strong> 6.7 in [1], Propositi<strong>on</strong> 4.14 in [6]). For any m ≥ 1,<br />

D (m) (I) is a free left S-module with a basis<br />

{ε m , P 1 δ m 1 , . . . , P m δ m m} if m < r − 1,<br />

{P 1 δ m 1 , . . . , P r δ m r } if m = r − 1,<br />

{P 1 δ m 1 , . . . , P r δ m r , Qη (m)<br />

r+1, . . . , Qη (m)<br />

m+1} if m > r − 1,<br />

where <str<strong>on</strong>g>the</str<strong>on</strong>g> set {δ m 1 , . . . , δ m r , η (m)<br />

r+1, . . . , η (m)<br />

m+1} forms a K-basis for ∑ |α|=m K∂α if m > r − 1.<br />

By Propositi<strong>on</strong> 1, we have<br />

( ⊕r−2<br />

( ) )<br />

D(I) = S ⊕ Sεm ⊕ SP 1 δ1 m ⊕ · · · ⊕ SP m δm<br />

m<br />

m=1<br />

( ⊕ (<br />

⊕ SP1 δ1 m ⊕ · · · ⊕ SP r δr m ⊕ SQη (m)<br />

r+1 ⊕ · · · ⊕ SQη m+1) ) (m) .<br />

m≥r−1<br />

For i = 1, . . . , r, we define an additive group<br />

L i := D(I) ∩ (p 1 · · · p i )D(S).<br />

Propositi<strong>on</strong> 5. For i = 1, . . . , r, <str<strong>on</strong>g>the</str<strong>on</strong>g> additive group L i is a two-sided ideal <str<strong>on</strong>g>of</str<strong>on</strong>g> D(I).<br />

We c<strong>on</strong>sider a sequence<br />

(3.1)<br />

ID(S) = L r ⊆ L r−1 ⊆ · · · ⊆ L 1 ⊆ L 0 = D(I)<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> two-sided ideals <str<strong>on</strong>g>of</str<strong>on</strong>g> D(I). If L i−1 /L i is a right Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian D(I)-module for any i, <str<strong>on</strong>g>the</str<strong>on</strong>g>n<br />

D(I)/ID(S) is a right Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian ring. By proving that L i−1 /L i is right Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian for<br />

all i, we obtain <str<strong>on</strong>g>the</str<strong>on</strong>g> following main <str<strong>on</strong>g>the</str<strong>on</strong>g>orem.<br />

Theorem 6. The ring D(S/I) ≃ D(I)/ID(S) <str<strong>on</strong>g>of</str<strong>on</strong>g> differential operators <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> coordinate<br />

ring <str<strong>on</strong>g>of</str<strong>on</strong>g> a central 2-arrangement is Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian (i.e., D(S/I) is right Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian <strong>and</strong> left<br />

Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian).<br />

In c<strong>on</strong>trast, Gr D(S/I) is not Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian when r ≥ 2.<br />

Remark 7. The graded ring Gr D(S/I) associated to <str<strong>on</strong>g>the</str<strong>on</strong>g> order filtrati<strong>on</strong> is a commutative<br />

ring. We c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> ideal M := 〈P 1 δ1<br />

m | m ≥ 1〉 <str<strong>on</strong>g>of</str<strong>on</strong>g> Gr D(S/I).<br />

Assume that M is finitely generated with generators η 1 , . . . , η l . Then <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a<br />

positive integer m such that<br />

Since P 1 δ m 1<br />

(3.2)<br />

∈ M, we can write<br />

M = 〈η 1 , . . . , η l 〉 ⊆ 〈P 1 δ 1 , . . . , P 1 δ m−1<br />

1 〉.<br />

P 1 δ m 1<br />

= P 1 δ 1 · θ 1 + · · · + P 1 δ m−1<br />

1 · θ m−1<br />

for some θ 1 , . . . , θ m−1 ∈ D(I).<br />

If θ ∈ D(I) with ord(θ) ≤ 1, <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> polynomial degree <str<strong>on</strong>g>of</str<strong>on</strong>g> θ is greater than or equal<br />

to 1 by Propositi<strong>on</strong> 4. Since <str<strong>on</strong>g>the</str<strong>on</strong>g> order <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> LHS <str<strong>on</strong>g>of</str<strong>on</strong>g> (3.2) is m, <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists at least <strong>on</strong>e<br />

θ j such that <str<strong>on</strong>g>the</str<strong>on</strong>g> order <str<strong>on</strong>g>of</str<strong>on</strong>g> θ j is greater than or equal to 1. Thus <str<strong>on</strong>g>the</str<strong>on</strong>g> polynomial degree <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

–134–


<str<strong>on</strong>g>the</str<strong>on</strong>g> RHS <str<strong>on</strong>g>of</str<strong>on</strong>g> (3.2) is greater than r − 1. However, <str<strong>on</strong>g>the</str<strong>on</strong>g> polynomial degree <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> LHS <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

(3.2) is exactly r − 1. This is a c<strong>on</strong>tradicti<strong>on</strong>.<br />

Hence M is not finitely generated, <strong>and</strong> thus we have proved that Gr D(S/I) is not<br />

Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian.<br />

4. Exaple<br />

Let n = 2 <strong>and</strong> S = K[x, y]. Let Q = xy(x − y) <strong>and</strong> I = QS. Put p 1 = x, p 2 = y, p 3 =<br />

x − y. Then P 1 = y(x − y) <strong>and</strong> δ 1 = ∂ y . We c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> right ideal 〈y(x − y)∂ m y | m ≥ 1〉<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> D(I).<br />

For l ≥ 4, we have<br />

y(x − y)∂ y · y(x − y)∂ l+1<br />

y = y 2 (x − y) 2 ∂ l+2<br />

y + y(x − 2y)∂ l+1<br />

y ,<br />

y(x − y)∂ 2 y · y(x − y)∂ l y = y 2 (x − y) 2 ∂ l+2<br />

y + 2y(x − 2y)∂ l+1<br />

y − 2y(x − y)∂ l y,<br />

y(x − y)∂ 3 y · y(x − y)∂ l−1<br />

y = y 2 (x − y) 2 ∂ l+2<br />

y + 3y(x − 2y)∂ l+1<br />

y − 6y(x − y)∂ l y.<br />

Thus we obtain<br />

y(x−y)∂ y ·y(x−y)∂y<br />

l+1 −2y(x−y)∂y 2 ·y(x−y)∂y l +y(x−y)∂y 3 ·y(x−y)∂y l−1 = −2y(x−y)∂y.<br />

l<br />

This leads to<br />

y(x − y)∂y l ∈ 〈y(x − y)∂y m | m = 1, 2, 3〉<br />

since y(x − y)∂y<br />

m ∈ D(I) for any m ≥ 1. We have <str<strong>on</strong>g>the</str<strong>on</strong>g> identity<br />

〈y(x − y)∂ m y | m ≥ 1〉 = 〈y(x − y)∂ m y | m = 1, 2, 3〉<br />

as right ideals. Hence <str<strong>on</strong>g>the</str<strong>on</strong>g> right ideal 〈y(x − y)∂y<br />

m | m ≥ 1〉 is finitely generated.<br />

In c<strong>on</strong>trast, <str<strong>on</strong>g>the</str<strong>on</strong>g> right ideal 〈y(x − y)∂y<br />

m | m ≥ 1〉 <str<strong>on</strong>g>of</str<strong>on</strong>g> Gr D(S/I) is not finitely generated<br />

by Remark 7.<br />

References<br />

[1] P. Holm, Differential Operators <strong>on</strong> Arrangements <str<strong>on</strong>g>of</str<strong>on</strong>g> Hyperplanes. PhD. Thesis, Stockholm University,<br />

(2002).<br />

[2] P. Holm, Differential Operators <strong>on</strong> Hyperplane Arrangements. Comm. Algebra 32 (2004), no.6, 2177-<br />

2201.<br />

[3] J. C. McC<strong>on</strong>nell <strong>and</strong> J. C. Robs<strong>on</strong>, N<strong>on</strong>commutative Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian <strong>Ring</strong>s. Pure <strong>and</strong> Applied Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics,<br />

John Wiley & S<strong>on</strong>s, Chichester, 1987.<br />

[4] N. Nakashima, The Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian Properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Ring</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Differential Operators <strong>on</strong> Central 2-<br />

Arrangements. Preprint, arXiv:1106.1756.<br />

[5] P. Orlik <strong>and</strong> H. Terao, Arrangements <str<strong>on</strong>g>of</str<strong>on</strong>g> Hyperplanes. Grundlehren dermatematischen Wissenschaften<br />

300, Springer-Verlag, 1992.<br />

[6] J. Snellman, A C<strong>on</strong>jecture <strong>on</strong> Pi<strong>on</strong>caré-Betti Series <str<strong>on</strong>g>of</str<strong>on</strong>g> Modules <str<strong>on</strong>g>of</str<strong>on</strong>g> Differential Operators <strong>on</strong> a Generic<br />

Hyperplane Arrangement. Experiment. Math. 14 (2005), no.4, 445-456.<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics<br />

Graduate School <str<strong>on</strong>g>of</str<strong>on</strong>g> Science<br />

Hokkaido University<br />

Sapporo, 060-0810, Japan<br />

E-mail address: naka n@math.sci.hokudai.ac.jp<br />

–135–


HOCHSCHILD COHOMOLOGY OF QUIVER ALGEBRAS DEFINED<br />

BY TWO CYCLES AND A QUANTUM-LIKE RELATION<br />

DAIKI OBARA<br />

Abstract. This paper is based <strong>on</strong> my talk given at <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Symposium</str<strong>on</strong>g> <strong>on</strong> <strong>Ring</strong> <strong>Theory</strong><br />

<strong>and</strong> Representati<strong>on</strong> <strong>Theory</strong> held at Okayama University, Japan, 25–27 September 2011.<br />

In this paper, we c<strong>on</strong>sider quiver algebras A q over a field k defined by two cycles <strong>and</strong><br />

a quantum-like relati<strong>on</strong> depending <strong>on</strong> a n<strong>on</strong>-zero element q in k. We determine <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

ring structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Hochschild cohomology ring <str<strong>on</strong>g>of</str<strong>on</strong>g> A q modulo nilpotence <strong>and</strong> give a<br />

necessary <strong>and</strong> sufficient c<strong>on</strong>diti<strong>on</strong> for A q to satisfy <str<strong>on</strong>g>the</str<strong>on</strong>g> finiteness c<strong>on</strong>diti<strong>on</strong> given in [19].<br />

1. Introducti<strong>on</strong><br />

Let A be an indecomposable finite dimensi<strong>on</strong>al algebra over a field k. We denote by A e<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> enveloping algebra A⊗ k A op <str<strong>on</strong>g>of</str<strong>on</strong>g> A, so that left A e -modules corresp<strong>on</strong>d to A-bimodules.<br />

The Hochschild cohomology ring is given by HH ∗ (A) = Ext ∗ A e(A, A) = ⊕ n≥0Ext n Ae(A, A)<br />

with Y<strong>on</strong>eda product. It is well-known that HH ∗ (A) is a graded commutative ring, that<br />

is, for homogeneous elements η ∈ HH m (A) <strong>and</strong> θ ∈ HH n (A), we have ηθ = (−1) mn θη. Let<br />

N denote <str<strong>on</strong>g>the</str<strong>on</strong>g> ideal <str<strong>on</strong>g>of</str<strong>on</strong>g> HH ∗ (A) which is generated by all homogeneous nilpotent elements.<br />

Then N is c<strong>on</strong>tained in every maximal ideal <str<strong>on</strong>g>of</str<strong>on</strong>g> HH ∗ (A), so that <str<strong>on</strong>g>the</str<strong>on</strong>g> maximal ideals <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

HH ∗ (A) are in 1-1 corresp<strong>on</strong>dence with those in <str<strong>on</strong>g>the</str<strong>on</strong>g> Hochschild cohomology ring modulo<br />

nilpotence HH ∗ (A)/N .<br />

Let q be a n<strong>on</strong>-zero element in k <strong>and</strong> s, t integers with s, t ≥ 1. We c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> quiver<br />

algebra A q = kQ/I q defined by <str<strong>on</strong>g>the</str<strong>on</strong>g> two cycles Q with s + t − 1 vertices <strong>and</strong> s + t arrows<br />

as follows:<br />

α<br />

a<br />

2<br />

3 ←− a2 b 2 · · · · · ·<br />

α 3<br />

↙ ↖ α 1 β 1<br />

.<br />

↗<br />

. .<br />

a 4 1 b t−2<br />

. .. ↗αs β t<br />

↖ ↙ βt−2<br />

β t−1<br />

· · · · · · a s b t ←− bt−1<br />

<strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> ideal I q <str<strong>on</strong>g>of</str<strong>on</strong>g> kQ generated by<br />

X sa , X s Y t − qY t X s , Y tb<br />

for a, b ≥ 2 where we set X:= α 1 + α 2 + · · · + α s <strong>and</strong> Y := β 1 + β 2 + · · · + β t . We denote<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> trivial path at <str<strong>on</strong>g>the</str<strong>on</strong>g> vertex a(i) <strong>and</strong> at <str<strong>on</strong>g>the</str<strong>on</strong>g> vertex b(j) by e a(i) <strong>and</strong> by e b(j) respectively.<br />

We regard <str<strong>on</strong>g>the</str<strong>on</strong>g> numbers i in <str<strong>on</strong>g>the</str<strong>on</strong>g> subscripts <str<strong>on</strong>g>of</str<strong>on</strong>g> e a(i) modulo s <strong>and</strong> j in <str<strong>on</strong>g>the</str<strong>on</strong>g> subscripts <str<strong>on</strong>g>of</str<strong>on</strong>g> e b(j)<br />

modulo t. In this paper, we describe <str<strong>on</strong>g>the</str<strong>on</strong>g> ring structure <str<strong>on</strong>g>of</str<strong>on</strong>g> HH ∗ (A q )/N .<br />

In [17], Snashall <strong>and</strong> Solberg used <str<strong>on</strong>g>the</str<strong>on</strong>g> Hochschild cohomology ring modulo nilpotence<br />

HH ∗ (A)/N to define a support variety for any finitely generated module over A. This<br />

led us to c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> structure <str<strong>on</strong>g>of</str<strong>on</strong>g> HH ∗ (A)/N . In [17], Snashall <strong>and</strong> Solberg c<strong>on</strong>jectured<br />

that HH ∗ (A)/N is always finitely generated as a k-algebra. But a counterexample to<br />

–136–


this c<strong>on</strong>jecture was given by Snashall [16] <strong>and</strong> Xu [21]. This example makes us c<strong>on</strong>sider<br />

whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r we can give necessary <strong>and</strong> sufficient c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> a finite dimensi<strong>on</strong>al algebra A<br />

for HH ∗ (A)/N to be finitely generated as a k-algebra.<br />

On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r h<strong>and</strong>, in <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> support varieties, it is interesting to know when <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

variety <str<strong>on</strong>g>of</str<strong>on</strong>g> a module is trivial. In [4], Erdmann, Holloway, Snashall, Solberg <strong>and</strong> Taillefer<br />

gave <str<strong>on</strong>g>the</str<strong>on</strong>g> necessary <strong>and</strong> sufficient c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> a module for it to have trivial variety under<br />

some finiteness c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> A. In [19], Solberg gave a c<strong>on</strong>diti<strong>on</strong> which is equivalent to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> finiteness c<strong>on</strong>diti<strong>on</strong>s. In <str<strong>on</strong>g>the</str<strong>on</strong>g> paper, we show that A q satisfies <str<strong>on</strong>g>the</str<strong>on</strong>g> finiteness c<strong>on</strong>diti<strong>on</strong><br />

given in [19] if <strong>and</strong> <strong>on</strong>ly if q is a root <str<strong>on</strong>g>of</str<strong>on</strong>g> unity.<br />

The c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> paper is organized as follows. In Secti<strong>on</strong> 1 we deal with <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> support variety given in [17] <strong>and</strong> precedent results about <str<strong>on</strong>g>the</str<strong>on</strong>g> Hochschild cohomology<br />

ring modulo nilpotence. In Secti<strong>on</strong> 2, we describe <str<strong>on</strong>g>the</str<strong>on</strong>g> finiteness c<strong>on</strong>diti<strong>on</strong> given in<br />

[19] <strong>and</strong> introduce precedent results about this c<strong>on</strong>diti<strong>on</strong>. In Secti<strong>on</strong> 3, we determine<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Hochschild cohomology ring <str<strong>on</strong>g>of</str<strong>on</strong>g> A q modulo nilpotence <strong>and</strong> show that A q satisfies <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

finiteness c<strong>on</strong>diti<strong>on</strong> if <strong>and</strong> <strong>on</strong>ly if q is a root <str<strong>on</strong>g>of</str<strong>on</strong>g> unity.<br />

2. Support variety<br />

In [17], Snasall <strong>and</strong> Solberg defined <str<strong>on</strong>g>the</str<strong>on</strong>g> support variety <str<strong>on</strong>g>of</str<strong>on</strong>g> a finitely generated A-module<br />

M over a noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian commutative graded subalgebra H <str<strong>on</strong>g>of</str<strong>on</strong>g> HH ∗ (A) with H 0 = HH 0 (A).<br />

In this paper, we c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> case H = HH ∗ (A).<br />

Definiti<strong>on</strong> 1 ([17]). The support variety <str<strong>on</strong>g>of</str<strong>on</strong>g> M is given by<br />

V (M) = {m ∈ MaxSpec HH ∗ (A)/N | AnnExt ∗ A(M, M) ⊆ m ′ }<br />

where AnnExt ∗ A(M, M) is <str<strong>on</strong>g>the</str<strong>on</strong>g> annihilator <str<strong>on</strong>g>of</str<strong>on</strong>g> Ext ∗ A(M, M), m ′ is <str<strong>on</strong>g>the</str<strong>on</strong>g> pre-image <str<strong>on</strong>g>of</str<strong>on</strong>g> m for<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> natural epimorphism <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> HH ∗ (A)-acti<strong>on</strong> <strong>on</strong> Ext ∗ A(A, A) is given by <str<strong>on</strong>g>the</str<strong>on</strong>g> graded<br />

algebra homomorphism HH ∗ (A) −⊗M<br />

−→ Ext ∗ A(M, M).<br />

Since A is indecomposable, we have that HH 0 (A) is a local ring. Thus HH ∗ (A)/N has a<br />

unique maximal graded ideal m gr = 〈rad HH ∗ (A), HH ≥1 (A)〉/N . We say that <str<strong>on</strong>g>the</str<strong>on</strong>g> variety<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> M is trivial if V (M) = {m gr }.<br />

In [16], Snashall gave <str<strong>on</strong>g>the</str<strong>on</strong>g> following questi<strong>on</strong>.<br />

Questi<strong>on</strong> ([16]). Whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r we can give necessary <strong>and</strong> sufficient c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> a finite dimensi<strong>on</strong>al<br />

algebra for <str<strong>on</strong>g>the</str<strong>on</strong>g> Hochschild cohomology ring modulo nilpotence to be finitely<br />

generated as a k-algebra.<br />

With respect to sufficient c<strong>on</strong>diti<strong>on</strong>, it is shown that HH ∗ (A)/N is finitely generated<br />

as a k-algebra for various classes <str<strong>on</strong>g>of</str<strong>on</strong>g> algebras by many authors as follows:<br />

(1) In [6], [20], Evens <strong>and</strong> Venkov showed that HH ∗ (A)/N is finitely generated for<br />

any block <str<strong>on</strong>g>of</str<strong>on</strong>g> a group ring <str<strong>on</strong>g>of</str<strong>on</strong>g> a finite group.<br />

(2) In [7], Friedl<strong>and</strong>er <strong>and</strong> Suslin showed that HH ∗ (A)/N is finitely generated for any<br />

block <str<strong>on</strong>g>of</str<strong>on</strong>g> a finite dimensi<strong>on</strong>al cocommutative Hopf algebra.<br />

(3) In [9], Green, Snashall <strong>and</strong> Solberg showed that HH ∗ (A)/N is finitely generated<br />

for finite dimensi<strong>on</strong>al self-injective algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> finite representati<strong>on</strong> type over an<br />

algebraically closed field.<br />

–137–


(4) In [10], Green, Snashall <strong>and</strong> Solberg showed that HH ∗ (A)/N is finitely generated<br />

for finite dimensi<strong>on</strong>al m<strong>on</strong>omial algebras.<br />

(5) In [11], Happel showed that HH ∗ (A)/N is finitely generated for finite dimensi<strong>on</strong>al<br />

algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> finite global dimensi<strong>on</strong>.<br />

(6) In [15], Schroll <strong>and</strong> Snashall showed that HH ∗ (A)/N is finitely generated for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

principal block <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Heche algebra H q (S 5 ) with q = −1 defined by <str<strong>on</strong>g>the</str<strong>on</strong>g> quiver<br />

<strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> ideal I <str<strong>on</strong>g>of</str<strong>on</strong>g> kQ generated by<br />

ε<br />

a<br />

1<br />

−→<br />

←− 2<br />

α¯ε, ᾱε, ¯εᾱ, ε 2 − αᾱ, ¯ε 2 − ᾱα.<br />

(7) In [18], Snashall <strong>and</strong> Taillefer showed that HH ∗ (A)/N is finitely generated for a<br />

class <str<strong>on</strong>g>of</str<strong>on</strong>g> special biserial algebras.<br />

(8) In [12], Koenig <strong>and</strong> Nagase produced many examples <str<strong>on</strong>g>of</str<strong>on</strong>g> finite dimensi<strong>on</strong>al algebras<br />

with a stratifying ideal for which HH ∗ (A)/N is finitely generated as a k-algebra.<br />

(9) In [16] <strong>and</strong> [21], Snashall <strong>and</strong> Xu gave <str<strong>on</strong>g>the</str<strong>on</strong>g> example <str<strong>on</strong>g>of</str<strong>on</strong>g> a finite dimensi<strong>on</strong>al algebra<br />

for which HH ∗ (A)/N is not a finitely generated k-algebra.<br />

Example 2. ([16, Example 4.1]) Let A = kQ/I where Q is <str<strong>on</strong>g>the</str<strong>on</strong>g> quiver<br />

a<br />

a<br />

<br />

ε<br />

1<br />

c<br />

−→ 2<br />

b<br />

<strong>and</strong> I = 〈a 2 , b 2 , ab − ba, ac〉. Then HH ∗ (A)/N is not finitely generated as a k-<br />

algebra.<br />

Xu showed this in <str<strong>on</strong>g>the</str<strong>on</strong>g> case char k = 2 in [21].<br />

3. Finiteness c<strong>on</strong>diti<strong>on</strong><br />

In [4], Erdmann, Holloway, Snashall, Solberg <strong>and</strong> Taillefer gave <str<strong>on</strong>g>the</str<strong>on</strong>g> following two c<strong>on</strong>diti<strong>on</strong>s<br />

(Fg1) <strong>and</strong> (Fg2) for an algebra A <strong>and</strong> a graded subalgebra H <str<strong>on</strong>g>of</str<strong>on</strong>g> HH ∗ (A).<br />

(Fg1) H is a commutative Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian algebra with H 0 = HH 0 (A).<br />

(Fg2) Ext ∗ A(A/rad A, A/rad A) is a finitely generated H-module.<br />

In [19], Solberg showed that <str<strong>on</strong>g>the</str<strong>on</strong>g> finiteness c<strong>on</strong>diti<strong>on</strong>s are equivalent to <str<strong>on</strong>g>the</str<strong>on</strong>g> following<br />

c<strong>on</strong>diti<strong>on</strong>.<br />

(Fg) HH ∗ (A) is Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian <strong>and</strong> Ext ∗ A(A/radA, A/radA) is a finitely generated<br />

HH ∗ (A)-module.<br />

In [4], under <str<strong>on</strong>g>the</str<strong>on</strong>g> finiteness c<strong>on</strong>diti<strong>on</strong> (Fg), some geometric properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> support variety<br />

<strong>and</strong> some representati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>oretic properties are related. In particular, <str<strong>on</strong>g>the</str<strong>on</strong>g> following<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>orem hold.<br />

Theorem 3 ([4, Theorem 2.5]). Suppose that A satisfies (Fg).<br />

(a) A is Gorenstein, that is, A has finite injective dimensi<strong>on</strong> both as a left A-module<br />

<strong>and</strong> as a right A-module.<br />

–138–


(b) The following are equivalent for an A-module M.<br />

(i) The variety <str<strong>on</strong>g>of</str<strong>on</strong>g> M is trivial.<br />

(ii) The projective dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> M is finite.<br />

(iii) The injective dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> M is finite.<br />

There are some papers which deal with <str<strong>on</strong>g>the</str<strong>on</strong>g> finiteness c<strong>on</strong>diti<strong>on</strong> (Fg) as follows.<br />

(1) In [2], Bergh <strong>and</strong> Oppermann show that a codimensi<strong>on</strong> n quantum complete intersecti<strong>on</strong><br />

satisfies (Fg) if <strong>and</strong> <strong>on</strong>ly if all <str<strong>on</strong>g>the</str<strong>on</strong>g> commutators q ij are roots <str<strong>on</strong>g>of</str<strong>on</strong>g> unity.<br />

Definiti<strong>on</strong> 4. Let n be integer with n ≥ 1, a i integer with a i ≥ 2 for 1 ≤ i ≤ n,<br />

<strong>and</strong> q ij a n<strong>on</strong>-zero element in k for every 1 ≤ i < j ≤ n. A codimensi<strong>on</strong> n quantum<br />

complete intersecti<strong>on</strong> is defined by<br />

where I generated by<br />

k〈x 1 , . . . , x n 〉/I<br />

x a i<br />

i , x jx i − q ij x i x j for 1 ≤ i < j ≤ n.<br />

(2) In [5], Erdmann <strong>and</strong> Solberg gave <str<strong>on</strong>g>the</str<strong>on</strong>g> necessary <strong>and</strong> sufficient c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> a<br />

Koszul algebra for it to satisfy (Fg).<br />

Theorem 5 ([5, Theorem 1.3]). Let A be a finite dimensi<strong>on</strong>al Koszul algebra over<br />

an algebraically closed field, <strong>and</strong> let E(A) = Ext ∗ A(A/rad A, A/rad A). A satisfies<br />

(Fg) if <strong>and</strong> <strong>on</strong>ly if Z gr (E(A)) is Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian <strong>and</strong> E(A) is a finitely generated<br />

Z gr (E(A))-module.<br />

(3) In [8], Furuya <strong>and</strong> Snashall provided examples <str<strong>on</strong>g>of</str<strong>on</strong>g> (D, A)-stacked m<strong>on</strong>omial algebras<br />

which are not self-injective but satisfy (Fg).<br />

Example 6. ([8, Example 3.2]) Let Q be <str<strong>on</strong>g>the</str<strong>on</strong>g> quiver<br />

<strong>and</strong> I <str<strong>on</strong>g>the</str<strong>on</strong>g> ideal <str<strong>on</strong>g>of</str<strong>on</strong>g> kQ generated by<br />

α<br />

1 −−−→ 2<br />

↑ ⏐<br />

⏐<br />

δ<br />

⏐<br />

↓β<br />

4 ←−−−<br />

γ<br />

3<br />

αβγδαβ, γδαβγδ.<br />

Then, A = kQ/I is not self-injective but satisfies (Fg).<br />

(4) In [15], Schroll <strong>and</strong> Snashall show that (Fg) hold for <str<strong>on</strong>g>the</str<strong>on</strong>g> principal block <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Heche algebra H q (S 5 ) with q = −1.<br />

–139–


4. Quiver algebras defined by two cycles <strong>and</strong> a quantum-like relati<strong>on</strong><br />

In this secti<strong>on</strong>, we c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> quiver algebras A q = kQ/I q defined by <str<strong>on</strong>g>the</str<strong>on</strong>g> quiver Q as<br />

follows:<br />

α<br />

a<br />

2<br />

3 ←− a2 b 2 · · · · · ·<br />

α 3<br />

↙ ↖ α 1 β 1<br />

.<br />

↗<br />

..<br />

a 4 1 b t−2<br />

. .. ↗ αs β t<br />

↖ ↙ βt−2<br />

β t−1<br />

· · · · · · a s b t ←− bt−1<br />

<strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> ideal I q <str<strong>on</strong>g>of</str<strong>on</strong>g> kQ generated by<br />

X sa , X s Y t − qY t X s , Y tb<br />

for a, b ≥ 2 where we set X:= α 1 + α 2 + · · · + α s <strong>and</strong> Y := β 1 + β 2 + · · · + β t , <strong>and</strong> q is<br />

n<strong>on</strong>-zero element in k. Paths are written from right to left.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> case s = t = 1, A q is called a quantum complete intersecti<strong>on</strong> (cf. [1]). In this<br />

case, when a = b = 2, <str<strong>on</strong>g>the</str<strong>on</strong>g> Hochschild cohomology ring HH ∗ (A q ) <str<strong>on</strong>g>of</str<strong>on</strong>g> A q was described by<br />

Buchweitz, Green, Madsen <strong>and</strong> Solberg [3] for any q ∈ k. Moreover, in <str<strong>on</strong>g>the</str<strong>on</strong>g> case where<br />

s = t = 1, a, b ≥ 2, Bergh <strong>and</strong> Erdmann [1] determined HH ∗ (A q ) if q is not a root <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

unity. And in <str<strong>on</strong>g>the</str<strong>on</strong>g> same case, Bergh <strong>and</strong> Oppermann [2] show that A q satisfies (Fg) if<br />

<strong>and</strong> <strong>on</strong>ly if q is a root <str<strong>on</strong>g>of</str<strong>on</strong>g> unity. In [4], Erdmann, Holloway, Snashall, Solberg <strong>and</strong> Taillefer<br />

describe that if an algebra A satisfies (Fg) <str<strong>on</strong>g>the</str<strong>on</strong>g>n HH ∗ (A) is a finitely generated k-algebra.<br />

Therefore, we c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> case where s ≥ 2 or t ≥ 2.<br />

In this paper, we determine <str<strong>on</strong>g>the</str<strong>on</strong>g> Hochschild cohomology ring <str<strong>on</strong>g>of</str<strong>on</strong>g> A q modulo nilpotence<br />

HH ∗ (A q )/N <strong>and</strong> show that A q satisfies (Fg) if <strong>and</strong> <strong>on</strong>ly if q is a root <str<strong>on</strong>g>of</str<strong>on</strong>g> unity.<br />

In [13] <strong>and</strong> [14], we determined <str<strong>on</strong>g>the</str<strong>on</strong>g> ring structure <str<strong>on</strong>g>of</str<strong>on</strong>g> HH ∗ (A q ) by means <str<strong>on</strong>g>of</str<strong>on</strong>g> generators<br />

<strong>and</strong> Y<strong>on</strong>eda product. By this ring structure <str<strong>on</strong>g>of</str<strong>on</strong>g> HH ∗ (A q ), we have <str<strong>on</strong>g>the</str<strong>on</strong>g> following results.<br />

Theorem 7. In <str<strong>on</strong>g>the</str<strong>on</strong>g> case where q is a root <str<strong>on</strong>g>of</str<strong>on</strong>g> unity, HH ∗ (A q ) is finitely generated as a<br />

k-algebra.<br />

Theorem 8. In <str<strong>on</strong>g>the</str<strong>on</strong>g> case where q is a root <str<strong>on</strong>g>of</str<strong>on</strong>g> unity, HH ∗ (A q )/N is isomorphic to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

polynomial ring <str<strong>on</strong>g>of</str<strong>on</strong>g> two variables. In <str<strong>on</strong>g>the</str<strong>on</strong>g> case s, t ≥ 2, r ≥ 1, we have<br />

⎧<br />

k[W0,0,0, ⎪⎨<br />

2r W2r,0,0] if s, t ≥ 2, ā ≠ 0, ¯b ≠ 0,<br />

HH ∗ (A q )/N ∼ k[W<br />

=<br />

0,0,0, 2r W2,0,0] 2 if s, t ≥ 2, ā = 0, ¯b ≠ 0,<br />

k[W0,0,0, ⎪⎩<br />

2 W2r,0,0] if s, t ≥ 2, ā ≠ 0, ¯b = 0,<br />

k[W0,0,0, 2 W2,0,0] 2 if s, t ≥ 2, ā = ¯b = 0,<br />

where for any integer z, ¯z is <str<strong>on</strong>g>the</str<strong>on</strong>g> remainder when we divide z by r, <strong>and</strong> for n ≥ 1,<br />

t∑<br />

W0,l,l 2n := ′ Xsl Y tl′ e 2n<br />

b(1) + Y j−1 X sl Y t(l′ −1)+t−j+1 e 2n<br />

b(j) for 0 ≤ l ≤ a − 1 <strong>and</strong> 0 ≤ l ′ ≤ b,<br />

W 2n<br />

2n,l,l ′ := Xsl Y tl′ e 2n<br />

a(1) +<br />

j=2<br />

s∑<br />

i=2<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> case where s = 1 or t = 1, we have similar results.<br />

X s(l−1)+i−1 Y tl′ X s−i+1 e 2n<br />

a(i) for 0 ≤ l ≤ a <strong>and</strong> 0 ≤ l ′ ≤ b − 1.<br />

–140–


Theorem 9. In <str<strong>on</strong>g>the</str<strong>on</strong>g> case where q is not a root <str<strong>on</strong>g>of</str<strong>on</strong>g> unity, HH ∗ (A q ) is not a finitely generated<br />

k-algebra.<br />

Theorem 10. In <str<strong>on</strong>g>the</str<strong>on</strong>g> case where q is not a root <str<strong>on</strong>g>of</str<strong>on</strong>g> unity, HH ∗ (A q )/N ∼ = k.<br />

There exists an example <str<strong>on</strong>g>of</str<strong>on</strong>g> our algebra A q which is not self-injective, m<strong>on</strong>omial or Koszul.<br />

Moreover this example <str<strong>on</strong>g>of</str<strong>on</strong>g> A q have no stratifying ideal.<br />

Example 11. In <str<strong>on</strong>g>the</str<strong>on</strong>g> case where s = 2, t = 1 <strong>and</strong> a = b = 2, A q is not self-injective,<br />

m<strong>on</strong>omial or Koszul. Moreover A q have no stratifying ideal.<br />

Therefore A q is new example <str<strong>on</strong>g>of</str<strong>on</strong>g> a class <str<strong>on</strong>g>of</str<strong>on</strong>g> algebras for which <str<strong>on</strong>g>the</str<strong>on</strong>g> Hochschild cohomology<br />

ring modulo nilpotence is finitely generated as a k-algebra.<br />

Next, we give <str<strong>on</strong>g>the</str<strong>on</strong>g> necessary <strong>and</strong> sufficient c<strong>on</strong>diti<strong>on</strong> for A to satisfy (Fg). Now, we<br />

c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> case where q is an r-th root <str<strong>on</strong>g>of</str<strong>on</strong>g> unity for r ≥ 1, s, t ≥ 2 <strong>and</strong> ā, ¯b ≠ 0.<br />

Let ϕ: HH ∗ (A q ) → E(A q ) := ⊕ n≥0 Ext n A q<br />

(A q /rad A q , A q /rad A q ) be a homomorphism<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> graded rings given by ϕ(η) = η ⊗ Aq A q /rad A q . Then it is easy to see that E(A q ) n :=<br />

Ext n A q<br />

(A q /rad A q , A q /rad A q ) ≃ ∐ n<br />

l=0 ken 1 ⊕ ∐ t<br />

j=2 ken b(j) ⊕ ∐ s<br />

i=2 ken a(i)<br />

, <strong>and</strong> that <str<strong>on</strong>g>the</str<strong>on</strong>g> image<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ϕ is precisely <str<strong>on</strong>g>the</str<strong>on</strong>g> graded ring k[x, y] where x := ∑ t<br />

j=1 e2r b(j) <strong>and</strong> y := ∑ s<br />

i=1 e2r a(i)<br />

2r. Then, we have <str<strong>on</strong>g>the</str<strong>on</strong>g> following propositi<strong>on</strong>.<br />

Propositi<strong>on</strong> 12. E(A q ) is a finitely generated left k[x, y]-module.<br />

in degree<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r cases, we have same results as Propositi<strong>on</strong> 12. Then we have <str<strong>on</strong>g>the</str<strong>on</strong>g> following<br />

immediate c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> Propositi<strong>on</strong> 12.<br />

Theorem 13. In <str<strong>on</strong>g>the</str<strong>on</strong>g> case where s ≥ 2 or t ≥ 2, if q is a root <str<strong>on</strong>g>of</str<strong>on</strong>g> unity <str<strong>on</strong>g>the</str<strong>on</strong>g>n A q satisfies<br />

(Fg).<br />

By [2], Theorem 9 <strong>and</strong> 13, we have <str<strong>on</strong>g>the</str<strong>on</strong>g> necessary <strong>and</strong> sufficient c<strong>on</strong>diti<strong>on</strong> for A q to<br />

satisfy (Fg).<br />

Theorem 14. A q satisfies (Fg) if <strong>and</strong> <strong>on</strong>ly if q is a root <str<strong>on</strong>g>of</str<strong>on</strong>g> unity.<br />

Remark 15. By Theorem 2.5 in [4] <strong>and</strong> Theorem 14, in <str<strong>on</strong>g>the</str<strong>on</strong>g> case where q is a root <str<strong>on</strong>g>of</str<strong>on</strong>g> unity,<br />

we have <str<strong>on</strong>g>the</str<strong>on</strong>g> following properties<br />

(1) A q is Gorenstein.<br />

(2) The support variety <str<strong>on</strong>g>of</str<strong>on</strong>g> an A q -module M is trivial if <strong>and</strong> <strong>on</strong>ly if <str<strong>on</strong>g>the</str<strong>on</strong>g> projective<br />

dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> M is finite.<br />

References<br />

[1] P. A. Bergh, K. Erdmann, Homology <strong>and</strong> cohomology <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum complete intersecti<strong>on</strong>s, Algebra<br />

Number <strong>Theory</strong> 2 (2008), 501–522.<br />

[2] P. A. Bergh, S. Oppermann, Cohomology <str<strong>on</strong>g>of</str<strong>on</strong>g> twisted tensor products, J. Algebra 320 (2008), 3327–3338.<br />

[3] R.-O. Buchweitz, E. L. Green, D. Madsen, Ø. Solberg, Finite Hochschild cohomology without finite<br />

global dimensi<strong>on</strong>, Math. Res. Lett. 12 (2005), 805–816.<br />

[4] Erdmann, K., Holloway, M., Snashall, N., Solberg, Ø., R. Taillefer, Support varieties for selfinjective<br />

algebras, K-<strong>Theory</strong> 33 (2004), 67–87.<br />

[5] K. Erdmann, Ø. Solberg, Radical cube zero weakly symmetric algebras <strong>and</strong> support varieties, J. Pure<br />

Appl. Algebra 215 (2011), 185–200.<br />

–141–


[6] L. Evens, The cohomology ring <str<strong>on</strong>g>of</str<strong>on</strong>g> a finite group, Trans. Amer. Math. Soc. 101 (1961), 224–239.<br />

[7] Friedl<strong>and</strong>er, E. M. <strong>and</strong> Suslin, A., Cohomology <str<strong>on</strong>g>of</str<strong>on</strong>g> finite group schemes over a field, Invent. Math. 127<br />

(1997), 209–270.<br />

[8] T. Furuya, N. Snashall, Support varieties for modules over stacked m<strong>on</strong>omial algebras, Preprint<br />

arXiv:math/0903.5170 to appear in Comm. Algebra.<br />

[9] E. L. Green, N. Snashall, Ø. Solberg, The Hochschild cohomology ring <str<strong>on</strong>g>of</str<strong>on</strong>g> a selfinjective algebra <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

finite representati<strong>on</strong> type, Proc. Amer. Math. Soc. 131 (2003), 3387–3393.<br />

[10] E. L. Green, N. Snashall, Ø. Solberg, The Hochschild cohomology ring modulo nilpotence <str<strong>on</strong>g>of</str<strong>on</strong>g> a m<strong>on</strong>omial<br />

algebra, J. Algebra Appl. 5 (2006), 153–192.<br />

[11] D. Happel, Hochschild cohomology <str<strong>on</strong>g>of</str<strong>on</strong>g> finite-dimensi<strong>on</strong>al algebras, Springer Lecture Notes 1404<br />

(1989), 108–126.<br />

[12] S. Koenig, H. Nagase, Hochschild cohomology <strong>and</strong> stratifying ideals, J. Pure Appl. Algebra 213<br />

(2009), 886–891.<br />

[13] D. Obara, Hochschild cohomology <str<strong>on</strong>g>of</str<strong>on</strong>g> quiver algebras defined by two cycles <strong>and</strong> a quantum-like relati<strong>on</strong>,<br />

to appear in Comm. Algebra.<br />

[14] D. Obara, Hochschild cohomology <str<strong>on</strong>g>of</str<strong>on</strong>g> quiver algebras defined by two cycles <strong>and</strong> a quantum-like relati<strong>on</strong><br />

II, to appear in Comm. Algebra.<br />

[15] S. Schroll, N. Snashall, Hochschild cohomology <strong>and</strong> support varieties for tame Hecke algebras,<br />

Preprint arXiv:math./0907.3435 to appear in Quart. J Math..<br />

[16] N. Snashall, Support varieties <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Hochschild cohomology ring modulo nilpotence, In <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 41st <str<strong>on</strong>g>Symposium</str<strong>on</strong>g> <strong>on</strong> <strong>Ring</strong> <strong>Theory</strong> <strong>and</strong> Representati<strong>on</strong> <strong>Theory</strong>, Shizuoka, Japan, Sept. 5–7, 2008;<br />

Fujita, H., Ed.; Symp. <strong>Ring</strong> <strong>Theory</strong> Represent. <strong>Theory</strong> Organ. Comm., Tsukuba, 2009, pp. 68–82.<br />

[17] N. Snashall, Ø. Solberg, Support varieties <strong>and</strong> Hochschild cohomology rings, Proc. L<strong>on</strong>d<strong>on</strong> Math.<br />

Soc. 88 (2004), 705–732.<br />

[18] N. Snashall, R. Taillefer, The Hochschild cohomology ring <str<strong>on</strong>g>of</str<strong>on</strong>g> a class <str<strong>on</strong>g>of</str<strong>on</strong>g> special biserial algebras, J.<br />

Algebra Appl. 9 (2010), 73–122.<br />

[19] Ø. Solberg, Support varieties for modules <strong>and</strong> complexes, Trends in representati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> algebras<br />

<strong>and</strong> related topics, Amer. Math. Soc., pp. 239–270.<br />

[20] B. B. Venkov, Cohomology algebras for some classifying spaces, Dokl. Akad. Nauk SSSR 127 (1959),<br />

943–944.<br />

[21] F. Xu, Hochschild <strong>and</strong> ordinary cohomology rings <str<strong>on</strong>g>of</str<strong>on</strong>g> small categories, Adv. Math. 219 (2008), 1872–<br />

1893.<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics<br />

Tokyo University <str<strong>on</strong>g>of</str<strong>on</strong>g> Science<br />

1-3 Kagurazaka, Sinjuku-ku, Tokyo 162-8601 JAPAN<br />

E-mail address: j1109701@ed.tus.ac.jp<br />

–142–


ALTERNATIVE POLARIZATIONS OF BOREL FIXED IDEALS AND<br />

ELIAHOU-KERVAIRE TYPE RESOLUTION<br />

RYOTA OKAZAKI AND KOHJI YANAGAWA<br />

1. Introducti<strong>on</strong><br />

Let S := k[x 1 , . . . , x n ] be a polynomial ring over a field k. For a m<strong>on</strong>omial ideal<br />

I ⊂ S, G(I) denotes <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> minimal (m<strong>on</strong>omial) generators <str<strong>on</strong>g>of</str<strong>on</strong>g> I. We say a m<strong>on</strong>omial<br />

ideal I ⊂ S is Borel fixed (or str<strong>on</strong>gly stable), if m ∈ G(I), x i |m <strong>and</strong> j < i imply<br />

(x j /x i ) · m ∈ I. Borel fixed ideals are important, since <str<strong>on</strong>g>the</str<strong>on</strong>g>y appear as <str<strong>on</strong>g>the</str<strong>on</strong>g> generic initial<br />

ideals <str<strong>on</strong>g>of</str<strong>on</strong>g> homogeneous ideals (if char(k) = 0).<br />

A squarefree m<strong>on</strong>omial ideal I is said to be squarefree str<strong>on</strong>gly stable, if m ∈ G(I),<br />

x i |m, x j ̸ |m <strong>and</strong> j < i imply (x j /x i ) · m ∈ I. Any m<strong>on</strong>omial m ∈ S with deg(m) = e has<br />

a unique expressi<strong>on</strong><br />

e∏<br />

(1.1) m = x αi with 1 ≤ α 1 ≤ α 2 ≤ · · · ≤ α e ≤ n.<br />

i=1<br />

Now we can c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> squarefree m<strong>on</strong>omial<br />

e∏<br />

m sq =<br />

i=1<br />

x αi +i−1<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> “larger” polynomial ring T = k[x 1 , . . . , x N ] with N ≫ 0. If I ⊂ S is Borel fixed,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>n I sq := ( m sq | m ∈ G(I) ) ⊂ T is squarefree str<strong>on</strong>gly stable. Moreover, for a Borel<br />

fixed ideal I <strong>and</strong> all i, j, we have βi,j(I) S = βi,j(I T sq ). This operati<strong>on</strong> plays a role in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

shifting <str<strong>on</strong>g>the</str<strong>on</strong>g>ory for simplicial complexes (see [1]).<br />

A minimal free resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a Borel fixed ideal I has been c<strong>on</strong>structed by Eliahou<br />

<strong>and</strong> Kervaire [7]. While <str<strong>on</strong>g>the</str<strong>on</strong>g> minimal free resoluti<strong>on</strong> is unique up to isomorphism, its<br />

“descripti<strong>on</strong>” depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> choice <str<strong>on</strong>g>of</str<strong>on</strong>g> a free basis, <strong>and</strong> fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> minimal<br />

free resoluti<strong>on</strong> is still an interesting problem. See, for example, [2, 9, 10, 11, 13]. In this<br />

paper, we will give a new approach which is applicable to both I <strong>and</strong> I sq . Our main tool<br />

is <str<strong>on</strong>g>the</str<strong>on</strong>g> “alternative” polarizati<strong>on</strong> b-pol(I) <str<strong>on</strong>g>of</str<strong>on</strong>g> I.<br />

Let<br />

˜S := k[ x i,j | 1 ≤ i ≤ n, 1 ≤ j ≤ d ]<br />

be <str<strong>on</strong>g>the</str<strong>on</strong>g> polynomial ring, <strong>and</strong> set<br />

Θ := {x i,1 − x i,j | 1 ≤ i ≤ n, 2 ≤ j ≤ d } ⊂ ˜S.<br />

The first author is partially supported by JST, CREST.<br />

The sec<strong>on</strong>d author is partially supported by Grant-in-Aid for Scientific Research (c) (no.22540057).<br />

The detailed versi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper will be submitted for publicati<strong>on</strong> elsewhere.<br />

–143–


Then <str<strong>on</strong>g>the</str<strong>on</strong>g>re is an isomorphism ˜S/(Θ) ∼ = S induced by ˜S ∋ x i,j ↦−→ x i ∈ S. Throughout<br />

this paper, ˜S <strong>and</strong> Θ are used in this meaning.<br />

Assume that m ∈ G(I) has <str<strong>on</strong>g>the</str<strong>on</strong>g> expressi<strong>on</strong> (1.1). If deg(m) (= e) ≤ d, we set<br />

e∏<br />

(1.2) b-pol(m) = x αi ,i ∈ ˜S.<br />

i=1<br />

Note that b-pol(m) is a squarefree m<strong>on</strong>omial. If <str<strong>on</strong>g>the</str<strong>on</strong>g>re is no danger <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>fusi<strong>on</strong>, b-pol(m)<br />

is denoted by ˜m. If m = ∏ n<br />

i=1 xa i<br />

i , <str<strong>on</strong>g>the</str<strong>on</strong>g>n we have<br />

∏<br />

˜m (= b-pol(m)) = x i,j ∈ ˜S,<br />

i∑<br />

where b i := a l .<br />

1≤i≤n<br />

l=1<br />

b i−1 +1≤j≤b i<br />

If deg(m) ≤ d for all m ∈ G(I), we set<br />

b-pol(I) := (b-pol(m) | m ∈ G(I)) ⊂ ˜S.<br />

The sec<strong>on</strong>d author ([16]) showed that if I is Borel fixed, <str<strong>on</strong>g>the</str<strong>on</strong>g>n Ĩ := b-pol(I) is a “polarizati<strong>on</strong>”<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> I, that is, Θ forms an ˜S/Ĩ-regular sequence with <str<strong>on</strong>g>the</str<strong>on</strong>g> natural isomorphism<br />

˜S/(Ĩ + (Θ)) ∼ = S/I.<br />

Note that b-pol(−) does not give a polarizati<strong>on</strong> for a general m<strong>on</strong>omial ideal, <strong>and</strong> is<br />

essentially different from <str<strong>on</strong>g>the</str<strong>on</strong>g> st<strong>and</strong>ard polarizati<strong>on</strong>. Moreover,<br />

Θ ′ = { x i,j − x i+1,j−1 | 1 ≤ i < n, 1 < j ≤ d } ⊂ ˜S<br />

forms an ˜S/Ĩ-regular sequence too, <strong>and</strong> we have ˜S/(Ĩ + (Θ′ )) ∼ = T/I sq through ˜S ∋<br />

x i,j ↦−→ x i+j−1 ∈ T (if we adjust <str<strong>on</strong>g>the</str<strong>on</strong>g> value <str<strong>on</strong>g>of</str<strong>on</strong>g> N = dim T ). The equati<strong>on</strong> βi,j(I) S = βi,j(I T sq )<br />

menti<strong>on</strong>ed above easily follows from this observati<strong>on</strong>.<br />

In this paper, we will c<strong>on</strong>struct a minimal ˜S-free resoluti<strong>on</strong> ˜P • <str<strong>on</strong>g>of</str<strong>on</strong>g> ˜S/Ĩ, which is analogous<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> Eliahou-Kervaire resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> S/I. However, <str<strong>on</strong>g>the</str<strong>on</strong>g>ir descripti<strong>on</strong> can not be lifted to<br />

Ĩ, <strong>and</strong> we need modificati<strong>on</strong>. Clearly, ˜P• ⊗ ˜S<br />

˜S/(Θ) <strong>and</strong> ˜P• ⊗ ˜S<br />

˜S/(Θ ′ ) give <str<strong>on</strong>g>the</str<strong>on</strong>g> minimal<br />

free resoluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> S/I <strong>and</strong> T/I sq respectively.<br />

Under <str<strong>on</strong>g>the</str<strong>on</strong>g> assumpti<strong>on</strong> that a Borel fixed ideal I is generated in <strong>on</strong>e degree (i.e., all<br />

elements <str<strong>on</strong>g>of</str<strong>on</strong>g> G(I) have <str<strong>on</strong>g>the</str<strong>on</strong>g> same degree), Nagel <strong>and</strong> Reiner [13] c<strong>on</strong>structed Ĩ = b-pol(I),<br />

<strong>and</strong> described a minimal ˜S-free resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Ĩ explicitly. Their resoluti<strong>on</strong> is equivalent<br />

to our descripti<strong>on</strong>. In this sense, our results are generalizati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> those in [13].<br />

In [2], Batzies <strong>and</strong> Welker tried to c<strong>on</strong>struct a minimal free resoluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>omial<br />

ideals J using Forman’s discrete Morse <str<strong>on</strong>g>the</str<strong>on</strong>g>ory ([8]). If J is shellable (i.e., has linear<br />

quotients, in <str<strong>on</strong>g>the</str<strong>on</strong>g> sense <str<strong>on</strong>g>of</str<strong>on</strong>g> [9]), <str<strong>on</strong>g>the</str<strong>on</strong>g>ir method works, <strong>and</strong> we have a Batzies-Welker type<br />

minimal free resoluti<strong>on</strong>. However, it is very hard to compute <str<strong>on</strong>g>the</str<strong>on</strong>g>ir resoluti<strong>on</strong> explicitly.<br />

A Borel fixed ideal I <strong>and</strong> its polarizati<strong>on</strong> Ĩ = b-pol(I) is shellable. We will show that<br />

our resoluti<strong>on</strong> ˜P • <str<strong>on</strong>g>of</str<strong>on</strong>g> ˜S/Ĩ <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> induced resoluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> S/I <strong>and</strong> T/Isq are Batzies-Welker<br />

type. In particular, <str<strong>on</strong>g>the</str<strong>on</strong>g>se resoluti<strong>on</strong>s are cellular. As far as <str<strong>on</strong>g>the</str<strong>on</strong>g> authors know, an explicit<br />

descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a Batzies-Welker type resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a general Borel fixed ideal has never<br />

been obtained before. Finally, we show that <str<strong>on</strong>g>the</str<strong>on</strong>g> CW complex supporting ˜P • is regular.<br />

–144–


2. The Eliahou-Kervaire type resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ˜S/ b-pol(I)<br />

Throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> rest <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> paper, I is a Borel fixed m<strong>on</strong>omial ideal with deg m ≤ d<br />

for all m ∈ G(I). For <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> alternative polarizati<strong>on</strong> b-pol(I) <str<strong>on</strong>g>of</str<strong>on</strong>g> I <strong>and</strong><br />

related c<strong>on</strong>cepts, c<strong>on</strong>sult <str<strong>on</strong>g>the</str<strong>on</strong>g> previous secti<strong>on</strong>. For a m<strong>on</strong>omial m = ∏ n<br />

i=1 xa i<br />

i ∈ S, set<br />

µ(m) := min{ i | a i > 0 } <strong>and</strong> ν(m) := max{ i | a i > 0 }. In [7], it is shown that any<br />

m<strong>on</strong>omial m ∈ I has a unique expressi<strong>on</strong> m = m 1 ·m 2 with ν(m 1 ) ≤ µ(m 2 ) <strong>and</strong> m 1 ∈ G(I).<br />

Following [7], we set g(m) := m 1 . For i with i < ν(m), let<br />

b i (m) = (x i /x k ) · m, where k := min{ j | a j > 0, j > i}.<br />

Since I is Borel fixed, m ∈ I implies b i (m) ∈ I.<br />

Definiti<strong>on</strong> 1 ([14, Definiti<strong>on</strong> 2.1]). For a finite subset ˜F = { (i 1 , j 1 ), (i 2 , j 2 ), . . . , (i q , j q ) }<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> N × N <strong>and</strong> a m<strong>on</strong>omial m = ∏ e<br />

i=1 x α i<br />

= ∏ n<br />

i=1 xa i<br />

i ∈ G(I) with 1 ≤ α 1 ≤ α 2 ≤ · · · ≤<br />

α e ≤ n, we say <str<strong>on</strong>g>the</str<strong>on</strong>g> pair ( ˜F , ˜m) is admissible (for b-pol(I)), if <str<strong>on</strong>g>the</str<strong>on</strong>g> following are satisfied:<br />

(a) 1 ≤ i 1 < i 2 < · · · < i q < ν(m),<br />

(b) j r = max{ l | α l ≤ i r } + 1 (equivalently, j r = 1 + ∑ i r<br />

l=1 a l) for all r.<br />

For m ∈ G(I), <str<strong>on</strong>g>the</str<strong>on</strong>g> pair (∅, ˜m) is also admissible.<br />

The following are fundamental properties <str<strong>on</strong>g>of</str<strong>on</strong>g> admissible pairs.<br />

Lemma<br />

∏<br />

2. Let ( ˜F , ˜m) be an admissible pair with ˜F = { (i 1 , j 1 ), . . . , (i q , j q ) } <strong>and</strong> m =<br />

x<br />

a i<br />

i ∈ G(I). Then we have <str<strong>on</strong>g>the</str<strong>on</strong>g> following.<br />

(i) j 1 ≤ j 2 ≤ · · · ≤ j q .<br />

(ii) x k,jr · b-pol(b ir (m)) = x ir,jr · b-pol(m), where k = min{ l | l > i r , a l > 0 }.<br />

For m ∈ G(I) <strong>and</strong> an integer i with 1 ≤ i < ν(m), set m ⟨i⟩ := g(b i (m)) <strong>and</strong> ˜m ⟨i⟩ :=<br />

b-pol(m ⟨i⟩ ). If i ≥ ν(m), we set m ⟨i⟩ := m for <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>venience. In <str<strong>on</strong>g>the</str<strong>on</strong>g> situati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Lemma 2,<br />

˜m ⟨ir ⟩ divides x ir,j r<br />

· ˜m for all 1 ≤ r ≤ q.<br />

For ˜F = { (i 1 , j 1 ), . . . , (i q , j q ) } <strong>and</strong> r with 1 ≤ r ≤ q, set ˜F r := ˜F \ { (i r , j r ) }, <strong>and</strong> for<br />

an admissible pair ( ˜F , ˜m) for b-pol(I),<br />

Lemma 3. Let ( ˜F , ˜m) be as in Lemma 2.<br />

B( ˜F , ˜m) := { r | ( ˜F r , ˜m ⟨ir⟩) is admissible }.<br />

(i) For all r with 1 ≤ r ≤ q, ( ˜F r , ˜m) is admissible.<br />

(ii) We always have q ∈ B( ˜F , ˜m).<br />

(iii) Assume that ( ˜F r , ˜m ⟨ir ⟩) satisfies <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong> (a) <str<strong>on</strong>g>of</str<strong>on</strong>g> Definiti<strong>on</strong> 1. Then r ∈<br />

B( ˜F , ˜m) if <strong>and</strong> <strong>on</strong>ly if ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r j r < j r+1 or r = q.<br />

(iv) For r, s with 1 ≤ r < s ≤ q <strong>and</strong> j r < j s , we have b ir (b is (m)) = b is (b ir (m)) <strong>and</strong><br />

hence (˜m ⟨ir ⟩) ⟨is ⟩ = (˜m ⟨is ⟩) ⟨ir ⟩.<br />

(v) For r, s with 1 ≤ r < s ≤ q <strong>and</strong> j r = j s , we have b ir (m) = b ir (b is (m)) <strong>and</strong> hence<br />

˜m ⟨ir⟩ = (˜m ⟨is⟩) ⟨ir⟩.<br />

Example 4. Let I ⊂ S = k[x 1 , x 2 , x 3 , x 4 ] be <str<strong>on</strong>g>the</str<strong>on</strong>g> smallest Borel fixed ideal c<strong>on</strong>taining<br />

m = (x 1 ) 2 x 3 x 4 . In this case, m ′ ⟨i⟩ = g(b i(m ′ )) for all m ′ ∈ G(I). Hence, we have m ⟨1⟩ =<br />

(x 1 ) 3 x 4 , m ⟨2⟩ = (x 1 ) 2 x 2 x 4 <strong>and</strong> m ⟨3⟩ = (x 1 ) 2 (x 3 ) 2 . The following 3 pairs are all admissible.<br />

–145–


• ( ˜F , ˜m) = ({ (1, 3), (2, 3), (3, 4) }, x 1,1 x 1,2 x 3,3 x 4,4 )<br />

• ( ˜F 2 , ˜m ⟨2⟩ ) = ({ (1, 3), (3, 4) }, x 1,1 x 1,2 x 2,3 x 4,4 )<br />

• ( ˜F 3 , ˜m ⟨3⟩ ) = ({ (1, 3), (2, 3) }, x 1,1 x 1,2 x 3,3 x 3,4 )<br />

(For this ˜F , i r = r holds <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> reader should be careful). However, ( ˜F 1 , ˜m ⟨1⟩ ) =<br />

({ (2, 3), (3, 4) }, x 1,1 x 1,2 x 1,3 x 4,4 ) does not satisfy <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong> (b) <str<strong>on</strong>g>of</str<strong>on</strong>g> Definiti<strong>on</strong> 1. Hence<br />

B( ˜F , ˜m) = {2, 3}.<br />

The diagrams <str<strong>on</strong>g>of</str<strong>on</strong>g> (admissible) pairs are very useful for better underst<strong>and</strong>ing. To draw<br />

a diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> ( ˜F , ˜m), we put a white square in <str<strong>on</strong>g>the</str<strong>on</strong>g> (i, j)-th positi<strong>on</strong> if (i, j) ∈ ˜F <strong>and</strong><br />

a black square <str<strong>on</strong>g>the</str<strong>on</strong>g>re if x i,j divides ˜m. If ˜F is maximal am<strong>on</strong>g ˜F<br />

′<br />

such that ( ˜F ′ , ˜m) is<br />

admissible, <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> ( ˜F , ˜m) forms a “right side down stairs” (see <str<strong>on</strong>g>the</str<strong>on</strong>g> leftmost<br />

<strong>and</strong> rightmost diagrams <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> table below). If ( ˜F , ˜m) is admissible but ˜F is not maximal,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>n some white squares are removed from <str<strong>on</strong>g>the</str<strong>on</strong>g> diagram for <str<strong>on</strong>g>the</str<strong>on</strong>g> maximal case. If <str<strong>on</strong>g>the</str<strong>on</strong>g> pair<br />

is admissible, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a unique black square in each column <strong>and</strong> this is <str<strong>on</strong>g>the</str<strong>on</strong>g> “lowest” <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> squares in <str<strong>on</strong>g>the</str<strong>on</strong>g> column.<br />

If ( ˜F , ˜m) is admissible <strong>and</strong> r ∈ B( ˜F , ˜m), <str<strong>on</strong>g>the</str<strong>on</strong>g>n we can get <str<strong>on</strong>g>the</str<strong>on</strong>g> diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> ( ˜F r , ˜m ⟨ir ⟩) from<br />

that <str<strong>on</strong>g>of</str<strong>on</strong>g> ( ˜F , ˜m) by <str<strong>on</strong>g>the</str<strong>on</strong>g> following procedure.<br />

(i) Remove <str<strong>on</strong>g>the</str<strong>on</strong>g> (sole) black square in <str<strong>on</strong>g>the</str<strong>on</strong>g> j r -th column.<br />

(ii) Replace <str<strong>on</strong>g>the</str<strong>on</strong>g> white square in <str<strong>on</strong>g>the</str<strong>on</strong>g> (i r , j r )-th positi<strong>on</strong> by a black <strong>on</strong>e.<br />

(iii) If m ⟨ir⟩ ≠ b ir (m), erase some squares from <str<strong>on</strong>g>the</str<strong>on</strong>g> lower-right <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> diagram. (This<br />

step does not occur in <str<strong>on</strong>g>the</str<strong>on</strong>g> next table.)<br />

i<br />

1<br />

2<br />

3<br />

4<br />

j<br />

1 2 3 4<br />

i<br />

1<br />

2<br />

3<br />

4<br />

j<br />

1 2 3 4<br />

i<br />

1<br />

2<br />

3<br />

4<br />

j<br />

1 2 3 4<br />

i<br />

1<br />

2<br />

3<br />

4<br />

j<br />

1 2 3 4<br />

( ˜F , ˜m) ( ˜F 1 , ˜m ⟨1⟩ ) ( ˜F 2 , ˜m ⟨2⟩ ) ( ˜F 3 , ˜m ⟨3⟩ )<br />

admissible not admissible admissible admissible<br />

Next let I ′ be <str<strong>on</strong>g>the</str<strong>on</strong>g> smallest Borel fixed ideal c<strong>on</strong>taining m = (x 1 ) 2 x 3 x 4 <strong>and</strong> (x 1 ) 2 x 2 . For<br />

˜F = { (1, 3), (2, 3), (3, 4) }, ( ˜F , ˜m) is admissible again. However ˜m ⟨2⟩ = (x 1 ) 2 x 2 in this<br />

time, <strong>and</strong> ( ˜F 2 , ˜m ⟨2⟩ ) = ({ (1, 3), (3, 4) }, x 1,1 x 1,2 x 2,3 ) is no l<strong>on</strong>ger admissible. In fact, it<br />

does not satisfy (a) <str<strong>on</strong>g>of</str<strong>on</strong>g> Definiti<strong>on</strong> 1. Hence B( ˜F , ˜m) = {3} for b-pol(I ′ ).<br />

For F = {i 1 , . . . , i q } ⊂ N with i 1 < · · · < i q <strong>and</strong> m ∈ G(I), Eliahou-Kervaire call <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

pair (F, m) admissible for I, if i q < ν(m). In this case, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a unique sequence j 1 , . . . , j q<br />

such that ( ˜F , ˜m) is admissible for Ĩ, where ˜F = { (i 1 , j 1 ), . . . , (i q , j q ) }. In this way, <str<strong>on</strong>g>the</str<strong>on</strong>g>re<br />

is a <strong>on</strong>e-to-<strong>on</strong>e corresp<strong>on</strong>dence between <str<strong>on</strong>g>the</str<strong>on</strong>g> admissible pairs for I <strong>and</strong> those <str<strong>on</strong>g>of</str<strong>on</strong>g> Ĩ. As <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

free summ<strong>and</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Eliahou-Kervaire resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> I are indexed by <str<strong>on</strong>g>the</str<strong>on</strong>g> admissible pairs<br />

for I, our resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Ĩ are indexed by <str<strong>on</strong>g>the</str<strong>on</strong>g> admissible pairs for Ĩ.<br />

–146–


We will define a Z n×d -graded chain complex ˜P • <str<strong>on</strong>g>of</str<strong>on</strong>g> free ˜S-modules as follows. First, set<br />

˜P 0 := ˜S. For each q ≥ 1, we set<br />

<strong>and</strong><br />

A q := <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> admissible pairs ( ˜F , ˜m) for b-pol(I) with # ˜F = q,<br />

˜P q :=<br />

where e( ˜F , ˜m) is a basis element with<br />

(<br />

deg e( ˜F<br />

)<br />

, ˜m)<br />

⊕<br />

( ˜F , ˜m)∈A q−1<br />

˜S e( ˜F , ˜m),<br />

⎛<br />

= deg ⎝˜m ×<br />

∏<br />

(i r ,j r )∈ ˜F<br />

x ir,j r<br />

⎞<br />

⎠ ∈ Z n×d .<br />

We define <str<strong>on</strong>g>the</str<strong>on</strong>g> ˜S-homomorphism ∂ : ˜Pq → ˜P q−1 for q ≥ 2 so that e( ˜F , ˜m) with ˜F =<br />

{(i 1 , j 1 ), . . . , (i q , j q )} is sent to<br />

∑<br />

(−1) r · x ir ,j r<br />

· e( ˜F r , ˜m) −<br />

∑<br />

(−1) r · xi r,j r<br />

· ˜m<br />

· e( ˜F r , ˜m ⟨ir ⟩),<br />

1≤r≤q<br />

r∈B( ˜F , ˜m)<br />

<strong>and</strong> ∂ : ˜P 1 → ˜P 0 by e(∅, ˜m) ↦−→ ˜m ∈ ˜S = ˜P 0 . Clearly, ∂ is a Z n×d -graded homomorphism.<br />

Set<br />

∂<br />

˜P • : · · · −→ ˜P<br />

∂ ∂<br />

i −→ · · · −→ ˜P<br />

∂<br />

1 −→ ˜P 0 −→ 0.<br />

Theorem 5 ([14, Theorem 2.6]). The complex ˜P • is a Z n×d -graded minimal ˜S-free resoluti<strong>on</strong><br />

for ˜S/ b-pol(I).<br />

Sketch <str<strong>on</strong>g>of</str<strong>on</strong>g> Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Calculati<strong>on</strong> using Lemma 3 shows that ∂ ◦ ∂(e( ˜F , ˜m)) = 0 for each admissible<br />

pair ( ˜F , ˜m). That is, ˜P • is a chain complex.<br />

Let I = (m 1 , . . . , m t ) with m 1 ≻ · · · ≻ m t , <strong>and</strong> set I r := (m 1 , . . . , m r ). Here ≻ is <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

lexicographic order with x 1 ≻ x 2 ≻ · · · ≻ x n . Then I r are also Borel fixed. The acyclicity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> complex ˜P can be shown inductively by means <str<strong>on</strong>g>of</str<strong>on</strong>g> mapping c<strong>on</strong>es.<br />

□<br />

Remark 6. Herzog <strong>and</strong> Takayama [9] explicitly gave a minimal free resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a m<strong>on</strong>omial<br />

ideal with linear quotients admitting a regular decompositi<strong>on</strong> functi<strong>on</strong>. A Borel fixed<br />

ideal I satisfies this property. However, while Ĩ has linear quotients, <str<strong>on</strong>g>the</str<strong>on</strong>g> decompositi<strong>on</strong><br />

functi<strong>on</strong> can not be regular. Hence <str<strong>on</strong>g>the</str<strong>on</strong>g> method <str<strong>on</strong>g>of</str<strong>on</strong>g> [9] is not applicable to our case.<br />

˜m ⟨ir ⟩<br />

3. Applicati<strong>on</strong>s <strong>and</strong> Remarks<br />

Let I ⊂ S be a Borel fixed ideal, <strong>and</strong> Θ ⊂ ˜S <str<strong>on</strong>g>the</str<strong>on</strong>g> sequence defined in Introducti<strong>on</strong>. As<br />

remarked before, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a <strong>on</strong>e-to-<strong>on</strong>e corresp<strong>on</strong>dence between <str<strong>on</strong>g>the</str<strong>on</strong>g> admissible pairs for Ĩ<br />

<strong>and</strong> those for I, <strong>and</strong> if ( ˜F , ˜m) corresp<strong>on</strong>ds to (F, m) <str<strong>on</strong>g>the</str<strong>on</strong>g>n # ˜F = #F . Hence we have<br />

(3.1) β ˜S<br />

i,j (Ĩ) = βS i,j(I)<br />

for all i, j, where S <strong>and</strong> ˜S are c<strong>on</strong>sidered to be Z-graded. Of course, this equati<strong>on</strong> is clear,<br />

if <strong>on</strong>e knows <str<strong>on</strong>g>the</str<strong>on</strong>g> fact that Ĩ is a polarizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> I ([16, Theorem 3.4]). C<strong>on</strong>versely, we can<br />

show this fact by <str<strong>on</strong>g>the</str<strong>on</strong>g> equati<strong>on</strong> (3.1) <strong>and</strong> [13, Lemma 6.9].<br />

–147–


Corollary 7 ([16, Theorem 3.4]). The ideal Ĩ is a polarizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> I.<br />

The next result also follows from [13, Lemma 6.9].<br />

Corollary 8. ˜P • ⊗ ˜S<br />

˜S/(Θ) is a minimal S-free resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> S/I.<br />

Remark 9. (1) The corresp<strong>on</strong>dence between <str<strong>on</strong>g>the</str<strong>on</strong>g> admissible pairs for I <strong>and</strong> those for Ĩ,<br />

does not give a chain map between <str<strong>on</strong>g>the</str<strong>on</strong>g> Eliahou-Kervaire resoluti<strong>on</strong> <strong>and</strong> our ˜P • ⊗ ˜S<br />

˜S/(Θ).<br />

In this sense, two resoluti<strong>on</strong>s are not <str<strong>on</strong>g>the</str<strong>on</strong>g> same. See Example 21 below.<br />

(2) The lcm lattice <str<strong>on</strong>g>of</str<strong>on</strong>g> I <strong>and</strong> that <str<strong>on</strong>g>of</str<strong>on</strong>g> Ĩ are not isomorphic in general. Recall that <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

lcm-lattice <str<strong>on</strong>g>of</str<strong>on</strong>g> a m<strong>on</strong>omial ideal J is <str<strong>on</strong>g>the</str<strong>on</strong>g> set LCM(J) := { lcm{ m | m ∈ σ } | σ ⊂ G(J) }<br />

with <str<strong>on</strong>g>the</str<strong>on</strong>g> order given by divisibility. Clearly, LCM(J) is a lattice. For <str<strong>on</strong>g>the</str<strong>on</strong>g> Borel fixed ideal<br />

I = (x 2 , xy, xz, y 2 , yz), we have xy ∨ xz = xy ∨ yz = xz ∨ yz = xyz in LCM(I). However,<br />

˜xy ∨ ˜xz = x 1 y 2 z 2 , ˜xy ∨ ỹz = x 1 y 1 y 2 z 2 <strong>and</strong> ˜xz ∨ ỹz = x 1 y 1 z 2 are all distinct in LCM(Ĩ) .<br />

(3) Eliahou <strong>and</strong> Kervaire ([7]) c<strong>on</strong>structed minimal free resoluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> stable m<strong>on</strong>omial<br />

ideals, which form a wider class than Borel fixed ideals. However, b-pol(J) is not a<br />

polarizati<strong>on</strong> for a stable m<strong>on</strong>omial ideal J in general, <strong>and</strong> our c<strong>on</strong>structi<strong>on</strong> does not<br />

work.<br />

Let a = {a 0 , a 1 , a 2 , . . . } be a n<strong>on</strong>-decreasing sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-negative integers with<br />

a 0 = 0, <strong>and</strong> T = k[x 1 , . . . , x N ] a polynomial ring with N ≫ 0. In his paper [12],<br />

Murai defined an operator (−) γ(a) acting <strong>on</strong> m<strong>on</strong>omials <strong>and</strong> m<strong>on</strong>omial ideals <str<strong>on</strong>g>of</str<strong>on</strong>g> S. For a<br />

m<strong>on</strong>omial m ∈ S with <str<strong>on</strong>g>the</str<strong>on</strong>g> expressi<strong>on</strong> m = ∏ e<br />

i=1 x α i<br />

as (1.1), set<br />

e∏<br />

m γ(a) := x αi +a i−1<br />

∈ T,<br />

<strong>and</strong> for a m<strong>on</strong>omial ideal I ⊂ S,<br />

i=1<br />

I γ(a) := (m γ(a) | m ∈ G(I)) ⊂ T.<br />

If a i+1 > a i for all i, <str<strong>on</strong>g>the</str<strong>on</strong>g>n I γ(a) is a squarefree m<strong>on</strong>omial ideal. Particularly in <str<strong>on</strong>g>the</str<strong>on</strong>g> case<br />

a i = i for all i, (−) γ(a) is just (−) sq menti<strong>on</strong>ed in Introducti<strong>on</strong>.<br />

The operator (−) γ(a) also can be described by b-pol(−) as is shown in [16]. Let L a be<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> k-subspace <str<strong>on</strong>g>of</str<strong>on</strong>g> ˜S spanned by {x i,j − x i ′ ,j ′ | i + a j−1 = i ′ + a j ′ −1}, <strong>and</strong> Θ a a basis <str<strong>on</strong>g>of</str<strong>on</strong>g> L a .<br />

For example, we can take {x i,j − x i+1,j−1 | 1 ≤ i < n, 1 < j ≤ d} as Θ a in <str<strong>on</strong>g>the</str<strong>on</strong>g> case a i = i<br />

for all i. With a suitable choice <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> number N, <str<strong>on</strong>g>the</str<strong>on</strong>g> ring homomorphism ˜S → T with<br />

x i,j ↦→ x i+aj−1 induces <str<strong>on</strong>g>the</str<strong>on</strong>g> isomorphism ˜S/(Θ a ) ∼ = T .<br />

Propositi<strong>on</strong> 10 ([16, Propositi<strong>on</strong> 4,1]). With <str<strong>on</strong>g>the</str<strong>on</strong>g> above notati<strong>on</strong>, Θ a forms an ˜S/Ĩregular<br />

sequence, <strong>and</strong> we have ( ˜S/(Θ a )) ⊗ ˜S<br />

( ˜S/Ĩ) ∼ = T/I γ(a) .<br />

Applying Propositi<strong>on</strong> 10 <strong>and</strong> [5, Propositi<strong>on</strong> 1.1.5], we have <str<strong>on</strong>g>the</str<strong>on</strong>g> following.<br />

Corollary 11. The complex ˜P • ⊗ ˜S<br />

˜S/(Θa ) is a minimal T -free resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> T/I γ(a) . In<br />

particular, a minimal free resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> T/I sq is given in this way.<br />

For a Borel fixed ideal I generated in <strong>on</strong>e degree, Nagel <strong>and</strong> Reiner [13] c<strong>on</strong>structed a<br />

CW complex, which supports a minimal free resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Ĩ (or I, Isq ).<br />

–148–


Propositi<strong>on</strong> 12 ([14, Propositi<strong>on</strong> 4.9]). Let I be a Borel fixed ideal generated in <strong>on</strong>e<br />

degree. Then Nagel-Reiner descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a free resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Ĩ coincides with our ˜P • .<br />

We do not give a pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> above propositi<strong>on</strong> here, but just remark that if I is<br />

generated in <strong>on</strong>e degree <str<strong>on</strong>g>the</str<strong>on</strong>g>n m ⟨i⟩ = b i (m) for all m ∈ G(I) <strong>and</strong> ˜P • becomes simpler.<br />

4. Relati<strong>on</strong> to Batzies-Welker <str<strong>on</strong>g>the</str<strong>on</strong>g>ory<br />

In [2], Batzies <strong>and</strong> Welker c<strong>on</strong>nected <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> cellular resoluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>omial<br />

ideals with Forman’s discrete Morse <str<strong>on</strong>g>the</str<strong>on</strong>g>ory ([8]).<br />

Definiti<strong>on</strong> 13. A m<strong>on</strong>omial ideal J is called shellable if <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a total order ❁ <strong>on</strong> G(J)<br />

satisfying <str<strong>on</strong>g>the</str<strong>on</strong>g> following c<strong>on</strong>diti<strong>on</strong>.<br />

(∗) For ( any m, m ′ ) ∈ G(J) with m ❂ m ′ , <str<strong>on</strong>g>the</str<strong>on</strong>g>re is an m ′′ ∈ G(J) such that m ⊒ m ′′ ,<br />

deg lcm(m,m ′′ )<br />

= 1 <strong>and</strong> lcm(m, m ′′ ) divides lcm(m, m ′ ).<br />

m<br />

For a Borel fixed ideal I, let ❁ be <str<strong>on</strong>g>the</str<strong>on</strong>g> total order <strong>on</strong> G(Ĩ) = { ˜m | m ∈ G(I) } such that<br />

˜m ′ ❁ ˜m if <strong>and</strong> <strong>on</strong>ly if m ′ ≻ m in <str<strong>on</strong>g>the</str<strong>on</strong>g> lexicographic order <strong>on</strong> S with x 1 ≻ x 2 ≻ · · · ≻ x n .<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> rest <str<strong>on</strong>g>of</str<strong>on</strong>g> this secti<strong>on</strong>, ❁ means this order.<br />

Lemma 14. The order ❁ makes Ĩ shellable.<br />

The following c<strong>on</strong>structi<strong>on</strong> is taken from [2, Theorems 3.2 <strong>and</strong> 4.3]. For <str<strong>on</strong>g>the</str<strong>on</strong>g> background<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir <str<strong>on</strong>g>the</str<strong>on</strong>g>ory, <str<strong>on</strong>g>the</str<strong>on</strong>g> reader is recommended to c<strong>on</strong>sult <str<strong>on</strong>g>the</str<strong>on</strong>g> original paper.<br />

For ∅ ̸= σ ⊂ G(Ĩ), let ˜m σ denote <str<strong>on</strong>g>the</str<strong>on</strong>g> largest element <str<strong>on</strong>g>of</str<strong>on</strong>g> σ with respect to <str<strong>on</strong>g>the</str<strong>on</strong>g> order ❁,<br />

<strong>and</strong> set lcm(σ) := lcm{ ˜m | ˜m ∈ σ }.<br />

Definiti<strong>on</strong> 15. We define a total order ≺ σ <strong>on</strong> G(Ĩ) as follows. Set<br />

N σ := { (˜m σ ) ⟨i⟩ | 1 ≤ i < ν(m σ ), (˜m σ ) ⟨i⟩ divides lcm(σ) }.<br />

For all ˜m ∈ N σ <strong>and</strong> ˜m ′ ∈ G(Ĩ) \ N σ, define ˜m ≺ σ ˜m ′ . The restricti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ≺ σ to N σ is set to<br />

be ❁, <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> same is true for <str<strong>on</strong>g>the</str<strong>on</strong>g> restricti<strong>on</strong> to G(Ĩ) \ N σ.<br />

Let X be <str<strong>on</strong>g>the</str<strong>on</strong>g> (#G(Ĩ) − 1)-simplex associated with 2G(Ĩ) (more precisely, 2 G(Ĩ) \ {∅}).<br />

Hence we freely identify σ ⊂ G(Ĩ) with <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding cell <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> simplex X. Let<br />

G X be <str<strong>on</strong>g>the</str<strong>on</strong>g> directed graph defined as follows. The vertex set <str<strong>on</strong>g>of</str<strong>on</strong>g> G X is 2 G(Ĩ) \ {∅}. For<br />

∅ ̸= σ, σ ′ ⊂ G(Ĩ), <str<strong>on</strong>g>the</str<strong>on</strong>g>re is an arrow σ → σ′ if <strong>and</strong> <strong>on</strong>ly if σ ⊃ σ ′ <strong>and</strong> #σ = #σ ′ + 1. For<br />

σ = { ˜m 1 , ˜m 2 , . . . , ˜m k } with ˜m 1 ≺ σ ˜m 2 ≺ σ · · · ≺ σ ˜m k (= ˜m σ ) <strong>and</strong> l ∈ N with 1 ≤ l < k, set<br />

σ l := { ˜m k−l , ˜m k−l+1 , . . . , ˜m k } <strong>and</strong><br />

u(σ) := sup{ l | ∃˜m ∈ G(Ĩ) s.t. ˜m ≺ σ ˜m k−l <strong>and</strong> ˜m| lcm(σ l ) }.<br />

If u := u(σ) ≠ −∞, we can define ñ σ := min ≺σ { ˜m | ˜m divides lcm(σ u ) }. Let E X be <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

set <str<strong>on</strong>g>of</str<strong>on</strong>g> edges <str<strong>on</strong>g>of</str<strong>on</strong>g> G X . We define a subset A <str<strong>on</strong>g>of</str<strong>on</strong>g> E X by<br />

A := { σ ∪ {ñ σ } → σ | u(σ) ≠ −∞, ñ σ ∉ σ }.<br />

It is easy to see that A is a matching, that is, every σ occurs in at most <strong>on</strong>e edges <str<strong>on</strong>g>of</str<strong>on</strong>g> A.<br />

We say ∅ ̸= σ ⊂ G(Ĩ) is critical, if it does not occurs in any edge <str<strong>on</strong>g>of</str<strong>on</strong>g> A.<br />

–149–


We have <str<strong>on</strong>g>the</str<strong>on</strong>g> directed graph G A X with <str<strong>on</strong>g>the</str<strong>on</strong>g> vertex set 2G(Ĩ) \ {∅} (i.e., same as G X ) <strong>and</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> edges (E X \ A) ∪ { σ → τ | (τ → σ) ∈ A }. By <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> [2, Theorem 3.2], we<br />

see that <str<strong>on</strong>g>the</str<strong>on</strong>g> matching A is acyclic, that is, G A X has no directed cycle. A directed path in<br />

G A X is called a gradient path.<br />

Forman’s discrete Morse <str<strong>on</strong>g>the</str<strong>on</strong>g>ory [8] guarantees <str<strong>on</strong>g>the</str<strong>on</strong>g> existence <str<strong>on</strong>g>of</str<strong>on</strong>g> a CW complex X A with<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> following c<strong>on</strong>diti<strong>on</strong>s.<br />

• There is a <strong>on</strong>e-to-<strong>on</strong>e corresp<strong>on</strong>dence between <str<strong>on</strong>g>the</str<strong>on</strong>g> i-cells <str<strong>on</strong>g>of</str<strong>on</strong>g> X A <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> critical<br />

i-cells <str<strong>on</strong>g>of</str<strong>on</strong>g> X (equivalently, <str<strong>on</strong>g>the</str<strong>on</strong>g> critical subsets <str<strong>on</strong>g>of</str<strong>on</strong>g> G(Ĩ) c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> i + 1 elements).<br />

• X A is c<strong>on</strong>tractible, that is, homotopy equivalent to X.<br />

The cell <str<strong>on</strong>g>of</str<strong>on</strong>g> X A corresp<strong>on</strong>ding to a critical cell σ <str<strong>on</strong>g>of</str<strong>on</strong>g> X is denoted by σ A . By [2, Propositi<strong>on</strong><br />

7.3], <str<strong>on</strong>g>the</str<strong>on</strong>g> closure <str<strong>on</strong>g>of</str<strong>on</strong>g> σ A c<strong>on</strong>tains τ A if <strong>and</strong> <strong>on</strong>ly if <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a gradient path from σ to τ.<br />

See also Propositi<strong>on</strong> 18 below <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> argument before it.<br />

Assume that ∅ ̸= σ ⊂ G(Ĩ) is critical. Recall that ˜m σ denotes <str<strong>on</strong>g>the</str<strong>on</strong>g> largest element <str<strong>on</strong>g>of</str<strong>on</strong>g> σ<br />

with respect to ❁. Take m σ = ∏ n<br />

l=1 xa l<br />

l<br />

∈ G(I) with ˜m σ = b-pol(m σ ), <strong>and</strong> set q := #σ −1.<br />

Then <str<strong>on</strong>g>the</str<strong>on</strong>g>re are integers i 1 , . . . , i q with 1 ≤ i 1 < . . . < i q < ν(m σ ) <strong>and</strong><br />

(4.1) σ = { (˜m σ ) ⟨ir ⟩ | 1 ≤ r ≤ q } ∪ {˜m σ }<br />

(see <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> [2, Propositi<strong>on</strong> 4.3]). Equivalently, we have σ = N σ ∪ {˜m σ }. Set<br />

j r := 1 + ∑ i r<br />

l=1 a l for each 1 ≤ r ≤ q, <strong>and</strong> ˜F σ := { (i 1 , j 1 ), . . . , (i q , j q ) }. Then ( ˜F σ , ˜m σ )<br />

is an admissible pair for Ĩ. C<strong>on</strong>versely, any admissible pair comes from a critical cell<br />

σ ⊂ G(Ĩ) in this way. Hence <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a <strong>on</strong>e-to-<strong>on</strong>e corresp<strong>on</strong>dence between critical cells<br />

<strong>and</strong> admissible pairs.<br />

Let XA i denote <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> all <str<strong>on</strong>g>the</str<strong>on</strong>g> critical subset σ ⊂ G(Ĩ) with #σ = i + 1, <strong>and</strong> for (not<br />

necessarily critical) subsets σ, τ <str<strong>on</strong>g>of</str<strong>on</strong>g> G(Ĩ), let P σ,τ denote <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> all <str<strong>on</strong>g>the</str<strong>on</strong>g> gradient paths<br />

from σ to τ. For σ ∈ X q A<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> form (4.1), e(σ) denotes a basis element with degree<br />

deg(lcm(σ)) ∈ Z n×d . Set<br />

˜Q q = ⊕ ˜S e(σ) (q ≥ 0).<br />

σ∈X q A<br />

The differential map ˜Q q → ˜Q q−1 sends e(σ) to<br />

q∑<br />

(−1) r x ir ,j r<br />

· e(σ \ {(˜m σ ) ⟨ir ⟩}) − (−1) q<br />

(4.2)<br />

r=1<br />

∑<br />

τ∈X q−1<br />

A<br />

P∈P σ\{˜m σ},τ<br />

m(P) · lcm(σ)<br />

lcm(τ) · e(τ),<br />

where m(P) = ±1 is <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>e defined in [2, p.166].<br />

The following is a direct c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> [2, Theorem 4.3] (<strong>and</strong> [2, Remark 4.4]).<br />

Propositi<strong>on</strong> 16 (Batzies-Welker, [2]). ˜Q• is a minimal free resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Ĩ, <strong>and</strong> has a<br />

cellular structure supported by X A .<br />

Theorem 17 ([14, Theorem 5.11]). Our descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ˜P • (more precisely, <str<strong>on</strong>g>the</str<strong>on</strong>g> truncati<strong>on</strong><br />

˜P ≥1 ) coincides with <str<strong>on</strong>g>the</str<strong>on</strong>g> Batzies-Welker resoluti<strong>on</strong> ˜Q • . That is, ˜P • is a cellular resoluti<strong>on</strong><br />

supported by a CW complex X A , which is obtained by discrete Morse <str<strong>on</strong>g>the</str<strong>on</strong>g>ory.<br />

First, note that <str<strong>on</strong>g>the</str<strong>on</strong>g> following hold.<br />

–150–


(1) If σ is critical, so is σ \ { (˜m σ ) ⟨ir ⟩ } for 1 ≤ r ≤ q.<br />

(2) Let σ <strong>and</strong> τ be (not necessarily critical) cells with P σ,τ ≠ ∅. Then lcm(τ) divides<br />

lcm(σ).<br />

(3) Let σ ∈ X q A , τ ∈ Xq−1 A<br />

<strong>and</strong> assume that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a gradient path σ → σ \ {˜m} =<br />

σ 0 → σ 1 → · · · → σ l = τ. Then #σ l−1 = #τ + 1 = q + 1, #σ i = q or q + 1 for<br />

each i, <strong>and</strong> σ i is not critical for all 0 ≤ i < l. Hence, if l > 1, <str<strong>on</strong>g>the</str<strong>on</strong>g>n ˜m must be ˜m σ .<br />

Next, we will show <str<strong>on</strong>g>the</str<strong>on</strong>g> following.<br />

Propositi<strong>on</strong> 18. Let σ, τ be critical cells with #σ = #τ + 1, <strong>and</strong> ( ˜F σ , ˜m σ ) <strong>and</strong> ( ˜F τ , ˜m τ )<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> admissible pairs corresp<strong>on</strong>ding to σ <strong>and</strong> τ respectively. Set ˜F σ = { (i 1 , j 1 ), . . . , (i q , j q ) }<br />

with i 1 < · · · < i q . Then P σ\{ ˜mσ},τ ≠ ∅ if <strong>and</strong> <strong>on</strong>ly if <str<strong>on</strong>g>the</str<strong>on</strong>g>re is some r ∈ B( ˜F σ , ˜m σ ) with<br />

( ˜F τ , ˜m τ ) = (( ˜F σ ) r , (˜m σ ) ⟨ir ⟩). If this is <str<strong>on</strong>g>the</str<strong>on</strong>g> case, we have #P σ\{ ˜mσ },τ = 1.<br />

Sketch <str<strong>on</strong>g>of</str<strong>on</strong>g> Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Only if part follows from <str<strong>on</strong>g>the</str<strong>on</strong>g> above remark. Note that <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d index<br />

j <str<strong>on</strong>g>of</str<strong>on</strong>g> each x i,j ∈ ˜S restricts <str<strong>on</strong>g>the</str<strong>on</strong>g> choice <str<strong>on</strong>g>of</str<strong>on</strong>g> paths <strong>and</strong> it makes <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> easier.<br />

Next, assuming ˜F τ = ( ˜F σ ) r <strong>and</strong> ˜m τ = (˜m σ ) ⟨ir ⟩ for some r ∈ B( ˜F σ , ˜m σ ), we will c<strong>on</strong>struct<br />

a gradient path from σ \ {˜m σ } to τ. For short notati<strong>on</strong>, set ˜m [s] := (˜m σ ) ⟨is ⟩ <strong>and</strong> ˜m [s,t] :=<br />

((˜m σ ) ⟨is⟩) ⟨it⟩. By (4.1), we have σ 0 := (σ \ {˜m σ }) = { ˜m [s] | 1 ≤ s ≤ q } <strong>and</strong> τ =<br />

{ ˜m [r,s] | 1 ≤ s ≤ q, s ≠ r } ∪ {˜m [r] }. We can inductively c<strong>on</strong>struct a gradient path<br />

σ 0 → σ 1 → · · · → σ t → · · · σ 2(q−r+1)r−2 as follows. Write t = 2pr + λ with t ≠ 0,<br />

0 ≤ p ≤ q − r, <strong>and</strong> 0 ≤ λ < 2r. For 0 < t ≤ 2(q − r), we set<br />

⎧<br />

⎪⎨ σ t−1 ∪ { ˜m [q−p,s] } if λ = 2s − 1 for some 1 ≤ s ≤ r;<br />

σ t = σ t−1 \ { ˜m [q−p+1,s] } if λ = 2s for some 0 < s < r;<br />

⎪⎩<br />

σ t \ { ˜m [q−p+1] } if λ = 0,<br />

where we set ˜m [q+1,s] = ˜m [s] for all s. In <str<strong>on</strong>g>the</str<strong>on</strong>g> case ˜m [s,t] = ˜m [s+1,t] , it seems to cause a<br />

problem, but skipping <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding part <str<strong>on</strong>g>of</str<strong>on</strong>g> path, we can avoid <str<strong>on</strong>g>the</str<strong>on</strong>g> problem. Since<br />

r ∈ B( ˜F σ , ˜m σ ), we have ˜m [s,r] = ˜m [r,s] for all s > r by Lemma 3 (iv). Hence<br />

σ 2(q−r) = { ˜m [r+1,s] | 1 ≤ s < r } ∪ { ˜m [r] } ∪ { ˜m [r,s] | r < s ≤ q }.<br />

Now for s with 0 < s ≤ r − 1, set σ t with 2(q − r)r < t ≤ 2(q − r + 1)r − 2 to be<br />

σ t−1 ∪ { ˜m [r,s] } if s is odd <strong>and</strong> o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise σ t−1 \ { ˜m [r+1,s] }. Then we have σ 2(q−r+1)r−2 = τ,<br />

<strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> gradient path σ ❀ τ.<br />

The uniqueness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> path follows from elementally (but lengthy) argument. □<br />

Sketch <str<strong>on</strong>g>of</str<strong>on</strong>g> Pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 17. Recall that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>e-to-<strong>on</strong>e corresp<strong>on</strong>dence between<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> critical cells σ ⊂ G(Ĩ) <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> admissible pairs ( ˜F σ , ˜m σ ). Hence, for each q, we<br />

have <str<strong>on</strong>g>the</str<strong>on</strong>g> isomorphism ˜Q q → ˜P q induced by e(σ) ↦−→ e( ˜F σ , ˜m σ ).<br />

By Propositi<strong>on</strong> 18, if we forget “coefficients”, <str<strong>on</strong>g>the</str<strong>on</strong>g> differential map <str<strong>on</strong>g>of</str<strong>on</strong>g> ˜Q • <strong>and</strong> that <str<strong>on</strong>g>of</str<strong>on</strong>g> ˜P •<br />

are compatible with <str<strong>on</strong>g>the</str<strong>on</strong>g> maps e(σ) ↦−→ e( ˜F σ , ˜m σ ). So it is enough to check <str<strong>on</strong>g>the</str<strong>on</strong>g> equality<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> coefficients. But it follows from direct computati<strong>on</strong>.<br />

□<br />

Corollary 19 ([14, Corollary 5.12]). The free resoluti<strong>on</strong> ˜P • ⊗ ˜S<br />

˜S/(Θ) (resp. ˜P• ⊗ ˜S<br />

˜S/(Θa ))<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> S/I (resp. T/I γ(a) ) is also a cellular resoluti<strong>on</strong> supported by X A . In particular, <str<strong>on</strong>g>the</str<strong>on</strong>g>se<br />

resoluti<strong>on</strong>s are Batzies-Welker type.<br />

–151–


We say a CW complex is regular, if for all i <str<strong>on</strong>g>the</str<strong>on</strong>g> closure σ <str<strong>on</strong>g>of</str<strong>on</strong>g> any i-cell σ is homeomorphic<br />

to an i-dimensi<strong>on</strong>al closed ball, <strong>and</strong> σ \ σ is <str<strong>on</strong>g>the</str<strong>on</strong>g> closure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> uni<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> some (i − 1)-cells.<br />

This is a natural c<strong>on</strong>diti<strong>on</strong> especially in combinatorics.<br />

Mermin [11] (see also Clark [6]) showed that <str<strong>on</strong>g>the</str<strong>on</strong>g> Eliahou-Kervaire resoluti<strong>on</strong> is cellular<br />

<strong>and</strong> supported by a regular CW complex. Hence it is a natural questi<strong>on</strong> whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>the</str<strong>on</strong>g> CW<br />

complex X A supporting our ˜P • is regular. (Since <str<strong>on</strong>g>the</str<strong>on</strong>g> discrete Morse <str<strong>on</strong>g>the</str<strong>on</strong>g>ory is an “existence<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>orem” <strong>and</strong> X A might not be unique, <str<strong>on</strong>g>the</str<strong>on</strong>g> correct statement is “can be regular”. This is<br />

a n<strong>on</strong>-trivial point, but here we do not show how to avoid it).<br />

Theorem 20 ([15]). The CW complex X A <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 17 is regular. In particular, our<br />

resoluti<strong>on</strong> ˜P • is supported by a regular CW complex.<br />

Sketch <str<strong>on</strong>g>of</str<strong>on</strong>g> Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. We basically follow Clark [6], which proves <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding statement<br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> Eliahou-Kervaire resoluti<strong>on</strong>.<br />

We define a finite poset P A as follows:<br />

(i) As <str<strong>on</strong>g>the</str<strong>on</strong>g> underlying set, P A = (<str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> cells <str<strong>on</strong>g>of</str<strong>on</strong>g> X A ) ∪ {ˆ0}. Here ˆ0 is <str<strong>on</strong>g>the</str<strong>on</strong>g> least<br />

element.<br />

(ii) For cells σ <strong>and</strong> τ <str<strong>on</strong>g>of</str<strong>on</strong>g> X A , σ ⪰ τ in P A if <strong>and</strong> <strong>on</strong>ly if <str<strong>on</strong>g>the</str<strong>on</strong>g> closure <str<strong>on</strong>g>of</str<strong>on</strong>g> σ c<strong>on</strong>tains τ.<br />

It suffices to show that P A is a CW poset in <str<strong>on</strong>g>the</str<strong>on</strong>g> sense <str<strong>on</strong>g>of</str<strong>on</strong>g> [4], <strong>and</strong> we can use [4,<br />

Propositi<strong>on</strong> 5.5]. By <str<strong>on</strong>g>the</str<strong>on</strong>g> behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> differential map <str<strong>on</strong>g>of</str<strong>on</strong>g> ˜P • , we can check that P A<br />

satisfies <str<strong>on</strong>g>the</str<strong>on</strong>g> following c<strong>on</strong>diti<strong>on</strong>.<br />

• For σ, τ ∈ P A with σ ≻ τ <strong>and</strong> rank(σ) = rank(τ) + 2, <str<strong>on</strong>g>the</str<strong>on</strong>g>re are exactly two<br />

elements between σ <strong>and</strong> τ.<br />

Now it remains to show that <str<strong>on</strong>g>the</str<strong>on</strong>g> interval [ ˆ0, σ ] is shellable for all σ, but we can imitate<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> argument <str<strong>on</strong>g>of</str<strong>on</strong>g> Clark [6]. In fact, [ ˆ0, σ ] is EL shellable in <str<strong>on</strong>g>the</str<strong>on</strong>g> sense <str<strong>on</strong>g>of</str<strong>on</strong>g> [3]. □<br />

Example 21.<br />

xz 2 x 2<br />

xyw<br />

xzw<br />

xzw<br />

x 2<br />

xyz<br />

xy 2<br />

xy 2<br />

xz 2<br />

xyw<br />

Figure 1<br />

xyz<br />

Figure 2<br />

C<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> Borel fixed ideal I = (x 2 , xy 2 , xyz, xyw, xz 2 , xzw). Then b-pol(I) =<br />

(x 1 x 2 , x 1 y 2 y 3 , x 1 y 2 z 3 , x 1 y 2 w 3 , x 1 z 2 z 3 , x 1 z 3 w 3 ), <strong>and</strong> easy computati<strong>on</strong> shows that <str<strong>on</strong>g>the</str<strong>on</strong>g> CW<br />

complex X A , which supports our resoluti<strong>on</strong>s ˜P • <str<strong>on</strong>g>of</str<strong>on</strong>g> ˜S/Ĩ <strong>and</strong> ˜P • ⊗ ˜S<br />

˜S/(Θ) <str<strong>on</strong>g>of</str<strong>on</strong>g> S/I, is <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<strong>on</strong>e illustrated in Figure 1.<br />

–152–


The complex c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> a square pyramid <strong>and</strong> a tetrahedr<strong>on</strong> glued al<strong>on</strong>g trig<strong>on</strong>al faces<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> each. For a Borel fixed ideal generated in <strong>on</strong>e degree, any face <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Nagel-Reiner CW<br />

complex is a product <str<strong>on</strong>g>of</str<strong>on</strong>g> several simplices. Hence a square pyramid can not appear in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

case <str<strong>on</strong>g>of</str<strong>on</strong>g> Nagel <strong>and</strong> Reiner.<br />

We remark that <str<strong>on</strong>g>the</str<strong>on</strong>g> Eliahou-Kervaire resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> I is supported by <str<strong>on</strong>g>the</str<strong>on</strong>g> CW complex<br />

illustrated in Figure 2. This complex c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> two tetrahedr<strong>on</strong>s glued al<strong>on</strong>g edges <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

each. These figures show visually that <str<strong>on</strong>g>the</str<strong>on</strong>g> descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Eliahou-Kervaire resoluti<strong>on</strong><br />

<strong>and</strong> that <str<strong>on</strong>g>of</str<strong>on</strong>g> ours are really different.<br />

References<br />

[1] A. Aramova, J. Herzog <strong>and</strong> T. Hibi, Shifting operati<strong>on</strong>s <strong>and</strong> graded Betti numbers, J. Alg. Combin.<br />

12 (2000) 207–222.<br />

[2] E. Batzies <strong>and</strong> V. Welker, Discrete Morse <str<strong>on</strong>g>the</str<strong>on</strong>g>ory for cellular resoluti<strong>on</strong>s, J. Reine Angew. Math. 543<br />

(2002), 147–168.<br />

[3] A. Björner, Shellable <strong>and</strong> Cohen-Macaulay partially ordered sets, Trans. Amer. Math. Soc. 260<br />

(1980) 159–183.<br />

[4] A. Björner, Posets, regular CW complexes <strong>and</strong> Bruhat order, European J. Combin. 5 (1984), 7–16.<br />

[5] W. Bruns <strong>and</strong> J. Herzog, Cohen-Macaulay rings, revised editi<strong>on</strong>, Cambridge, 1996.<br />

[6] T.B.P. Clark, A minimal poset resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> stable ideals, preprint (arXiv:0812.0594).<br />

[7] S. Eliahou <strong>and</strong> M. Kervaire, Minimal resoluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> some m<strong>on</strong>omial ideals, J. Algebra 129 (1990),<br />

1–25.<br />

[8] R. Forman, Morse <str<strong>on</strong>g>the</str<strong>on</strong>g>ory for cell complexes, Adv. in Math., 134 (1998), 90–145.<br />

[9] J. Herzog <strong>and</strong> Y. Takayama, Resoluti<strong>on</strong>s by mapping c<strong>on</strong>es, Homology Homotopy Appl. 4 (2002),<br />

277–294.<br />

[10] M. Jöllenbeck <strong>and</strong> V. Welker, Minimal resoluti<strong>on</strong>s via algebraic discrete Morse <str<strong>on</strong>g>the</str<strong>on</strong>g>ory, Mem. Amer.<br />

Math. Soc. 197 (2009).<br />

[11] J. Mermin, The Eliahou-Kervaire resoluti<strong>on</strong> is cellular. J. Commut. Algebra 2 (2010), 55–78.<br />

[12] S. Murai, Generic initial ideals <strong>and</strong> squeezed spheres, Adv. Math. 214 (2007) 701–729.<br />

[13] U. Nagel <strong>and</strong> V. Reiner, Betti numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>omial ideals <strong>and</strong> shifted skew shapes, Electr<strong>on</strong>. J.<br />

Combin. 16 (2) (2009).<br />

[14] R. Okazaki <strong>and</strong> K. Yanagawa, Alternative polarizati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Borel fixed ideals, Eliahou-kervaire type<br />

<strong>and</strong> discrete Morse <str<strong>on</strong>g>the</str<strong>on</strong>g>ory, preprint (arXiv:1111.6258).<br />

[15] R. Okazaki <strong>and</strong> K. Yanagawa, in preparati<strong>on</strong>.<br />

[16] K. Yanagawa, Alternative polarizati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Borel fixed ideals, to appear in Nagoya. Math. J.<br />

(arXiv:1011.4662).<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Pure <strong>and</strong> Applied Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics,<br />

Graduate School <str<strong>on</strong>g>of</str<strong>on</strong>g> Informati<strong>on</strong> Science <strong>and</strong> Technology,<br />

Osaka University,<br />

Toy<strong>on</strong>aka, Osaka 560-0043, Japan<br />

E-mail address: r-okazaki@cr.math.osaka-u.ac.jp<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics,<br />

Kansai University,<br />

Suita 564-8680, Japan<br />

E-mail address: yanagawa@ipcku.kansai-u.ac.jp<br />

–153–


SHARP BOUNDS FOR HILBERT COEFFICIENTS OF PARAMETERS<br />

KAZUHO OZEKI<br />

Abstract. Let A be a Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian local ring with d = dim A > 0. This paper shows<br />

that <str<strong>on</strong>g>the</str<strong>on</strong>g> Hilbert coefficients {e i Q (A)} 1≤i≤d <str<strong>on</strong>g>of</str<strong>on</strong>g> parameter ideals Q have uniform bounds if<br />

<strong>and</strong> <strong>on</strong>ly if A is a generalized Cohen-Macaulay ring. The uniform bounds are huge; <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

sharp bound for e 2 Q (A) in <str<strong>on</strong>g>the</str<strong>on</strong>g> case where A is a generalized Cohen-Macaulay ring with<br />

dim A ≥ 3 is given.<br />

Key Words: commutative algebra, generalized Cohen-Macaulay local ring, Hilbert<br />

coefficient, Castelnuovo-Mumford regularity.<br />

2000 Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics Subject Classificati<strong>on</strong>: Primary 13D40; Sec<strong>on</strong>dary 13H10<br />

1. Introducti<strong>on</strong><br />

This is based <strong>on</strong> [5] a joint work with Shiro Goto.<br />

The purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper is to study <str<strong>on</strong>g>the</str<strong>on</strong>g> problem <str<strong>on</strong>g>of</str<strong>on</strong>g> when <str<strong>on</strong>g>the</str<strong>on</strong>g> Hilbert coefficients <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

parameter ideals in a Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian local ring have uniform bounds, <strong>and</strong> when this is <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

case, to ask for <str<strong>on</strong>g>the</str<strong>on</strong>g>ir sharp bounds.<br />

To state <str<strong>on</strong>g>the</str<strong>on</strong>g> problem <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> results also, let us fix some notati<strong>on</strong>. In what follows,<br />

let A be a commutative Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian local ring with maximal ideal m <strong>and</strong> d = dim A > 0<br />

denotes <str<strong>on</strong>g>the</str<strong>on</strong>g> Krull dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> A. For simplicity, we assume that <str<strong>on</strong>g>the</str<strong>on</strong>g> residue class field<br />

A/m <str<strong>on</strong>g>of</str<strong>on</strong>g> A is infinite. Let l A (M) denote, for an A-module M, <str<strong>on</strong>g>the</str<strong>on</strong>g> length <str<strong>on</strong>g>of</str<strong>on</strong>g> M. Then for<br />

each m-primary ideal I in A, we have integers {e i I (A)} 0≤i≤d such that <str<strong>on</strong>g>the</str<strong>on</strong>g> equality<br />

( ) ( )<br />

n + d<br />

n + d − 1<br />

l A (A/I n+1 ) = e 0 I(A) − e 1<br />

d<br />

I(A)<br />

+ · · · + (−1) d e d<br />

d − 1<br />

I(A)<br />

holds true for all n ≫ 0, which we call <str<strong>on</strong>g>the</str<strong>on</strong>g> Hilbert coefficients <str<strong>on</strong>g>of</str<strong>on</strong>g> A with respect to I.<br />

With this notati<strong>on</strong> our first purpose is to study <str<strong>on</strong>g>the</str<strong>on</strong>g> problem <str<strong>on</strong>g>of</str<strong>on</strong>g> when <str<strong>on</strong>g>the</str<strong>on</strong>g> sets<br />

Λ i (A) = {e i Q(A) | Q is a parameter ideal in A}<br />

are finite for all 1 ≤ i ≤ d.<br />

Then <str<strong>on</strong>g>the</str<strong>on</strong>g> first main result is stated as follows. We say that our local ring is a generalized<br />

Cohen-Macaulay ring, if <str<strong>on</strong>g>the</str<strong>on</strong>g> local cohomology modules H i m(A) are finitely generated for<br />

all i ≠ d.<br />

Theorem 1. Let A be a commutative Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian local ring with d = dim A ≥ 2. Then<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> following c<strong>on</strong>diti<strong>on</strong>s are equivalent.<br />

(1) A is a generalized Cohen-Macaulay ring.<br />

(2) The set Λ i (A) is finite for all 1 ≤ i ≤ d.<br />

The detailed versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper has been submitted for publicati<strong>on</strong> elsewhere.<br />

–154–


Although <str<strong>on</strong>g>the</str<strong>on</strong>g> finiteness problem <str<strong>on</strong>g>of</str<strong>on</strong>g> Λ i (A) is settled affirmatively, we need to ask for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

sharp bounds for <str<strong>on</strong>g>the</str<strong>on</strong>g> values <str<strong>on</strong>g>of</str<strong>on</strong>g> e i Q (A) <str<strong>on</strong>g>of</str<strong>on</strong>g> parameter ideals Q, which is our sec<strong>on</strong>d purpose<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> present research. Let h i (A) = l A (H i m(A)) for each i ∈ Z.<br />

When A is a generalized Cohen-Macaulay ring with d = dim A ≥ 2, <strong>on</strong>e has <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

inequalities<br />

∑d−1<br />

( ) d − 2<br />

0 ≥ e 1 Q(A) ≥ −<br />

h i (A)<br />

i − 1<br />

i=1<br />

for every parameter ideal Q in A ([9, Theorem 8], [3, Lemma 2.4]), where <str<strong>on</strong>g>the</str<strong>on</strong>g> equality<br />

e 1 Q (A) = − ∑ d−1<br />

( d−2<br />

i=1 i−1)<br />

h i (A) holds true if <strong>and</strong> <strong>on</strong>ly if Q is a st<strong>and</strong>ard parameter ideal in A<br />

([10, Korollar 3.2], [4, Theorem 2.1]), provided depth A > 0. The reader may c<strong>on</strong>sult [2]<br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> local rings which c<strong>on</strong>tain parameter ideals Q with e 1 Q (A) = 0.<br />

Thus <str<strong>on</strong>g>the</str<strong>on</strong>g> behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> first Hilbert coefficients e 1 Q (A) for parameter ideals Q are ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

satisfactorily understood.<br />

The sec<strong>on</strong>d purpose is to study <str<strong>on</strong>g>the</str<strong>on</strong>g> natural questi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> how about e 2 Q (A). First, we will<br />

show that in <str<strong>on</strong>g>the</str<strong>on</strong>g> case where dim A = 2 <strong>and</strong> depth A > 0, even though A is not necessarily<br />

a generalized Cohen-Macaulay ring, <str<strong>on</strong>g>the</str<strong>on</strong>g> inequality<br />

−h 1 (A) ≤ e 2 Q(A) ≤ 0<br />

holds true for every parameter ideal Q in A. We will also show that e 2 Q (A) = 0 if <strong>and</strong><br />

<strong>on</strong>ly if <str<strong>on</strong>g>the</str<strong>on</strong>g> ideal Q is generated by a system a, b <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters which forms a d-sequence<br />

in A in <str<strong>on</strong>g>the</str<strong>on</strong>g> sense <str<strong>on</strong>g>of</str<strong>on</strong>g> C. Huneke [7]. When A is a generalized Cohen-Macaulay ring with<br />

dim A ≥ 3, we shall show that <str<strong>on</strong>g>the</str<strong>on</strong>g> inequality<br />

∑d−1<br />

−<br />

j=2<br />

( d − 3<br />

j − 2<br />

)<br />

∑d−2<br />

h j (A) ≤ e 2 Q(A) ≤<br />

j=1<br />

( ) d − 3<br />

h j (A)<br />

j − 1<br />

holds true for every parameter ideal Q (Theorem 13). The following <str<strong>on</strong>g>the</str<strong>on</strong>g>orem which is <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

sec<strong>on</strong>d main result <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper shows that <str<strong>on</strong>g>the</str<strong>on</strong>g> upper bound e 2 Q (A) ≤ ∑ d−2<br />

( d−3<br />

j=1 j−1)<br />

h j (A)<br />

is sharp, clarifying when <str<strong>on</strong>g>the</str<strong>on</strong>g> equality e 2 Q (A) = ∑ d−2<br />

j=1<br />

( d−3<br />

j−1)<br />

h j (A) holds true.<br />

Theorem 2. Suppose that A is a generalized Cohen-Macaulay ring with d = dim A ≥ 3<br />

<strong>and</strong> depth A > 0. Let Q be a parameter ideal in A. Then <str<strong>on</strong>g>the</str<strong>on</strong>g> following two c<strong>on</strong>diti<strong>on</strong>s are<br />

equivalent.<br />

(1) e 2 Q (A) = ∑ d−2<br />

j=1<br />

( d−3<br />

j−1)<br />

h j (A).<br />

(2) There exist elements a 1 , a 2 , · · · , a d ∈ A such that<br />

(a) Q = (a 1 , a 2 , · · · , a d ),<br />

(b) <str<strong>on</strong>g>the</str<strong>on</strong>g> sequence a 1 , a 2 , · · · , a d is a d-sequence in A, <strong>and</strong><br />

(c) Q·H j m(A/(a 1 , a 2 , · · · , a k )) = (0) for all j ≥ 1 <strong>and</strong> k ≥ 0 with j + k ≤ d − 2.<br />

When this is <str<strong>on</strong>g>the</str<strong>on</strong>g> case, we fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore have <str<strong>on</strong>g>the</str<strong>on</strong>g> following :<br />

)<br />

h j (A) for 3 ≤ i ≤ d − 1 <strong>and</strong><br />

(i) (−1) i·ei Q (A) = ∑ d−i<br />

j=1<br />

(ii) e d Q (A) = 0.<br />

( d−i−1<br />

j−1<br />

At this moment we do not know <str<strong>on</strong>g>the</str<strong>on</strong>g> sharp uniform bound for e 3 Q (A) for parameter<br />

ideals Q in a generalized Cohen-Macaulay ring A with dim A ≥ 3.<br />

–155–


Let us briefly note how this paper is organized. We shall prove Theorem 1 in Secti<strong>on</strong> 2.<br />

Theorem 2 will be proven in Secti<strong>on</strong> 4. Secti<strong>on</strong> 3 is devoted to some preliminary steps for<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 2. We will closely study in Secti<strong>on</strong> 3 <str<strong>on</strong>g>the</str<strong>on</strong>g> problem <str<strong>on</strong>g>of</str<strong>on</strong>g> when e 2 Q (A) = 0<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> case where dim A = 2.<br />

In what follows, unless o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise specified, for each m-primary ideal I in A, we put<br />

R(I) = A[It], R ′ (I) = A[It, t −1 ], <strong>and</strong> G(I) = R ′ (I)/t −1 R ′ (I),<br />

where t is an indeterminate over A. Let M = mR + R + be <str<strong>on</strong>g>the</str<strong>on</strong>g> unique graded maximal<br />

ideal in R = R(I). We denote by H i M (∗) (i ∈ Z) <str<strong>on</strong>g>the</str<strong>on</strong>g> ith local cohomology functor <str<strong>on</strong>g>of</str<strong>on</strong>g> R(I)<br />

with respect to M. Let L be a graded R-module. For each n ∈ Z let [H i M (L)] n st<strong>and</strong><br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> homogeneous comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> H i M (L) with degree n. We denote by L(α), for each<br />

α ∈ Z, <str<strong>on</strong>g>the</str<strong>on</strong>g> graded R-module whose grading is given by [L(α)] n = L α+n for all n ∈ Z.<br />

2. Pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 1<br />

In this secti<strong>on</strong>, we shall prove Theorem 1.<br />

The heart <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> implicati<strong>on</strong> (1) ⇒ (2) is, in <str<strong>on</strong>g>the</str<strong>on</strong>g> case where A is a<br />

generalized Cohen-Macaulay ring, <str<strong>on</strong>g>the</str<strong>on</strong>g> existence <str<strong>on</strong>g>of</str<strong>on</strong>g> uniform bounds <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Castelnuovo-<br />

Mumford regularity reg G(Q) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> associated graded rings G(Q) <str<strong>on</strong>g>of</str<strong>on</strong>g> parameter ideals Q.<br />

So, let us briefly recall <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Castelnuovo-Mumford regularity.<br />

Let Q be a parameter ideal in A <strong>and</strong> let<br />

R(Q) = A[Qt], R ′ (Q) = A[Qt, t −1 ], <strong>and</strong> G(Q) = R ′ (Q)/t −1 R ′ (Q)<br />

respectively, denote <str<strong>on</strong>g>the</str<strong>on</strong>g> Rees algebra, <str<strong>on</strong>g>the</str<strong>on</strong>g> extended Rees algebra, <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> associated<br />

graded ring <str<strong>on</strong>g>of</str<strong>on</strong>g> Q. Let M = mR + R + be <str<strong>on</strong>g>the</str<strong>on</strong>g> unique graded maximal ideal in R = R(Q).<br />

For each i ∈ Z let<br />

a i (G(Q)) = max{n ∈ Z | [H i M(G(Q))] n ≠ (0)}<br />

<strong>and</strong> put<br />

regG(Q) = max{a i (G(Q)) + i | i ∈ Z},<br />

which we call <str<strong>on</strong>g>the</str<strong>on</strong>g> Castelnuovo-Mumford regularity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> graded ring G(Q).<br />

Let us now note <str<strong>on</strong>g>the</str<strong>on</strong>g> following result <str<strong>on</strong>g>of</str<strong>on</strong>g> Linh <strong>and</strong> Trung [8], which gives a uniform bound<br />

for reg G(Q) for parameter ideals Q in a generalized Cohen-Macaulay ring.<br />

Theorem 3 ([8], Theorem 2.3). Suppose that A is a generalized Cohen-Macaulay ring<br />

<strong>and</strong> let Q be a parameter ideal in A. Then<br />

(1) reg G(Q) ≤ max{I(A) − 1, 0}, if d = 1.<br />

(2) reg G(Q) ≤ max{(4I(A)) (d−1)! − I(A) − 1, 0}, if d ≥ 2.<br />

Thus, <str<strong>on</strong>g>the</str<strong>on</strong>g> following result is <str<strong>on</strong>g>the</str<strong>on</strong>g> key for our pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> implicati<strong>on</strong> (1) ⇒ (2) in<br />

Theorem 1, where h i (A) = l A (H i m(A)) <strong>and</strong> I(A) = ∑ d−1<br />

)<br />

j=0 h j (A).<br />

Theorem 4. Suppose that A is a generalized Cohen-Macaulay ring. Let Q be a parameter<br />

ideal in A <strong>and</strong> put r = reg G(Q). Then<br />

(1) |e 1 Q (A)| ≤ I(A).<br />

(2) |e i Q (A)| ≤ 3 · 2i−2 (r + 1) i−1 I(A) for 2 ≤ i ≤ d.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. See [5, Secti<strong>on</strong> 2].<br />

–156–<br />

( d−1<br />

j<br />


Therefore, thanks to <str<strong>on</strong>g>the</str<strong>on</strong>g> uniform bounds [8, Theorem 2.3] <str<strong>on</strong>g>of</str<strong>on</strong>g> reg G(Q) for parameter<br />

ideals Q in a generalized Cohen-Macaulay ring A, we readily get <str<strong>on</strong>g>the</str<strong>on</strong>g> finiteness in <str<strong>on</strong>g>the</str<strong>on</strong>g> set<br />

Λ i (A) for all 1 ≤ i ≤ d.<br />

We are now in a positi<strong>on</strong> to finish <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 1.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 1. We may assume that A is complete. Also we may assume A is not<br />

unmixed, because Λ 1 (A) is a finite set (cf. [2, Propositi<strong>on</strong> 4.2]). Let U denote <str<strong>on</strong>g>the</str<strong>on</strong>g> unmixed<br />

comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ideal (0) in A. We put B = A/U <strong>and</strong> t = dim A U (≤ d − 1). We must<br />

show that B is a generalized Cohen-Macaulay ring <strong>and</strong> t = 0.<br />

Let Q be a parameter ideal in A. We <str<strong>on</strong>g>the</str<strong>on</strong>g>n have<br />

l A (A/Q n+1 ) = l A (B/Q n+1 B) + l A (U/Q n+1 ∩ U)<br />

for all integers n ≥ 0. Therefore, <str<strong>on</strong>g>the</str<strong>on</strong>g> functi<strong>on</strong> l A (U/Q n+1 ∩ U) is a polynomial in n ≫ 0<br />

with degree t <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>re exist integers {s i Q (U)} 0≤i≤t with s 0 Q (U) = e0 Q (U) such that<br />

t∑<br />

( ) n + t − i<br />

l A (U/Q n+1 ∩ U) = (−1) i s i Q(U)<br />

t − i<br />

for all n ≫ 0, whence<br />

C<strong>on</strong>sequently<br />

l A (A/Q n+1 ) =<br />

(−1) d−i e d−i<br />

Q<br />

i=0<br />

d∑<br />

( ) n + d − i<br />

(−1) i e i Q(B)<br />

+<br />

d − i<br />

i=0<br />

t∑<br />

( ) n + t − i<br />

(−1) i s i Q(U)<br />

.<br />

t − i<br />

{ (−1) d−i<br />

(A) = e d−i<br />

Q<br />

(B) + (−1)t−i s t−i<br />

Q<br />

(U) if 0 ≤ i ≤ t,<br />

(−1) d−i e d−i (B) if t + 1 ≤ i ≤ d.<br />

Q<br />

Therefore, if t < d − 1, we have e 1 Q (A) = e1 Q (B), so that Λ 1(B) = Λ 1 (A) is a finite<br />

set. If t = d − 1, we get −e 1 Q (A) = −e1 Q (B) + s0 Q (U). Since e1 Q (A), e1 Q (B) ≤ 0 <strong>and</strong><br />

s 0 Q (U) = e0 Q (U) ≥ 1, Λ 1(B) is a finite set also in this case. Thus <str<strong>on</strong>g>the</str<strong>on</strong>g> set Λ 1 (B) is finite in<br />

any case, so that <str<strong>on</strong>g>the</str<strong>on</strong>g> ring B a generalized Cohen-Macaulay ring.<br />

We now assume that t ≥ 1 <strong>and</strong> choose a system a 1 , a 2 , · · · , a d <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters in A so<br />

that (a t+1 , a t+2 , · · · , a d )U = (0). Let l ≥ 1 be an integer such that m l is st<strong>and</strong>ard for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

ring B <strong>and</strong> choose integers n ≥ l. We look at parameter ideals Q = (a n 1, a n 2, · · · , a n d ) <str<strong>on</strong>g>of</str<strong>on</strong>g> A.<br />

Then<br />

t∑<br />

( ) t − 1<br />

(−1) d−t e d−t<br />

Q (B) = h j (B)<br />

j − 1<br />

by [10, Korollar 3.2], which is independent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> integers n ≥ l. Therefore, since<br />

we see<br />

j=1<br />

i=0<br />

s 0 Q(U) = e 0 (a n 1 ,an 2 ,··· ,an t ) (U) = n t·e 0 (a 1 ,a 2 ,··· ,a t )(U) ≥ n t ,<br />

(−1) d−t e d−t<br />

Q (A) = (−1)d−t e d−t<br />

Q<br />

(B) + s0 Q(U)<br />

t∑<br />

( ) t − 1<br />

=<br />

h j (B) + n t·e 0 (a<br />

j − 1<br />

1 ,a 2 ,··· ,a t )(U) ≥ n t ,<br />

j=1<br />

–157–


whence <str<strong>on</strong>g>the</str<strong>on</strong>g> set Λ d−t (A) cannot be finite. Thus t = 0 <strong>and</strong> A a generalized Cohen-Macaulay<br />

ring.<br />

□<br />

3. The sec<strong>on</strong>d Hilbert coefficients e 2 Q (A) <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters<br />

In this secti<strong>on</strong> we study <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d Hilbert coefficients e 2 Q (A) <str<strong>on</strong>g>of</str<strong>on</strong>g> parameter ideals Q.<br />

The purpose is to find <str<strong>on</strong>g>the</str<strong>on</strong>g> sharp bound for e 2 Q (A). The bound |e2 Q (A)| ≤ 3(r + 1)I(A)<br />

given by Theorem 1 is too huge in general <strong>and</strong> far from <str<strong>on</strong>g>the</str<strong>on</strong>g> sharp bound.<br />

Let us begin with <str<strong>on</strong>g>the</str<strong>on</strong>g> following.<br />

Lemma 5. Suppose that d = 2 <strong>and</strong> depth A > 0. Let Q = (x, y) be a parameter ideal in<br />

A <strong>and</strong> assume that x is superficial with respect to Q. Then<br />

( )<br />

[(x<br />

e 2 l ) : y l ] ∩ Q l<br />

Q(A) = −l A ≤ 0<br />

(x l )<br />

for all l ≫ 0.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Let l ≫ 0 be an integer which is sufficiently large <strong>and</strong> put I = Q l . Let G = G(I)<br />

<strong>and</strong> R = R(I) be <str<strong>on</strong>g>the</str<strong>on</strong>g> associated graded ring <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Rees algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> I, respectively. We<br />

put M = mR + R + . Then [H i M (G)] n = (0) for all integers i ∈ Z <strong>and</strong> n > 0, thanks to<br />

[6, Lemma 2.4]. We put a = x l <strong>and</strong> b = y l . Then <str<strong>on</strong>g>the</str<strong>on</strong>g> element a remains superficial with<br />

respect to I <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> equality I 2 = (a, b)I holds true, whence a 2 (G) < 0.<br />

We fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore have <str<strong>on</strong>g>the</str<strong>on</strong>g> following.<br />

Claim 6. [H i M (R)] ∼ 0 = [H i M (G)] 0 as A-modules for all i ∈ Z. Hence H 0 M (G) = (0), so<br />

that f = at ∈ R is G-regular.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Claim 6. Let L = R + <strong>and</strong> apply <str<strong>on</strong>g>the</str<strong>on</strong>g> functors H i M (∗) to <str<strong>on</strong>g>the</str<strong>on</strong>g> following can<strong>on</strong>ical<br />

exact sequences<br />

0 → L → R p → A → 0 <strong>and</strong> 0 → L(1) → R → G → 0,<br />

where p denotes <str<strong>on</strong>g>the</str<strong>on</strong>g> projecti<strong>on</strong>, <strong>and</strong> get <str<strong>on</strong>g>the</str<strong>on</strong>g> exact sequences<br />

(1) · · · → H i−1<br />

m (A) → H i M(L) → H i M(R) → H i m(A) → · · · <strong>and</strong><br />

(2) · · · → H i−1<br />

M (G) → Hi M(L)(1) → H i M(R) → H i M(G) → H i+1<br />

M (L)(1) → · · ·<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> local cohomology modules. Then by exact sequence (2) we get <str<strong>on</strong>g>the</str<strong>on</strong>g> isomorphism<br />

[H i M(L)] n+1<br />

∼ = [H<br />

i<br />

M (R)] n<br />

for n ≥ 1, because [H i−1<br />

M (G)] n = [H i M (G)] n = (0) for n ≥ 1, while we have <str<strong>on</strong>g>the</str<strong>on</strong>g> isomorphism<br />

[H i M(L)] n+1<br />

∼ = [H<br />

i<br />

M (R)] n+1<br />

for n ≥ 1, thanks to exact sequence (1). Hence [H i M (R)] n ∼ = [H i M (R)] n+1 for n ≥ 1, which<br />

implies [H i M (R)] n = (0) for all i ∈ Z <strong>and</strong> n ≥ 1, because [H i M (R)] n = (0) for n ≫ 0. Thus<br />

by exact sequence (1) we get [H i M (L)(1)] n = (0) for all i ∈ Z <strong>and</strong> n ≥ 0, so that by exact<br />

sequence (2) we see [H i M (R)] 0 ∼ = [H i M (G)] 0 as A-modules for all i ∈ Z. C<strong>on</strong>sidering <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

case where i = 1 in exact sequence (2), we have <str<strong>on</strong>g>the</str<strong>on</strong>g> embedding<br />

0 → H 0 M(G) → H 1 M(L)(1),<br />

–158–


so that [H 0 M (G)] 0 = (0), because [H 1 M (L)(1)] 0 = [H 0 M (L)] 1 = (0). Hence H 0 M (G) = (0),<br />

so that f is G-regular, because (0) : G f is finitely graded.<br />

□<br />

Thanks to Serre’s formula (cf. [1, Theorem 4.4.3]), Claim 6 shows that<br />

2∑<br />

e 2 Q(A) = (−1) i l A ([H i M(G)] 0 ) = −l A ([H 1 M(G)] 0 ),<br />

i=0<br />

since a 2 (G) < 0. Therefore to prove<br />

( )<br />

[(x<br />

e 2 l ) : y l ] ∩ Q l<br />

Q(A) = −l A ,<br />

(x l )<br />

it is suffices to check that<br />

[H 1 M(G)] 0<br />

∼ [(a) : b] ∩ I<br />

=<br />

(a)<br />

as A-modules.<br />

Let A = A/(a) <strong>and</strong> I = IA. Then G/fG ∼ = G(I), because f = at is G-regular (cf.<br />

Claim 6). We now look at <str<strong>on</strong>g>the</str<strong>on</strong>g> exact sequence<br />

0 → H 0 M(G(I)) → H 1 M(G)(−1) f → H 1 M(G)<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> local cohomology modules which is induced from <str<strong>on</strong>g>the</str<strong>on</strong>g> exact sequence<br />

0 → G(−1) f → G → G(I) → 0<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> graded G-modules. Then, since [H 1 M (G)] n = (0) for all n ≥ 1, we have an isomorphism<br />

[H 0 M(G(I))] 1<br />

∼ = [H<br />

1<br />

M (G)] 0<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> A-modules <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> vanishing [H 0 M (G(I)] n = (0) for n ≥ 2.<br />

Look now at <str<strong>on</strong>g>the</str<strong>on</strong>g> homomorphism<br />

ρ :<br />

[(a) : b] ∩ I<br />

(a)<br />

→ [H 0 M(G(I))] 1<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> A-modules defined by ρ(x) = xt for each x ∈ [(a) : b] ∩ I, where x <strong>and</strong> xt denote<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> images <str<strong>on</strong>g>of</str<strong>on</strong>g> x in A <strong>and</strong> xt ∈ [R(I)] 1 in G(I), respectively. We will show that <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

map ρ is an isomorphism. Take ϕ ∈ [H 0 M (G(I))] 1 <strong>and</strong> write ϕ = xt with x ∈ I. Since<br />

[H 0 M (G(I))] 2 = (0), we have bt · xt = bxt 2 = 0 in G(I), whence bx ∈ [(a) + I 3 ] ∩ I 2 =<br />

[(a) ∩ I 2 ] + I 3 = aI + bI 2 (recall that I 2 = (a, b)I <strong>and</strong> that a is super-regular with respect<br />

to I). So, we write bx = ai + bj with i ∈ I <strong>and</strong> j ∈ I 2 . Then, since b(x − j) = ai ∈ (a),<br />

we have x − j ∈ [(a) : b] ∩ I, whence ϕ = xt = (x − j)t. Thus <str<strong>on</strong>g>the</str<strong>on</strong>g> map ρ is surjective.<br />

To show that <str<strong>on</strong>g>the</str<strong>on</strong>g> map ρ is injective, take x ∈ [(a) : b]∩I <strong>and</strong> suppose that ρ(x) = xt = 0<br />

in G(I). Then<br />

x ∈ [(a) : b] ∩ [(a) + I 2 ] = (a) + [((a) : b) ∩ I 2 ].<br />

To c<strong>on</strong>clude that x ∈ (a), we need <str<strong>on</strong>g>the</str<strong>on</strong>g> following.<br />

Claim 7. Let n ≥ 2 be an integer. Then [(a) : b] ∩ I n ⊆ (a) + [((a) : b) ∩ I n+1 ].<br />

–159–


Pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Claim 7. Take y ∈ [(a) : b]∩I n . Then, since by ∈ (a), we see bt·yt n = byt n+1 = 0<br />

in G(I). Hence yt n ∈ [H 0 M (G(I))] n, because bt is a homogeneous parameter for <str<strong>on</strong>g>the</str<strong>on</strong>g> graded<br />

ring G(I). Recall now that n ≥ 2, whence [H 0 M (G(I))] n = (0), so that yt n = 0. Thus<br />

y ∈ (a) + I n+1 , whence y ∈ (a) + [((a) : b) ∩ I n+1 ], as claimed.<br />

□<br />

Since x ∈ (a) + [((a) : b) ∩ I 2 ], thanks to Claim 7, we get x ∈ (a) + I n+1 for all n ≥ 1,<br />

whence x ∈ (a), so that <str<strong>on</strong>g>the</str<strong>on</strong>g> map ρ is injective. Thus<br />

as A-modules.<br />

[H 1 M(G)] 0<br />

∼ =<br />

[(a) : b] ∩ I<br />

(a)<br />

Theorem 8. Suppose that d = 2 <strong>and</strong> depth A > 0. Let Q = (x, y) be a parameter ideal<br />

in A <strong>and</strong> assume that x is superficial with respect to Q. Then<br />

−h 1 (A) ≤ e 2 Q(A) ≤ 0<br />

<strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> following three c<strong>on</strong>diti<strong>on</strong>s are equivalent.<br />

(1) e 2 Q (A) = 0.<br />

(2) x, y forms a d-sequence in A.<br />

(3) x l , y l forms a d-sequence in A for all integers l ≥ 1.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. By Lemma 5 we have<br />

e 2 Q(A) = −l A<br />

( [(x l ) : y l ] ∩ (x, y) l<br />

(x l )<br />

)<br />

≤ 0<br />

for all integers l ≫ 0. To show that −h 1 (A) ≤ e 2 Q (A), we may assume that H1 m(A) is<br />

finitely generated. Take <str<strong>on</strong>g>the</str<strong>on</strong>g> integer l ≫ 0 so that <str<strong>on</strong>g>the</str<strong>on</strong>g> system a = x l , b = y l <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> A is st<strong>and</strong>ard. Then since<br />

[(a) : b] ∩ Q l<br />

(a)<br />

⊆ (a) : b<br />

(a)<br />

we get −h 1 (A) ≤ e 2 Q (A).<br />

Let us c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d asserti<strong>on</strong>.<br />

(1) ⇒ (3). Take an integer N ≥ 1 so that<br />

for all l ≥ N (cf. Lemma 5); hence<br />

∼ = H<br />

0<br />

m (A/(a)) ∼ = H 1 m(A),<br />

e 2 Q(A) = −l A<br />

( [(x l ) : y l ] ∩ (x, y) l<br />

(x l )<br />

[(x l ) : y l ] ∩ (x, y) l = (x l ).<br />

Claim 9. [(x l ) : y l ] ∩ (x, y) l = (x l ) for all l ≥ 1.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Claim 9. We may assume that 1 ≤ l < N. Take τ ∈ [(x l ) : y l ] ∩ (x, y) l . Then,<br />

since y N (x N−l τ) = y N−l x N−l (y l τ) ∈ (x N ), we have x N−l τ ∈ [(x N ) : y N ] ∩ (x, y) N = (x N ).<br />

Thus τ ∈ (x l ), because x is A-regular (recall that depth A > 0 <strong>and</strong> x is superficial with<br />

respect to Q).<br />

□<br />

–160–<br />

)<br />


Since x l is A-regular <strong>and</strong> [(x l ) : y l ] ∩ (x l , y l ) = (x l ) by Claim 9, we readily see that<br />

x l , y l is a d-sequence in A.<br />

(3) ⇒ (2) This is clear.<br />

(2) ⇒ (1) It is well-known that e 2 (x,y)(A) = 0, if depth A > 0 <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> system x, y <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

parameters forms a d-sequence in A; see Propositi<strong>on</strong> 11 below.<br />

□<br />

Passing to <str<strong>on</strong>g>the</str<strong>on</strong>g> ring A/H 0 m(A), thanks to Theorem 8, we readily get <str<strong>on</strong>g>the</str<strong>on</strong>g> following.<br />

Corollary 10. Suppose that d = 2 <strong>and</strong> let Q be a parameter ideal in A. Then<br />

h 0 (A) − h 1 (A) ≤ e 2 Q(A) ≤ h 0 (A).<br />

The results in <str<strong>on</strong>g>the</str<strong>on</strong>g> following propositi<strong>on</strong> are, more or less, known.<br />

Propositi<strong>on</strong> 11. ([5, Propositi<strong>on</strong> 3.4]) Suppose that d > 0 <strong>and</strong> let Q = (a 1 , a 2 , · · · , a d )<br />

be a parameter ideal in A. Let G = G(Q) <strong>and</strong> R = R(Q). Let f i = a i t ∈ R for 1 ≤ i ≤ d.<br />

Assume that <str<strong>on</strong>g>the</str<strong>on</strong>g> sequence a 1 , a 2 , · · · , a d forms a d-sequence in A. Then we have <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

following, where Q i = (a 1 , a 2 , · · · , a i ) for 0 ≤ i ≤ d.<br />

(1) e 0 Q (A) = l A(A/Q) − l A ([Q d−1 : a d ]/Q d−1 ).<br />

(2) (−1) i e i Q (A) = h0 (A/Q d−i ) − h 0 (A/Q d−i−1 ) for 1 ≤ i ≤ d − 1 <strong>and</strong> (−1) d e d Q (A) =<br />

h 0 (A).<br />

(3) l A (A/Q n+1 ) = ∑ d<br />

i=0 (−1)i e i Q (A)( n+d−i<br />

d−i<br />

(4) f 1 , f 2 , · · · , f d forms a d-sequence in G.<br />

(5) H 0 M (G) = [H0 M (G)] 0 ∼ = H 0 m(A), where M = mR + R +<br />

(6) [H i M (G)] n = (0) for all n > −i <strong>and</strong> i ∈ Z, whence reg G = 0.<br />

)<br />

for all n ≥ 0, whence lA (A/Q) = ∑ d<br />

i=0 (−1)i e i Q (A).<br />

Let us note <strong>on</strong>e example <str<strong>on</strong>g>of</str<strong>on</strong>g> local rings A which are not generalized Cohen-Macaulay<br />

rings but every parameter ideal in A is generated by a system <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters that forms<br />

a d-sequence in A.<br />

Example 12. Let R be a regular local ring with <str<strong>on</strong>g>the</str<strong>on</strong>g> maximal ideal n <strong>and</strong> d = dim R ≥ 2.<br />

Let X 1 , X 2 , · · · , X d be a regular system <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> R. We put p = (X 1 , X 2 , · · · , X d−1 )<br />

<strong>and</strong> D = R/p. Then D is a DVR. Let A = R ⋉ D denote <str<strong>on</strong>g>the</str<strong>on</strong>g> idealizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> D over R.<br />

Then A is a Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian local ring with <str<strong>on</strong>g>the</str<strong>on</strong>g> maximal ideal m = n × D, dim A = d, <strong>and</strong><br />

depth A = 1. We fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore have <str<strong>on</strong>g>the</str<strong>on</strong>g> following.<br />

(1) Λ i (A) = {0} for all 1 ≤ i ≤ d such that i ≠ d − 1.<br />

(2) Λ 0 (A) = {n | 0 < n ∈ Z} <strong>and</strong> Λ d−1 (A) = {(−1) d−1 n | 0 < n ∈ Z}.<br />

(3) After renumbering, every system <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters in A forms a d-sequence.<br />

The ring A is not a generalized Cohen-Macaulay ring, because H 1 m(A) ( ∼ = H 1 n(D)) is not a<br />

finitely generated A-module.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> rest <str<strong>on</strong>g>of</str<strong>on</strong>g> Secti<strong>on</strong> 3 let us c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> bound for e 2 Q (Q) in higher dimensi<strong>on</strong>al cases.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> case where dim A ≥ 3 we have <str<strong>on</strong>g>the</str<strong>on</strong>g> following.<br />

Theorem 13. Suppose that A is a generalized Cohen-Macaulay ring with d = dim A ≥ 3.<br />

Let Q = (a 1 , a 2 , · · · , a d ) be a parameter ideal in A. Then<br />

∑d−1<br />

( ) d − 3<br />

∑d−2<br />

( ) d − 3<br />

−<br />

h j (A) ≤ e 2<br />

j − 2<br />

Q(A) ≤<br />

h j (A).<br />

j − 1<br />

j=2<br />

–161–<br />

j=1


We have Q·H j m(A/(a 1 , a 2 , · · · , a k )) = (0) for all k ≥ 0 <strong>and</strong> j ≥ 1 with j + k ≤ d − 2, if<br />

e 2 Q (A) = ∑ d−2<br />

( d−3<br />

j=1 j−1)<br />

h j (A) <strong>and</strong> if a 1 , a 2 , · · · , a d forms a superficial sequence with respect<br />

to Q.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. See [5, Theorem 3.6].<br />

The following result guarantees <str<strong>on</strong>g>the</str<strong>on</strong>g> implicati<strong>on</strong> (2) ⇒ (1) <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> last asserti<strong>on</strong> in<br />

Theorem 2.<br />

Propositi<strong>on</strong> 14. Suppose that A is a generalized Cohen-Macaulay ring with d = dim A ≥<br />

3 <strong>and</strong> let Q = (a 1 , a 2 , · · · , a d ) be a parameter ideal in A. Assume that <str<strong>on</strong>g>the</str<strong>on</strong>g> sequence<br />

a 1 , a 2 , · · · , a d forms a d-sequence in A <strong>and</strong> Q·H j m(A/(a 1 , a 2 , · · · , a k )) = (0) for all k ≥ 0<br />

<strong>and</strong> j ≥ 1 with j + k ≤ d − 2. Then<br />

∑d−i<br />

( ) d − i − 1<br />

(−1) i e i Q(A) =<br />

h j (A)<br />

j − 1<br />

j=1<br />

for 2 ≤ i ≤ d − 1 <strong>and</strong> (−1) d e d Q (A) = h0 (A).<br />

□<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. See [5, Propositi<strong>on</strong> 3.7].<br />

□<br />

4. Pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 2<br />

The purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> this secti<strong>on</strong> is to prove Theorem 2. Thanks to Propositi<strong>on</strong> 11 <strong>and</strong> 14,<br />

we have <strong>on</strong>ly to show <str<strong>on</strong>g>the</str<strong>on</strong>g> following.<br />

Theorem 15. Suppose that A is a generalized Cohen-Macaulay ring with d = dim A ≥ 3<br />

<strong>and</strong> depth A > 0. Let Q be a parameter ideal in A <strong>and</strong> assume that e 2 Q (A) = ∑ d−2<br />

( d−3<br />

j=1 j−1)<br />

h j (A).<br />

Then Q is generated by a system <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters which forms a d-sequence in A.<br />

For each ideal a in A (a ≠ A) let U(a) denote <str<strong>on</strong>g>the</str<strong>on</strong>g> unmixed comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> a. When<br />

a = (a) with a ∈ A, we write U(a) simply by U(a). We have<br />

U(a) = ∪ n≥0<br />

[(a) : A m n ] ,<br />

if A is a generalized Cohen-Macaulay ring with dim A ≥ 2 <strong>and</strong> a is a part <str<strong>on</strong>g>of</str<strong>on</strong>g> a system<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> parameters in A (cf. [11, Secti<strong>on</strong> 2]). The following result is <str<strong>on</strong>g>the</str<strong>on</strong>g> key in our pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Theorem 15.<br />

Propositi<strong>on</strong> 16. Suppose that A is a generalized Cohen-Macaulay ring with d = dim A ≥<br />

2 <strong>and</strong> depth A > 0. Let Q = (a 1 , a 2 , · · · , a d ) be a parameter ideal in A. Assume that<br />

a d H 1 m(A) = (0) <strong>and</strong> that <str<strong>on</strong>g>the</str<strong>on</strong>g> sequence a 1 , a 2 , · · · , a d−1 forms a d-sequence in <str<strong>on</strong>g>the</str<strong>on</strong>g> generalized<br />

Cohen-Macaulay ring A/U(a d ). Then<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. See [5, Propositi<strong>on</strong> 4.2].<br />

We are now ready to prove Theorem 15.<br />

U(a 1 ) ∩ [Q + U(a d )] = (a 1 ).<br />

–162–<br />


Pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Theorem 15. We proceed by inducti<strong>on</strong> <strong>on</strong> d. Choose a 1 , a 2 , · · · , a d ∈ A so<br />

that Q = (a 1 , a 2 , · · · , a d ) <strong>and</strong> for each 1 ≤ i ≤ d−2, <str<strong>on</strong>g>the</str<strong>on</strong>g> i+2 elements a 1 , a 2 , · · · , a i , a d−1 , a d<br />

form a superficial sequence with respect to Q. We will show that <str<strong>on</strong>g>the</str<strong>on</strong>g>re exist b 2 , b 3 , · · · , b d ∈<br />

A such that b 1 = a d−1 , b 2 , b 3 , · · · , b d forms a d-sequence in A <strong>and</strong> Q = (b 1 , b 2 , · · · , b d ). We<br />

put A = A/(a 1 ), Q = QA, <strong>and</strong> C = A/H 0 m(A) (= A/U(a 1 )).<br />

Suppose that d = 3. Then<br />

e 2 QC(C) = e 2 Q (A) − h0 (A) = e 2 Q(A) − h 0 (A) = h 1 (A) − h 0 (A) = 0,<br />

because h 1 (A) = h 0 (A) (recall that QH 1 m(A) = (0) by Propositi<strong>on</strong> 13). Hence, thanks<br />

to Propositi<strong>on</strong> 8, a 2 , a 3 forms a d-sequence in C, because a 2 is superficial for <str<strong>on</strong>g>the</str<strong>on</strong>g> ideal<br />

QC = (a 2 , a 3 )C. Therefore, since a 1 H 1 m(A) = (0), we have<br />

U(a 2 ) ∩ [Q + U(a 1 )] = (a 2 ),<br />

by Propositi<strong>on</strong> 16. Let Q = (a 2 , a 3 , b 3 ) <strong>and</strong> B = A/U(a 2 ). Then since e 2 QB (B) = 0, by<br />

Propositi<strong>on</strong> 8 <str<strong>on</strong>g>the</str<strong>on</strong>g> sequence b 2 = a 3 , b 3 forms a d-sequence in B, because b 2 is superficial<br />

for QB. Therefore, since U(a 2 ) ∩ Q ⊆ U(a 2 ) ∩ [Q + U(a 1 )] = (a 2 ), <str<strong>on</strong>g>the</str<strong>on</strong>g> sequence b 2 , b 3<br />

forms a d-sequence in A/(a 2 ), so that b 1 = a 2 , b 2 , b 3 forms a d-sequence in A, because b 1<br />

is A-regular.<br />

Assume that d ≥ 4 <strong>and</strong> that our asserti<strong>on</strong> holds true for d−1. Then, thanks to Theorem<br />

13 <strong>and</strong> its pro<str<strong>on</strong>g>of</str<strong>on</strong>g>, we have<br />

e 2 Q(A) = e 2 (A) = ∑d−3<br />

( ) d − 4<br />

Q e2 QC(C) ≤<br />

h j (C)<br />

j − 1<br />

=<br />

=<br />

j=1<br />

∑d−3<br />

( ) d − 4<br />

h j (A)<br />

j − 1<br />

because Q·H j m(A) = (0) for 1 ≤ j ≤ d − 3. Hence<br />

∑d−3<br />

( ) d − 4<br />

e 2 QC(C) =<br />

h j (C).<br />

j − 1<br />

j=1<br />

j=1<br />

∑d−2<br />

( ) d − 3<br />

h j (A) = e 2<br />

j − 1<br />

Q(A),<br />

Therefore, because QC = (a 2 , a 3 , · · · , a d )C <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> sequence a 2 , a 3 , · · · , a i , a d−1 , a d is superficial<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> ideal QC for all 1 ≤ i ≤ d − 2 where a j denotes <str<strong>on</strong>g>the</str<strong>on</strong>g> image <str<strong>on</strong>g>of</str<strong>on</strong>g> a j in C, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>sis <str<strong>on</strong>g>of</str<strong>on</strong>g> inducti<strong>on</strong> <strong>on</strong> d yields that <str<strong>on</strong>g>the</str<strong>on</strong>g>re exist γ 2 , γ 3 , · · · , γ d−1 ∈ C such that <str<strong>on</strong>g>the</str<strong>on</strong>g> sequence<br />

γ 1 = a d−1 , γ 2 , γ 3 , · · · , γ d−1 forms a d-sequence in C <strong>and</strong> QC = (γ 1 , γ 2 , · · · , γ d−1 )C.<br />

Let us write γ j = c j for each 2 ≤ j ≤ d − 1 with c j ∈ Q, where c j denote <str<strong>on</strong>g>the</str<strong>on</strong>g> image<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> c j in C. We put q = (a 1 , a d−1 , c 2 , c 3 , · · · , c d−1 ). Then q is a parameter ideal in A,<br />

a 1 H 1 m(A) = (0), <strong>and</strong> a d−1 , c 2 , c 3 , · · · , c d−1 forms a d-sequence in C. Therefore<br />

j=1<br />

U(a d−1 ) ∩ [Q + U(a 1 )] = U(a d−1 ) ∩ [q + U(a 1 )] = (a d−1 )<br />

by Propositi<strong>on</strong> 16, whence U(a d−1 ) ∩ Q = (a d−1 ).<br />

–163–


Let B = A/U(a d−1 ). We <str<strong>on</strong>g>the</str<strong>on</strong>g>n have<br />

∑d−3<br />

( ) d − 4<br />

e 2 QB(B) =<br />

h j (B)<br />

j − 1<br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> same reas<strong>on</strong> as for <str<strong>on</strong>g>the</str<strong>on</strong>g> equality e 2 QC (C) = ∑ d−3<br />

e 2 QC (C) = ∑ d−3<br />

j=1<br />

j=1<br />

j=1<br />

( d−4<br />

j−1)<br />

h j (C) (in fact, to show<br />

( d−4<br />

j−1)<br />

h j (C), we <strong>on</strong>ly need that a 1 is superficial with respect to Q). Therefore,<br />

by <str<strong>on</strong>g>the</str<strong>on</strong>g> hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>sis <str<strong>on</strong>g>of</str<strong>on</strong>g> inducti<strong>on</strong> <strong>on</strong> d, we may choose elements β 2 , β 3 , · · · , β d ∈ B so<br />

that QB = (β 2 , β 3 , · · · , β d )B <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> sequence β 2 , β 3 , · · · , β d forms a d-sequence in B.<br />

We put b 1 = a d−1 <strong>and</strong> write β j = b j with b j ∈ Q for 2 ≤ j ≤ d, where b j denotes <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

image <str<strong>on</strong>g>of</str<strong>on</strong>g> b j in B. We now put q ′ = (b 1 , b 2 , · · · , b d ). Then q ′ is a parameter ideal in A <strong>and</strong><br />

because U(b 1 ) ∩ Q = (b 1 ), we get<br />

Q ⊆ [q ′ + U(b 1 )] ∩ Q = q ′ + [U(b 1 ) ∩ Q] ⊆ q ′ + (b 1 ) = q ′ ;<br />

hence Q = q ′ . Thus <str<strong>on</strong>g>the</str<strong>on</strong>g> sequence b 2 , b 3 , · · · , b d forms a d-sequence in A/(b 1 ), so that<br />

b 1 , b 2 , · · · , b d forms a d-sequence in A, because b 1 is A-regular. This complete <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 15 <strong>and</strong> that <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 2 as well.<br />

□<br />

References<br />

[1] W. Bruns <strong>and</strong> J. Herzog, Cohen-Macaulay rings, Cambridge studies in advanced ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics, 39,<br />

Cambridge University Press, Cambridge, New York, Port Chester, Melbourne Sydney, 1993.<br />

[2] L. Ghezzi, S. Goto, J. H<strong>on</strong>g, K. Ozeki, T. T. Phu<strong>on</strong>g, <strong>and</strong> W. V. Vasc<strong>on</strong>celos, Cohen–Macaulayness<br />

versus <str<strong>on</strong>g>the</str<strong>on</strong>g> vanishing <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> first Hilbert coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g> parameter ideals, L<strong>on</strong>d<strong>on</strong> Math. Soc., (2) 81<br />

(2010), 679–695.<br />

[3] S. Goto <strong>and</strong> K. Nishida, Hilbert coefficients <strong>and</strong> Buchsbaumness <str<strong>on</strong>g>of</str<strong>on</strong>g> associated graded rings, J. Pure<br />

<strong>and</strong> Appl. Algebra, Vol 181, 2003, 61–74.<br />

[4] S. Goto <strong>and</strong> K. Ozeki, Buchsbaumness in local rings possessing first Hilbert coefficients <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters,<br />

Nagoya Math. J., 199 (2010), 95–105.<br />

[5] S. Goto <strong>and</strong> K. Ozeki, Uniform bounds for Hilbert coefficients <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters, C<strong>on</strong>temporary Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics,<br />

555 (2011), 97–118.<br />

[6] L. T. Hoa, Reducti<strong>on</strong> numbers <strong>and</strong> Rees Algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> powers <str<strong>on</strong>g>of</str<strong>on</strong>g> ideal, Proc. Amer. Math. Soc, 119,<br />

1993, 415–422.<br />

[7] C. Huneke, On <str<strong>on</strong>g>the</str<strong>on</strong>g> Symmetric <strong>and</strong> Rees Algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> an Ideal Generated by a d-sequence, J. Algebra 62<br />

(1980) 268–275.<br />

[8] C. H. Linh <strong>and</strong> N. V. Trung, Uniform bounds in generalized Cohen-Macaulay rings, J. Algebra, 304<br />

(2006), 1147–1159.<br />

[9] M. M<strong>and</strong>al <strong>and</strong> J. K. Verma, On <str<strong>on</strong>g>the</str<strong>on</strong>g> Chern number <str<strong>on</strong>g>of</str<strong>on</strong>g> an ideal, Proc. Amer. Math Soc., 138. (2010),<br />

1995–1999.<br />

[10] P. Schenzel, Multiplizitäten in verallgemeinerten Cohen-Macaulay-Moduln, Math. Nachr., 88 (1979),<br />

295–306.<br />

[11] P. Schenzel, N. V. Trung, <strong>and</strong> N. T. Cu<strong>on</strong>g, Verallgemeinerte Cohen-Macaulay-Moduln, Math.<br />

Nachr., 85 (1978), 57–73.<br />

Meiji University<br />

1-1-1 Higashi-mita, Tama-ku, Kawasaki 214-8571, Japan<br />

Email: kozeki@math.meiji.ac.jp<br />

–164–


PREPOJECTIVE ALGEBRAS<br />

AND CRYSTAL BASES OF QUANTUM GROUPS<br />

YOSHIHISA SAITO<br />

Abstract. At <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> last century, Kashiwara <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> author ([10]) made a bride<br />

between representati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum groups <strong>and</strong> <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> quivers. More precisely,<br />

c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> variety X(d) <str<strong>on</strong>g>of</str<strong>on</strong>g> representati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> a double quiver, with a fixed dimensi<strong>on</strong><br />

vector d. It is known that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a nice Lagrangian subvariety Λ(d) <str<strong>on</strong>g>of</str<strong>on</strong>g> X(d). In a<br />

geometric point <str<strong>on</strong>g>of</str<strong>on</strong>g> view, Λ(d) is defines as <str<strong>on</strong>g>the</str<strong>on</strong>g> variety <str<strong>on</strong>g>of</str<strong>on</strong>g> zero points <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> moment<br />

map for <str<strong>on</strong>g>the</str<strong>on</strong>g> acti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a certain reductive group <strong>on</strong> X(d). Let IrrΛ(d) be <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> all<br />

irreducible comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> Λ(d). We proved that ⊔ d IrrΛ(d) is isomorphic to <str<strong>on</strong>g>the</str<strong>on</strong>g> “crystal<br />

basis” B(∞) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> negative half <str<strong>on</strong>g>of</str<strong>on</strong>g> a quantum group. This is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main results in<br />

[10].<br />

On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r h<strong>and</strong>, in a representati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical point <str<strong>on</strong>g>of</str<strong>on</strong>g> view, <str<strong>on</strong>g>the</str<strong>on</strong>g> variety Λ(d) is<br />

nothing but <str<strong>on</strong>g>the</str<strong>on</strong>g> variety <str<strong>on</strong>g>of</str<strong>on</strong>g> nilpotent representati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding preprojective<br />

algebra. Namely, <str<strong>on</strong>g>the</str<strong>on</strong>g> results <str<strong>on</strong>g>of</str<strong>on</strong>g> [10] tell us that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a “nice” corresp<strong>on</strong>dence between<br />

preprojective algebras <strong>and</strong> crystal basis <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum groups. In this note, we try to<br />

explain what is <str<strong>on</strong>g>the</str<strong>on</strong>g> meaning <str<strong>on</strong>g>of</str<strong>on</strong>g> this corresp<strong>on</strong>dence. Adding to that, we also discuss<br />

resent progress around this area.<br />

1. Introducti<strong>on</strong><br />

Kashiwara-S [10] 1997 <br />

<br />

Lie Lie <str<strong>on</strong>g>the</str<strong>on</strong>g>oretic <br />

<br />

preprojective algebra <br />

<br />

[10] preprojective algebra <br />

<br />

Geiss-Leclerc-Schöer [4][7]<br />

<br />

Dem<strong>on</strong>et <br />

<br />

preprojective algebra <br />

<br />

preprojective algebra “” <br />

1 <br />

• <br />

<br />

1 <br />

[16]<br />

–165–


• quiver Γ = (I, Ω) I <br />

Ω i ∈ I j ∈ I τ ∈ Ω <br />

i = out(τ)j = in(τ) τ ∈ Ω <br />

τ <br />

τ<br />

i ❡ ✲ ❡ j<br />

i ❡✛ τ ❡ j<br />

‖<br />

‖ ⇒ ‖<br />

‖<br />

out(τ) in(τ) in(τ) out(τ)<br />

i, j, k ∈ I i j τj k σ <br />

τ σ path path τσ στ<br />

<br />

❡<br />

i<br />

τ<br />

✲ ❡<br />

j<br />

σ<br />

✲ ❡<br />

k<br />

algebra A A-module left module <br />

τ σ στ <br />

<br />

<br />

<br />

⇒<br />

❡<br />

i<br />

στ<br />

✲ ❡<br />

k<br />

2. Varieties <str<strong>on</strong>g>of</str<strong>on</strong>g> Representati<strong>on</strong>s<br />

2.1. Quiver .<br />

K Γ = (I, Ω) quiver Γ V = (V, B)<br />

<br />

• V = ⊕ i∈I V i I-graded vector space,<br />

• B = (B τ ) τ∈Ω K-linear maps B τ ∈ Hom K (V out(τ) , V in(τ) ) <br />

Γ V = (V, B) <br />

dimV := (dim K V i ) i∈I ∈ Z I ≥0<br />

V dimensi<strong>on</strong> vector B I-graded vector space<br />

V = ⊕ i∈I V i dimensi<strong>on</strong> vector dimV <br />

Γ V = (V, B) V ′ = (V ′ , B ′ ) V V ′ (morphism)φ =<br />

(φ i ) i∈I K-linear maps φ i : V i → V i<br />

′ (i ∈ I) τ ∈ Ω <br />

φ in(τ) B τ = B ′ τφ out(τ) (2.1.1)<br />

ϕ = (ϕ i ) i∈I I-graded vector space <br />

V V ′ <br />

–166–


d = (d i ) i∈I ∈ Z I ≥0 dimV = d I-graded vector space <br />

2 V (d) vector space <br />

E Ω (d) := ⊕ Hom K (V (d) out(τ) , V (d) in(τ) ).<br />

τ∈Ω<br />

B ∈ E Ω (d) V = (V (d), B) dimV = d Γ <br />

dimV = d Γ E Ω (d) dim = d<br />

Γ E Ω (d) dim = d<br />

Γ <br />

E Ω (d) G(d) := ∏ i∈I GL(V (d) i) <br />

(<br />

) (<br />

B = (B τ ) ↦→ gB = g in(τ) B τ g −1<br />

out(τ) g = (gi ) i∈I ∈ G(d) )<br />

quiverφ = (φ i )φ i GL(V (d) i )<br />

(2.1.1) <br />

Γ <br />

⇔<br />

E Ω (d) <br />

G(d)-orbit <br />

<br />

{ }<br />

dim = d <br />

1 : 1<br />

←→ {E<br />

Γ<br />

Ω (d) G(d)-orbit}<br />

Γ path algebra K[Γ]<br />

module <br />

{<br />

} { }<br />

dim = d <br />

1 : 1 dim = d 1 : 1<br />

←→<br />

←→ {E<br />

K[Γ]-module <br />

Γ<br />

Ω (d) G(d)-orbit}<br />

B = (B τ ) τ∈Ω ∈ E Ω (d) <br />

I-graded vector space V (d) K[Γ]-module structure τ ∈ K[Γ]<br />

B τ <br />

2.2. Relati<strong>on</strong> quiver .<br />

Γ = (I, Ω) = K[Γ]-modules <br />

relati<strong>on</strong> quiver<br />

<br />

A = K[Γ]/J J relati<strong>on</strong>s ρ 1 , · · · , ρ l <br />

ideal V A-module dimV = d A <br />

1 A 1 A = ∑ i∈I e i V I-graded vector space <br />

V i := e i V V = ⊕ i∈I V i τ ∈ Ω V <br />

linear map B τ ∈ Hom K (V out(τ) , V in(τ) ) Γ V = (V, B)<br />

2 <br />

<br />

–167–


B = (B τ ) relati<strong>on</strong>s ρ 1 , · · · , ρ l <br />

ρ j <br />

ρ j = ∑ a k1 ,k 2 ,··· ,k j<br />

τ k1 τ k2 · · · τ kj (1 ≤ j ≤ l, a k1 ,k 2 ,··· ,k j<br />

∈ K)<br />

B = (B τ ) <br />

ρ j (B) := ∑ a k1 ,k 2 ,··· ,k j<br />

B τk1 B τk2 · · · B τkj = 0 (1 ≤ j ≤ l) (2.2.1)<br />

B <br />

Λ A (d) := {B ∈ E Ω (d) | B (2.2.1) }<br />

E Ω (d) Λ A (d) <br />

variety <str<strong>on</strong>g>of</str<strong>on</strong>g> A-modules (<str<strong>on</strong>g>of</str<strong>on</strong>g> dimensi<strong>on</strong> vector d) <br />

<br />

{<br />

<br />

dim = d <br />

A-module <br />

<br />

}<br />

A “=”<br />

1 : 1<br />

←→ {Λ A (d) G(d)-orbit}<br />

Λ A (d) <br />

G(d)-orbit <br />

K <br />

<br />

K = C <br />

A finite representati<strong>on</strong> type Λ A (d) <br />

G(d)-orbit G(d)\Λ A (d) <br />

A wild <br />

G(d)\Λ A (d) <br />

3 <br />

module<br />

A A-module<br />

category subcategory <br />

<br />

orbit <br />

<br />

<br />

orbit <br />

3 <br />

<br />

G(d)\Λ A (d) stack <br />

<br />

wild stack <br />

<br />

–168–


variety <str<strong>on</strong>g>of</str<strong>on</strong>g> A-<br />

module Λ A (d) <br />

Λ A (d) <br />

Λ A (d) = <br />

or or <br />

Λ A (d) <br />

IrrΛ A (d) := Λ A (d) <br />

G(d) orbit<br />

<br />

<br />

= <br />

A-module <br />

A <br />

<br />

dimensi<strong>on</strong> vector module module<br />

IrrΛ A (d) dimensi<strong>on</strong><br />

vector ⊔<br />

IrrΛ A (d)<br />

<br />

d∈Z I ≥0<br />

A <br />

A preprojective algebra <br />

preprojective algebra wild<br />

A-module =orbit <br />

⊔ d∈Z I<br />

≥0<br />

IrrΛ A (d) “crystal” <br />

⊔ d∈Z I<br />

≥0<br />

IrrΛ A (d) <br />

Introducti<strong>on</strong> [10] preprojective<br />

algebra <br />

<br />

preprojective algebra<br />

A <br />

<br />

Geiss-Leclerc-Schröer <br />

[4],[5],[6],[7] Kimura 4 [11]<br />

<br />

3.1. .<br />

3. Preprojective algebras<br />

Γ = (I, Ω) loop H := Ω ⊔ Ω double quiver<br />

˜Γ := (I, H) <br />

4 <br />

–169–


Definiti<strong>on</strong> 1. double quiver ˜Γ path algebra C[˜Γ] |I| = n relati<strong>on</strong>s<br />

µ i := ∑ ε(τ)ττ (i ∈ I)<br />

τ∈H<br />

out(τ)=i<br />

{<br />

1 (τ ∈ Ω)<br />

J ε(τ) =<br />

−1 (τ ∈ Ω) <br />

P (Γ) := C[˜Γ]/J<br />

Γ Preprojective algebra J µ i preprojective<br />

relati<strong>on</strong>s <br />

P (Γ) <br />

Propositi<strong>on</strong> 2.<br />

(1) P (Γ) C ⇔ Γ Dynkin quiver<br />

(2) P (Γ) finite representati<strong>on</strong> type ⇔ Γ A n (n = 1, 2, 3, 4) <br />

(3) P (Γ) tame representati<strong>on</strong> type ⇔ Γ A 5 or D 4 <br />

Γ P (Γ) wild <br />

3.2. Varieties <str<strong>on</strong>g>of</str<strong>on</strong>g> nilpotent representati<strong>on</strong>s.<br />

Propositi<strong>on</strong> 2 (1) Γ n<strong>on</strong>-Dynkin P (Γ) <br />

<br />

<br />

Definiti<strong>on</strong> 3. B ∈ E d,Ω (nilpotent) N <br />

N path σ B σ = 0 <br />

module B P (Γ)-module V B <br />

N path σ σV = {0} <br />

d ∈ Z I ≥0 <br />

<br />

X(d) := ⊕ Hom C (V (d) out(τ) , V (d) in(τ) )<br />

τ∈H<br />

Λ(d) := {B ∈ X(d) | µ i (B) = 0 (∀ i ∈ I) B nilpotent}<br />

X(d) dimensi<strong>on</strong> vector d nilpotent P (Γ)-<br />

modules <br />

Remark 4. (1) Γ Dynkin quiver B ∈ E Ω (d) µ i (B) = 0 (∀ i ∈ I) <br />

B nilpotent ([9])<br />

Λ(d) dimensi<strong>on</strong> vector = d P (Γ)-module <br />

(2) “preprojective algebra ” Λ(d) <br />

Λ(d) preprojective algebra quiver <br />

–170–


preprojective<br />

relati<strong>on</strong>s 5<br />

P (Γ)-nilp nilpotent P (Γ)-module category <br />

= orbit<br />

{<br />

}<br />

dim = d <br />

1 : 1<br />

←→ {Λ(d) G(d)-orbit}<br />

P (Γ)-nilp object <br />

<br />

Propositi<strong>on</strong> 2 P (Γ) wild<br />

“G(d)-orbit ” <br />

Γ(d) <br />

IrrΛ(d) := Λ(d) <br />

dimensi<strong>on</strong> vector <br />

B :=<br />

⊔<br />

IrrΛ(d)<br />

d∈Z I ≥0<br />

B “crystal” B <br />

[10] <br />

4. A crystal structure <strong>on</strong> B<br />

4.1. Root datum.<br />

crystal root datum fix <br />

dimensi<strong>on</strong> vectors lattice Z I quiver<br />

Cartan matrix bilinear form <br />

“Cartan matrix”Lie <str<strong>on</strong>g>the</str<strong>on</strong>g>ory<br />

6 Z I bilinear form <br />

Cartan matrix <br />

<br />

<br />

5 Λ(d) symplectic (X, ω) Lie G symplectic form<br />

ω (moment map) µ : X → Lie(G) ∗ <br />

Lie(G) G Lie algebraLie(G) ∗ dual space symplectic <br />

symplectic moment map 0 Λ := µ −1 (0) <br />

“” <br />

Λ = µ −1 (0) <br />

Λ(d) X(d) = E Ω (d) ⊕ E Ω<br />

(d) X(d) bilinear form ω <br />

ω(B, B ′ ) := ∑ τ∈H ε(τ)tr(B τ B ′ τ ) ω X(d) skew-symmetric<br />

bilinear form (symplectic form) G(d) X(d) symplectic form <br />

symplectic moment map µ : X(d) → Lie(G(d)) ∗ <br />

setting µ 0 Λ = µ −1 (0) variety <str<strong>on</strong>g>of</str<strong>on</strong>g> nilpotent<br />

representati<strong>on</strong>s Λ(d) <br />

6 (<strong>Ring</strong>el [13]<br />

Assem et. al. [1] ) <br />

–171–


◦ side<br />

Γ = (I, Ω) cycle (acyclic) <br />

C[Γ] S(i) i ∈ I simple C[Γ]-module, P (i) <br />

projective cover I = {1, 2, · · · , n} <br />

Definiti<strong>on</strong> 5. n C Γ = (c i,j ) i,j∈I <br />

c i,j := dim C[Γ] (P (i), P (j))<br />

C Γ path algebra C[Γ] Cartan matrix <br />

<br />

(i, j ∈ I).<br />

(i) Cartan matrix C Γ <br />

(ii) Cartan matrix C Γ c i,j <br />

(iii) Cartan matrix C Γ <br />

Lie <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <br />

Cartan matrix <br />

(i) (ii) (iii) <br />

<strong>Ring</strong>el [13] Z I s(i) := dimS(i),<br />

p(i) := dimP (i) <br />

p(i) = s(i) t C Γ (4.1.1)<br />

s(i) i 1 0 <br />

(4.1.1) p(i) t C Γ i <br />

C[Γ]-mod C[Γ]-modules abelian categoryK(C[Γ]) := K(C[Γ]-mod) <br />

Gro<str<strong>on</strong>g>the</str<strong>on</strong>g>ndieck <br />

Z-module <br />

K(C[Γ]) ∋ [V ] ↦→ dimV ∈ Z I<br />

Φ Γ : K(C[Γ]) ∼ → Z I<br />

[V ] C[Γ]-module V K(C[Γ]) <br />

C[Γ] hereditary S(i) projective resoluti<strong>on</strong> <br />

K(C[Γ]) [S(i)] [P (j)] (j ∈ I) Φ Γ <br />

Z I n P ′ <br />

E n =<br />

⎛<br />

⎜<br />

⎝<br />

s(1)<br />

s(2)<br />

.<br />

s(n)<br />

⎞ ⎛<br />

⎟<br />

⎠ = ⎜<br />

⎝<br />

p(1)<br />

p(2)<br />

.<br />

p(n)<br />

⎞<br />

⎟<br />

⎠ P ′<br />

(4.1.1) P ′ = t C −1<br />

Γ<br />

C Γ Z I bilinear form <br />

〈〈x, y〉〉 := x (t C −1<br />

Γ<br />

(E n n )<br />

) t<br />

y (x, y ∈ Z I )<br />

–172–<br />

(iii)


Euler form 7 (i),(ii),(iii) <br />

• Euler form 〈〈·, ·〉〉 <br />

• Euler form 〈〈·, ·〉〉 Z <br />

Euler form A <br />

A 8 V projective dimensi<strong>on</strong> <br />

A-module, W injective dimensi<strong>on</strong> A-module <br />

〈〈dimV, dimW 〉〉 = ∑ l≥0<br />

A = C[Γ] <br />

dim C Ext l A(V, W )<br />

〈〈dimV, dimW 〉〉 = dim C Hom C[Γ] (V, W ) − dim C Ext C[Γ] (V, W )<br />

V, W simple module <br />

〈〈s(i), s(j)〉〉 = δ i,j − dim C Ext C[Γ] (S(i), S(j))<br />

{<br />

1 (i = j),<br />

=<br />

−(Ω i j arrow ) (i ≠ j)<br />

“” <br />

Euler form <br />

(x, y) alg := 1 2 x ( C −1<br />

Γ<br />

+ ) t C −1 t<br />

Γ<br />

y (x, y ∈ Z I )<br />

Z I symmetric bilinear form Γ = (I, Ω) arrow <br />

quiver Γ := (I, Ω) <br />

C Γ = t C Γ<br />

symmetric bilinear form (·, ·) alg <br />

1 (<br />

)<br />

t C −1<br />

2<br />

+ t C −1<br />

Γ Γ<br />

symmetric bilinear form<br />

<br />

{ 1 (i = j),<br />

(s(i), s(j)) alg =<br />

−(H = Ω ∪ Ω i j arrow )/2 (i ≠ j)<br />

<br />

◦ Lie <str<strong>on</strong>g>the</str<strong>on</strong>g>ory side<br />

quiver Γ = (I, Ω) cycle loop Γ<br />

arrow Γ Dyn Γ Dyn quiver Γ <br />

(underlying) Dynkin diagram 9 <br />

7 〈·, ·〉 〈·, ·〉 <br />

8 A global dimensi<strong>on</strong> <br />

9 “Dynkin” Lie <str<strong>on</strong>g>the</str<strong>on</strong>g>ory C[Γ] <br />

“Dynkin case” “n<strong>on</strong>-Dynkin case” Lie <str<strong>on</strong>g>the</str<strong>on</strong>g>ory C[Γ] <br />

Γ Dyn “Dynkin diagram” <br />

–173–


Definiti<strong>on</strong> 6. n × n A(Γ Dyn ) = (a i,j ) 1≤i,j≤n <br />

{<br />

2 (i = j),<br />

a i,j :=<br />

−(Γ Dyn i j ) (i ≠ j).<br />

A(Γ Dyn ) = (a i,j ) Dynkin diagram Γ Dyn Cartan matrix 10 <br />

Lie <str<strong>on</strong>g>the</str<strong>on</strong>g>oretic Cartan matrix A(Γ Dyn ) <br />

(i)’ Cartan matrix A(Γ Dyn ) <br />

(ii)’ Cartan matrix A(Γ Dyn ) a i,j <br />

2 <br />

(iii)’ Cartan matrix A(Γ Dyn ) 11 <br />

side Cartan matrix C Γ (i)∼(iii) <br />

12 <br />

<br />

A = A(Γ Dyn ) Z I bilinear form <br />

(x, y) Lie := xA t y (x, y ∈ Z I )<br />

A(Γ Dyn ) symmetric bilinear form <br />

A(Γ Dyn ) <br />

{<br />

2 (i = j),<br />

(s(i), s(j)) Lie =<br />

−(Γ Dyn i j ) (i ≠ j)<br />

H = Ω ∪ Ω i j arrow Γ Dyn i j <br />

<br />

(s(i), s(j)) Lie = 2(s(i), s(j)) alg<br />

Cartan matrix <br />

A(Γ Dyn ) = 2 · 1 (<br />

)<br />

t C −1<br />

2<br />

+ t C −1<br />

Γ Γ<br />

Cartan matrix <br />

Z I symmetric bilinear form (·, ·) Lie <br />

(·, ·) 13 <br />

Remark 7. Lie <str<strong>on</strong>g>the</str<strong>on</strong>g>ory Cartan matrix A(Γ Dyn ) Lie algebra <br />

Lie algebra Kac-Moody Lie algebra <br />

Lie <str<strong>on</strong>g>the</str<strong>on</strong>g>ory “Dynkin diagram” <br />

Γ Dyn Dynkin diagram symmetric <br />

10 loop Γ cycle <br />

11 Γ extended DynkinLie <str<strong>on</strong>g>the</str<strong>on</strong>g>ory affine A(Γ Dyn ) corank 1 <br />

<br />

12 Lie<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>oretic <br />

13 Lie <str<strong>on</strong>g>the</str<strong>on</strong>g>oretic “2” <br />

<br />

–174–


symmetric Kac-Moody Lie algebra 14 Lie algebra <br />

Γ Dyn A, D, E <br />

Dynkin case<br />

Definiti<strong>on</strong> 8. Γ = (I, Ω) loop quiver (Z I ) ⊗ Q = Q I <br />

{s(i)|i ∈ I}, bilinear form (·, ·) ( Q I , {s(i)}, (·, ·) ) Dynkin diagram<br />

Γ Dyn root datum (·, ·) Z I bilinear form<br />

Q I <br />

Remark 9. Lie <str<strong>on</strong>g>the</str<strong>on</strong>g>ory root datum <br />

15 Lie<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>ory root datum Cartan matrix <br />

symmetric quiver<br />

Cartan matrix symmetric Cartan<br />

matrix symmetric <br />

4.2. Crystal .<br />

crystal <br />

crystal <br />

“” <br />

root datum ( Q I , {s(i)}, (·, ·) ) fix {s(i)} Q I <br />

Z-submodule <br />

Q := ⊕ Zs(i)<br />

i∈I<br />

root lattice Q ∼ = Z I P <br />

:<br />

(a) P Q I rank n = |I| Z-submodule <br />

(b) (z, Q) ⊂ Z for every z ∈ P.<br />

(c) s(i) ∈ P for every i ∈ I.<br />

(c) Q ⊂ P <br />

Remark 10. (1) bilinear form (·, ·) Γ A, D, E <br />

(a), (b), (c) can<strong>on</strong>ical <br />

P <br />

P := {z ∈ Q I | (z, Q) ⊂ Z}<br />

lattice Q dual lattice <br />

<br />

(·, ·) Γ extended Dynkin <br />

P Z (a) <br />

can<strong>on</strong>ical P choice <br />

14 symmetric A(Γ Dyn ) Kac-Moody<br />

Lie algebra Cartan matrix <br />

15 Lie <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <br />

–175–


(2) P Lie <str<strong>on</strong>g>the</str<strong>on</strong>g>ory weight lattice <br />

crystal 16 <br />

Definiti<strong>on</strong> 11. B <br />

wt : B → P, ε i : B → Z ⊔ {−∞}, ϕ i : B → Z ⊔ {−∞},<br />

ẽ i : B → B ⊔ {0}, ˜fi : B → B ⊔ {0} (i ∈ I)<br />

( B; wt, ε i , ϕ i , ẽ i , ˜f i<br />

)<br />

root datum<br />

(<br />

Q I , {s(i)}, (·, ·) ) <br />

crystal <br />

(C1) i ∈ I, b ∈ B <br />

(C2) b ∈ B ẽ i b ∈ B <br />

ϕ i (b) = ε i (b) + (s(i), wt(b)).<br />

wt(ẽ i b) = wt(b) + s(i), ε i (ẽ i b) = ε i (b) − 1, ϕ i (ẽ i b) = ϕ i (b) + 1.<br />

(C2)’ b ∈ B ˜f i b ∈ B <br />

wt( ˜f i b) = wt(b) − s(i), ε i ( ˜f i b) = ε i (b) + 1, ϕ i ( ˜f i b) = ϕ i (b) − 1.<br />

(C3) b, b ′ ∈ B <br />

b ′ = ẽ i b ⇔ b = ˜f i b ′ .<br />

(C4) b ∈ B ϕ i (b) = −∞ <br />

ẽ i b = ˜f i b = 0.<br />

“−∞” “0” Z <br />

extra B extra <br />

−∞ Z “” <br />

(−∞) + a = a + (−∞) = −∞ (a ∈ Z)<br />

17 <br />

ϕ i (b) = −∞ ⇔ ε i (b) = −∞.<br />

b ∈ B wt(b) ∈ P (s(i), wt(b)) ∈ Z <br />

(C1) “” ϕ i (b) = −∞ ε i (b) = −∞ <br />

<br />

crystal ( B; wt, ε i , ϕ i , ẽ i , ˜f i<br />

)<br />

<br />

crystal B<br />

crystal crystal graph<br />

16 “” root datum quiver <br />

root datum <br />

17 −∞ <br />

<br />

–176–


Definiti<strong>on</strong> 12. B crystal B <br />

B crystal graph <br />

b ′ = ˜f i b b b ′ i ∈ I <br />

i<br />

b ✲ b ′<br />

Example 13. Γ A n quiver orientati<strong>on</strong> ω 1 ∈ P <br />

n + 1 <br />

(ω 1 , s(i)) = δ 1,i<br />

B(ω 1 ) := {b 0 , b 1 , · · · , b n }<br />

wt, ε i , ϕ i , ẽ i , ˜f i <br />

k∑<br />

wt(b k ) := ω 1 − s(i) (0 ≤ k ≤ n),<br />

{<br />

1 (i = k),<br />

ε i (b k ) :=<br />

0 (o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise),<br />

{<br />

b k−1 (i = k),<br />

ẽ i b k :=<br />

0 (o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise),<br />

i=1<br />

{<br />

1 (i = k + 1),<br />

ϕ i (b k ) :=<br />

0 (o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise),<br />

{<br />

b k+1 (i = k + 1),<br />

˜f i b k :=<br />

0 (o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise).<br />

B(ω 1 ) crystal crystal graph <br />

b 0<br />

1 ✲ b 2 1<br />

✲ b 3 2<br />

✲ · · · n ✲ b n<br />

B(ω 1 ) A n vector crystal basiscrystal <br />

<br />

<br />

Example 14. Γ loop quiver j ∈ I Z <br />

<br />

B j := {b j (k) | k ∈ Z}<br />

wt, ε i , ϕ i , ẽ i , ˜f i <br />

wt(b j (k)) := ks(j) (k ∈ Z),<br />

{<br />

{<br />

−k (i = j),<br />

k (i = j),<br />

ε i (b j (k)) :=<br />

ϕ i (b j (k)) :=<br />

−∞ (i ≠ j),<br />

−∞ (i ≠ j),<br />

{<br />

{<br />

b j (k + 1) (i = j),<br />

b j (k − 1) (i = j),<br />

ẽ i b j (k) :=<br />

˜f i b j (k) :=<br />

0 (i ≠ j),<br />

0 (i ≠ j).<br />

B j crystal crystal graph <br />

j j<br />

· · · ✲ ❡<br />

b j (k − 1)<br />

✲ ❡<br />

b j (k)<br />

j j j<br />

✲ ❡ ✲ ❡<br />

b j (k + 1) b j (k + 2)<br />

–177–<br />

✲<br />

· · ·


Example 15. Γ loop quiver λ ∈ P <br />

wt, ε i , ϕ i , ẽ i , ˜f i <br />

T λ := {t λ }<br />

wt(t λ ) := λ, ε i (t λ ) = ϕ i (t λ ) := −∞, ẽ i t λ = ˜f i t λ := 0 (∀ i ∈ I).<br />

T λ crystal crystal graph <br />

<br />

4.3. B .<br />

B = ⊔ IrrΛ(d) ( Q I , {s(i)}, (·, ·) ) root datum crystal <br />

◦ wt Λ ∈ IrrΛ(d) <br />

wt(Λ) := −d.<br />

◦ ε i B ∈ Λ(d) ε i (B) ∈ Z ≥0 <br />

(<br />

)<br />

⊕B<br />

ε i (B) := dim C Coker ⊕ V (d)<br />

τ<br />

out(τ) −→ V (d)i .<br />

τ∈H;in(τ)=i<br />

B = (B τ ) τ∈H ∈ Λ(d) I-graded vector space V (d) P (Γ)-module <br />

ε i (B) i ∈ I <br />

P (Γ)-module V (d) top (i-th top) <br />

Λ ∈ IrrΛ(d) Λ generic B ∈ Λ <br />

<br />

ε i (Λ) := ε i (B)<br />

◦ ϕ i wt ε i (C1) ϕ i <br />

ϕ i (Λ) := ε i (Λ) + (s(i), wt(Λ)).<br />

◦ ẽ i <br />

(<br />

IrrΛ(d)<br />

)i,p := { Λ ∈ IrrΛ(d) | ε i (Λ) = p }<br />

IrrΛ(d) ( IrrΛ(d) ) disjoint uni<strong>on</strong> <br />

i,p<br />

IrrΛ(d) = ( IrrΛ(d) ) ⊔ ( IrrΛ(d) ) ⊔ ( IrrΛ(d) ) ⊔ · · · ⊔ ( IrrΛ(d) ) i,0 i,1 i,2 i,dim C V (d) i<br />

.<br />

( IrrΛ(d) ) (0 ≤ p ≤ dim i,p C V (d) i ) <br />

Λ ∈ ( IrrΛ(d) ) Λ generic B <br />

i,l<br />

l = ε i (B) = P (Γ)-module V (d) i-th top <br />

<br />

V (d) P (Γ)-submodule V ′′ V (d)/V ′′ ∼ = S(i) ⊕l (i-th top <str<strong>on</strong>g>of</str<strong>on</strong>g> V (d))<br />

–178–


V ′′ i-th radical <br />

I-graded vector space V ′′ ∼ = V (d ′′ ) d ′′ := d − ls(i) <br />

I-graded vector space V (d ′′ ) P (Γ)-module structure <br />

0 → V (d ′′ ) −→ φ′′<br />

V (d) −→ φ′<br />

S(i) ⊕l → 0 (4.3.1)<br />

P (Γ)-module <br />

P (Γ)-module V (d ′′ ) Λ(d ′′ ) B ′′ <br />

Λ(d) ∋ B → B ′′ ∈ Λ(d ′′ )<br />

<br />

V (d) i-th radical <br />

<br />

B → B ′′ V ′′ ∼ = V (d ′′ ) i-th radical <br />

V (d ′′ ) P (Γ)-module structure<br />

B ′′ ∈ Λ(d ′′ ) <br />

(4.3.1) I-graded vector space<br />

V (d) P (Γ)-module structure <br />

B ∈ Λ(d) <br />

V (d ′′ ) P (Γ)-module structure B ′′ ∈ Λ(d ′′ ) <br />

φ ′′ : V (d ′′ ) → V (d) P (Γ)-module <br />

P (Γ)-module Imφ ′′ B-stable <br />

18 V (d)/V (d ′′ ) ∼ = S(i) ⊕l P (Γ)-module <br />

φ ′ : V (d) → S(i) ⊕l <br />

P (Γ)-module <br />

(B, φ ′ , φ ′′ ) B ∈ Λ(d) Imφ ′′ B-<br />

stable (B, φ ′ , φ ′′ ) Λ(d; d ′′ ) <br />

Λ(d; d ′′ ) Λ(d)Λ(d ′′ ) <br />

q 1 : Λ(d; d ′′ ) ∋ (B, φ ′ , φ ′′ ) ↦→ B ∈ Λ(d), q 2 : Λ(d; d ′′ ) ∋ (B, φ ′ , φ ′′ ) ↦→ B ′′ ∈ Λ(d ′′ )<br />

<br />

Λ(d ′′ ) q 2<br />

←− Λ(d; d ′′ ) q 1<br />

−→ Λ(d) (4.3.2)<br />

q 1 , q 2 B → B ′′ <br />

<br />

Propositi<strong>on</strong> 16 (Kashiwara-S [10]). (4.3.2) <br />

( ) ∼<br />

IrrΛ(d) → ( IrrΛ(d ′′ ) ) i,0<br />

i,l<br />

18 φ ′′ I-graded vector ( space Imφ ′′ V (d) I-graded vector subspace <br />

Imφ ′′ = ⊕ ) i∈I Imφ<br />

′′<br />

τ ∈ H <br />

i<br />

Imφ ′′ B-stable <br />

B τ<br />

(<br />

Imφ<br />

′′ ) out(τ) ⊂ ( Imφ ′′) in(τ)<br />

–179–


P (Γ)-module i-th radical <br />

B → B ′′ well-defined <br />

well-defined <br />

q 1 , q 2 ([10]) <br />

<br />

<br />

ẽ max<br />

i : ( IrrΛ(d) ) ∼<br />

→ ( IrrΛ(d ′′ ) ) i,l<br />

i,0<br />

ẽ i <br />

ẽ i <br />

{ (Λ(d) ) ẽ max<br />

i<br />

−→ ( Λ(d − ls(i)) ) (ẽ max<br />

i )<br />

−→ −1 ( Λ(d − s(i)) ) if l > 0,<br />

ẽ i : ( ) i,l<br />

i,0<br />

i,l−1<br />

Λ(d) −→ {0} if l = 0.<br />

i,0<br />

ẽ i “” ẽ i <br />

P (Γ)-module i-th top generic <br />

19 i-th top 0 l = 0 <br />

0 <br />

B = ⊔ d∈Z<br />

IrrΛ(d) comp<strong>on</strong>ent ẽ I i <br />

≥0<br />

<br />

ẽ i : B → B ⊔ {0}<br />

well-defined <br />

◦ ˜f i ẽ max<br />

i<br />

˜f i : ( Λ(d) ) i,l<br />

<br />

ẽ max<br />

i<br />

−→ ( Λ(d − ls(i)) ) i,0<br />

(ẽ max<br />

i ) −1<br />

−→ ( Λ(d + s(i)) ) i,l+1 .<br />

l 0 ˜f i “” <br />

P (Γ)-module i-th top generic <br />

l <br />

˜f i <br />

<br />

˜f i : B → B<br />

<br />

19 P (Γ)-module i-th top generic <br />

ẽ i <br />

<br />

( ) ∼<br />

IrrΛ(d) → ( IrrΛ(d − s(i)) ) i,l−1<br />

i,l<br />

( IrrΛ(d ′′ ) ) i,0<br />

<br />

–180–


Propositi<strong>on</strong> 17 ([10]). ( B; wt, ε i , ϕ i , ẽ i , ˜f i<br />

)<br />

root datum<br />

(<br />

Q I , {s(i)}, (·, ·) ) <br />

crystal <br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. (C1)(C4) (C1)(C3) <br />

(C4) ϕ i (Λ) = −∞ Λ ∈ B OK<br />

□<br />

4.4. .<br />

B = ⊔ d∈Z<br />

IrrΛ(d) crystal structure preprojective<br />

I<br />

≥0<br />

algebra <br />

<br />

Qcrystal structure <br />

<br />

preprojective algebra <br />

crystal <br />

Theorem 18 (Kashiwara-S [10]). crystal B B(∞) 20 .<br />

B(∞) “ crystal basis” crystal <br />

<br />

“ crystal basis” <br />

Theorem 18 <br />

<br />

Acrystal preprojective<br />

algebra nilpotent variety <br />

<br />

<br />

Γ Dynkin case A 5 <br />

<br />

4.5. Ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r crystal structure <strong>on</strong> B.<br />

4.3 crystal structure “ top ” <br />

top <br />

socle <br />

OK top socle B crystal structure <br />

B crystal structure 4.3 <br />

<br />

wt 4.3 ε i 4.3 <br />

∗ ε ∗ i <br />

20 crystal <br />

<br />

–181–


B ∈ Λ(d) <br />

ε ∗ i (B) := dim C Ker<br />

(<br />

)<br />

⊕B<br />

V (d)<br />

τ<br />

i −→ ⊕ V (d) in(τ)<br />

τ∈H;out(τ)=i<br />

P (Γ)-module i-th socle <br />

Λ ∈ IrrΛ(d) Λ generic B ∈ Λ <br />

<br />

<br />

ε ∗ i (Λ) := ε ∗ i (B)<br />

ϕ ∗ i (Λ) := ε ∗ i (Λ) + (s(i), wt(Λ))<br />

4.3 ε i = i-th top IrrΛ(d) ε ∗ i = i-th socle <br />

<br />

IrrΛ(d) = ⊔ ( ) p<br />

IrrΛ(d) , where ( IrrΛ(d) ) p<br />

:= { Λ ∈ IrrΛ(d) | ε ∗ i i i (Λ) = p } .<br />

p≥0<br />

4.3 <br />

(ẽ ∗ i ) max : ( IrrΛ(d) ) l ∼<br />

→ ( IrrΛ(d ′ ) ) 0<br />

i<br />

i<br />

d ′ := d − ls(i) 21 <br />

top socle (4.3.1)<br />

map <br />

0 → S(i) ⊕l φ ′′<br />

−→ V (d) φ′<br />

−→ V (d ′ ) → 0. (4.5.1)<br />

(4.3.2) (ẽ ∗ i ) max <br />

(ẽ ∗ i ) max i-th cosocle <br />

<br />

(ẽ ∗ i ) max <br />

ẽ ∗ i : B → B ⊔ {0}, ˜f<br />

∗<br />

i : B → B<br />

<br />

Theorem 19 ([10]). (1) ( B; wt, ε ∗ i , ϕ ∗ i , ẽ ∗ i , ˜f<br />

) (<br />

i<br />

∗ root datum Q I , {s(i)}, (·, ·) ) <br />

crystal <br />

(2) crystal ( B; wt, ε ∗ i , ϕ ∗ i , ẽ ∗ i , ˜f<br />

)<br />

i<br />

∗ B(∞) <br />

(2) Theorem 18 Theorem 19 <br />

(<br />

B; wt, εi , ϕ i , ẽ i , ˜f<br />

) (<br />

i<br />

∼= B(∞) ∼ = B; wt, ε<br />

∗<br />

i , ϕ ∗ i , ẽ ∗ i , ˜f<br />

)<br />

i<br />

∗<br />

<br />

crystal <br />

“ε i = ε ∗ i ” <br />

<br />

top socle <br />

21 d ′ = d ′′ <br />

–182–


top socle <br />

“” <br />

5.1. .<br />

5. Dynkin case<br />

Γ = (I, Ω) Dynkin quiverA, D, E side <br />

P (Γ) <br />

<br />

Propositi<strong>on</strong> 20 (Lusztig [9]). Γ = (I, Ω) Dynkin quiver <br />

Λ ∈ IrrΛ(d) E Ω (d) G(d)-orbit O Ω <br />

Λ = T ∗ O Ω<br />

E Ω (d)<br />

E Ω (d) G(d)-orbit O Ω T ∗ O Ω<br />

E Ω (d) ∈ IrrΛ(d) <br />

<br />

{<br />

EΩ (d) G(d)-orbit } ∋ O Ω<br />

∼<br />

←→ T ∗ O Ω<br />

E Ω (d) ∈ IrrΛ(d). (5.1.1)<br />

T ∗ O Ω<br />

E Ω (d) “O Ω c<strong>on</strong>ormal bundle”T ∗ O Ω<br />

E Ω (d)<br />

“ closure” c<strong>on</strong>ormal bundle setting<br />

<br />

<br />

<br />

X(d) = ⊕ Hom C (V (d) out(τ) , V (d) in(τ) ) = E Ω (d) ⊕ E Ω (d)<br />

τ∈H<br />

π d,Ω : X(d) → E Ω (d) π d,Ω Λ(d) <br />

π Λ(d),Ω := π d,Ω | Λ(d)<br />

π Λ(d),Ω Λ(d) <br />

⊔<br />

Λ(d) =<br />

π −1<br />

Λ(d),Ω (O Ω)<br />

O Ω ;G(d)-orbit<br />

Γ Dynkin type disjoint uni<strong>on</strong> π −1<br />

Λ(d),Ω (O Ω)<br />

Λ(d) G(d) G(d)-<br />

orbit <br />

Propositi<strong>on</strong> 21 ([9]). Γ Dynkin type <br />

<br />

π −1<br />

Λ(d),Ω (O Ω) = T ∗ O Ω<br />

E Ω (d)<br />

π −1<br />

Λ(d),Ω (O Ω) = T ∗ O Ω<br />

E Ω (d).<br />

c<strong>on</strong>ormal bundle π −1<br />

Λ(d),Ω (O Ω) <br />

<br />

Propositi<strong>on</strong> 21 “” Λ ∈ IrrΛ(d) Λ generic<br />

(B τ ) τ∈H <br />

–183–


I-graded vector space V (d) (B τ ) τ∈H <br />

nilpotent P (Γ)-module <br />

π Λ(d),Ω ((B τ ) τ∈H ) = (B τ ) τ∈Ω <br />

P (Γ)-module V (d) τ ∈ Ω <br />

C[Γ]-module <br />

Propositi<strong>on</strong> 21 <br />

{ }<br />

V (d) P (Γ)-module structure <br />

TO ∗ Ω<br />

E Ω (d) =<br />

C[Γ]-module <br />

<br />

Γ Dynkin type Gabriel <br />

C[Γ]-module dimensi<strong>on</strong> vector <br />

Dynkin Γ Dyn positive root <br />

C[Γ]-module V (d) <br />

V (d) =<br />

⊕<br />

β∈∆ + V Ω (β) ⊕a β,Ω<br />

∆ + = ∆ + (Γ Dyn ) positive root V Ω (β) <br />

β ∈ ∆ + C[Γ]-module <br />

<br />

a Ω := (a β,Ω ) β∈∆ + ∈ Z N ≥0 (N := |∆ + |)<br />

<br />

(i) Λ ∈ IrrΛ(d) Λ generic (B τ ) τ∈H <br />

(ii) π Λ(d),Ω ((B τ ) τ∈H ) = (B τ ) τ∈Ω V (d) C[Γ]-module <br />

(iii) C[Γ]-module V (d) multiplicity <br />

a Ω = (a β,Ω ) β∈∆ + ∈ Z N ≥0 <br />

Ψ d,Ω : IrrΛ(d) → Z N ≥0 (5.1.1) <br />

Ψ d,Ω dimensi<strong>on</strong> vector d <br />

<br />

Ψ Ω : B → ∼ Z N ≥0<br />

∼<br />

Ψ −1<br />

Ω<br />

: ZN ≥0 → B a ↦→ TO ∗ a,Ω<br />

E Ω (d) O a,Ω<br />

a ∈ Z N ≥0 G(d)-orbit <br />

crystal structure crystal graph <br />

B crystal structure <br />

graph Γ Dynkin<br />

type Z N ≥0 <br />

Ψ Ω : B → ∼ Z N ≥0 B crystal structure <br />

Z N ≥0 22 <br />

22 Z N ≥0 graph<br />

–184–


Ψ Ω : B → ∼ Z N ≥0 orientati<strong>on</strong> Ω depend Ω <br />

Z N ≥0 crystal structure ZN ≥0 crystal structure<br />

B Ω <br />

B Ω := { a Ω = (a β,Ω ) β∈∆ +<br />

∣ aβ,Ω ∈ Z ≥0 for every β ∈ ∆ } + .<br />

5.2. A .<br />

Γ = (I, Ω) A n Dynkin quiver positive<br />

root ∆ + = ∆(A n ) + <br />

{<br />

}<br />

j∑<br />

∆ + = β i,j := s(i)<br />

∣ 1 ≤ i ≤ j ≤ n .<br />

k=i<br />

<br />

N = |∆ + n(n + 1)<br />

| = .<br />

2<br />

Ψ Ω : B → ∼ Z N ≥0 orientati<strong>on</strong> Ω <br />

<br />

<br />

Ω 0 : ❡ ✛ ❡ ✛ ❡ ✛ · · · ✛ ❡ ✛ ❡ ✛ ❡.<br />

1 2 3 n − 2 n − 1 n<br />

a i,j := a βi,j+1 ,Ω 0<br />

(1 ≤ i < j ≤ n + 1),<br />

B Ω0 = {a := (a i,j ) 1≤i


A ∗(i)<br />

l<br />

(a) =<br />

∑n+1<br />

t=l+1<br />

(a i,t − a i+1,t+1 ) (i ≤ l ≤ n)<br />

a 0,i = a i+1,n+2 = 0 <br />

{<br />

}<br />

ε i (a) := max A (i)<br />

1 (a), · · · , A (i)<br />

i (a) , ϕ i (a) := ε i (a) + ( s(i), wt(a) ) ,<br />

{<br />

}<br />

ε ∗ i (a) := max (a), · · · , A ∗(i) (a) , ϕ ∗ i (a) := ε ∗ i (a) + ( s(i), wt(a) ) .<br />

A ∗(i)<br />

i<br />

n<br />

◦ ẽ i , ˜f i , ẽ ∗ i , ˜f i ∗ <br />

{<br />

}<br />

{<br />

}<br />

k + := min 1 ≤ k ≤ i ∣ ε i (a) = A (i)<br />

k (a) , k − := max 1 ≤ k ≤ i ∣ ε i (a) = A (i)<br />

k (a) ,<br />

{<br />

}<br />

{<br />

}<br />

l + := max i ≤ l ≤ n ∣ ε ∗ i (a) = A ∗(i)<br />

l<br />

(a) , l − := min i ≤ l ≤ n ∣ ε ∗ i (a) = A ∗(i)<br />

l<br />

(a)<br />

( )<br />

a ∈ Z N ≥0 a(p,♮) = ∈ Z N ≥0 (♮ = ±, p =<br />

1, 2) <br />

a (1,±)<br />

k,l<br />

=<br />

a (2,±)<br />

k,l<br />

=<br />

⎧<br />

⎨<br />

⎩<br />

⎧<br />

⎨<br />

⎩<br />

a k± ,i ± 1 (k = k ± , l = i),<br />

a k± ,i+1 ∓ 1 (k = k ± , l = i + 1),<br />

a k,l (o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise).<br />

a (p,♮)<br />

k,l<br />

a i,l± +1 ∓ 1 (k = i, l = l ± + 1),<br />

a i+1,l± +1 ± 1 (k = i + 1, l = l ± + 1),<br />

a k,l (o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise).<br />

<br />

{ 0 (if εi (a) = 0),<br />

ẽ i a :=<br />

a (1,+) (if ε i (a) > 0),<br />

{ 0 (if ε<br />

ẽ ∗ ∗<br />

i a :=<br />

i (a) = 0),<br />

a (2,+) (if ε ∗ i (a) > 0),<br />

<br />

˜f i a := a (1,+) ,<br />

˜f ∗ i a := a (2,−)<br />

<br />

a <br />

<br />

a =<br />

a 1,2 a 1,3 a 1,4 · · · a 1,n a 1,n+1<br />

a 2,3 a 2,4 · · · a 2,n a 2,n+1<br />

a 3,4 · · · a 3,n a 3,n+1<br />

. .. . .<br />

a n−1,n a n−1,n+1<br />

a n,n+1<br />

ẽ i <br />

–186–


• i + 1 25 1 i <br />

1 <br />

• i i + 1 1 <br />

<br />

i + 1 i 1 <br />

k + <br />

<br />

ε i (a) = A (i)<br />

k<br />

1 ≤ k ≤ i <br />

˜f i <br />

• i + 1 1 i <br />

1 <br />

• i i + 1 1 <br />

<br />

i + 1 i 1 <br />

k − <br />

<br />

ε i (a) = A (i)<br />

k<br />

1 ≤ k ≤ i <br />

ẽ ∗ i , ˜f ∗ i <br />

<br />

B Ω0<br />

∼ = Z<br />

N<br />

≥0 <br />

Propositi<strong>on</strong> 22 ([12],[18],[17]). (1) ( B Ω0 ; wt, ε i , ϕ i , ẽ i , ˜f<br />

) (<br />

i BΩ0 ; wt, ε ∗ i , ϕ ∗ i , ẽ ∗ i , ˜f i<br />

∗<br />

crystal <br />

(2) Ψ Ω0 : B → ∼ B Ω0 crystal <br />

<br />

5.3. A .<br />

Ψ Ω0 : ( B; wt, ε i , ϕ i , ẽ i , ˜f<br />

) ∼<br />

i → ( B Ω0 ; wt, ε i , ϕ i , ẽ i , ˜f<br />

)<br />

i ,<br />

Ψ Ω0 : ( B; wt, ε ∗ i , ϕ ∗ i , ẽ ∗ i , ˜f<br />

)<br />

i<br />

∗ ∼<br />

→ ( B Ω0 ; wt, ε ∗ i , ϕ ∗ i , ẽ ∗ i , ˜f<br />

)<br />

i<br />

∗<br />

<br />

n = 3 26 <br />

N = 3(3 + 1)/2 = 6 a <br />

<br />

)<br />

a =<br />

a 1,2 a 1,3 a 1,4<br />

a 2,3 a 2,4<br />

a 3,4<br />

25 a 1,2 <br />

26 n = 1, 2 <br />

–187–


wt(a) = (−d 1 , −d 2 , −d 3 ),<br />

d 1 = a 1,2 + a 1,3 + a 1,4 , d 2 = a 1,3 + a 1,4 + a 2,3 + a 2,4 , d 3 = a 1,4 + a 2,4 + a 3,4 .<br />

a 5.1 a C[Γ 0 ]-module Γ 0 <br />

multiplicity Γ 0 := (I, Ω 0 )<br />

Γ 0 <br />

V(d) =<br />

( C ← {0} ← {0}) ⊕a 1,2<br />

⊕<br />

( C ← C ← {0}) ⊕a 1,3<br />

⊕<br />

( C ← C ← C ) ⊕a 1,4<br />

⊕<br />

({0} ← C ← {0}) ⊕a 2,3<br />

⊕<br />

({0} ← C ← C ) ⊕a 2,4<br />

⊕<br />

({0} ← {0} ← C ) ⊕a 3,4<br />

( d := (d 1 , d 2 , d 3 ) = −wt(a))<br />

V(d) E Ω0 (d) G(d)-orbit O a,Ω0 <br />

Λ a := Ψ −1<br />

Ω 0<br />

(a) = T ∗ O a,Ω0<br />

E Ω0 (d) <br />

<br />

A (1)<br />

1 = a 1,2 ,<br />

A (2)<br />

1 = a 1,3 , A (2)<br />

2 = a 1,3 + (a 2,3 − a 1,2 ),<br />

A (3)<br />

1 = a 1,4 , A (3)<br />

2 = a 1,4 + (a 2,4 − a 1,3 ), A (3)<br />

A ∗(1)<br />

3 = a 1,4 , A ∗(1)<br />

2 = a 1,4 + (a 1,3 − a 2,4 ), A ∗(1)<br />

A ∗(2)<br />

3 = a 2,4 , A ∗(2)<br />

A ∗(3)<br />

3 = a 3,4 .<br />

<br />

ε 1 (a) = a 1,2 ,<br />

2 = a 2,4 + (a 2,3 − a 3,4 ),<br />

ε 2 (a) = max{a 1,3 , a 1,3 + (a 2,3 − a 1,2 )},<br />

3 = a 1,4 + (a 2,4 − a 1,3 ) + (a 3,4 − a 2,3 ),<br />

1 = a 1,4 + (a 1,3 − a 2,4 ) + (a 1,2 − a 2,3 ),<br />

ε 3 (a) = max{a 1,4 , a 1,4 + (a 2,4 − a 1,3 ), a 1,4 + (a 2,4 − a 1,3 ) + (a 3,4 − a 2,3 )},<br />

ε ∗ 1(a) = max{a 1,4 , a 1,4 + (a 1,3 − a 2,4 ), a 1,4 + (a 1,3 − a 2,4 ) + (a 1,2 − a 2,3 )},<br />

ε ∗ 2(a) = max{a 2,4 , a 2,4 + (a 2,3 − a 3,4 )},<br />

ε ∗ 3(a) = a 3,4 .<br />

<br />

Λ a generic P (Γ 0 )-module <br />

i-th topi-th socle <br />

–188–


Kashiwara operatorsẽ i , ˜f i ,ẽ ∗ i , ˜f ∗ i <br />

ẽ 3 ˜f 3 <br />

Example 23. a <br />

◦ ẽ 3 <br />

a =<br />

i = 3 <br />

<br />

4 1 1<br />

2 3<br />

2<br />

A (3)<br />

1 = 1, A (3)<br />

2 = 1 + (3 − 1) = 2, A (3)<br />

3 = 1 + (3 − 1) + (2 − 2) = 2.<br />

ε 3 (a) = max{1, 2, 2} = 2.<br />

ε 3 (a) = A (3)<br />

k<br />

k 2 3 k + k <br />

k + = 2 1 <br />

<br />

◦ ˜f 3 <br />

4 1 1<br />

2 3<br />

2<br />

4 1 1<br />

ẽ<br />

↦−→<br />

3<br />

3 2<br />

2<br />

ε 3 (a) = A (3)<br />

k<br />

k 2 3 k − k <br />

k − = 3 1 <br />

a 3,3 a 3,4 1 <br />

4 1 1<br />

2 3<br />

2<br />

4 1 1<br />

˜f 3<br />

↦−→ 2 3<br />

3<br />

ẽ ∗ i , ˜f ∗ i ẽ∗ 1 ˜f ∗ 1 <br />

<br />

4 1 1<br />

2 3<br />

2<br />

ẽ ∗ 1<br />

↦−→<br />

4 1 0<br />

2 4<br />

3<br />

4 1 1<br />

2 3<br />

2<br />

˜f ∗ 1<br />

↦−→<br />

n = 3 <br />

5.4. A .<br />

orientati<strong>on</strong> <br />

5 1 1<br />

2 3<br />

3<br />

Ω 0 : ❡ ✛ ❡ ✛ ❡ ✛ · · · ✛ ❡ ✛ ❡ ✛ ❡<br />

1 2 3 n − 2 n − 1 n<br />

–189–


Ω <br />

<br />

Q Ω ( B Ω ; wt, ε i , ϕ i , ẽ i , ˜f<br />

) (<br />

i BΩ ; wt, ε ∗ i , ϕ ∗ i , ẽ ∗ i , ˜f<br />

)<br />

i<br />

∗ <br />

<br />

B Ω<br />

∼ = Z<br />

N<br />

≥0 <br />

Q ’N a Ω = (a β,Ω ) β∈∆ + ∈ B Ω <br />

<br />

“” <br />

<br />

orientati<strong>on</strong> Ω, Ω ′ crystal <br />

R Ω′<br />

Ω<br />

:= Ψ Ω ′ ◦ Ψ −1<br />

Ω<br />

: B Ω<br />

∼<br />

→ B ∼ → B Ω ′<br />

B Ω B Ω ′ transiti<strong>on</strong> map “crystal ” <br />

<br />

<br />

(i) a Ω multiplicity C[Γ]-module<br />

<br />

(ii) π Λ(d),Ω P (Γ)-module <br />

(iii) closure <br />

(iv) closure generic τ ∈ Ω ′ <br />

C[Γ ′ ]-module Γ ′ := (I, Ω ′ )<br />

(v) C[Γ ′ ]-module multiplicity <br />

<br />

Remark 24. (iii) closure (iv) generic <br />

<br />

a Ω b Ω ′ := RΩ Ω′ (a Ω) <br />

<br />

π −1<br />

Λ(d),Ω (O a,Ω) = π −1<br />

Λ(d),Ω ′ (O b,Ω ′)<br />

<br />

(<br />

⇔ T ∗ O a,Ω<br />

E Ω (d) = T ∗ O b,Ω ′ E Ω ′(d) )<br />

π −1<br />

Λ(d),Ω (O a,Ω) ≠ π −1<br />

Λ(d),Ω ′ (O b,Ω ′)<br />

closure generic <br />

<br />

RΩ Ω 0<br />

R Ω 0<br />

Ω<br />

= ( )<br />

RΩ Ω −1<br />

0<br />

orientati<strong>on</strong> Ω0 <br />

crystal structure ( B Ω0 ; wt, ε i , ϕ i , ẽ i , ˜f<br />

)<br />

i R<br />

Ω<br />

Ω0<br />

R Ω 0<br />

Ω<br />

<br />

–190–


( B Ω ; wt, ε i , ϕ i , ẽ i , ˜f i<br />

)<br />

27 ∗ crystal<br />

structure <br />

Q Ω R Ω Ω 0<br />

R Ω 0<br />

Ω<br />

<br />

<br />

A ([3],[17]) <br />

<br />

5.5. Open problems.<br />

<br />

Problem 1D E Z N ≥0 crystal structure <br />

B = ⊔ d IrrΛ(d) Z N ≥0 N = |∆+ |<br />

Ψ : B ∼ → Z N ≥0<br />

Γ = (I, Ω) Dynkin quiverA <br />

D E B crystal structure Ψ Ω Z N ≥0 <br />

<br />

A <br />

Z N ≥0 crystal structure <br />

Problem 2Tame case<br />

B ∼ = B(∞) loop quiver Γ Dynkin case <br />

tame Γ extended Dynkin Lie <str<strong>on</strong>g>the</str<strong>on</strong>g>ory<br />

side “affine case” <br />

B(∞) <br />

Λ(d) <br />

<br />

Problem 3Rigid crystals<br />

<br />

variety <str<strong>on</strong>g>of</str<strong>on</strong>g> nilpotent representati<strong>on</strong>s Λ(d) G(d)-<br />

dimensi<strong>on</strong> vector d nilpotent P (Γ)-module <br />

<br />

Λ(d) IrrΛ(d) <br />

27 ẽ i <br />

(<br />

ẽ i a Ω =<br />

R Ω Ω 0<br />

◦ ẽ i ◦ R Ω0<br />

Ω<br />

)<br />

(a Ω ) (a Ω ∈ B Ω )<br />

ẽ i B Ω0 ẽ i <br />

5.2 explicit formula RΩ Ω 0<br />

R Ω 0<br />

Ω<br />

<br />

<br />

–191–


“Λ(d) <br />

G(d)-” <br />

<br />

Definiti<strong>on</strong> 25. Λ ∈ IrrΛ(d) G(d)- O Λ rigid <br />

Λ ∈ IrrΛ(d) rigid Λ P (Γ)-module <br />

<br />

Propositi<strong>on</strong> 26 ([5]). B ∈ Λ(d) P (Γ)-module V B <br />

(a) Ext 1 P (Γ)(V B , V B ) = 0.<br />

(b) B Λ(d) G(d)- O O ∈ IrrΛ(d)Λ := O <br />

rigid<br />

(a) “rigid” <br />

<br />

• A n (1 ≤ n ≤ 4) Λ ∈ B = ⊔ d IrrΛ(d) rigid <br />

• rigid <br />

<br />

Q3rigid <br />

A n <br />

d rigid n ≤ 4 <br />

rigid n ≥ 5 rigid <br />

d rigid <br />

rigid <br />

A 5 sideLie <str<strong>on</strong>g>the</str<strong>on</strong>g>ory side <br />

<br />

<br />

28 <br />

Example 27. A 5 <br />

τ 1 τ 2 τ 3 τ 4<br />

Ω 0 : ❡ ✛ ❡ ✛ ❡ ✛ ❡ ✛ ❡<br />

1 2 3 4 5<br />

orientati<strong>on</strong> a ∈ B Ω0 <br />

a =<br />

0 1 0 0 0<br />

0 0 1 0<br />

1 0 0<br />

0 1<br />

0<br />

Λ a rigid <br />

.<br />

28 <br />

–192–


a Γ 0 = (I, Ω 0 ) <br />

V a (d 0 ) =<br />

( C ← C ← {0} ← {0} ← {0})<br />

⊕<br />

({0} ← C ← C ← C ← {0})<br />

⊕<br />

({0} ← {0} ← C ← {0} ← {0})<br />

⊕<br />

({0} ← {0} ← {0} ← C ← C )<br />

( d 0 := (1, 2, 2, 2, 1) = −wt(a)).<br />

B a = (B τ1 , B τ2 , B τ3 , B τ4 ) <br />

B τ1 = ( 1 0 ) ( ) ( ) (<br />

0 0<br />

1 0<br />

0<br />

, B τ2 = , B<br />

1 0<br />

τ3 = , B<br />

0 0<br />

τ4 =<br />

(5.5.1)<br />

1)<br />

B a E Ω0 (d 0 ) G(d 0 )-orbit O a.Ω0 <br />

<br />

Λ a = π −1<br />

Λ(d 0 ),Ω 0<br />

(O a,Ω0 ) = G(d 0 ) · π −1<br />

Λ(d 0 ),Ω 0<br />

(B a )<br />

Λ a rigid ⇔<br />

⇔<br />

G(d 0 ) · π −1<br />

Λ(d 0 ),Ω 0<br />

(B a ) dense G(d 0 )-orbit <br />

π −1<br />

Λ(d 0 ),Ω 0<br />

(B a ) dense G(d 0 ) Ba -orbit <br />

<br />

G(d 0 ) Ba := {g ∈ G(d 0 ) | g · B a = B a }<br />

(B a stabilizer)<br />

π −1<br />

Λ(d 0 ),Ω 0<br />

(B a ) G(d 0 ) Ba <br />

⎧<br />

⎨<br />

π −1<br />

Λ(d 0 ),Ω 0<br />

(B a ) =<br />

⎩ (B τ 1<br />

, B τ 2<br />

, B τ 3<br />

, B τ 4<br />

)<br />

∣<br />

B τ1 B τ 1<br />

= 0, B τ 1<br />

B τ1 = B τ2 B τ 2<br />

,<br />

B τ 2<br />

B τ2 = B τ3 B τ 3<br />

, B τ 3<br />

B τ3 = B τ4 B τ 4<br />

,<br />

B τ 4<br />

B τ4 = 0<br />

⎫<br />

⎬<br />

⎭ .<br />

B τ i<br />

(i = 1, 2, 3, 4) <br />

C B τ<br />

←−−<br />

1<br />

C<br />

2 B τ<br />

←−−<br />

2<br />

C<br />

2 B τ<br />

←−−<br />

3<br />

C<br />

2 B τ<br />

←−−<br />

4<br />

C<br />

preprojective relati<strong>on</strong>s (5.5.1)<br />

<br />

{(( ) ( ) ( )<br />

0 s 0 0 0<br />

π −1<br />

Λ(d 0 ),Ω 0<br />

(B a ) = , , , ( u 0 )) ∣ }<br />

∣∣ s, t, u, v ∈ C ∼ = C<br />

4<br />

s t 0 u v<br />

stabilizer <br />

G(d 0 ) Ba = { g = (g 1 , g 2 , g 3 , g 4 , g 5 ) ∈ GL 1 (C) × (GL 2 (C)) 3 × GL 1 (C) ∣ }<br />

g · Ba = B a<br />

{ ( ( ) ( ) ( ) ∣ }<br />

a 0 c 0 c 0 ∣∣∣<br />

= g = a, , , , f)<br />

a, c, d, f ∈ C<br />

b c 0 d e f<br />

× , b, e ∈ C<br />

–193–


(( ( ) ( )<br />

0 s 0 0 0<br />

, , ,<br />

s)<br />

( u 0 ))<br />

t 0 u v<br />

(( ) ( ) ( )<br />

g 0 a<br />

↦−→<br />

a −1 ,<br />

−1 cs 0 0 0<br />

cs a −1 ,<br />

dt 0 c −1 fu d −1 , ( c<br />

fv<br />

−1 fu 0 ))<br />

b e “” <br />

a, c, d, f ( C ×) 4<br />

<br />

(<br />

C<br />

× ) 4<br />

C 4 .<br />

s, t, u, v generic 0 su<br />

tv <br />

<br />

su<br />

tv<br />

g<br />

↦−→ a−1 cs · c −1 fu<br />

a −1 dt · d −1fv<br />

= su<br />

tv .<br />

G(d 0 ) Ba π −1<br />

Λ(d 0 ),Ω 0<br />

(B a ) ∼ = C 4 C 4 <br />

su<br />

tv = c<strong>on</strong>st<br />

orbit dense orbit<br />

29 <br />

<br />

0 2 0 0 0<br />

0 0 2 0<br />

2 0 0<br />

0 2<br />

0<br />

,<br />

0 1 0 1 0<br />

0 1 0 1<br />

0 1 0<br />

0 1<br />

0<br />

rigid Example 27 a <br />

2a <br />

k ka <br />

Λ a n<strong>on</strong>-rigid ⇒ Λ ka (k ∈ Z >0 ) n<strong>on</strong>-rigid<br />

k <br />

primitive rigid comp<strong>on</strong>ent <br />

<br />

References<br />

[1] I. Assem, D. Sims<strong>on</strong> <strong>and</strong> A. Skowroński, Elements <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> representati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> associative algebras.<br />

Vol. 1. Techniques <str<strong>on</strong>g>of</str<strong>on</strong>g> representati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory, L<strong>on</strong>d<strong>on</strong>. Math. Soc. Student Texts 65 (2006), Cambridge.<br />

[2] P. Baumann <strong>and</strong> J. Kamnitzer Preprojective algebras <strong>and</strong> MV polytopes, arXiv:1009.2469.<br />

[3] Berenstein, Fomin <strong>and</strong> A. Zelevinsky, Parametrizati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> can<strong>on</strong>ical bases <strong>and</strong> totally positive matrices,<br />

Adv. Math. 122 (1996), 49-149.<br />

[4] C. Geiss, B. Leclerc <strong>and</strong> J. Schöler, Semican<strong>on</strong>ical bases <strong>and</strong> preprojective algebras, Ann. Sci. École<br />

Norm. Sup. (4) 38 (2005), no. 2, 193–253.<br />

29 π −1<br />

Λ(d 0 ),Ω 0<br />

(B a ) ∼ = C 4 orbit <br />

–194–


[5] , Rigid modules over preprojective algebras, Invent. Math. 165 (2006), no. 3, 589–632.<br />

[6] , Semican<strong>on</strong>ical bases <strong>and</strong> preprojective algebras. II. A multiplicati<strong>on</strong> formula, Compos. Math.<br />

143 (2007), no. 5, 1313–1334.<br />

[7] , Partial flag varieties <strong>and</strong> preprojective algebras, Ann. Inst. Fourier (Grenoble) 58 (2008), no.<br />

3, 825–876.<br />

[8] G. Lusztig, Can<strong>on</strong>ical basis arising form quantum universal enveloping algebras, J. AMS 3 (1991),<br />

9–36.<br />

[9] , Quivers, perverse sheaves, <strong>and</strong> quantized enveloping algebras, J. AMS 4(2) (1991), 365–421.<br />

[10] M. Kashiwara <strong>and</strong> Y. Saito, Geometric c<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> crystal bases, Duke Math J. 89 (1997), 9–36.<br />

[11] Y. Kimura, Quantum unipotent subgroup <strong>and</strong> dual can<strong>on</strong>ical basis, arXiv:1010.4242.<br />

[12] M. Reineke, On <str<strong>on</strong>g>the</str<strong>on</strong>g> coloured graph structure <str<strong>on</strong>g>of</str<strong>on</strong>g> Lusztig s can<strong>on</strong>ical basis, Math. Ann. 307 (1997),<br />

705–723.<br />

[13] C. M. <strong>Ring</strong>el, Tame algebras <strong>and</strong> integral quadratic forms, Lecture Note in Math. 1099 (1980),<br />

Springer.<br />

[14] , Hall algebras <strong>and</strong> quantum groups, Invent. Math. 101 (1990), 583–591.<br />

[15] Y. Saito, PBW bases <str<strong>on</strong>g>of</str<strong>on</strong>g> quantized universal enveloping algebras, Publ. RIMS. 30(2) (1994), 209–232.<br />

[16] , , (2006), 63–117.<br />

[17] , Mirković-Vil<strong>on</strong>en polytopes <strong>and</strong> a quiver c<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> crystal basis in type A, IMRN<br />

(2011), doi:10.1093/imrn/rnr173.<br />

[18] A. Savage, Geometric <strong>and</strong> combinatorial realizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> crystal graphs, Alg. Rep. <strong>Theory</strong> 9 (2006),<br />

161–199.<br />

Graduate School <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical Sciences<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Tokyo<br />

Meguro-ku, Tokyo 153-8914 JAPAN<br />

E-mail address: yosihisa@ms.u-tokyo.ac.jp<br />

–195–


MATRIX FACTORIZATIONS, ORBIFOLD CURVES<br />

AND<br />

MIRROR SYMMETRY<br />

ATSUSHI TAKAHASHI ( )<br />

Abstract. Mirror symmetry is now understood as a categorical duality between algebraic<br />

geometry <strong>and</strong> symplectic geometry. One <str<strong>on</strong>g>of</str<strong>on</strong>g> our motivati<strong>on</strong>s is to apply some ideas<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> mirror symmetry to singularity <str<strong>on</strong>g>the</str<strong>on</strong>g>ory in order to underst<strong>and</strong> various mysterious<br />

corresp<strong>on</strong>dences am<strong>on</strong>g isolated singularities, root systems, Weyl groups, Lie algebras,<br />

discrete groups, finite dimensi<strong>on</strong>al algebras <strong>and</strong> so <strong>on</strong>.<br />

In my talk, I explained <str<strong>on</strong>g>the</str<strong>on</strong>g> homological mirror symmetry c<strong>on</strong>jecture between orbifold<br />

curves <strong>and</strong> cusp singularities via Orlov type semi-orthog<strong>on</strong>al decompositi<strong>on</strong>s. I also gave<br />

a summary <str<strong>on</strong>g>of</str<strong>on</strong>g> our results <strong>on</strong> categories <str<strong>on</strong>g>of</str<strong>on</strong>g> maximally-graded matrixfactorizati<strong>on</strong>s, in particular,<br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> existence <str<strong>on</strong>g>of</str<strong>on</strong>g> full str<strong>on</strong>gly excepti<strong>on</strong>al collecti<strong>on</strong>s which gives triangulated<br />

equivalences to derived categories <str<strong>on</strong>g>of</str<strong>on</strong>g> finite dimensi<strong>on</strong>al modules over finite dimensi<strong>on</strong>al<br />

algebras.<br />

1. <br />

<br />

. <br />

. . . <br />

14 Arnold <br />

3 <br />

Arnold <br />

Gablielov Gablielov 14 <br />

<br />

<br />

<br />

Arnold <br />

f(x, y, z) 0 ∈ C 3 <br />

f Milnor Lagrangian distinguish basis<br />

A ∞ - Fuk → (f) D b Fuk → (f)<br />

<br />

f <br />

D b Fuk → (f) full excepti<strong>on</strong>al collecti<strong>on</strong> .<br />

f(x, y, z) <br />

HMF L f<br />

S (f) S := C[x, y, z]L f <br />

f HMF L f<br />

S (f)<br />

<br />

Calabi–Yau L<strong>and</strong>au–Ginzburg <br />

<br />

–196–


Berglund–Hübsch Calabi–Yau <br />

<br />

<br />

C<strong>on</strong>jecture 1 ([12][13]). f(x, y, z) .<br />

(1) (Q, I) <br />

(1.1) HMF L f<br />

S (f) ≃ Db (mod-CQ/I) ≃ D b Fuk → (f t )<br />

<br />

(2) (Q ′ , I ′ ) <br />

(1.2) D b coh(C Gf ) ≃ D b (mod-CQ ′ /I ′ ) ≃ D b Fuk → (T γ1 ,γ 2 ,γ 3<br />

)<br />

(1.1) <br />

C Gf f G f T γ1 ,γ 2 ,γ 3<br />

<br />

.<br />

<br />

(Q ′ , I ′ ) T (γ 1 , γ 2 , γ 3 ) <br />

2 <br />

Theorem 36<br />

2. <br />

f(x 1 , . . . , x n ) . w 1 , . . . , w n d <br />

λ ∈ C ∗ f(λ w 1<br />

x 1 , . . . , λ w n<br />

x n ) = λ d f(x 1 , . . . , x n ) <br />

(w 1 , . . . , w n ; d) . gcd(w 1 , . . . , w n , d) = 1 , <br />

<br />

Definiti<strong>on</strong> 2. f(x 1 , . . . , x n ) <br />

(1) (= n) f(x 1 , . . . x n ) a i ∈ C ∗<br />

E ij i, j = 1, . . . , n<br />

f(x 1 , . . . , x n ) =<br />

n∑<br />

i=1<br />

<br />

(2) (w 1 , . . . , w n ; d) f(x 1 , . . . , x n ) gcd(w 1 , . . . , w n ; d) <br />

, E := (E ij ) Q <br />

<br />

(3) f(x 1 , . . . , x n ) <br />

f t (x 1 , . . . , x n ) :=<br />

n∑<br />

i=1<br />

a i<br />

a i<br />

n<br />

∏<br />

j=1<br />

n<br />

∏<br />

j=1<br />

x E ij<br />

j<br />

x E ji<br />

j ,<br />

f(x 1 , . . . , x n ) Berglund–Hübsch f t (x 1 , . . . , x n ) <br />

0 ∈ C n f, f t Jacobi Jac(f), Jac(f t )<br />

/( ∂f<br />

Jac(f) := C[x 1 , . . . , x n ] , . . . , ∂f )<br />

∂x 1 ∂x n<br />

–197–


( ∂f<br />

Jac(f t t<br />

) := C[x 1 , . . . , x n ] , . . . , ∂f )<br />

t<br />

∂x 1 ∂x n<br />

C dim C Jac(f), dim C Jac(f t ) ≥ 1<br />

.<br />

<br />

<br />

Calabi–Yau <br />

Kreuzer [9] .<br />

∏ n<br />

j=1 xE ij<br />

j<br />

Definiti<strong>on</strong> 3. f(x 1 , . . . , x n ) = ∑ n<br />

i=1 a i . <br />

⎛ ⎞ ⎛ ⎞<br />

w 1<br />

E ⎝<br />

.<br />

⎠ = det(E) ⎝<br />

1.<br />

⎠ , d := det(E).<br />

w n 1<br />

(w 1 , . . . , w n ; d) f W f <br />

<br />

Remark 4. w 1 , . . . , w n <br />

<br />

Definiti<strong>on</strong> 5. f(x 1 , . . . , x n ) W f = (w 1 , . . . , w n ; d) <br />

. <br />

c f := gcd(w 1 , . . . , w n , d)<br />

<br />

Definiti<strong>on</strong> 6. f(x 1 , . . . , x n ) = ∑ n<br />

i=1 a ∏ n<br />

i j=1 xE ij<br />

j . x i , i =<br />

1, . . . , n ⃗x i f f ⃗ <br />

⊕ n i=1Z⃗x i ⊕ Zf ⃗ f L f <br />

n⊕<br />

L f := Z⃗x i ⊕ Zf ⃗ /I f<br />

i=1<br />

I f <br />

n∑<br />

⃗f − E ij ⃗x j ,<br />

<br />

j=1<br />

i = 1, . . . , n<br />

Remark 7. L f 1 <br />

Definiti<strong>on</strong> 8. f(x 1 , . . . , x n ) L f f <br />

G f <br />

G f := Spec(CL f )<br />

CL f L f <br />

{<br />

∣ ∣∣∣∣ n<br />

}<br />

∏<br />

n∏<br />

G f = (λ 1 , . . . , λ n ) ∈ (C ∗ ) n λ E 1j<br />

j = · · · = λ E nj<br />

j<br />

j=1<br />

–198–<br />

j=1


f G f (λ 1 , . . . , λ n ) ∈ G f <br />

λ := ∏ n<br />

j=1 λE 1j<br />

j = · · · = ∏ n<br />

j=1 λE nj<br />

j <br />

<br />

f(λ 1 x 1 , . . . , λ n x n ) = λf(x 1 , . . . , x n )<br />

3. <br />

f C[x 1 , . . . , x n ] S R f R f := S/(f)<br />

L f - R f - gr L f -Rf gr L f -Rf<br />

proj L f<br />

-R f <br />

Definiti<strong>on</strong> 9. <br />

(3.1) D L f<br />

Sg (R f) := D b (gr L f<br />

-R f )/K b (proj L f<br />

-R f )<br />

.<br />

Remark 10. R f D b (gr L f -Rf ) ≃ K b (proj L f<br />

-R f ) <br />

D L f<br />

Sg (R f) {f = 0} f.<br />

Remark 11. <br />

C( ⃗ l) := (R f /m)( ⃗ l) ∈ D L f<br />

Sg (R f), ⃗ l ∈ Lf ,<br />

<br />

D L f<br />

Sg (R f) <br />

<br />

<br />

Definiti<strong>on</strong> 12. M ∈ gr L f -Rf <br />

Ext i R f<br />

(R f /m, M) = 0, i < dim R f ,<br />

Cohen-MacauleyR f -<br />

R f Gorenstein ( ⃗ l) ⃗ l ∈ L f shift <br />

<br />

n∑<br />

(3.2) K Rf ≃ R f (−⃗ɛ f ), ⃗ɛ f := ⃗x i − f, ⃗<br />

<br />

Lemma 13 (Ausl<strong>and</strong>er). Cohen-Macauley R f -CM L f<br />

(R f ) ⊂ gr L f -Rf<br />

Frobenius <br />

<br />

□<br />

–199–<br />

i=1


Definiti<strong>on</strong> 14. CM L f<br />

(R f ) <br />

Ob(CM L f<br />

(R f )) = Ob(CM L f<br />

(R f )),<br />

CM L f<br />

(R f )(M, N) := Hom gr<br />

L f -R f<br />

(M, N)/P(M, N).<br />

g ∈ P(M, N) P g ′ : M → P , g ′′ : P → N <br />

g = g ′′ ◦ g ′ <br />

CM L f<br />

(R f ) CM L f<br />

(R f ) <br />

<br />

Propositi<strong>on</strong> 15 (Happel[7]). CM L f<br />

(R f ) <br />

□<br />

f <br />

Propositi<strong>on</strong> 16. CM L f<br />

(R f ) <br />

∑<br />

dim k CM L f<br />

(R fW )(M, T i N) < ∞,<br />

i<br />

<br />

□<br />

CM L f<br />

(R f ) <br />

Propositi<strong>on</strong> 17 (Ausl<strong>and</strong>er-Reiten[2]). CM L f<br />

(R f ) S = T n−2 ◦ (−⃗ɛ f ) Serre<br />

<br />

<br />

CM L f<br />

(R fW )(M, N) ≃ Hom k (CM L f<br />

(R fW )(N, SM), k)<br />

R f M ∈ CM L f<br />

(R f )<br />

gr L f -S <br />

0 → F 1<br />

f 1→ F0 → M → 0<br />

f M 0 <br />

f 0 : F 0 → F 1 <br />

f 1 f 0 = f · id F0 ,<br />

f 0 f 1 = f · id F1<br />

Eisenbud matrix factorizati<strong>on</strong><br />

Definiti<strong>on</strong> 18 (Eisenbud[4]). F 0 , F 1 f 0 : F 0 → F 1 , f 1 : F 1 →<br />

F 0 f 1 f 0 = f · id F0 , f 0 f 1 = f · id F1 S-<br />

(F 0 , F 1 , f 0 , f 1 ) f <br />

<br />

(<br />

f 0<br />

F := F 0<br />

f 1<br />

–200–<br />

F 1<br />

)<br />


Example 19. <br />

f = x 1 f 1 + x 2 f 2 + · · · + x n f n .<br />

f i ∈ m, i = 1, . . . , n <br />

D L f<br />

Sg (R f) C( ⃗ l) <br />

Lemma 20. f MF L f<br />

S<br />

(f) Frobenius <br />

<br />

HMF L f<br />

S (f) := MFL f<br />

S (f)<br />

<br />

□<br />

Lemma 21. HMF L f<br />

S (f) T 2 = ( f) ⃗ T <br />

HMF L f<br />

S (f) (n − 2) − 2 ɛ f<br />

h f<br />

Calabi–Yau <br />

ɛ f := deg(⃗ɛ f ) <strong>and</strong> h f := deg( f) ⃗ <br />

□<br />

(<br />

f 0<br />

F = F 0<br />

f 1<br />

F 1<br />

)<br />

Coker(f 1 ) CM L f<br />

(R f ) <br />

<br />

<br />

Theorem 22 (c.f., Buchweitz, Orlov[10]). <br />

<br />

HMF L f<br />

S (f) ≃ CML f<br />

(R f ) ≃ D L f<br />

Sg (R f)<br />

Orlov <br />

X Lf := [Spec(R f )\{0} /Spec(C · L f )]<br />

D b coh(X Lf ) ≃ D b (gr L f -Rf )/D b (tor L f -Rf ) <br />

Propositi<strong>on</strong> 23 (c.f., Orlov[10]). :<br />

(1) ɛ f > 0 <br />

〈<br />

〉<br />

D b coh(X Lf ) ≃ D L f<br />

Sg (R f), A(0), . . . , A(ɛ f − 1)<br />

〈 〉<br />

A(i) := O XLf ( ⃗ l) <br />

deg( ⃗ l)=i<br />

(2) ɛ f = 0 D b coh(X Lf ) ≃ D L f<br />

Sg (R f) .<br />

(3) ɛ f < 0 <br />

D L f<br />

Sg (R f) ≃ 〈 D b coh(X Lf ), K(0), . . . , K(−ɛ f + 1) 〉<br />

〈<br />

K(i) := C( ⃗ 〉<br />

l) <br />

deg( ⃗ l)=i<br />

<br />

X Lf <br />

–201–<br />

□<br />


4. Dolgachev <br />

<br />

<br />

Propositi<strong>on</strong> 24 ([1]). f(x, y, z) <br />

f Table 1 5 □<br />

Type Class f f t<br />

I I x p 1<br />

+ y p 2<br />

+ z p 3<br />

x p 1<br />

+ y p 2<br />

+ z p 3<br />

(p 1 , p 2 , p 3 ∈ Z ≥2 ) (p 1 , p 2 , p 3 ∈ Z ≥2 )<br />

II II x p 1<br />

+ y p 2<br />

+ yz p 3<br />

p 2 x p 1<br />

+ y p 2<br />

z + z p 3<br />

p 2<br />

(p 1 , p 2 , p 3<br />

p 2<br />

∈ Z ≥2 ) (p 1 , p 2 , p 3<br />

p 2<br />

∈ Z ≥2 )<br />

III IV x p 1<br />

+ zy q2+1 + yz q 3+1<br />

x p 1<br />

+ zy q2+1 + yz q 3+1<br />

(p 1 ∈ Z ≥2 , q 2 , q 3 ∈ Z ≥1 ) (p 1 ∈ Z ≥2 , q 2 , q 3 ∈ Z ≥1 )<br />

IV V x p 1<br />

+ xy p 2<br />

p 1 + yz p 3<br />

p 2 x p 1<br />

y + y p 2<br />

p 1 z + z p 3<br />

p 2<br />

(p 1 , p 3<br />

p 2<br />

∈ Z ≥2 , p 2<br />

p 1<br />

∈ Z ≥1 ) (p 1 , p 3<br />

p 2<br />

∈ Z ≥2 , p 2<br />

p 1<br />

∈ Z ≥1 )<br />

V VII x q 1<br />

y + y q 2<br />

z + z q 3<br />

x zx q 1<br />

+ xy q 2<br />

+ yz q 3<br />

(q 1 , q 2 , q 3 ∈ Z ≥1 ) (q 1 , q 2 , q 3 ∈ Z ≥1 )<br />

Table 1. 3 <br />

Table 1 Type [11] <br />

[1] Class<br />

f(x, y, z) <br />

(4.1) C Gf := [ f −1 (0)\{0} /G f<br />

]<br />

X Lf f 0 ∈ C 3 <br />

G f 1 C ∗ c f <br />

C Gf Deligne–Mumford <br />

<br />

Theorem 25 ([5]). f(x, y, z) C Gf 3<br />

P 1 2 <br />

α 1 , α 2 , α 3 α i ≥ 2 i □<br />

Definiti<strong>on</strong> 26. Theorem 25 (α 1 , α 2 , α 3 ) (f, G f ) Dolgachev <br />

A Gf .<br />

Theorem 25Orlov Theorem 23 Geigle–Lenzing[6] <br />

<br />

Corollary 27 ([12][13]). HMF L f<br />

S<br />

(f) full excepti<strong>on</strong>al collecti<strong>on</strong><br />

<br />

□<br />

<br />

–202–


Type f(x, y, z) (α 1 , α 2 , α 3 )<br />

I x p 1<br />

+ y p 2<br />

+ z p 3<br />

(p 1 , p 2 , p 3 )<br />

)<br />

II x p 1<br />

+ y p 2<br />

+ yz p 3<br />

p 2<br />

(p 1 , p 3<br />

p 2<br />

, (p 2 − 1)p 1<br />

III x p 1<br />

+ zy q2+1 + yz q 3+1<br />

(<br />

(p 1 , p 1 q 2 , p 1 q 3 )<br />

)<br />

IV x p 1<br />

+ xy p 2<br />

p 1 + yz p 3<br />

p 2<br />

p 3<br />

p 2<br />

, (p 1 − 1) p 3<br />

p 2<br />

, p 2 − p 1 + 1<br />

V x q 1<br />

y + y q 2<br />

z + z q 3<br />

x (q 2 q 3 − q 3 + 1, q 3 q 1 − q 1 + 1, q 1 q 2 − q 2 + 1)<br />

Table 2. (f, G f ) Dolgachev <br />

Theorem 28 ([8][13]). HMF L f<br />

S<br />

(f) full str<strong>on</strong>gly excepti<strong>on</strong>al<br />

collecti<strong>on</strong> Q CQ I <br />

D L f<br />

Sg (R f) ≃ D b (mod-CQ/I) <br />

CQ/I 3 full str<strong>on</strong>gly excepti<strong>on</strong>al collecti<strong>on</strong> <br />

<br />

□<br />

<br />

(1) <br />

(2) str<strong>on</strong>gly excepti<strong>on</strong>al collecti<strong>on</strong> <br />

(3) Category Generating Lemma str<strong>on</strong>gly excepti<strong>on</strong>al collecti<strong>on</strong><br />

full <br />

Theorem 29 (Category Generating Lemma). HMF L f<br />

S (f) T ′ excepti<strong>on</strong>al<br />

collecti<strong>on</strong> (E 1 , . . . , E n ) <br />

:<br />

(1) T ′ ( ⃗ l), ⃗ l ∈ L f <br />

(2) E ∈ T ′ D L f<br />

Sg (R f) C(⃗0) <br />

T ′ ≃ HMF L f<br />

S<br />

(f) <br />

T ′ right admissible <br />

Lemma 30. X ∈ HMF L f<br />

S<br />

(f) <br />

N → X → M → T N<br />

N ∈ T ′ Hom(N, M) = 0 <br />

<br />

HMF L f<br />

S (f)(E(⃗ l), T i M) = 0 ∀ ⃗ l ∈ Lf ,<br />

⇐⇒ Ext i R f<br />

(R f /m, M) = 0 (i ≠ d)<br />

⇐⇒<br />

⇐⇒<br />

M ∈ CM L f<br />

(R f ) is Gorenstein<br />

M ∈ CM L f<br />

(R f ) is free<br />

⇐⇒ M ≃ 0 in CM L f<br />

(R f )<br />

∀ i ∈ Z<br />

□<br />

T ′ ≃ HMF L f<br />

S<br />

(f) <br />

–203–


✤ ✤<br />

✤ ✤<br />

✤ ✤<br />

γ 1 +γ 2 +γ 3 −1<br />

• ❅ ❅❅❅❅❅❅<br />

7 777777<br />

• · · · • • •<br />

γ 1 +γ 2 +γ 3 −2<br />

γ 1 γ 1 +γ 2 −2<br />

✎ ✎✎✎✎✎✎✎✎✎✎✎✎✎ 7 777777 •<br />

4<br />

•<br />

4444444<br />

1<br />

4<br />

· · ·<br />

4444444<br />

γ 1−1<br />

γ 1 +γ 2 +γ 3 −3<br />

· · · •<br />

γ 1 +γ 2 −1<br />

Figure 1. Coxeter–Dynkin T (γ 1 , γ 2 , γ 3 )<br />

5. Gabrielov <br />

<br />

<br />

Definiti<strong>on</strong> 31. γ 1 , γ 2 , γ 3 <br />

T γ1 ,γ 2 ,γ 3<br />

-.<br />

(a, b, c) <br />

x γ 1<br />

+ y γ 2<br />

+ z γ 3<br />

− txyz,<br />

t ∈ C\{0},<br />

∆(a, b, c) := abc − bc − ac − ab<br />

∆(γ 1 , γ 2 , γ 3 ) > 0 T γ1 ,γ 2 ,γ 3<br />

-<br />

∆(γ 1 , γ 2 , γ 3 ) > 0 <br />

T γ1 ,γ 2 ,γ 3<br />

- Coxeter–Dynkin T (γ 1 , γ 2 , γ 3 ) 1<br />

T (γ 1 , γ 2 , γ 3 ) ∆(γ 1 , γ 2 , γ 3 ) ≥ 0 T γ1 ,γ 2 ,γ 3<br />

= 0 (C 3 , 0) <br />

∆(γ 1 , γ 2 , γ 3 ) < 0 T γ1 ,γ 2 ,γ 3<br />

= 0 C 3 <br />

Milnor <br />

I = (I ij ) • i I ii = −22 • i <br />

• j I ij = 0<br />

<br />

I ij = 1 ⇔ • i • j , I ij = −2 ⇔ • i ❴ ❴ ❴ • j<br />

Theorem 32 ([5]). f(x, y, z) Table 3 f <br />

γ 1 , γ 2 , γ 3 <br />

(i) ∆(γ 1 , γ 2 , γ 3 ) < 0 0 ∈ C 3 <br />

f(x, y, z) − xyz T γ1 ,γ 2 ,γ 3<br />

-<br />

x γ 1<br />

+ y γ 2<br />

+ z γ 3<br />

− xyz +<br />

γ 1 −1<br />

∑<br />

i=1<br />

a i x i +<br />

γ 2 −1<br />

∑<br />

j=1<br />

–204–<br />

b j y j +<br />

γ 3 −1<br />

∑<br />

k=1<br />

c k z k + c, a i , b j , c k , c ∈ C


(ii) ∆(γ 1 , γ 2 , γ 3 ) = 0 0 ∈ C 3 <br />

f(x, y, z) − txyz a ∈ C ∗ T γ1 ,γ 2 ,γ 3<br />

-<br />

(iii) ∆(γ 1 , γ 2 , γ 3 ) > 0 0 ∈ C 3 <br />

f(x, y, z) − xyz T γ1 ,γ 2 ,γ 3<br />

-<br />

Type f(x, y, z) (γ 1 , γ 2 , γ 3 )<br />

I x p 1<br />

+ y p 2<br />

+ z p 3<br />

(p 1 , p 2 , p 3 )<br />

)<br />

II x p 1<br />

+ y p 2<br />

+ yz p 3<br />

p 2<br />

(p 1 , p 2 , ( p 3<br />

p 2<br />

− 1)p 1<br />

III x p 1<br />

+ zy q2+1 + yz q 3+1<br />

(p 1 , p 1 q 2 , p 1 q 3 )<br />

)<br />

IV x p 1<br />

+ xy p 2<br />

p 1 + yz p 3<br />

p 2<br />

(p 1 , ( p 3<br />

p 2<br />

− 1)p 1 , p 3<br />

p 1<br />

− p 3<br />

p 2<br />

+ 1<br />

V x q 1<br />

y + y q 2<br />

z + z q 3<br />

x (q 2 q 3 − q 2 + 1, q 3 q 1 − q 3 + 1, q 1 q 2 − q 1 + 1)<br />

Table 3. f Gabrielov <br />

Definiti<strong>on</strong> 33. Theorem 32 (γ 1 , γ 2 , γ 3 ) f Gabrielov <br />

Γ f .<br />

Corollary 34. f(x, y, z) Γ f = (γ 1 , γ 2 , γ 3 ) Gabrielov .<br />

(i) ∆(Γ f ) < 0 f Milnor f(x, y, z) = 1 T γ1 ,γ 2 ,γ 3<br />

-<br />

Milnor .<br />

(ii) ∆(Γ f ) > 0 f(x, y, z) T γ1 ,γ 2 ,γ 3<br />

-.<br />

f g g Coxeter–Dynkin <br />

f Coxeter–Dynkin <br />

Corollary 35. f(x, y, z) Γ f = (γ 1 , γ 2 , γ 3 ) Gabrielov .<br />

(i) ∆(Γ f ) < 0 f Coxeter–Dynkin T (γ 1 , γ 2 , γ 3 ) ,<br />

f Coxeter–Dynkin ADE <br />

(ii) ∆(Γ f ) = 0 f Coxeter–Dynkin T (γ 1 , γ 2 , γ 3 ) <br />

(iii) ∆(Γ f ) > 0 T (γ 1 , γ 2 , γ 3 ) f Coxeter–Dynkin <br />

, Corollary 34 D b Fuk → (f) D b Fuk → (T γ1 ,γ 2 ,γ 3<br />

) <br />

D L f<br />

Sg (R f) <br />

(c.f., [10]) <br />

6. <br />

Arnold <br />

strange duality<br />

<br />

Theorem 36 ([5]). f(x, y, z) <br />

(6.1) A Gf = Γ f t, A Gf t<br />

= Γ f<br />

–205–<br />


(f, G f ) Dolgachev A Gf f Berglund–Hübsch <br />

f t Gabrielov Γ f t (f t , G f t) Dolgachev A Gf t<br />

f Gabrielov<br />

Γ f <br />

□<br />

Type A Gf = (α 1 , α 2 , α 3 ) = Γ f t Γ f = (γ 1 , γ 2 , γ 3 ) = A Gf t<br />

I<br />

(<br />

(p 1 , p 2 , p 3 )<br />

) (<br />

(p 1 , p 2 , p 3 )<br />

)<br />

II<br />

p 1 , p 3<br />

p 2<br />

, (p 2 − 1)p 1 p 1 , p 2 , ( p 3<br />

p 2<br />

− 1)p 1<br />

III<br />

(<br />

(p 1 , p 1 q 2 , p 1 q 3 )<br />

) (<br />

(p 1 , p 1 q 2 , p 1 q 3 )<br />

)<br />

IV<br />

p 3<br />

p 2<br />

, (p 1 − 1) p 3<br />

p 2<br />

, p 2 − p 1 + 1<br />

p 1 , ( p 3<br />

p 2<br />

− 1)p 1 , p 3<br />

p 1<br />

− p 3<br />

p 2<br />

+ 1<br />

V (q 2 q 3 − q 3 + 1, q 3 q 1 − q 1 + 1, q 1 q 2 − q 2 + 1) (q 2 q 3 − q 2 + 1, q 3 q 1 − q 3 + 1, q 1 q 2 − q 1 + 1)<br />

Table 4. <br />

C<strong>on</strong>jecture 1 <br />

Theorem 37. f(x, y, z)Γ f = (γ 1 , γ 2 , γ 3 )Gabrielov. ∑ 3<br />

i=1 (1/γ i) ><br />

1 <br />

(6.2) D b (cohP 1 γ 1 ,γ 2 ,γ 3<br />

) ≃ D b (mod-C∆ γ1 ,γ 2 ,γ 3<br />

) ≃ D b Fuk → (T γ1 ,γ 2 ,γ 3<br />

)<br />

P 1 γ 1 ,γ 2 ,γ 3<br />

:= C Gf t<br />

Dolgachev (γ 1 , γ 2 , γ 3 ) <br />

∆ γ1 ,γ 2 ,γ 3<br />

(γ 1 , γ 2 , γ 3 )- Dynkin <br />

References<br />

[1] V. I. Arnold, S. M. Gusein-Zade, <strong>and</strong> A. N. Varchenko, Singularities <str<strong>on</strong>g>of</str<strong>on</strong>g> Differentiable Maps, Volume<br />

I, Birkhäuser, Bost<strong>on</strong> Basel Berlin 1985.<br />

[2] M. Ausl<strong>and</strong>er <strong>and</strong> I. Reiten, Cohen-Macaulay modules for graded Cohen-Macaulay rings <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir<br />

completi<strong>on</strong>s, Commutative algebra (Berkeley, CA, 1987), 21–31, Math. Sci. Res. Inst. Publ., 15,<br />

Springer, New York, 1989.<br />

[3] P. Berglund <strong>and</strong> T. Hübsch, A generalized c<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mirror manifolds, Nuclear Physics B 393<br />

(1993), 377–391.<br />

[4] D. Eisenbud, Homological algebra <strong>on</strong> a complete intersecti<strong>on</strong>, with an applicati<strong>on</strong> to group representati<strong>on</strong>s,<br />

Trans. AMS., 260 (1980) 35-64.<br />

[5] W. Ebeling <strong>and</strong> A. Takahashi, Strange duality <str<strong>on</strong>g>of</str<strong>on</strong>g> weighted homogeneous polynomials, Composito Math,<br />

accepted.<br />

[6] W. Geigle <strong>and</strong> H. Lenzing, A class <str<strong>on</strong>g>of</str<strong>on</strong>g> weighted projective curves arising in representati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

finite-dimensi<strong>on</strong>al algebras, Singularities, representati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> algebras, <strong>and</strong> vector bundles (Lambrecht,<br />

1985), pp. 265–297, Lecture Notes in Math., 1273, Springer, Berlin, 1987.<br />

[7] D. Happel, Triangulated categories in <str<strong>on</strong>g>the</str<strong>on</strong>g> representati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> finite-dimensi<strong>on</strong>al algebras, L<strong>on</strong>d<strong>on</strong><br />

Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical Society Lecture Note Series, 119. Cambridge University Press, Cambridge, 1988. x+208<br />

pp.<br />

[8] Y. Hirano <strong>and</strong> A. Takahashi, Finite dimensi<strong>on</strong>al algebras associated to invertible polynomials in three<br />

variables, in preparati<strong>on</strong>.<br />

[9] M. Kreuzer, The mirror map for invertible LG models, Phys. Lett. B 328 (1994), no. 3-4, 312–318.<br />

[10] D. Orlov, Derived categories <str<strong>on</strong>g>of</str<strong>on</strong>g> coherent sheaves <strong>and</strong> triangulated categories <str<strong>on</strong>g>of</str<strong>on</strong>g> singularities, Algebra,<br />

arithmetic, <strong>and</strong> geometry: in h<strong>on</strong>or <str<strong>on</strong>g>of</str<strong>on</strong>g> Yu. I. Manin. Vol. II, pp. 503–531, Progr. Math., 270,<br />

Birkhäuser Bost<strong>on</strong>, Inc., Bost<strong>on</strong>, MA, 2009<br />

–206–


[11] K. Saito, Duality for regular systems <str<strong>on</strong>g>of</str<strong>on</strong>g> weights, Asian. J. Math. 2 no.4 (1998), 983–1047.<br />

[12] A. Takahashi, Weighted projective lines associated to regular systems <str<strong>on</strong>g>of</str<strong>on</strong>g> weights <str<strong>on</strong>g>of</str<strong>on</strong>g> dual type, Adv.<br />

Stud. Pure Math. 59 (2010), 371–388.<br />

[13] A. Takahashi, HMS for isolated hypersurface singularities, talk at <str<strong>on</strong>g>the</str<strong>on</strong>g> “Workshop <strong>on</strong> Homological<br />

Mirror Symmetry <strong>and</strong> Related Topics” January 19-24, 2009, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Miami, <str<strong>on</strong>g>the</str<strong>on</strong>g> PDF file<br />

available from http://www-math.mit.edu/˜auroux/frg/miami09-notes/ .<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics<br />

Graduate School <str<strong>on</strong>g>of</str<strong>on</strong>g> Science<br />

Osaka University<br />

Toy<strong>on</strong>aka, Osaka 530-0043 JAPAN<br />

E-mail address: takahashi@math.sci.osaka-u.ac.jp<br />

–207–


ON A GENERALIZATION OF COSTABLE TORSION THEORY<br />

YASUHIKO TAKEHANA<br />

Abstract. E. P. Armendariz characterized a stable torsi<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory in [1]. R. L. Bernhardt<br />

dualised a part <str<strong>on</strong>g>of</str<strong>on</strong>g> characterizati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> stable torsi<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory in Theorem1.1 <str<strong>on</strong>g>of</str<strong>on</strong>g> [3], as<br />

follows. Let (T ,F) be a hereditary torsi<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory for Mod-R such that every torsi<strong>on</strong>free<br />

module has a projective cover. Then <str<strong>on</strong>g>the</str<strong>on</strong>g> following are equivalent. (1) F is closed under<br />

taking projective covers. (2) every projective module splits. In this paper we generalize<br />

<strong>and</strong> characterize this by using torsi<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory. In <str<strong>on</strong>g>the</str<strong>on</strong>g> remainder <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper we study<br />

a dualizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Eckman <strong>and</strong> Shopf’s Theorem <strong>and</strong> a generalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Wu <strong>and</strong> Jans’s<br />

Theorem.<br />

1. INTRODUCTION<br />

Throughout this paper R is a right perfect ring with identity. Let Mod-R be <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

categories <str<strong>on</strong>g>of</str<strong>on</strong>g> right R-modules. For M ∈ Mod-R we denote by [0 → K(M) → P (M) π →<br />

M<br />

M → 0 ] <str<strong>on</strong>g>the</str<strong>on</strong>g> projective cover <str<strong>on</strong>g>of</str<strong>on</strong>g> M, where P (M) is projective <strong>and</strong> kerπ M is small in<br />

P (M). A subfunctor <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> identity functor <str<strong>on</strong>g>of</str<strong>on</strong>g> Mod-R is called a preradical. For a<br />

preradical σ, T σ := {M ∈ Mod-R ; σ(M) = M} is <str<strong>on</strong>g>the</str<strong>on</strong>g> class <str<strong>on</strong>g>of</str<strong>on</strong>g> σ-torsi<strong>on</strong> right R-modules,<br />

<strong>and</strong> F σ := {M ∈ Mod-R ; σ(M) = 0} is <str<strong>on</strong>g>the</str<strong>on</strong>g> class <str<strong>on</strong>g>of</str<strong>on</strong>g> σ-torsi<strong>on</strong>free right R-modules.<br />

A right R-module M is called σ-projective if <str<strong>on</strong>g>the</str<strong>on</strong>g> functor Hom R (M, ) preserves <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

exactness for any exact sequence 0 → A → B → C → 0 with A ∈ F σ . A preradical σ is<br />

idempotent[radical] if σ(σ(M)) = σ(M)[σ (M/σ(M)) = 0] for a module M, respectively.<br />

A preradical σ is called epi-preserving if σ (M/N) = (σ(M) + N)/N holds for any module<br />

M <strong>and</strong> any submodule N <str<strong>on</strong>g>of</str<strong>on</strong>g> M. For a preradical σ, a short exact sequence [0 → K σ (M) →<br />

P σ (M) πσ M<br />

→ M → 0] is called σ-projective cover <str<strong>on</strong>g>of</str<strong>on</strong>g> a module M if P σ (M) is σ-projective,<br />

K σ (M) is σ-torsi<strong>on</strong> free <strong>and</strong> K σ (M) is small in P σ (M). If σ is an idempotent radical<br />

<strong>and</strong> a module M has a projective cover, <str<strong>on</strong>g>the</str<strong>on</strong>g>n M has a σ-projective cover <strong>and</strong> it is given<br />

K σ (M) = K(M)/σ(K(M)), P σ (M) = P (M)/σ(K(M)). For X, Y ∈ Mod-R we call an<br />

epimorphism g ∈ Hom R (X, Y ) a minimal epimorphism if g(H) Y holds for any proper<br />

submodule H <str<strong>on</strong>g>of</str<strong>on</strong>g> X. It is well known that a minimal epimorphism is an epimorphism<br />

having a small kernel. For a preradical σ we say that M is a σ-coessential extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> X<br />

if <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a minimal epimorphism h : M ↠ X with kerh ∈ F σ .<br />

For a module M, P σ (M) is a σ-coessential extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> M. We say that a subclass C <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Mod-R is closed under taking σ-coessential extensi<strong>on</strong>s if : for any minimal epimorphism<br />

f : M ↠ X with kerf ∈ F σ if X ∈ C <str<strong>on</strong>g>the</str<strong>on</strong>g>n M ∈ C. For <str<strong>on</strong>g>the</str<strong>on</strong>g> sake <str<strong>on</strong>g>of</str<strong>on</strong>g> simplicity we say<br />

that M is a σ-coessential extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> M/N if N is a σ-torsi<strong>on</strong>free small submodule <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

M. We say that a subclass C <str<strong>on</strong>g>of</str<strong>on</strong>g> Mod-R is closed under taking σ-coessential extensi<strong>on</strong>s if<br />

: if M/N ∈ C <str<strong>on</strong>g>the</str<strong>on</strong>g>n M ∈ C for any σ-torsi<strong>on</strong> free small submodule N <str<strong>on</strong>g>of</str<strong>on</strong>g> any module M.<br />

The final versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper will be submitted for publicati<strong>on</strong> elsewhere.<br />

–208–


We say that a subclass C <str<strong>on</strong>g>of</str<strong>on</strong>g> Mod-R is closed under taking F σ -factor modules if : if M ∈ C<br />

<strong>and</strong> N is a σ-torsi<strong>on</strong>free submodule <str<strong>on</strong>g>of</str<strong>on</strong>g> M <str<strong>on</strong>g>the</str<strong>on</strong>g>n M/N ∈ C.<br />

2. COSTABLE TORSION THEORY<br />

Lemma 1. Let σ be an idempotent radical. For a module M <strong>and</strong> its submodule N,<br />

c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> following diagram with exact rows.<br />

0 → K σ (M) → P σ (M)<br />

f<br />

→ M → 0<br />

↓ j<br />

0 → K σ (M/N) → P σ (M/N) →<br />

g<br />

M/N → 0,<br />

where f <strong>and</strong> g are epimorphisms associated with <str<strong>on</strong>g>the</str<strong>on</strong>g> σ-projective covers <strong>and</strong> j is <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

can<strong>on</strong>ical epimorphism. Since g is a minimal epimorphism, <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists an epimorphism<br />

h : P σ (M) → P σ (M/N) induced by <str<strong>on</strong>g>the</str<strong>on</strong>g> σ-projectivity <str<strong>on</strong>g>of</str<strong>on</strong>g> P σ (M) such that jf = gh. Then<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> following c<strong>on</strong>diti<strong>on</strong>s hold.<br />

(1) If M is a σ-coessential extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> M/N, <str<strong>on</strong>g>the</str<strong>on</strong>g>n h : P σ (M) → P σ (M/N) is an<br />

isomorphism.<br />

(2) Moreover if σ is epi-preserving <strong>and</strong> h : P σ (M) → P σ (M/N) is an isomorphism,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>n M is a σ-coessential extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> M/N.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. (1): Let N ∈ F σ be a small submodule <str<strong>on</strong>g>of</str<strong>on</strong>g> a module M. Since jf is an epimorphism<br />

<strong>and</strong> g is a minimal epimorphism, h is also an epimorphism. Since j(f(ker h)) =<br />

g(h(ker h)) = g(0) = 0, it follows that f(ker h) ⊆ ker j = N ∈ F σ , <strong>and</strong> so f(ker h) ∈ F σ .<br />

Let f| ker h be <str<strong>on</strong>g>the</str<strong>on</strong>g> restricti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> f to ker h. Then it follows that ker(f| ker h ) = ker h∩ker f =<br />

ker h ∩ K σ (M) ⊆ K σ (M) ∈ F σ . C<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> exact sequence 0 → ker f| ker h → ker h →<br />

f(ker h) → 0. Since F σ is closed under taking extensi<strong>on</strong>s, it follows that ker h ∈ F σ . As<br />

P σ (M/N) is σ-projective, <str<strong>on</strong>g>the</str<strong>on</strong>g> exact sequence 0 → ker h → P σ (M) → P σ (M/N) → 0<br />

splits, <strong>and</strong> so <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a submodule L <str<strong>on</strong>g>of</str<strong>on</strong>g> P σ (M) such that P σ (M) = L ⊕ ker h. So<br />

it follows that f(P σ (M)) = f(L) + f(ker h). As f(ker h) ⊆ N <strong>and</strong> f(P σ (M)) = M,<br />

M = f(L) + N. Since N is small in M, it follows that M = f(L). As f is a minimal<br />

epimorphism, it follows that P σ (M) = L <strong>and</strong> ker h = 0, <strong>and</strong> so h : P σ (M) ≃ P σ (M/N),<br />

as desired.<br />

(2): Suppose that h : P σ (M) ≃ P σ (M/N). By <str<strong>on</strong>g>the</str<strong>on</strong>g> commutativity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> above diagram<br />

with h, it follows that h(f −1 (N)) ⊆ K σ (M/N) ∈ F σ . Since h is an isomorphism, f −1 (N) ∈<br />

F σ . As f| f −1 (N) : f −1 (N) → N → 0 <strong>and</strong> σ is an epi-preserving preradical, it follows that<br />

N ∈ F σ . Next we will show that N is small in M. Let K be a submodule <str<strong>on</strong>g>of</str<strong>on</strong>g> M<br />

such that M = N + K. If f −1 (K) P σ (M), <str<strong>on</strong>g>the</str<strong>on</strong>g>n h(f −1 (K)) P σ (M/N) as h is an<br />

isomorphism. Since g(h(f −1 (K))) = j(f(f −1 (K))) = j(K) = (K + N)/N = M/N <strong>and</strong> g<br />

is a minimal epimorphism, this is a c<strong>on</strong>tradicti<strong>on</strong>. Thus it holds that f −1 (K) = P σ (M),<br />

<strong>and</strong> so K = f(f −1 (K)) = f(P σ (M)) = M. Thus it follows that N is small in M. □<br />

We call a preradical t σ-costable if F t is closed under taking σ-projective covers. Now<br />

we characterize σ-costable preradicals.<br />

Theorem 2. Let t be a radical <strong>and</strong> σ be an idempotent radical. C<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> following<br />

c<strong>on</strong>diti<strong>on</strong>s.<br />

(1) t is σ-costable.<br />

–209–


(2) P/t(P ) is σ-projective for any σ-projective module P .<br />

(3) For any module M c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> following commutative diagram, <str<strong>on</strong>g>the</str<strong>on</strong>g>n t(P σ (M)) is<br />

c<strong>on</strong>tained in kerf.<br />

P σ (M)<br />

↓ f<br />

h<br />

→ M → 0<br />

↓ j<br />

P σ (M/t(M)) →<br />

g<br />

M/t(M) → 0,<br />

where j is a can<strong>on</strong>ical epimorphism, h <strong>and</strong> g are epimorphisms associated with <str<strong>on</strong>g>the</str<strong>on</strong>g>ir<br />

projective covers <strong>and</strong> f is a morphism induced by σ-projectivity <str<strong>on</strong>g>of</str<strong>on</strong>g> P σ (M).<br />

(4) F t is closed under taking σ-coessential extensi<strong>on</strong>s.<br />

(5) For any σ-projective module P such that t(P ) ∈ F σ , t(P ) is a direct sum<strong>and</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> P .<br />

Then (1) ⇐ (5) ⇐= (2) ⇐⇒ (1) ⇐⇒ (3), (4) =⇒ (1) hold. Moreover if F t is closed<br />

under taking F σ -factor modules, <str<strong>on</strong>g>the</str<strong>on</strong>g>n all c<strong>on</strong>diti<strong>on</strong>s are equivalent.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. (1) → (2) : Let P be a σ-projective module. Since P/t(P ) ∈ F t , it follows that<br />

P σ (P/t(P )) ∈ F t by <str<strong>on</strong>g>the</str<strong>on</strong>g> assumpti<strong>on</strong>. C<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> following commutative diagram.<br />

P<br />

f ↙ ↓ h<br />

0 → K σ (P/t(P )) → P σ (P/t(P )) → P/t(P ) → 0,<br />

g<br />

where h is a can<strong>on</strong>ical epimorphism, g is an epimorphism associated with <str<strong>on</strong>g>the</str<strong>on</strong>g> σ-<br />

projective cover <str<strong>on</strong>g>of</str<strong>on</strong>g> P/t(P ) <strong>and</strong> f is a morphism induced by σ-projectivity <str<strong>on</strong>g>of</str<strong>on</strong>g> P σ (P/t(P )).<br />

Since f(t(P )) ⊆ t(P σ (P/t(P ))) = 0, f induces f ′ : P/t(P ) → P σ (P/t(P )) (x + t(P ) ↦−→<br />

f(x)). Thus for x ∈ P , h(x) = gf(x) = gf ′ h(x). So <str<strong>on</strong>g>the</str<strong>on</strong>g> above exact sequence splits.<br />

Therefore P/t(P ) is a direct summ<strong>and</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> σ-projective module P σ (P/t(P )), <strong>and</strong> so P/t(P )<br />

is also a σ-projective module, as desired.<br />

(2) → (5) : Let P be σ-projective <strong>and</strong> t(P ) ∈ F σ . By <str<strong>on</strong>g>the</str<strong>on</strong>g> assumpti<strong>on</strong> P/t(P ) is σ-<br />

projective. Thus <str<strong>on</strong>g>the</str<strong>on</strong>g> sequence (0 → t(P ) → P → P/t(P ) → 0) splits, <strong>and</strong> so t(P ) is a<br />

direct summ<strong>and</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> P .<br />

(5) → (1) : Let M be in F t . C<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> exact sequence 0 → K σ (M) → P σ (M) →<br />

f<br />

M → 0. Since f(t(P σ (M))) ⊆ t(M) = 0, K σ (M) = ker f ⊇ t(P σ (M)). As K σ (M) ∈ F σ ,<br />

t(P σ (M)) ∈ F σ . Since P σ (M) is σ-projective, t(P σ (M)) is a direct summ<strong>and</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> P σ (M)<br />

by <str<strong>on</strong>g>the</str<strong>on</strong>g> assumpti<strong>on</strong>. Thus <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a submodule K <str<strong>on</strong>g>of</str<strong>on</strong>g> P σ (M) such that P σ (M) =<br />

t(P σ (M)) ⊕ K. Since K σ (M) = ker f ⊇ t(P σ (M)), P σ (M) = K σ (M) + K. As K σ (M) is<br />

small in P σ (M), P σ (M) = K. Thus t(P σ (M)) = 0, as desired.<br />

(1) → (3) : C<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> following commutative diagram.<br />

P σ (M) → M → 0<br />

f ↓<br />

↓ j<br />

P σ (M/t(M)) → g M/t(M) → 0,<br />

where j is a can<strong>on</strong>ical epimorphism, h <strong>and</strong> g are epimorphisms associated with <str<strong>on</strong>g>the</str<strong>on</strong>g>ir<br />

projective covers <strong>and</strong> f is a morphism induced by σ-projectivity <str<strong>on</strong>g>of</str<strong>on</strong>g> P σ (M). As g is a<br />

minimal epimorphism, f is an epimorphism. By <str<strong>on</strong>g>the</str<strong>on</strong>g> assumpti<strong>on</strong> P σ (M/t(M)) ∈ F t , <strong>and</strong><br />

so f(t(P σ (M))) ⊆ t(P σ (M/t(M))) = 0. Hence t(P σ (M)) ⊆ ker f.<br />

h<br />

–210–


(3) → (1) : Let M be in F t . By <str<strong>on</strong>g>the</str<strong>on</strong>g> above commutative diagram, f is an identity. Thus<br />

by <str<strong>on</strong>g>the</str<strong>on</strong>g> assumpti<strong>on</strong> t(P σ (M)) ⊆ ker f = 0, as desired.<br />

(1) → (4) : Let N ∈ F σ be a small submodule <str<strong>on</strong>g>of</str<strong>on</strong>g> a module M such that M/N ∈ F t . By<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> assumpti<strong>on</strong> P σ (M/N) ∈ F t . By Lemma1, P σ (M/N) ≃ P σ (M), <strong>and</strong> so P σ (M) ∈ F t .<br />

C<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> sequence 0 → K σ (M) → P σ (M) → M → 0. Since F t is closed under taking<br />

F σ -factor modules, it follows that M ∈ F t , as desired.<br />

(4) → (1) : Since P σ (M) is σ-coessential extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a module M in F t , F t is closed<br />

under taking σ-projective covers.<br />

□<br />

Remark 3. It is well known that t is epi-preserving if <strong>and</strong> <strong>on</strong>ly if t is a radical <strong>and</strong> F t is<br />

closed under taking factor modules. Therefore if t is epi-preserving <strong>and</strong> σ be an idempotent<br />

radical, <str<strong>on</strong>g>the</str<strong>on</strong>g>n all c<strong>on</strong>diti<strong>on</strong>s in Theorem 2 are equivalent.<br />

Next if σ is identity, <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> following corollary holds. The following have <str<strong>on</strong>g>the</str<strong>on</strong>g> ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem1.1 <str<strong>on</strong>g>of</str<strong>on</strong>g> [3].<br />

Corollary 4. For a radical t <str<strong>on</strong>g>the</str<strong>on</strong>g> following c<strong>on</strong>diti<strong>on</strong>s except (4) are equivalent. Moreover<br />

if t is an epi-preserving preradical, <str<strong>on</strong>g>the</str<strong>on</strong>g>n all c<strong>on</strong>diti<strong>on</strong>s are equivalent.<br />

(1) t is costable, that is, F t is closed under taking projective covers.<br />

(2) P/t(P ) is projective for any projective module P .<br />

(3) P (M)<br />

↓ f<br />

h<br />

→ M → 0<br />

↓ j<br />

P (M/t(M)) →<br />

g<br />

M/t(M) → 0,<br />

where j is a can<strong>on</strong>ical epimorphism, h <strong>and</strong> g are epimorphisms associated with <str<strong>on</strong>g>the</str<strong>on</strong>g>ir<br />

projective covers <strong>and</strong> f is induced by <str<strong>on</strong>g>the</str<strong>on</strong>g> projectivity <str<strong>on</strong>g>of</str<strong>on</strong>g> P (M). Then t(P (M)) is c<strong>on</strong>tained<br />

in kerf.<br />

(4) F t is closed under taking coessential extensi<strong>on</strong>s.<br />

(5) For any projective module P , t(P ) is a direct summ<strong>and</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> P .<br />

3. DUALIZATION OF ECKMAN & SHOPF’S THEOREM<br />

In [8] we state a torsi<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>oretic generalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Eckman & Shopf’s Theorem, as<br />

follows. Let σ be a left exact radical <strong>and</strong> 0 → M → E be a exact sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> Mod-R.<br />

Then <str<strong>on</strong>g>the</str<strong>on</strong>g> following c<strong>on</strong>diti<strong>on</strong>s from (1) to (4) are equivalent. (1) E is σ-injective <strong>and</strong> σ-<br />

essential extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> M. (2) E is minimal in {Y ∈ Mod-R|M ↩→ Y <strong>and</strong> Y is σ-injective}.<br />

(3) E is maximal in {Y ∈ Mod-R|M ↩→ Y <strong>and</strong> Y is σ-essential extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> M}. (4) E<br />

is isomorphic to E σ (M), where σ(E(M)/M) = E σ (M)/M. Here we dualised this.<br />

Lemma 5. If P is σ-projective, <str<strong>on</strong>g>the</str<strong>on</strong>g>n P σ (P ) is isomorphic to P .<br />

Theorem 6. Let P → f M → 0 be a exact sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> Mod-R. Let σ is an idempotent<br />

radical. C<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> following c<strong>on</strong>diti<strong>on</strong>s, <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> implicati<strong>on</strong>s (1) ⇐⇒ (3) <strong>and</strong> (1) =⇒<br />

(2) hold. Moreover if σ is an epi-preserving preradical, <str<strong>on</strong>g>the</str<strong>on</strong>g>n all c<strong>on</strong>diti<strong>on</strong>s are equivalent.<br />

(1) P is σ-projective <strong>and</strong> P f ↠ M is a σ-coessential extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> M.<br />

(2) P is a minimal σ-projective extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> M(i.e. P is σ-projective <strong>and</strong> if I is σ-<br />

projective <strong>and</strong> P h ↠ I, I ↠ M, <str<strong>on</strong>g>the</str<strong>on</strong>g>n h is an isomorphism.).<br />

–211–


(3) P is a maximal σ-coessential extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> M(i.e. P f ↠ M is σ-coessential extensi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> M <strong>and</strong> if <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists an epimorphism I h ↠ P <strong>and</strong> I h ↠ P ↠ M is σ-coessential <str<strong>on</strong>g>of</str<strong>on</strong>g> M,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>n h is an isomorphism.).<br />

(4) P is isomorphic to P σ (M).<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. (1)→(2): Let P be σ-projective <strong>and</strong> P ↠ f M be a σ-coessential extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> M.<br />

C<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> following diagram.<br />

0→ ker h → P → h I → 0<br />

↘ f ↓ g<br />

M,<br />

where I is σ-projective, g <strong>and</strong> h are epimorphisms such that gh = f.<br />

Since F σ ∋ f −1 (0) = h −1 (g −1 (0)) ⊇ h −1 (0), it follows that F σ ∋ h −1 (0) = ker h. As f is<br />

a minimal epimorphism <strong>and</strong> g is an epimorphism, h is also a minimal epimorphism. Since<br />

I is σ-projective, <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a submodule L <str<strong>on</strong>g>of</str<strong>on</strong>g> P such that P = ker h ⊕ L <strong>and</strong> L ∼ = I.<br />

As ker h is small in P , P = L, <strong>and</strong> so P ∼ = I.<br />

(2)→(1): Let σ be an epi-preserving idempotent radical <strong>and</strong> P be a minimal σ-<br />

projective extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> M. C<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> following commutative diagram.<br />

P σ (P ) → j P → 0<br />

g ↓ ↓ f<br />

P σ (M) → h M → 0,<br />

where h <strong>and</strong> j are epimorphisms associated with <str<strong>on</strong>g>the</str<strong>on</strong>g> projective covers <str<strong>on</strong>g>of</str<strong>on</strong>g> M <strong>and</strong> P<br />

respectively <strong>and</strong> g is an induced epimorphism by <str<strong>on</strong>g>the</str<strong>on</strong>g> σ-projectivity <str<strong>on</strong>g>of</str<strong>on</strong>g> P σ (P ). Since P is<br />

σ-projective, j is an isomorphism by Lemma 4. As P σ (P ) <strong>and</strong> P σ (M) are σ-projective,<br />

g is an isomorphism by <str<strong>on</strong>g>the</str<strong>on</strong>g> assumpti<strong>on</strong>. By Lemma 1, it follows that P → f M → 0 is a<br />

σ-coessential extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> M.<br />

(1)→(3): Let I → g P be an epimorphism. Let P ↠ f M <strong>and</strong> I ↠ h M be σ-coessential<br />

extensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> M such that fg = h. C<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> following exact diagram.<br />

I<br />

g ↙ ↓ h<br />

P → M → 0<br />

f<br />

Since f is a minimal epimorphism, g is an epimorphim. As h <strong>and</strong> f are minimal<br />

epimorphisms, g is a minimal epimorphim. Since F σ ∋ h −1 (0) = g −1 (f −1 (0)) ⊇ g −1 (0), it<br />

follows that F σ ∋ g −1 (0). Since P is σ-projective, 0 → ker g → I → g P → 0 splits, <strong>and</strong> so<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a submodule H <str<strong>on</strong>g>of</str<strong>on</strong>g> I such that H ∼ = P <strong>and</strong> I = ker g ⊕ H. As ker g is small<br />

in I, I = H ∼ = P , as desired.<br />

(3)→(1): We show that P is σ-projective. Since P ↠ f M is a σ-coessential extensi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> M by <str<strong>on</strong>g>the</str<strong>on</strong>g> assumpti<strong>on</strong>, an induced morphism P σ (P ) → P σ (M) is an isomorphism by<br />

Lemma 1. C<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> following commutative diagram.<br />

P σ (P ) → P → 0<br />

↓ ↓<br />

P σ (M) → M → 0.<br />

–212–


Since P σ (P ) ≃ P σ (M) ↠ M is a σ-coessential extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> M <strong>and</strong> P ↠ f M is a σ-<br />

coessential extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> M, it follows that P σ (P ) ∼ = P by <str<strong>on</strong>g>the</str<strong>on</strong>g> assumpti<strong>on</strong>, <strong>and</strong> so P is<br />

σ-projective.<br />

(1)→(4): By Lemma 1, P σ (P ) ≃ P σ (M). By Lemma 4, P σ (P ) ≃ P, <strong>and</strong> so P ≃ P σ (M)<br />

as desired.<br />

(4)→(1): It is clear.<br />

□<br />

In Theorem 5, if σ = 1, <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> following corollary is obtained.<br />

Corollary 7. Let P f → M → 0 be a exact sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> Mod-R. Then <str<strong>on</strong>g>the</str<strong>on</strong>g> following<br />

c<strong>on</strong>diti<strong>on</strong>s are equivalent.<br />

(1) P is projective <strong>and</strong> P f ↠ M is a coessential extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> M(that is, kerf is small<br />

in M).<br />

(2) P is a minimal projective extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> M(i.e. P is projective <strong>and</strong> if I is projective<br />

<strong>and</strong> P h ↠ I, I ↠ M, <str<strong>on</strong>g>the</str<strong>on</strong>g>n h is an isomorphism).<br />

(3) P is a maximal coessential extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> M(i.e. P f ↠ M is coessential extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

M <strong>and</strong> if <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists an epimorphism I h ↠ P <strong>and</strong> I h ↠ P ↠ M is coessential <str<strong>on</strong>g>of</str<strong>on</strong>g> M, <str<strong>on</strong>g>the</str<strong>on</strong>g>n<br />

h is an isomorphism.).<br />

(4) P is isomorphic to P (M).<br />

4. A GENERALIZATION OF WU, JANS AND MIYASHITA’S THEOREM<br />

AND AZUMAYA’S THEOREM<br />

In [8] we state a torsi<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>oretic generalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Johns<strong>on</strong> <strong>and</strong> W<strong>on</strong>g’s Theorem.<br />

Here we study a dualizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this. For a module M <strong>and</strong> N, we call M σ-N-projective<br />

if Hom R (M, ) preserves <str<strong>on</strong>g>the</str<strong>on</strong>g> exactness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> short exact sequence 0 → K → N →<br />

N/K → 0 with K ∈ F σ .<br />

Theorem 8. Let M <strong>and</strong> N be modules. C<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> following c<strong>on</strong>diti<strong>on</strong>s for an idempotent<br />

radical σ.<br />

(1) γ(K σ (M)) ⊆ K σ (N) holds for any γ ∈ Hom R (P σ (M), P σ (N)).<br />

(2) M is σ-N-projective.<br />

Then <str<strong>on</strong>g>the</str<strong>on</strong>g> implicati<strong>on</strong> (1)→(2) holds. If σ is epi-preserving, <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> implicati<strong>on</strong> (2)→(1)<br />

holds.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. (1)→(2): Let f be in Hom R (M, N/K) with K ∈ F σ . Then <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists h ∈<br />

Hom R (P σ (M), N) such that fπM σ = nh, where n is a can<strong>on</strong>ical epimorphism from N to<br />

N/K. And <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists γ ∈ Hom R (P σ (M), P σ (N)) such that h = πN σ γ. So we have <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

following commutative diagramm.<br />

P σ (M) πσ M<br />

↠ M<br />

γ ↙ ↓ h ↓ f<br />

P σ (N) ↠<br />

π σ<br />

N<br />

N →<br />

n<br />

N/K<br />

By <str<strong>on</strong>g>the</str<strong>on</strong>g> assumpti<strong>on</strong>, γ induces γ ′ : P σ (M)/K σ (M) → P σ (N)/K σ (N), <strong>and</strong> so γ ′ induces<br />

γ ′′ : M → N such that f = γ ′′ n, as desired.<br />

–213–


(2)→(1): Let σ be epi-preserving <strong>and</strong> γ ∈ Hom R (P σ (M), P σ (N)). We will show that<br />

γ(K σ (M)) ⊆ K σ (N). We put T = γ(K σ (M)) + K σ (N). Since T ⊇ γ(K σ (M)), γ induces<br />

γ ′ : M ≃ P σ (M)/K σ (M) → P σ (N)/γ(K σ (M)) → P σ (N)/T → N/πN σ (T ) (πσ M (x) ←→<br />

x + K σ (M) → γ(x) + γ(K σ (M)) → γ(x) + T → πN σ (γ(x)) + πσ N (T )). Let n N be a<br />

can<strong>on</strong>ical epimorphism from N to N/πN σ (T ). Since πσ N (T ) = πσ N (γ(K σ(M)) + K σ (N)) =<br />

πN σ (γ(K σ(M)), K σ (M) ∈ F σ <strong>and</strong> F σ is closed under taking factor modules, it follows that<br />

πN σ (T ) ∈ F σ. Since M is σ-N-projective, <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists β : M → N such that γ ′ = n N β.<br />

Therefore we have <str<strong>on</strong>g>the</str<strong>on</strong>g> following commutative diagramm.<br />

M<br />

β ↙ ↓ γ ′<br />

0 → πN σ (T ) → N → N/πN σ (T ) → 0<br />

n N<br />

·By <str<strong>on</strong>g>the</str<strong>on</strong>g> σ-projectivity <str<strong>on</strong>g>of</str<strong>on</strong>g> P σ (M), <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists α : P σ (M) → P σ (N) such that πN σ α =<br />

. Thus we have <str<strong>on</strong>g>the</str<strong>on</strong>g> following commutative diagramm.<br />

βπ σ M<br />

0 → K σ (M) → P σ (M) πσ M<br />

→ M → 0<br />

↓ α<br />

↓ β<br />

0 → K σ (N) → P σ (N) →<br />

π σ<br />

N<br />

N → 0<br />

Thus by <str<strong>on</strong>g>the</str<strong>on</strong>g> commutativity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> above diagram, we have α(K σ (M)) ⊆ K σ (N).<br />

We put X = {x ∈ P σ (M)|γ(x) − α(x) ∈ K σ (N)}. We will show that X + K σ (M) =<br />

P σ (M). For any x ∈ P σ (M) it follows that γ ′ (πM σ (x)) = πσ N (γ(x))+πσ N (T ), (n Nβ)(πM σ (x)) =<br />

β(πM σ x) + πσ N (T ) <strong>and</strong> γ′ = n N β, it follows that πN σ (γ(x)) + πσ N (T ) = β(πσ M x) + πσ N (T ), <strong>and</strong><br />

so πN σ (γ(x))−β(πσ M x) ∈ πσ N (T ). Since πσ N α = βπσ M , it follows that πσ N (γ(x))−πσ N (α(x)) ∈<br />

πN σ (T ), <strong>and</strong> so γ(x) − α(x) ∈ T + (πσ N )−1 (0) = T + K σ (N) = γ(K σ (M)) + K σ (N). Thus<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>re exists m ∈ K σ (M) such that γ(x) − α(x) − γ(m) ∈ K σ (N), <strong>and</strong> so γ(x − m) −<br />

α(x − m) ∈ α(m) + K σ (N) ⊆ α(K σ (M)) + K σ (N) = K σ (N). Therefore it follows that<br />

x − m ∈ X, <strong>and</strong> so x ∈ K σ (M) + X. Thus we c<strong>on</strong>clude that P σ (M) = K σ (M) + X.<br />

Since K σ (M) is small in P σ (M), it holds that X = P σ (M). Thus it follows that<br />

{x ∈ P σ (M)|γ(x) − α(x) ∈ K σ (N)} = P σ (M). Thus if x ∈ K σ (M)(⊆ P σ (M)), <str<strong>on</strong>g>the</str<strong>on</strong>g>n<br />

γ(x) − α(X) ∈ K σ (N), <strong>and</strong> so γ(x) ∈ α(x) + K σ (N) ⊆ α(K σ (M)) + K σ (N) = K σ (N),<br />

<strong>and</strong> so it follows that γ(K σ (M)) ⊆ K σ (N).<br />

□<br />

In Theorem 7 we put σ = 1, <str<strong>on</strong>g>the</str<strong>on</strong>g>n we have a generalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Azumaya’s Theorem in<br />

[2]. In Theorem 7 we put M = N <strong>and</strong> σ = 1, <str<strong>on</strong>g>the</str<strong>on</strong>g>n we have a generalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Wu, Jans<br />

<strong>and</strong> Miyashita’s Theorem in [9] <strong>and</strong> [5].<br />

References<br />

[1] E. P. Armendariz, Quasi-injective modules <strong>and</strong> stale torsi<strong>on</strong> classes, P. J. M. (1969), 277-280.<br />

[2] G. Azumaya, M-projective <strong>and</strong> M-injective modules, unpublished.<br />

[3] R. L. Bernhardt, On Splitting in Hereditary Torsi<strong>on</strong> Theories, P. J. M. (1971), 31-38.<br />

[4] L. Bican, P. Jambor, T. Kepka <strong>and</strong> P. Nemec, Stable <strong>and</strong> costable preradicals, Acta Universitatis<br />

Carolinae-Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>maticaet Physica, 16(2) (1975), 63-69.<br />

[5] Y. Miyashita, Quasi-projective modules, Perfect modules <strong>and</strong> a Theorem for modular lattice, J. Fac.<br />

Sci. Hokkaido Univ. 19, 86-110.<br />

[6] Y. Takehana, On generalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> QF-3’ modules <strong>and</strong> hereditary torsi<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ories, Math. J. Okayama<br />

Univ. 54 (2012), 53-63.<br />

–214–


[7] Y. Takehana, On generalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CQF-3’ modules <strong>and</strong> cohereditary torsi<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ories, Math. J.<br />

Okayama Univ. 54 (2012), 65-76.<br />

[8] Y. Takehana, On a generalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> stable torsi<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory, Proc. <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 43rd <str<strong>on</strong>g>Symposium</str<strong>on</strong>g> <strong>on</strong> <strong>Ring</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>ory <strong>and</strong> Representati<strong>on</strong> <strong>Theory</strong>, 2011, 71-78.<br />

[9] L. E. T. Wu <strong>and</strong> J. P. Jans, On Quasi Projectives, Illinois J. Math. Volume 11, Issue 3 (1967), 439-448.<br />

GENERAL EDUCATION<br />

HAKODATE NATIONAL COLLEGE OF TECHNOLOGY<br />

14-1 TOKURA-CHO HAKODATE-SI HOKKAIDO, 042-8501 JAPAN<br />

E-mail address: takehana@hakodate-ct.ac.jp<br />

–215–


GRADED FROBENIUS ALGEBRAS AND QUANTUM BEILINSON<br />

ALGEBRAS<br />

KENTA UEYAMA<br />

Abstract. Frobenius algebras are <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> important classes <str<strong>on</strong>g>of</str<strong>on</strong>g> algebras studied in<br />

representati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> finite dimensi<strong>on</strong>al algebras. In this article, we will study when<br />

given graded Frobenius Koszul algebras are graded Morita equivalent. As applicati<strong>on</strong>s,<br />

we apply our results to quantum Beilins<strong>on</strong> algebras.<br />

Key Words:<br />

equivalence.<br />

Frobenius Koszul algebras, quantum Beilins<strong>on</strong> algebras, graded Morita<br />

2010 Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics Subject Classificati<strong>on</strong>: Primary 16W50, 16S37; Sec<strong>on</strong>dary 16D90.<br />

1. Introducti<strong>on</strong><br />

This is based <strong>on</strong> a joint work with Izuru Mori.<br />

Classificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Frobenius algebras is an active project in representati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

finite dimensi<strong>on</strong>al algebras. This article tries to answer <str<strong>on</strong>g>the</str<strong>on</strong>g> questi<strong>on</strong> when given graded<br />

Frobenius Koszul algebras are graded Morita equivalent, that is, <str<strong>on</strong>g>the</str<strong>on</strong>g>y have equivalent<br />

graded module categories.<br />

This problem is related to classificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> quasi-Fano algebras. It is known that every<br />

finite dimensi<strong>on</strong>al algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> global dimensi<strong>on</strong> 1 is a path algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> a finite acyclic<br />

quiver up to Morita equivalence, so such algebras can be classified in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> quivers.<br />

As an obvious next step, it is interesting to classify finite dimensi<strong>on</strong>al algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> global<br />

dimensi<strong>on</strong> 2 or higher. Recently, Minamoto introduced a nice class <str<strong>on</strong>g>of</str<strong>on</strong>g> finite dimensi<strong>on</strong>al<br />

algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> finite global dimensi<strong>on</strong>, called (quasi-)Fano algebras [2], which are a very<br />

interesting class <str<strong>on</strong>g>of</str<strong>on</strong>g> algebras to study <strong>and</strong> classify. It was shown that, for a graded Frobenius<br />

Koszul algebra A, we can define ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r algebra ∇A, called <str<strong>on</strong>g>the</str<strong>on</strong>g> quantum Beilins<strong>on</strong><br />

algebra associated to A, <strong>and</strong> with some additi<strong>on</strong>al assumpti<strong>on</strong>s, ∇A turns out to be a<br />

quasi-Fano algebra. Moreover, it was shown that two graded Frobenius algebras A, A ′<br />

are graded Morita equivalent if <strong>and</strong> <strong>on</strong>ly if ∇A, ∇A ′ are isomorphic as algebras, so classifying<br />

graded Frobenius (Koszul) algebra up to graded Morita equivalence is related to<br />

classifying quasi-Fano algebras up to isomorphism (see [3] for details).<br />

In additi<strong>on</strong>, this problem is related to <str<strong>on</strong>g>the</str<strong>on</strong>g> study <str<strong>on</strong>g>of</str<strong>on</strong>g> AS-regular algebras which are <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

most important class <str<strong>on</strong>g>of</str<strong>on</strong>g> algebras in n<strong>on</strong>commutative algebraic geometry (see [8]).<br />

Our main <str<strong>on</strong>g>the</str<strong>on</strong>g>orem (Theorem 9) is as follows. For every co-geometric Frobenius Koszul<br />

algebra A, we define ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r graded algebra A, <strong>and</strong> see that if two co-geometric Frobenius<br />

Koszul algebras A, A ′ are graded Morita equivalent, <str<strong>on</strong>g>the</str<strong>on</strong>g>n A, A ′ are isomorphic as graded<br />

algebras. Unfortunately, <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>verse does not hold in general. On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r h<strong>and</strong>,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>verse is also true for many co-geometric Frobenius Koszul algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> Gorenstein<br />

parameter −3.<br />

The detailed versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper will be submitted for publicati<strong>on</strong> elsewhere.<br />

–216–


2. Frobenius Koszul algebras<br />

Throughout this paper, we fix an algebraically closed field k <str<strong>on</strong>g>of</str<strong>on</strong>g> characteristic 0, <strong>and</strong><br />

we assume that all vector spaces <strong>and</strong> algebras are over k unless o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise stated. In this<br />

paper, a graded algebra means a c<strong>on</strong>nected graded algebra finitely generated in degree<br />

1, that is, every graded algebra can be presented as A = T (V )/I where V is a finite<br />

dimensi<strong>on</strong>al vector space, T (V ) is <str<strong>on</strong>g>the</str<strong>on</strong>g> tensor algebra <strong>on</strong> V over k, <strong>and</strong> I is a homogeneous<br />

two-sided ideal <str<strong>on</strong>g>of</str<strong>on</strong>g> T (V ). We denote by GrMod A <str<strong>on</strong>g>the</str<strong>on</strong>g> category <str<strong>on</strong>g>of</str<strong>on</strong>g> graded right A-modules.<br />

Morphisms in GrMod A are right A-module homomorphisms preserving degrees. We say<br />

that two graded algebras A <strong>and</strong> A ′ are graded Morita equivalent if GrMod A ∼ = GrMod A ′ .<br />

For a graded module M ∈ GrMod A <strong>and</strong> an integer n ∈ Z, we define <str<strong>on</strong>g>the</str<strong>on</strong>g> truncati<strong>on</strong><br />

M ≥n := ⊕ i≥n M i ∈ GrMod A <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> shift M(n) ∈ GrMod A by M(n) i := M n+i for<br />

i ∈ Z. For M, N ∈ GrMod A, we write<br />

Hom A (M, N) := ⊕ n∈Z<br />

Hom GrMod A (M, N(n)).<br />

We denote by V ∗ <str<strong>on</strong>g>the</str<strong>on</strong>g> dual vector space <str<strong>on</strong>g>of</str<strong>on</strong>g> a vector space V . If M is a graded right<br />

(resp. left) module over a graded algebra A, <str<strong>on</strong>g>the</str<strong>on</strong>g>n we denote by M ∗ := Hom k (M, k) <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

dual graded vector space <str<strong>on</strong>g>of</str<strong>on</strong>g> M by abuse <str<strong>on</strong>g>of</str<strong>on</strong>g> notati<strong>on</strong>, i.e. (M ∗ ) i := (M −i ) ∗ . Note that M ∗<br />

has a graded left (resp. right) A-module structure.<br />

Let A be a graded algebra, <strong>and</strong> τ ∈ Aut k A a graded algebra automorphism. For a<br />

graded right A-module M ∈ GrMod A, we define a new graded right A-module M τ ∈<br />

GrMod A by M τ = M as a graded vector space with <str<strong>on</strong>g>the</str<strong>on</strong>g> new right acti<strong>on</strong> m ∗ a := mτ(a)<br />

for m ∈ M <strong>and</strong> a ∈ A. If M is a graded A-A bimodule, <str<strong>on</strong>g>the</str<strong>on</strong>g>n M τ is also a graded A-A<br />

bimodule by this new right acti<strong>on</strong>. The rule M ↦→ M τ is a k-linear autoequivalence for<br />

GrMod A.<br />

A graded algebra A is called quadratic if A ∼ = T (V )/(R) where R ⊆ V ⊗ k V is a<br />

subspace <strong>and</strong> (R) is <str<strong>on</strong>g>the</str<strong>on</strong>g> ideal <str<strong>on</strong>g>of</str<strong>on</strong>g> T (V ) generated by R. If A = T (V )/(R) is a quadratic<br />

algebra, <str<strong>on</strong>g>the</str<strong>on</strong>g>n we define <str<strong>on</strong>g>the</str<strong>on</strong>g> dual graded algebra by A ! := T (V ∗ )/(R ⊥ ) where<br />

R ⊥ := {λ ∈ V ∗ ⊗ k V ∗ ∼ = (V ⊗k V ) ∗ | λ(r) = 0 for all r ∈ R}.<br />

Clearly, A ! is again a quadratic algebra <strong>and</strong> (A ! ) ! ∼ = A as graded algebras.<br />

We now recall <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Koszul algebras <strong>and</strong> graded Frobenius algebras. Frobenius<br />

algebras are <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main classes <str<strong>on</strong>g>of</str<strong>on</strong>g> algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> study in representati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

finite dimensi<strong>on</strong>al algebras.<br />

Definiti<strong>on</strong> 1. Let A be a c<strong>on</strong>nected graded algebra, <strong>and</strong> suppose k ∈ GrMod A has a<br />

minimal free resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> form<br />

⊕<br />

· · · ri<br />

j=1 A(−s ⊕<br />

ij) · · · r0<br />

j=1 A(−s 0j) k 0.<br />

The complexity <str<strong>on</strong>g>of</str<strong>on</strong>g> A is defined by<br />

c A := inf{d ∈ R + | r i ≤ ci d−1 for some c<strong>on</strong>stant c > 0, i ≫ 0}.<br />

We say that A is Koszul if s ij = i for all 1 ≤ j ≤ r i <strong>and</strong> all i ∈ N.<br />

It is known that if A is Koszul, <str<strong>on</strong>g>the</str<strong>on</strong>g>n A is quadratic, <strong>and</strong> its dual graded algebra A ! is<br />

also Koszul, which is called <str<strong>on</strong>g>the</str<strong>on</strong>g> Koszul dual <str<strong>on</strong>g>of</str<strong>on</strong>g> A.<br />

–217–


Definiti<strong>on</strong> 2. A graded algebra A is called a graded Frobenius algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> Gorenstein<br />

parameter l if A ∗ ∼ = ν A(−l) as graded A-A bimodules for some graded algebra automorphism<br />

ν ∈ Aut k A, called <str<strong>on</strong>g>the</str<strong>on</strong>g> Nakayama automorphism <str<strong>on</strong>g>of</str<strong>on</strong>g> A. We say that A is graded<br />

symmetric if A ∗ ∼ = A(−l) as graded A-A bimodules.<br />

A skew exterior algebra<br />

A = k〈x 1 , . . . , x n 〉/(α ij x i x j + x j x i , x 2 i )<br />

where α ij ∈ k such that α ij α ji = α ii = 1 for 1 ≤ i, j ≤ n is a typical example <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

Frobenius Koszul algebra.<br />

At <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> this secti<strong>on</strong>, we give an interesting result about graded Morita equivalence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> graded skew exterior algebras. It is known that every (ungraded) Frobenius algebra<br />

which is Morita equivalent to symmetric algebra is symmetric. The situati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> graded<br />

case is different as <str<strong>on</strong>g>the</str<strong>on</strong>g> following <str<strong>on</strong>g>the</str<strong>on</strong>g>orem shows.<br />

Propositi<strong>on</strong> 3. [7] Every skew exterior algebra is graded Morita equivalent to a graded<br />

symmetric skew exterior algebra.<br />

For example, a 3-dimensi<strong>on</strong>al skew exterior algebra<br />

A = k〈x, y, z〉/(αyz + zy, βzx + xz, γxy + yx, x 2 , y 2 , z 2 )<br />

is graded Morita equivalent to a symmetric skew exterior algebra<br />

A = k〈x, y, z〉/( 3√ αβγyz + zy, 3√ αβγzx + xz, 3√ αβγxy + yx, x 2 , y 2 , z 2 ).<br />

3. Co-geometric Frobenius Koszul algebras<br />

In order to state our main result, let us define a co-geometric algebra (see [4] for details).<br />

Definiti<strong>on</strong> 4. [4] Let A = T (V )/I be a graded algebra. We say that N ∈ GrMod A is a<br />

co-point module if N has a free resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> form<br />

· · · A(−2) A(−1) A N 0 .<br />

For a graded algebra A = T (V )/I, we can define <str<strong>on</strong>g>the</str<strong>on</strong>g> pair P ! (A) = (E, σ) c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> set E ⊆ P(V ) <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> map σ : E → E as follows:<br />

• E := {p ∈ P(V ) | N p := A/pA ∈ GrMod A is a co-point module}, <strong>and</strong><br />

• <str<strong>on</strong>g>the</str<strong>on</strong>g> map σ : E → E is defined by ΩN p (1) = N σ(p) .<br />

Meanwhile, for a geometric pair (E, σ) c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> a closed subscheme E ⊆ P(V ) <strong>and</strong> an<br />

automorphism σ ∈ Aut k E, we can define <str<strong>on</strong>g>the</str<strong>on</strong>g> algebra A ! (E, σ) as follows:<br />

A ! (E, σ) := (T (V ∗ )/(R)) !<br />

where R := {f ∈ V ∗ ⊗ k V ∗ | f(p, σ(p)) = 0, ∀p ∈ E}.<br />

Definiti<strong>on</strong> 5. [4] A graded algebra A = T (V )/I is called co-geometric if A satisfies <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

following c<strong>on</strong>diti<strong>on</strong>s:<br />

• P ! (A) c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> a closed subscheme E ⊆ P(V ) <strong>and</strong> an automorphism σ ∈<br />

Aut k E,<br />

• A ! is noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian, <strong>and</strong><br />

• A ∼ = A ! (P ! (A)).<br />

–218–


Example 6. [4] Let A = k〈x, y〉/(αxy + yx, x 2 , y 2 ) be a 2-dimensi<strong>on</strong>al skew exterior<br />

algebra. Then for any point p = (a, b) ∈ P(V ) = P 1 , N p = A/(ax + by)A has a free<br />

resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> form<br />

· · · A(−2) (α2 ax+by)· A(−1) (αax+by)· A (ax+by)· N p<br />

0 .<br />

Since ΩN p (1) = A/(αax + by)A, it follow that<br />

In fact, A is co-geometric.<br />

P ! (A) = (P 1 , σ), where σ(a, b) := (αa, b).<br />

Example 7. The algebras below are examples <str<strong>on</strong>g>of</str<strong>on</strong>g> co-geometric algebras.<br />

• A Frobenius Koszul algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> finite complexity <strong>and</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Gorenstein parameter −3.<br />

For example, if A = k〈x, y, z〉 with <str<strong>on</strong>g>the</str<strong>on</strong>g> defining relati<strong>on</strong>s<br />

αx 2 − γyz, αy 2 − γzx, αz 2 − γxy,<br />

βyz − αzy, βzx − αxz, βxy − αyx.<br />

for a generic choice <str<strong>on</strong>g>of</str<strong>on</strong>g> α, β, γ ∈ k, <str<strong>on</strong>g>the</str<strong>on</strong>g>n A = A ! (E, σ) is a Frobenius Koszul algebra<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> complexity 3 <strong>and</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Gorenstein parameter −3 such that<br />

E = V(αβγ(x 3 + y 3 + z 3 ) − (α 3 + β 3 + γ 3 )xyz) ⊂ P 2<br />

is an elliptic curve <strong>and</strong> σ ∈ Aut k E is <str<strong>on</strong>g>the</str<strong>on</strong>g> translati<strong>on</strong> automorphism by <str<strong>on</strong>g>the</str<strong>on</strong>g> point<br />

(α, β, γ) ∈ E.<br />

• The skew exterior algebra.<br />

Let A = A ! (E, σ) be a co-geometric Frobenius Koszul algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> Gorenstein parameter<br />

−l with <str<strong>on</strong>g>the</str<strong>on</strong>g> Nakayama automorphism ν ∈ Aut k A. The restricti<strong>on</strong> ν| A1 = τ| V induces an<br />

automorphism ν ∈ Aut k P(V ). Moreover, ν ∈ Aut k P(V ) restricts to an automorphism<br />

ν ∈ Aut k E by abuse <str<strong>on</strong>g>of</str<strong>on</strong>g> notati<strong>on</strong> (see [5] for details). We can now define a new graded<br />

algebra A as follows:<br />

A := A ! (E, νσ l ).<br />

Example 8. If A = k〈x, y, z〉 with <str<strong>on</strong>g>the</str<strong>on</strong>g> defining relati<strong>on</strong>s<br />

x 2 + βxz, zx + xz, z 2 ,<br />

y 2 + αyz, zy + yz, xy + yx − (β + γ)xz − (α + γ)yz,<br />

where α, β, γ ∈ k, α + β + γ ≠ 0, <str<strong>on</strong>g>the</str<strong>on</strong>g>n A = A ! (E, σ) is a Frobenius Koszul algebra <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

complexity 3 <strong>and</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Gorenstein parameter −3 such that<br />

E = V(x) ∪ V(y) ∪ V(x − y) ⊂ P 2<br />

is a uni<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> three lines meeting at <strong>on</strong>e point, <strong>and</strong> σ ∈ Aut k E is given by<br />

σ| V(x) (0, b, c) = (0, b, αb + c),<br />

σ| V(y) (a, 0, c) = (a, 0, βa + c),<br />

σ| V(x−y) (a, a, c) = (a, a, −γa + c)<br />

–219–


In this case, ν ∈ Aut k E induced by <str<strong>on</strong>g>the</str<strong>on</strong>g> Nakayama automorphism ν ∈ Aut k A is given by<br />

ν(a, b, c) = (a, b, (α + γ − 2β)a + (β + γ − 2α)b + c)<br />

It follows that A = A ! (E, νσ 3 ) is k〈x, y, z〉 with <str<strong>on</strong>g>the</str<strong>on</strong>g> defining relati<strong>on</strong>s<br />

x 2 + (α + β + γ)xz, zx + xz, z 2 ,<br />

y 2 + (α + β + γ)yz, zy + yz, xy + yx − 2(α + β + γ)xz − 2(α + β + γ)yz.<br />

Our main result is as follows.<br />

Theorem 9. [7] Let A, A ′ be co-geometric Frobenius Koszul algebras. Then<br />

GrMod A ∼ = GrMod A ′ =⇒ A ∼ = A ′ as graded algebras.<br />

In particular, let A = A ! (E, σ), A ′ = A ! (E ′ , σ ′ ) be Frobenius Koszul algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> finite<br />

complexities <strong>and</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Gorenstein parameter −3 such that E ∼ = E ′ . Suppose that E = P 2 or<br />

E is a reduced <strong>and</strong> reducible cubic in P 2 , <str<strong>on</strong>g>the</str<strong>on</strong>g>n<br />

GrMod A ∼ = GrMod A ′ ⇐⇒ A ∼ = A ′ as graded algebras.<br />

4. Quantum Beilins<strong>on</strong> Algebras<br />

Finally, we apply our results to quantum Beilins<strong>on</strong> algebras.<br />

Definiti<strong>on</strong> 10. [1], [6] Let A be a graded Frobenius algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> Gorenstein parameter −l.<br />

Then <str<strong>on</strong>g>the</str<strong>on</strong>g> quantum Beilins<strong>on</strong> algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> A is defined by<br />

⎛<br />

⎞<br />

A 0 A 1 · · · A l−1<br />

0 A<br />

∇A := ⎜ 0 · · · A l−2<br />

⎝ .<br />

⎟<br />

. . .. . ⎠ .<br />

0 0 · · · A 0<br />

Theorem 11. [3] Let A, A ′ be graded Frobenius algebras. Then<br />

GrMod A ∼ = GrMod A ′<br />

⇐⇒ ∇A ∼ = ∇A ′ as algebras.<br />

By <str<strong>on</strong>g>the</str<strong>on</strong>g> above <str<strong>on</strong>g>the</str<strong>on</strong>g>orem, classifying graded Frobenius algebras up to graded Morita equivalence<br />

is <str<strong>on</strong>g>the</str<strong>on</strong>g> same as classifying quantum Beilins<strong>on</strong> algebras up to isomorphism.<br />

Quasi-Fano algebras introduced by Minamoto [2] are <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> nice classes <str<strong>on</strong>g>of</str<strong>on</strong>g> a finite<br />

dimensi<strong>on</strong>al algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> finite global dimensi<strong>on</strong>s (see [3], [6] for details).<br />

Definiti<strong>on</strong> 12. A finite dimensi<strong>on</strong>al algebra R is called quasi-Fano <str<strong>on</strong>g>of</str<strong>on</strong>g> dimensi<strong>on</strong> n if<br />

gldim R = n <strong>and</strong> w −1<br />

R<br />

is a quasi-ample two-sided tilting complex, that is, hi ((w −1<br />

R )⊗L R j ) = 0<br />

for all i ≠ 0 <strong>and</strong> all j ≥ 0, where w R := R ∗ [−n].<br />

Let A be a graded Frobenius Koszul algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> Gorenstein parameter −d. Assume that<br />

A has <str<strong>on</strong>g>the</str<strong>on</strong>g> Hilbert series<br />

H A (t) := ∑ i<br />

(dim k A i )t i = (1 + t) d<br />

<strong>and</strong> that A ! is noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian. Then ∇A is a quasi-Fano algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> dimensi<strong>on</strong> d − 1.<br />

In general, it is not easy to check if two algebras given as path algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> quivers with<br />

relati<strong>on</strong>s are isomorphic as algebras by c<strong>on</strong>structing an explicit algebra isomorphism. On<br />

–220–


<str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r h<strong>and</strong>, it is much easier to check if two graded algebras T (V )/I <strong>and</strong> T (V ′ )/I ′<br />

generated in degree 1 over k are isomorphic as graded algebras since any such isomorphism<br />

is induced by <str<strong>on</strong>g>the</str<strong>on</strong>g> vector space isomorphism V → V ′ . In this sense, our main result is<br />

useful for <str<strong>on</strong>g>the</str<strong>on</strong>g> classificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a class <str<strong>on</strong>g>of</str<strong>on</strong>g> finite dimensi<strong>on</strong>al algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> global dimensi<strong>on</strong> 2,<br />

namely, quantum Beilins<strong>on</strong> algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> global dimensi<strong>on</strong> 2.<br />

Fix <str<strong>on</strong>g>the</str<strong>on</strong>g> Beilins<strong>on</strong> quiver<br />

Q = •<br />

x 1<br />

y 1<br />

z 1<br />

x 2<br />

y 2<br />

•<br />

z 2<br />

•<br />

<strong>and</strong> let<br />

B = kQ/I, B ′ = kQ/I ′ , B ′′ = kQ/I ′′<br />

be path algebras with relati<strong>on</strong>s<br />

I = (αy 1 z 2 + z 1 y 2 , βz 1 x 2 + x 1 z 2 , γx 1 y 2 + y 1 x 2 , x 1 x 2 , y 1 y 2 , z 1 z 2 )<br />

I ′ = (x 1 x 2 + α ′ y 1 z 2 , y 1 y 2 + β ′ z 1 x 2 , z 1 z 2 + γ ′ x 1 y 2 , z 1 y 2 , x 1 z 2 , y 1 x 2 )<br />

I ′′ = (α ′′ y 1 z 2 + z 1 y 2 , β ′′ z 1 x 2 + x 1 z 2 , β ′′ x 1 y 2 + y 1 x 2 , x 1 x 2 + y 1 z 2 , y 1 y 2 , z 1 z 2 )<br />

where αβγ ≠ 0, 1, α ′ β ′ γ ′ ≠ 0, 1, α ′′ (β ′′ ) 2 ≠ 0, 1. Then B, B ′ , B ′′ are <str<strong>on</strong>g>the</str<strong>on</strong>g> quantum Beilins<strong>on</strong><br />

algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> co-geometric Frobenius Koszul algebras A, A ′ , A ′′ <str<strong>on</strong>g>of</str<strong>on</strong>g> Gorenstein parameter −3<br />

A = A ! (E, σ) = k〈x, y, z〉/(αyz + zy, βzx + xz, γxy + yx, x 2 , y 2 , z 2 ),<br />

A ′ = A ! (E ′ , σ ′ ) = k〈x, y, z〉/(x 2 + α ′ yz, y 2 + β ′ zx, z 2 + γ ′ xy, zy, xz, yx),<br />

A ′′ = A ! (E ′′ , σ ′′ ) = k〈x, y, z〉/(α ′′ yz + zy, β ′′ zx + xz, β ′′ xy + yx, x 2 + yz, y 2 , z 2 ),<br />

where E is a triangle <strong>and</strong> σ ∈ Aut k E stabilizes each comp<strong>on</strong>ent, E ′ is a triangle <strong>and</strong><br />

σ ′ ∈ Aut k E ′ circulates three comp<strong>on</strong>ents, <strong>and</strong> E ′′ is a uni<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a line <strong>and</strong> a c<strong>on</strong>ic meeting<br />

at two points <strong>and</strong> σ ′′ ∈ Aut k E ′′ stabilizes each comp<strong>on</strong>ent <strong>and</strong> two intersecti<strong>on</strong> points.<br />

Since<br />

E ∼ = E ′ ≇ E ′′ ,<br />

we see that<br />

B ≇ B ′′ , B ′ ≇ B ′′ .<br />

Moreover, it is not difficult to compute<br />

A = A ! (E, νσ 3 )<br />

= k〈x, y, z〉/(αβγyz + zy, αβγzx + xz, αβγxy + yx, x 2 , y 2 , z 2 ),<br />

A ′ = A ! (E ′ , ν ′ (σ ′ ) 3 )<br />

= k〈x, y, z〉/(yz + α ′ β ′ γ ′ zy, zx + α ′ β ′ γ ′ xz, xy + α ′ β ′ γ ′ yx, x 2 , y 2 , z 2 ).<br />

Since A, A ′ are skew exterior algebras, it is easy to check when <str<strong>on</strong>g>the</str<strong>on</strong>g>y are isomorphic as<br />

graded algebras. Using <str<strong>on</strong>g>the</str<strong>on</strong>g>orems, <str<strong>on</strong>g>the</str<strong>on</strong>g> following are equivalent.<br />

(1) B ∼ = B ′ as algebras.<br />

(2) GrMod A ∼ = GrMod A ′ .<br />

(3) A ∼ = A ′ as graded algebras.<br />

(4) α ′ β ′ γ ′ = (αβγ) ±1 .<br />

–221–


References<br />

[1] X. W. Chen, Graded self-injective algebras “are” trivial extensi<strong>on</strong>s, J. Algebra 322 (2009), 2601–2606.<br />

[2] H. Minamoto, Ampleness <str<strong>on</strong>g>of</str<strong>on</strong>g> two-sided tilting complexes, Int. Math. Res. Not., to appear.<br />

[3] H. Minamoto <strong>and</strong> I. Mori, The structure <str<strong>on</strong>g>of</str<strong>on</strong>g> AS-Gorenstein algebras, Adv. Math., 226 (2011), 4061–<br />

4095.<br />

[4] I. Mori, Co-point modules over Koszul algebras, J. L<strong>on</strong>d<strong>on</strong> Math. Soc. 74 (2006), 639–656.<br />

[5] , Co-point modules over Frobenius Koszul algebras, Comm. Algebra 36 (2008), 4659–4677.<br />

[6] , B-cosntrcuti<strong>on</strong> <strong>and</strong> C-c<strong>on</strong>structi<strong>on</strong>, preprint.<br />

[7] I. Mori <strong>and</strong> K. Ueyama, Graded Morita equivalences for geometric AS-regular algebras, preprint.<br />

[8] S. P. Smith, Some finite dimensi<strong>on</strong>al algebras related to elliptic curves, in “Representati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

algebras <strong>and</strong> related topics” (Mexico City, 1994) CMS C<strong>on</strong>f. Proc. 19, Amer. Math. Soc., Providence,<br />

RI (1996), 315–348.<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Informati<strong>on</strong> Science <strong>and</strong> Technology<br />

Graduate School <str<strong>on</strong>g>of</str<strong>on</strong>g> Science <strong>and</strong> Technology<br />

Shizuoka University<br />

836 Ohya, Suruga-ku, Shizuoka 422-8529 JAPAN<br />

E-mail address: f5144004@ipc.shizuoka.ac.jp<br />

–222–


APPLICATIONS OF FINITE FROBENIUS RINGS TO THE<br />

FOUNDATIONS OF ALGEBRAIC CODING THEORY<br />

JAY A. WOOD<br />

Abstract. This article addresses some foundati<strong>on</strong>al issues that arise in <str<strong>on</strong>g>the</str<strong>on</strong>g> study <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

linear codes defined over finite rings. Linear coding <str<strong>on</strong>g>the</str<strong>on</strong>g>ory is particularly well-behaved<br />

over finite Frobenius rings. This follows from <str<strong>on</strong>g>the</str<strong>on</strong>g> fact that <str<strong>on</strong>g>the</str<strong>on</strong>g> character module <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

finite ring is free if <strong>and</strong> <strong>on</strong>ly if <str<strong>on</strong>g>the</str<strong>on</strong>g> ring is Frobenius.<br />

Key Words: Frobenius ring, generating character, linear code, extensi<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>orem,<br />

MacWilliams identities.<br />

2010 Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics Subject Classificati<strong>on</strong>: Primary 16P10, 94B05; Sec<strong>on</strong>dary 16D50,<br />

16L60.<br />

1. Introducti<strong>on</strong><br />

At <str<strong>on</strong>g>the</str<strong>on</strong>g> center <str<strong>on</strong>g>of</str<strong>on</strong>g> coding <str<strong>on</strong>g>the</str<strong>on</strong>g>ory lies a very practical problem: how to ensure <str<strong>on</strong>g>the</str<strong>on</strong>g> integrity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a message being transmitted over a noisy channel? Even children are aware <str<strong>on</strong>g>of</str<strong>on</strong>g> this<br />

problem: <str<strong>on</strong>g>the</str<strong>on</strong>g> game <str<strong>on</strong>g>of</str<strong>on</strong>g> “teleph<strong>on</strong>e” has <strong>on</strong>e child whisper a sentence to a sec<strong>on</strong>d child,<br />

who in turn whispers it to a third child, <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> whispering c<strong>on</strong>tinues. The last child says<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> sentence out loud. Usually <str<strong>on</strong>g>the</str<strong>on</strong>g> children burst out laughing, because <str<strong>on</strong>g>the</str<strong>on</strong>g> final sentence<br />

bears little resemblance to <str<strong>on</strong>g>the</str<strong>on</strong>g> original.<br />

Using electr<strong>on</strong>ic devices, messages are transmitted over many different noisy channels:<br />

copper wires, fiber optic cables, saving to storage devices, <strong>and</strong> radio, cell ph<strong>on</strong>e, <strong>and</strong><br />

deep-space communicati<strong>on</strong>s. In all cases, it is desirable that <str<strong>on</strong>g>the</str<strong>on</strong>g> message being received<br />

is <str<strong>on</strong>g>the</str<strong>on</strong>g> same as <str<strong>on</strong>g>the</str<strong>on</strong>g> message being sent. The st<strong>and</strong>ard approach to error-correcti<strong>on</strong> is to<br />

incorporate redundancy in a cleverly designed way (encoding), so that transmissi<strong>on</strong> errors<br />

can be efficiently detected <strong>and</strong> corrected (decoding).<br />

Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics has played an essential role in coding <str<strong>on</strong>g>the</str<strong>on</strong>g>ory, with <str<strong>on</strong>g>the</str<strong>on</strong>g> seminal work <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Claude Shann<strong>on</strong> [27] leading <str<strong>on</strong>g>the</str<strong>on</strong>g> way. Many c<strong>on</strong>structi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> encoding <strong>and</strong> decoding<br />

schemes make str<strong>on</strong>g use <str<strong>on</strong>g>of</str<strong>on</strong>g> algebra <strong>and</strong> combinatorics, with linear algebra over finite<br />

fields <str<strong>on</strong>g>of</str<strong>on</strong>g>ten playing a prominent part. The rich interplay <str<strong>on</strong>g>of</str<strong>on</strong>g> ideas from multiple areas has<br />

led to discoveries that are <str<strong>on</strong>g>of</str<strong>on</strong>g> independent ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical interest.<br />

This article addresses some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> topics that lie at <str<strong>on</strong>g>the</str<strong>on</strong>g> ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical foundati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

algebraic coding <str<strong>on</strong>g>the</str<strong>on</strong>g>ory, specifically topics related to linear codes defined over finite rings.<br />

This article is not an encyclopedic survey; <str<strong>on</strong>g>the</str<strong>on</strong>g> ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical questi<strong>on</strong>s addressed are <strong>on</strong>es<br />

in which <str<strong>on</strong>g>the</str<strong>on</strong>g> author has been actively involved <strong>and</strong> are <strong>on</strong>es that apply to broad classes<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> finite rings, not just to specific examples.<br />

Prepared for <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>44th</str<strong>on</strong>g> <str<strong>on</strong>g>Symposium</str<strong>on</strong>g> <strong>on</strong> <strong>Ring</strong>s <strong>and</strong> Representati<strong>on</strong> <strong>Theory</strong> Japan, 2011.<br />

Supported in part by a sabbatical leave from Western Michigan University.<br />

This paper is in final form <strong>and</strong> no versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> it will be submitted for publicati<strong>on</strong> elsewhere.<br />

–223–


The topics covered are ring-<str<strong>on</strong>g>the</str<strong>on</strong>g>oretic analogs <str<strong>on</strong>g>of</str<strong>on</strong>g> results that go back to <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> early<br />

leaders <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> field, Florence Jessie MacWilliams (1917–1990). MacWilliams worked for<br />

many years at Bell Labs, <strong>and</strong> she received her doctorate from Harvard University in 1962,<br />

under <str<strong>on</strong>g>the</str<strong>on</strong>g> directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Andrew Gleas<strong>on</strong> [22]. She is <str<strong>on</strong>g>the</str<strong>on</strong>g> co-author, with Neil Sloane, <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> most famous textbook <strong>on</strong> coding <str<strong>on</strong>g>the</str<strong>on</strong>g>ory [23].<br />

Two <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> topics discussed in this article are found in <str<strong>on</strong>g>the</str<strong>on</strong>g> doctoral dissertati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

MacWilliams [22]. One topic is <str<strong>on</strong>g>the</str<strong>on</strong>g> famous MacWilliams identities, which relate <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Hamming weight enumerator <str<strong>on</strong>g>of</str<strong>on</strong>g> a linear code to that <str<strong>on</strong>g>of</str<strong>on</strong>g> its dual code. The MacWilliams<br />

identities have wide applicati<strong>on</strong>, especially in <str<strong>on</strong>g>the</str<strong>on</strong>g> study <str<strong>on</strong>g>of</str<strong>on</strong>g> self-dual codes (linear codes that<br />

equal <str<strong>on</strong>g>the</str<strong>on</strong>g>ir dual code). The MacWilliams identities are discussed in Secti<strong>on</strong> 4, <strong>and</strong> some<br />

interesting aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> self-dual codes due originally to Gleas<strong>on</strong> are discussed in Secti<strong>on</strong> 6.<br />

The o<str<strong>on</strong>g>the</str<strong>on</strong>g>r topic to be discussed, also found in MacWilliams’s dissertati<strong>on</strong>, is <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

MacWilliams extensi<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>orem. This <str<strong>on</strong>g>the</str<strong>on</strong>g>orem is not as well known as <str<strong>on</strong>g>the</str<strong>on</strong>g> MacWilliams<br />

identities, but it underlies <str<strong>on</strong>g>the</str<strong>on</strong>g> noti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> equivalence <str<strong>on</strong>g>of</str<strong>on</strong>g> linear codes. It is easy to show that<br />

a m<strong>on</strong>omial transformati<strong>on</strong> defines an isomorphism between linear codes that preserves<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Hamming weight. What is not so obvious is <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>verse: whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r every isomorphism<br />

between linear codes that preserves <str<strong>on</strong>g>the</str<strong>on</strong>g> Hamming weight must extend to a m<strong>on</strong>omial<br />

transformati<strong>on</strong>. MacWilliams proves that this is indeed <str<strong>on</strong>g>the</str<strong>on</strong>g> case over finite fields. The<br />

MacWilliams extensi<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>orem is a coding-<str<strong>on</strong>g>the</str<strong>on</strong>g>oretic analog <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>orems<br />

for isometries <str<strong>on</strong>g>of</str<strong>on</strong>g> bilinear forms <strong>and</strong> quadratic forms due to Witt [30] <strong>and</strong> Arf [1].<br />

This article describes, in large part, how <str<strong>on</strong>g>the</str<strong>on</strong>g>se two results, <str<strong>on</strong>g>the</str<strong>on</strong>g> MacWilliams identities<br />

<strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> MacWilliams extensi<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>orem, generalize to linear codes defined over finite<br />

rings. The punch line is that both <str<strong>on</strong>g>the</str<strong>on</strong>g>orems are valid for linear codes defined over finite<br />

Frobenius rings. Moreover, Frobenius rings are <str<strong>on</strong>g>the</str<strong>on</strong>g> largest class <str<strong>on</strong>g>of</str<strong>on</strong>g> finite rings over which<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>orem is valid.<br />

Why finite Frobenius rings? Over finite fields, both <str<strong>on</strong>g>the</str<strong>on</strong>g> MacWilliams identities <strong>and</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> MacWilliams extensi<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>orem have pro<str<strong>on</strong>g>of</str<strong>on</strong>g>s that make use <str<strong>on</strong>g>of</str<strong>on</strong>g> character <str<strong>on</strong>g>the</str<strong>on</strong>g>ory. In<br />

particular, finite fields F have <str<strong>on</strong>g>the</str<strong>on</strong>g> simple, but crucial, properties that <str<strong>on</strong>g>the</str<strong>on</strong>g>ir characters<br />

̂F form a vector space over F <strong>and</strong> ̂F ∼ = F as vector spaces. The same pro<str<strong>on</strong>g>of</str<strong>on</strong>g>s will work<br />

over a finite ring R, provided R has <str<strong>on</strong>g>the</str<strong>on</strong>g> same crucial property that ̂R ∼ = R as <strong>on</strong>esided<br />

modules. It turns out that finite Frobenius rings are exactly characterized by this<br />

property ([14, Theorem 1] <strong>and</strong>, independently, [31, Theorem 3.10]). The character <str<strong>on</strong>g>the</str<strong>on</strong>g>ory<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> finite Frobenius rings is discussed in Secti<strong>on</strong> 2, <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>orem is discussed<br />

in Secti<strong>on</strong> 5. Some st<strong>and</strong>ard terminology from algebraic coding <str<strong>on</strong>g>the</str<strong>on</strong>g>ory is discussed in<br />

Secti<strong>on</strong> 3.<br />

While much <str<strong>on</strong>g>of</str<strong>on</strong>g> this article is drawn from earlier works, especially [31] <strong>and</strong> [33], some <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> generating characters for Frobenius rings in Secti<strong>on</strong> 2 has not appeared<br />

before. The new results are marked with a dagger (†).<br />

Acknowledgments. I thank <str<strong>on</strong>g>the</str<strong>on</strong>g> organizers <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>44th</str<strong>on</strong>g> <str<strong>on</strong>g>Symposium</str<strong>on</strong>g> <strong>on</strong> <strong>Ring</strong>s <strong>and</strong> Representati<strong>on</strong><br />

<strong>Theory</strong> Japan, 2011, especially Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor Kunio Yamagata, for inviting me to<br />

address <str<strong>on</strong>g>the</str<strong>on</strong>g> symposium <strong>and</strong> prepare this article, <strong>and</strong> for <str<strong>on</strong>g>the</str<strong>on</strong>g>ir generous support. I thank<br />

Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor Yun Fan for suggesting subsecti<strong>on</strong> 2.4 <strong>and</strong> Steven T. Dougherty for bringing<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> problem <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> form <str<strong>on</strong>g>of</str<strong>on</strong>g> a generating character to my attenti<strong>on</strong> (answered by Corollary<br />

15). I also thank M. Klemm, H. L. Claasen, <strong>and</strong> R. W. Goldbach for <str<strong>on</strong>g>the</str<strong>on</strong>g>ir early work<br />

–224–


<strong>on</strong> generating characters, which helped me develop my approach to <str<strong>on</strong>g>the</str<strong>on</strong>g> subject. Finally,<br />

I thank my wife Elizabeth S. Moore for her encouragement <strong>and</strong> support.<br />

2. Finite Frobenius <strong>Ring</strong>s<br />

In an effort to make this article somewhat self-c<strong>on</strong>tained, both for ring-<str<strong>on</strong>g>the</str<strong>on</strong>g>orists <strong>and</strong><br />

coding-<str<strong>on</strong>g>the</str<strong>on</strong>g>orists, I include some background material <strong>on</strong> finite Frobenius rings. The goal<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> this secti<strong>on</strong> is to show that finite Frobenius rings are characterized by having free<br />

character modules. Useful references for this material are Lam’s books [19] <strong>and</strong> [20].<br />

All rings will be associative with 1, <strong>and</strong> all modules will be unitary. While left modules<br />

will appear most <str<strong>on</strong>g>of</str<strong>on</strong>g>ten, <str<strong>on</strong>g>the</str<strong>on</strong>g>re are comparable results for right modules. Almost all <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

rings used in this article will be finite, so that some definiti<strong>on</strong>s that are more broadly<br />

applicable may be simplified in <str<strong>on</strong>g>the</str<strong>on</strong>g> finite c<strong>on</strong>text.<br />

2.1. Definiti<strong>on</strong>s. Given a finite ring R, its (Jacobs<strong>on</strong>) radical rad(R) is <str<strong>on</strong>g>the</str<strong>on</strong>g> intersecti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> all <str<strong>on</strong>g>the</str<strong>on</strong>g> maximal left ideals <str<strong>on</strong>g>of</str<strong>on</strong>g> R; rad(R) is itself a two-sided ideal <str<strong>on</strong>g>of</str<strong>on</strong>g> R. A left R-module<br />

is simple if it has no n<strong>on</strong>zero proper submodules. Given a left R-module M, its socle<br />

soc(M) is <str<strong>on</strong>g>the</str<strong>on</strong>g> sum <str<strong>on</strong>g>of</str<strong>on</strong>g> all <str<strong>on</strong>g>the</str<strong>on</strong>g> simple submodules <str<strong>on</strong>g>of</str<strong>on</strong>g> M. A ring R has a left socle soc( R R)<br />

<strong>and</strong> a right socle soc(R R ) (from viewing R as a left R-module or as a right R-module);<br />

both socles are two-sided ideals, but <str<strong>on</strong>g>the</str<strong>on</strong>g>y may not be equal. (They are equal if R is<br />

semiprime, which, for finite rings, is equivalent to being semisimple.)<br />

Let R be a finite ring. Then <str<strong>on</strong>g>the</str<strong>on</strong>g> quotient ring R/ rad(R) is semi-simple <strong>and</strong> is isomorphic<br />

to a direct sum <str<strong>on</strong>g>of</str<strong>on</strong>g> matrix rings over finite fields (Wedderburn-Artin):<br />

(2.1) R/ rad(R) ∼ =<br />

k⊕<br />

M mi (F qi ),<br />

where each q i is a prime power; F q denotes a finite field <str<strong>on</strong>g>of</str<strong>on</strong>g> order q, q a prime power, <strong>and</strong><br />

M m (F q ) denotes <str<strong>on</strong>g>the</str<strong>on</strong>g> ring <str<strong>on</strong>g>of</str<strong>on</strong>g> m × m matrices over F q .<br />

Definiti<strong>on</strong> 1 ([19, Theorem 16.14]). A finite ring R is Frobenius if R (R/ rad(R)) ∼ =<br />

soc( R R) <strong>and</strong> (R/ rad(R)) R<br />

∼ = soc(RR ).<br />

This definiti<strong>on</strong> applies more generally to Artinian rings. It is a <str<strong>on</strong>g>the</str<strong>on</strong>g>orem <str<strong>on</strong>g>of</str<strong>on</strong>g> H<strong>on</strong>old [15,<br />

Theorem 2] that, for finite rings, <strong>on</strong>ly <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> isomorphisms (left or right) is needed.<br />

Each <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> matrix rings M mi (F qi ) in (2.1) has a simple left module T i := M mi ×1(F qi ),<br />

c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> all m i × 1 matrices over F qi , under left matrix multiplicati<strong>on</strong>. From (2.1) it<br />

follows that, as left R-modules, we have an isomorphism<br />

i=1<br />

(2.2) R(R/ rad(R)) ∼ =<br />

k⊕<br />

m i T i .<br />

It is known that <str<strong>on</strong>g>the</str<strong>on</strong>g> T i , i = 1, . . . , k, form a complete list <str<strong>on</strong>g>of</str<strong>on</strong>g> simple left R-modules, up to<br />

isomorphism.<br />

Because <str<strong>on</strong>g>the</str<strong>on</strong>g> left socle <str<strong>on</strong>g>of</str<strong>on</strong>g> an R-module is a sum <str<strong>on</strong>g>of</str<strong>on</strong>g> simple left R-modules, it can be<br />

expressed as a sum <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> T i . In particular, <str<strong>on</strong>g>the</str<strong>on</strong>g> left socle <str<strong>on</strong>g>of</str<strong>on</strong>g> R itself admits such an<br />

expressi<strong>on</strong>:<br />

–225–<br />

i=1


(2.3) soc( R R) ∼ =<br />

k⊕<br />

s i T i ,<br />

for some n<strong>on</strong>negative integers s 1 , . . . , s k . Thus a finite ring is Frobenius if <strong>and</strong> <strong>on</strong>ly if<br />

m i = s i for all i = 1, . . . , k.<br />

2.2. Characters. Let G be a finite abelian group. In this article, a character is a group<br />

homomorphism ϖ : G → Q/Z. The set <str<strong>on</strong>g>of</str<strong>on</strong>g> all characters <str<strong>on</strong>g>of</str<strong>on</strong>g> G forms a group called <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

character group Ĝ := Hom Z(G, Q/Z). It is well-known that |Ĝ| = |G|. (Characters<br />

with values in <str<strong>on</strong>g>the</str<strong>on</strong>g> multiplicative group <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>zero complex numbers can be obtained<br />

by composing with <str<strong>on</strong>g>the</str<strong>on</strong>g> complex exp<strong>on</strong>ential functi<strong>on</strong> a ↦→ exp(2πia), a ∈ Q/Z; this<br />

multiplicative form <str<strong>on</strong>g>of</str<strong>on</strong>g> characters will be needed in later secti<strong>on</strong>s.)<br />

If R is a finite ring <strong>and</strong> A is a finite left R-module, <str<strong>on</strong>g>the</str<strong>on</strong>g>n  c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> characters<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> additive group <str<strong>on</strong>g>of</str<strong>on</strong>g> A; Â is naturally a right R-module via <str<strong>on</strong>g>the</str<strong>on</strong>g> scalar multiplicati<strong>on</strong><br />

(ϖr)(a) := ϖ(ra), for ϖ ∈ Â, r ∈ R, <strong>and</strong> a ∈ A. The module  will be called <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

character module <str<strong>on</strong>g>of</str<strong>on</strong>g> A. Similarly, if B is a right R-module, <str<strong>on</strong>g>the</str<strong>on</strong>g>n ̂B is naturally a left<br />

R-module.<br />

Example 2. Let F p be a finite field <str<strong>on</strong>g>of</str<strong>on</strong>g> prime order. Define ϑ p : F p → Q/Z by ϑ p (a) = a/p,<br />

where we view F p as Z/pZ. Then ϑ p is a character <str<strong>on</strong>g>of</str<strong>on</strong>g> F p , <strong>and</strong> every o<str<strong>on</strong>g>the</str<strong>on</strong>g>r character ϖ <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

F p has <str<strong>on</strong>g>the</str<strong>on</strong>g> form ϖ = aϑ p , for some a ∈ F p (because ̂F p is a <strong>on</strong>e-dimensi<strong>on</strong>al vector space<br />

over F p ).<br />

Let F q be a finite field with q = p l for some prime p. Let tr q/p : F q → F p be <str<strong>on</strong>g>the</str<strong>on</strong>g> trace.<br />

Define ϑ q : F q → Q/Z by ϑ q = ϑ p ◦ tr q/p . Then ϑ q is a character <str<strong>on</strong>g>of</str<strong>on</strong>g> F q , <strong>and</strong> every o<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

character ϖ <str<strong>on</strong>g>of</str<strong>on</strong>g> F q has <str<strong>on</strong>g>the</str<strong>on</strong>g> form ϖ = aϑ q , for some a ∈ F q .<br />

Example 3. Let R = M m (F q ) be <str<strong>on</strong>g>the</str<strong>on</strong>g> ring <str<strong>on</strong>g>of</str<strong>on</strong>g> m × m matrices over a finite field F q , <strong>and</strong><br />

let A = M m×k (F q ) be <str<strong>on</strong>g>the</str<strong>on</strong>g> left R-module c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> all m × k matrices over F q . Then<br />

 ∼ = M k×m (F q ) as right R-modules. Indeed, given a matrix Q ∈ M k×m (F q ), define a<br />

character ϖ Q <str<strong>on</strong>g>of</str<strong>on</strong>g> A by ϖ Q (P ) = ϑ q (tr(QP )), for P ∈ A, where tr is <str<strong>on</strong>g>the</str<strong>on</strong>g> matrix trace <strong>and</strong><br />

ϑ q is <str<strong>on</strong>g>the</str<strong>on</strong>g> character <str<strong>on</strong>g>of</str<strong>on</strong>g> F q defined in Example 2. The map M k×m (F q ) → Â, Q ↦→ ϖ Q is <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

desired isomorphism.<br />

Given a short exact sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> finite left R-modules 0 → A → B → C → 0, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is<br />

an induced short exact sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> right R-modules<br />

(2.4) 0 → Ĉ → ̂B → Â → 0.<br />

In particular, if we define <str<strong>on</strong>g>the</str<strong>on</strong>g> annihilator ( ̂B : A) := {ϖ ∈ ̂B : ϖ(A) = 0}, <str<strong>on</strong>g>the</str<strong>on</strong>g>n<br />

(2.5) ( ̂B : A) ∼ = Ĉ <strong>and</strong> |( ̂B : A)| = |C| = |B|/|A|.<br />

2.3. Generating Characters. In <str<strong>on</strong>g>the</str<strong>on</strong>g> special case that A = R, R is both a left <strong>and</strong><br />

a right R-module. A character ϖ ∈ ̂R induces both a left <strong>and</strong> a right homomorphism<br />

R → ̂R (r ↦→ rϖ is a left homomorphism, while r ↦→ ϖr is a right homomorphism). The<br />

character ϖ is called a left (resp., right) generating character if r ↦→ rϖ (resp., r ↦→ ϖr) is<br />

a module isomorphism. In this situati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> character ϖ generates <str<strong>on</strong>g>the</str<strong>on</strong>g> left (resp., right)<br />

i=1<br />

–226–


R-module ̂R. Because | ̂R| = |R|, <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se homomorphisms is an isomorphism if <strong>and</strong><br />

<strong>on</strong>ly if it is injective if <strong>and</strong> <strong>on</strong>ly if it is surjective.<br />

Remark 4. The phrase generating character (“erzeugenden Charakter”) is due to Klemm<br />

[17]. Claasen <strong>and</strong> Goldbach [6] used <str<strong>on</strong>g>the</str<strong>on</strong>g> adjective admissible to describe <str<strong>on</strong>g>the</str<strong>on</strong>g> same phenomen<strong>on</strong>,<br />

although <str<strong>on</strong>g>the</str<strong>on</strong>g>ir use <str<strong>on</strong>g>of</str<strong>on</strong>g> left <strong>and</strong> right is <str<strong>on</strong>g>the</str<strong>on</strong>g> reverse <str<strong>on</strong>g>of</str<strong>on</strong>g> ours.<br />

The <str<strong>on</strong>g>the</str<strong>on</strong>g>orem below relates generating characters <strong>and</strong> finite Frobenius rings. While <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>orem is over ten years old, we will give a new pro<str<strong>on</strong>g>of</str<strong>on</strong>g>.<br />

Theorem 5 ([14, Theorem 1], [31, Theorem 3.10]). Let R be a finite ring. Then <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

following are equivalent:<br />

(1) R is Frobenius;<br />

(2) R admits a left generating character, i.e., ̂R is a free left R-module;<br />

(3) R admits a right generating character, i.e., ̂R is a free right R-module.<br />

Moreover, when <str<strong>on</strong>g>the</str<strong>on</strong>g>se c<strong>on</strong>diti<strong>on</strong>s are satisfied, every left generating character is also a<br />

right generating character, <strong>and</strong> vice versa.<br />

Example 6. Here are several examples <str<strong>on</strong>g>of</str<strong>on</strong>g> finite Frobenius rings <strong>and</strong> generating characters<br />

(when easy to describe).<br />

(1) Finite field F q with generating character ϑ q <str<strong>on</strong>g>of</str<strong>on</strong>g> Example 2. Note that ϑ p is injective,<br />

but that for q > p, ker ϑ q = ker tr q/p is a n<strong>on</strong>zero F p -linear subspace <str<strong>on</strong>g>of</str<strong>on</strong>g> F q . However,<br />

ker ϑ q is not an F q -linear subspace. (Compare with Propositi<strong>on</strong> 7 below.)<br />

(2) Integer residue ring Z/nZ with generating character ϑ n defined by ϑ n (a) = a/n,<br />

for a ∈ Z/nZ.<br />

(3) Finite chain ring R; i.e., a finite ring all <str<strong>on</strong>g>of</str<strong>on</strong>g> whose left ideals form a chain under<br />

inclusi<strong>on</strong>. See Corollary 15 for informati<strong>on</strong> about a generating character.<br />

(4) If R 1 , . . . , R n are Frobenius with generating characters ϱ 1 , . . . , ϱ n , <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g>ir direct<br />

sum R = ⊕R i is Frobenius with generating character ϱ = ∑ ϱ i . C<strong>on</strong>versely, if<br />

R = ⊕R i is Frobenius with generating character ϱ, <str<strong>on</strong>g>the</str<strong>on</strong>g>n each R i is Frobenius, with<br />

generating character ϱ i = ϱ ◦ ι i , where ι i : R i → R is <str<strong>on</strong>g>the</str<strong>on</strong>g> inclusi<strong>on</strong>; ϱ = ∑ ϱ i .<br />

(5) If R is Frobenius with generating character ϱ, <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> matrix ring M m (R) is<br />

Frobenius with generating character ϱ ◦ tr, where tr is <str<strong>on</strong>g>the</str<strong>on</strong>g> matrix trace.<br />

(6) If R is Frobenius with generating character ϱ <strong>and</strong> G is any finite group, <str<strong>on</strong>g>the</str<strong>on</strong>g>n<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> group ring R[G] is Frobenius with generating character ϱ ◦ pr e , where pr e :<br />

R[G] → R is <str<strong>on</strong>g>the</str<strong>on</strong>g> projecti<strong>on</strong> that associates to every element a = ∑ a g g ∈ R[G]<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> coefficient a e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> identity element <str<strong>on</strong>g>of</str<strong>on</strong>g> G.<br />

In preparati<strong>on</strong> for <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 5, we prove several propositi<strong>on</strong>s c<strong>on</strong>cerning<br />

generating characters.<br />

Propositi<strong>on</strong> 7 ([6, Corollary 3.6]). Let R be a finite ring. A character ϖ <str<strong>on</strong>g>of</str<strong>on</strong>g> R is a left<br />

(resp., right) generating character if <strong>and</strong> <strong>on</strong>ly if ker ϖ c<strong>on</strong>tains no n<strong>on</strong>zero left (resp.,<br />

right) ideal <str<strong>on</strong>g>of</str<strong>on</strong>g> R.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. By <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong> <strong>and</strong> | ̂R| = |R|, ϖ is a left generating character if <strong>and</strong> <strong>on</strong>ly if<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> homomorphism f : R → ̂R, r ↦→ rϖ, is injective. Then r ∈ ker f if <strong>and</strong> <strong>on</strong>ly if <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

–227–


principal ideal Rr ⊂ ker ϖ. Thus, ker f = 0 if <strong>and</strong> <strong>on</strong>ly if ker ϖ c<strong>on</strong>tains no n<strong>on</strong>zero left<br />

ideals. The pro<str<strong>on</strong>g>of</str<strong>on</strong>g> for right generating characters is similar.<br />

□<br />

Propositi<strong>on</strong> 8 ([31, Theorem 4.3]). A character ϱ <str<strong>on</strong>g>of</str<strong>on</strong>g> a finite ring R is a left generating<br />

character if <strong>and</strong> <strong>on</strong>ly if it is a right generating character.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Suppose ϱ is a left generating character, <strong>and</strong> suppose that I ⊂ ker ϱ is a right<br />

ideal. Then for every r ∈ R, Ir ⊂ ker ϱ, so that I ⊂ ker(rϱ), for all r ∈ R. But<br />

every character <str<strong>on</strong>g>of</str<strong>on</strong>g> R is <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> form rϱ, because ϱ is a left generating character. Thus <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

annihilator ( ̂R : I) = ̂R, <strong>and</strong> it follows from (2.5) that I = 0. By Propositi<strong>on</strong> 7, ϱ is a<br />

right generating character.<br />

□<br />

Propositi<strong>on</strong> 9 ([33, Propositi<strong>on</strong> 3.3]). Let A be a finite left R-module. Then soc(Â) ∼ =<br />

(A/ rad(R)A)̂.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. There is a short exact sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> left R-modules<br />

0 → rad(R)A → A → A/ rad(R)A → 0.<br />

Taking character modules, as in (2.4), yields<br />

0 → (A/ rad(R)A)̂ → Â → (rad(R)A)̂ → 0.<br />

Because A/ rad(R)A is a sum <str<strong>on</strong>g>of</str<strong>on</strong>g> simple modules, <str<strong>on</strong>g>the</str<strong>on</strong>g> same is true for (A/ rad(R)A)̂ ∼ =<br />

(Â : rad(R)A). Thus (Â : rad(R)A) ⊂ soc(Â).<br />

C<strong>on</strong>versely, soc(Â) rad(R) = 0, because <str<strong>on</strong>g>the</str<strong>on</strong>g> radical annihilates simple modules [7, Exercise<br />

25.4]. Thus soc(Â) ⊂ (Â : rad(R)A), <strong>and</strong> we have <str<strong>on</strong>g>the</str<strong>on</strong>g> equality soc(Â) = (Â :<br />

rad(R)A). Now remember that (Â : rad(R)A) ∼ = (A/ rad(R)A)̂.<br />

□<br />

Using Propositi<strong>on</strong> 7 as a model, we extend <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a generating character to<br />

modules. Let A be a finite left (resp., right) R-module. A character ϖ <str<strong>on</strong>g>of</str<strong>on</strong>g> A is a generating<br />

character <str<strong>on</strong>g>of</str<strong>on</strong>g> A if ker ϖ c<strong>on</strong>tains no n<strong>on</strong>zero left (resp., right) R-submodules <str<strong>on</strong>g>of</str<strong>on</strong>g> A.<br />

Lemma 10 (†). Let A be a finite left R-module, <strong>and</strong> let B ⊂ A be a submodule. If A<br />

admits a left generating character, <str<strong>on</strong>g>the</str<strong>on</strong>g>n B admits a left generating character.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Simply restrict a generating character <str<strong>on</strong>g>of</str<strong>on</strong>g> A to B. Any submodule <str<strong>on</strong>g>of</str<strong>on</strong>g> B inside <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

kernel <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> restricti<strong>on</strong> will also be a submodule <str<strong>on</strong>g>of</str<strong>on</strong>g> A inside <str<strong>on</strong>g>the</str<strong>on</strong>g> kernel <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> original<br />

generating character.<br />

□<br />

Lemma 11 (†). Let R be any finite ring. Define ϱ : ̂R → Q/Z by ϱ(ϖ) = ϖ(1), evaluati<strong>on</strong><br />

at 1 ∈ R, for ϖ ∈ ̂R. Then ϱ is a left <strong>and</strong> right generating character <str<strong>on</strong>g>of</str<strong>on</strong>g> ̂R.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Suppose ϖ 0 ≠ 0 has <str<strong>on</strong>g>the</str<strong>on</strong>g> property that Rϖ 0 ⊂ ker ϱ. This means that for every<br />

r ∈ R, 0 = ϱ(rϖ 0 ) = (rϖ 0 )(1) = ϖ 0 (r), so that ϖ 0 = 0. Thus ϱ is a left generating<br />

character by definiti<strong>on</strong>. Similarly for ϱ being a right generating character.<br />

□<br />

Propositi<strong>on</strong> 12 (†). Let A be a finite left R-module. Then A admits a left generating<br />

character if <strong>and</strong> <strong>on</strong>ly if A can be embedded in ̂R.<br />

–228–


Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. If A embeds in ̂R, <str<strong>on</strong>g>the</str<strong>on</strong>g>n A admits a generating character, by Lemmas 10 <strong>and</strong> 11.<br />

C<strong>on</strong>versely, let ϱ be a generating character <str<strong>on</strong>g>of</str<strong>on</strong>g> A. We use ϱ to define f : A → ̂R, as<br />

follows. For a ∈ A, define f(a) ∈ ̂R by f(a)(r) = ϱ(ra), r ∈ R. It is easy to check that<br />

f(a) is indeed in ̂R, i.e., that f(a) is a character <str<strong>on</strong>g>of</str<strong>on</strong>g> R. It is also easy to verify that f is<br />

a left R-module homomorphism from A to ̂R. If a ∈ ker f, <str<strong>on</strong>g>the</str<strong>on</strong>g>n ϱ(ra) = 0 for all r ∈ R.<br />

Thus <str<strong>on</strong>g>the</str<strong>on</strong>g> left R-submodule Ra ⊂ ker ϱ. Because ϱ is a generating character, we c<strong>on</strong>clude<br />

that Ra = 0. Thus a = 0, <strong>and</strong> f is injective.<br />

□<br />

When A = R, Propositi<strong>on</strong> 12 is c<strong>on</strong>sistent with <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a generating character<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a ring. Indeed, if R embeds into ̂R, <str<strong>on</strong>g>the</str<strong>on</strong>g>n R <strong>and</strong> ̂R are isomorphic as <strong>on</strong>e-sided modules,<br />

because <str<strong>on</strong>g>the</str<strong>on</strong>g>y have <str<strong>on</strong>g>the</str<strong>on</strong>g> same number <str<strong>on</strong>g>of</str<strong>on</strong>g> elements.<br />

Theorem 13 (†). Let R = M m (F q ) be <str<strong>on</strong>g>the</str<strong>on</strong>g> ring <str<strong>on</strong>g>of</str<strong>on</strong>g> m × m matrices over a finite field F q .<br />

Let A = M m×k (F q ) be <str<strong>on</strong>g>the</str<strong>on</strong>g> left R-module <str<strong>on</strong>g>of</str<strong>on</strong>g> all m × k matrices over F q . Then A admits a<br />

left generating character if <strong>and</strong> <strong>on</strong>ly if m ≥ k.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. If m ≥ k, <str<strong>on</strong>g>the</str<strong>on</strong>g>n, by appending m − k columns <str<strong>on</strong>g>of</str<strong>on</strong>g> zeros, A can be embedded inside<br />

R as a left ideal. By Example 3 <strong>and</strong> Lemma 10, A admits a generating character.<br />

C<strong>on</strong>versely, suppose m < k. We will show that no character <str<strong>on</strong>g>of</str<strong>on</strong>g> A is a generating<br />

character <str<strong>on</strong>g>of</str<strong>on</strong>g> A. To that end, let ϖ be any character <str<strong>on</strong>g>of</str<strong>on</strong>g> A. By Example 3, ϖ has <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

form ϖ Q for some k × m matrix Q over F q . Because k > m, <str<strong>on</strong>g>the</str<strong>on</strong>g> rows <str<strong>on</strong>g>of</str<strong>on</strong>g> Q are linearly<br />

dependent over F q . Let P be any n<strong>on</strong>zero matrix over F q <str<strong>on</strong>g>of</str<strong>on</strong>g> size m × k such that P Q = 0.<br />

Such a P exists because <str<strong>on</strong>g>the</str<strong>on</strong>g> rows <str<strong>on</strong>g>of</str<strong>on</strong>g> Q are linearly dependent: use <str<strong>on</strong>g>the</str<strong>on</strong>g> coefficients <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

n<strong>on</strong>zero dependency relati<strong>on</strong> as <str<strong>on</strong>g>the</str<strong>on</strong>g> entries for a row <str<strong>on</strong>g>of</str<strong>on</strong>g> P . We claim that <str<strong>on</strong>g>the</str<strong>on</strong>g> n<strong>on</strong>zero<br />

left submodule <str<strong>on</strong>g>of</str<strong>on</strong>g> A generated by P is c<strong>on</strong>tained in ker ϖ Q . Indeed, for any B ∈ R,<br />

ϖ Q (BP ) = ϑ q (tr(Q(BP ))) = ϑ q (tr((BP )Q)) = ϑ q (tr(B(P Q))) = 0, using P Q = 0 <strong>and</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> well-known property tr(BC) = tr(CB) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> matrix trace. Thus, no character <str<strong>on</strong>g>of</str<strong>on</strong>g> A<br />

is a generating character.<br />

□<br />

Propositi<strong>on</strong> 14 (†). Suppose A is a finite left R-module. Then A admits a left generating<br />

character if <strong>and</strong> <strong>on</strong>ly if soc(A) admits a left generating character.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. If A admits a generating character, <str<strong>on</strong>g>the</str<strong>on</strong>g>n so does soc(A), by Lemma 10.<br />

C<strong>on</strong>versely, suppose soc(A) admits a generating character ϑ. Utilizing <str<strong>on</strong>g>the</str<strong>on</strong>g> short exact<br />

sequence (2.4), let ϱ be any extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ϑ to a character <str<strong>on</strong>g>of</str<strong>on</strong>g> A . We claim that ϱ is<br />

a generating character <str<strong>on</strong>g>of</str<strong>on</strong>g> A. To that end, suppose B is a submodule <str<strong>on</strong>g>of</str<strong>on</strong>g> A such that<br />

B ⊂ ker ϱ. Then soc(B) ⊂ soc(A) ∩ ker ϱ = soc(A) ∩ ker ϑ, because ϱ is an extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

ϑ. But ϑ is a generating character <str<strong>on</strong>g>of</str<strong>on</strong>g> soc(A), so soc(B) = 0. Since B is a finite module,<br />

we c<strong>on</strong>clude that B = 0. Thus ϱ is a generating character <str<strong>on</strong>g>of</str<strong>on</strong>g> A.<br />

□<br />

Corollary 15 (†). Let A be a finite left R-module. Suppose soc(A) admits a left generating<br />

character ϑ. Then any extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ϑ to a character <str<strong>on</strong>g>of</str<strong>on</strong>g> A is a left generating character<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> A.<br />

We now (finally) turn to <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 5.<br />

(†) Pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 5. Statements (2) <strong>and</strong> (3) are equivalent by Propositi<strong>on</strong> 8. We next<br />

show that (3) implies (1).<br />

–229–


By Example 3, <str<strong>on</strong>g>the</str<strong>on</strong>g> right R-module (R/ rad(R)) R equals <str<strong>on</strong>g>the</str<strong>on</strong>g> character module <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

left R-module R (R/ rad(R)). By Propositi<strong>on</strong> 9 applied to <str<strong>on</strong>g>the</str<strong>on</strong>g> left R-module A = R R, we<br />

have ( R (R/ rad(R)))̂ ∼ = soc( ̂R R ) ∼ = soc(R R ), because ̂R is assumed to be right free. We<br />

thus have an isomorphism (R/ rad(R)) R<br />

∼ = soc(RR ) <str<strong>on</strong>g>of</str<strong>on</strong>g> right R-modules. One can ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

repeat <str<strong>on</strong>g>the</str<strong>on</strong>g> argument for a left isomorphism (using (2)) or appeal to <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>orem <str<strong>on</strong>g>of</str<strong>on</strong>g> H<strong>on</strong>old<br />

[15, Theorem 2] menti<strong>on</strong>ed after Definiti<strong>on</strong> 1.<br />

Now assume (1). Referring to (2.1), we see that R being Frobenius implies that soc(R)<br />

is a sum <str<strong>on</strong>g>of</str<strong>on</strong>g> matrix modules <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> form M mi (F qi ). By Theorem 13 <strong>and</strong> summing, soc(R)<br />

admits a left generating character. By Propositi<strong>on</strong>s 7 <strong>and</strong> 14, R itself admits a left<br />

generating character. Thus (2) holds.<br />

□<br />

2.4. Frobenius Algebras. In this subsecti<strong>on</strong> I want to point out <str<strong>on</strong>g>the</str<strong>on</strong>g> similarity between<br />

a general (not necessarily finite) Frobenius algebra <strong>and</strong> a finite Frobenius ring. I thank<br />

Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor Yun Fan for suggesting this short expositi<strong>on</strong>.<br />

Definiti<strong>on</strong> 16. A finite-dimensi<strong>on</strong>al algebra A over a field F is a Frobenius algebra if<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a linear functi<strong>on</strong>al λ : A → F such that ker λ c<strong>on</strong>tains no n<strong>on</strong>zero left ideals<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> A.<br />

It is apparent that <str<strong>on</strong>g>the</str<strong>on</strong>g> structure functi<strong>on</strong>al λ plays a role for a Frobenius algebra<br />

comparable to that played by a left generating character ϱ <str<strong>on</strong>g>of</str<strong>on</strong>g> a finite Frobenius ring. As<br />

<strong>on</strong>e might expect, <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>necti<strong>on</strong> between λ <strong>and</strong> ϱ is even str<strong>on</strong>ger when <strong>on</strong>e c<strong>on</strong>siders<br />

a finite Frobenius algebra. Recall that every finite field F q admits a generating character<br />

ϑ q , by Example 2.<br />

Theorem 17 (†). Let R be a Frobenius algebra over a finite field F q , with structure<br />

functi<strong>on</strong>al λ : R → F q . Then R is a finite Frobenius ring with left generating character<br />

ϱ = ϑ q ◦ λ.<br />

C<strong>on</strong>versely, suppose R is a finite-dimensi<strong>on</strong>al algebra over a finite field F q <strong>and</strong> that R<br />

is a Frobenius ring with generating character ϱ. Then R is a Frobenius algebra, <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>re<br />

exists a structure functi<strong>on</strong>al λ : R → F q such that ϱ = ϑ q ◦ λ.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Both R ∗ := Hom Fq (R, F q ) <strong>and</strong> ̂R = Hom Z (R, Q/Z) are (R, R)-bimodules satisfying<br />

|R ∗ | = | ̂R| = |R|. A generating character ϑ q <str<strong>on</strong>g>of</str<strong>on</strong>g> F q induces a bimodule homomorphism<br />

f : R ∗ → ̂R via λ ↦→ ϑ q ◦ λ. We claim that f is injective. To that end, suppose λ ∈ ker f.<br />

Then ϑ q ◦λ = 0, so that λ(R) ⊂ ker ϑ q . Note that λ(R) is an F q -vector subspace c<strong>on</strong>tained<br />

in ker ϑ q ⊂ F q . Because ϑ q is a generating character <str<strong>on</strong>g>of</str<strong>on</strong>g> F q , λ(R) = 0, by Propositi<strong>on</strong> 7.<br />

Thus λ = 0, <strong>and</strong> f is injective. Because |R ∗ | = | ̂R|, f is in fact a bimodule isomorphism.<br />

We next claim that <str<strong>on</strong>g>the</str<strong>on</strong>g> structure functi<strong>on</strong>als in R ∗ corresp<strong>on</strong>d under f to <str<strong>on</strong>g>the</str<strong>on</strong>g> generating<br />

characters in ̂R. That is, if ϖ = f(λ), where λ ∈ R ∗ <strong>and</strong> ϖ ∈ ̂R, <str<strong>on</strong>g>the</str<strong>on</strong>g>n λ satisfies <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

c<strong>on</strong>diti<strong>on</strong> that ker λ c<strong>on</strong>tains no n<strong>on</strong>zero left ideals <str<strong>on</strong>g>of</str<strong>on</strong>g> R if <strong>and</strong> <strong>on</strong>ly if ϖ is a generating<br />

character <str<strong>on</strong>g>of</str<strong>on</strong>g> R (i.e., ker ϖ c<strong>on</strong>tains no n<strong>on</strong>zero left ideals <str<strong>on</strong>g>of</str<strong>on</strong>g> R).<br />

Suppose ϖ is a generating character <str<strong>on</strong>g>of</str<strong>on</strong>g> R, <strong>and</strong> suppose that I is a left ideal <str<strong>on</strong>g>of</str<strong>on</strong>g> R with<br />

I ⊂ ker λ. Since ϖ = ϑ q ◦ λ, we also have I ⊂ ker ϖ. Because ϖ is a generating character,<br />

Propositi<strong>on</strong> 7 implies I = 0, as desired.<br />

C<strong>on</strong>versely, suppose λ satisfies <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong> that ker λ c<strong>on</strong>tains no n<strong>on</strong>zero left ideals<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> R, <strong>and</strong> suppose that I is a left ideal <str<strong>on</strong>g>of</str<strong>on</strong>g> R with I ⊂ ker ϖ. Then λ(I) is an F q -linear<br />

–230–


subspace inside ker ϑ q ⊂ F q . Because ϑ q is a generating character <str<strong>on</strong>g>of</str<strong>on</strong>g> F q , we have λ(I) = 0,<br />

i.e., I ⊂ ker λ. By <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong> <strong>on</strong> λ, we c<strong>on</strong>clude that I = 0, as desired.<br />

□<br />

Remark 18. The pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 17 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> equivalence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Morita duality functors<br />

∗ <strong>and</strong> ̂ when R is a finite-dimensi<strong>on</strong>al algebra over a finite field F (cf., [31, Remark 3.12]).<br />

For a finite R-module M, observe that M ∗ := Hom F (M, F) ∼ = Hom R (M, R ∗ ) <strong>and</strong> ̂M =<br />

Hom Z (M, Q/Z) ∼ = Hom R (M, ̂R).<br />

3. The Language <str<strong>on</strong>g>of</str<strong>on</strong>g> Algebraic Coding <strong>Theory</strong><br />

3.1. Background <strong>on</strong> Error-Correcting Codes. Error-correcting codes provide a way<br />

to protect messages from corrupti<strong>on</strong> during transmissi<strong>on</strong> (or storage). This is accomplished<br />

by adding redundancies in such a way that, with high probability, <str<strong>on</strong>g>the</str<strong>on</strong>g> original<br />

message can be recovered from <str<strong>on</strong>g>the</str<strong>on</strong>g> received message.<br />

Let us be a little more precise. Let I be a finite set (<str<strong>on</strong>g>of</str<strong>on</strong>g> “informati<strong>on</strong>”) which will<br />

be <str<strong>on</strong>g>the</str<strong>on</strong>g> possible messages that can be transmitted. An example: numbers from 0 to 63<br />

representing gray scales <str<strong>on</strong>g>of</str<strong>on</strong>g> a photograph. Let A be ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r finite set (<str<strong>on</strong>g>the</str<strong>on</strong>g> “alphabet”);<br />

A = {0, 1} is a typical example. An encoding <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> informati<strong>on</strong> set I is an injecti<strong>on</strong><br />

f : I → A n for some n. The image f(I) is a code in A n .<br />

For a given message x ∈ I, <str<strong>on</strong>g>the</str<strong>on</strong>g> string f(x) is transmitted across a channel (which could<br />

be copper wire, fiber optic cable, saving to a storage device, or transmissi<strong>on</strong> by radio or<br />

cell ph<strong>on</strong>e). During <str<strong>on</strong>g>the</str<strong>on</strong>g> transmissi<strong>on</strong> process, some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> entries in <str<strong>on</strong>g>the</str<strong>on</strong>g> string f(x) might<br />

be corrupted, so that <str<strong>on</strong>g>the</str<strong>on</strong>g> string y ∈ A n that is received may be different from <str<strong>on</strong>g>the</str<strong>on</strong>g> string<br />

f(x) that was originally sent.<br />

The challenge is this: for a given channel, to choose an encoding f in such a way that<br />

it is possible, with high probability, to recover <str<strong>on</strong>g>the</str<strong>on</strong>g> original message x knowing <strong>on</strong>ly <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

corrupted received message y (<strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> method <str<strong>on</strong>g>of</str<strong>on</strong>g> encoding). The process <str<strong>on</strong>g>of</str<strong>on</strong>g> recovering x<br />

is called decoding.<br />

The seminal <str<strong>on</strong>g>the</str<strong>on</strong>g>orem that launched <str<strong>on</strong>g>the</str<strong>on</strong>g> field <str<strong>on</strong>g>of</str<strong>on</strong>g> coding <str<strong>on</strong>g>the</str<strong>on</strong>g>ory is due to Claude Shann<strong>on</strong><br />

[27]. Paraphrasing, it says: up to a limit determined by <str<strong>on</strong>g>the</str<strong>on</strong>g> channel, it is always possible<br />

to find an encoding which will decode with as high a probability as <strong>on</strong>e desires, provided<br />

<strong>on</strong>e takes <str<strong>on</strong>g>the</str<strong>on</strong>g> encoding length n sufficiently large. Shann<strong>on</strong>’s pro<str<strong>on</strong>g>of</str<strong>on</strong>g> is not c<strong>on</strong>structive;<br />

it does not build an encoding, nor does it describe how to decode. Much <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> research<br />

in coding <str<strong>on</strong>g>the</str<strong>on</strong>g>ory since Shann<strong>on</strong>’s <str<strong>on</strong>g>the</str<strong>on</strong>g>orem has been devoted to finding good codes <strong>and</strong><br />

developing decoding algorithms for <str<strong>on</strong>g>the</str<strong>on</strong>g>m. Good references for background <strong>on</strong> coding<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>ory are [16] <strong>and</strong> [23].<br />

3.2. Algebraic Coding <strong>Theory</strong>. Researchers have more tools at <str<strong>on</strong>g>the</str<strong>on</strong>g>ir disposal in c<strong>on</strong>structing<br />

codes if <str<strong>on</strong>g>the</str<strong>on</strong>g>y assume that <str<strong>on</strong>g>the</str<strong>on</strong>g> alphabet A <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> codes C ⊂ A n are equipped<br />

with algebraic structures. The first important case is to assume that A is a finite field<br />

<strong>and</strong> that C ⊂ A n is a linear subspace.<br />

Definiti<strong>on</strong> 19. Let F be a finite field. A linear code <str<strong>on</strong>g>of</str<strong>on</strong>g> length n over F is a linear subspace<br />

C ⊂ F n . The dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> linear code is traditi<strong>on</strong>ally denoted by k = dim F C.<br />

Given two vectors x = (x 1 , . . . , x n ), y = (y 1 , . . . , y n ) ∈ F n , <str<strong>on</strong>g>the</str<strong>on</strong>g>ir Hamming distance<br />

d(x, y) = |{i : x i ≠ y i }| is <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> positi<strong>on</strong>s where <str<strong>on</strong>g>the</str<strong>on</strong>g> vectors differ. The Hamming<br />

–231–


weight wt(x) = d(x, 0) <str<strong>on</strong>g>of</str<strong>on</strong>g> a vector x ∈ F n equals <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> positi<strong>on</strong>s where <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

vector is n<strong>on</strong>zero. Note that d(x, y) = wt(x − y); d is symmetric <strong>and</strong> satisfies <str<strong>on</strong>g>the</str<strong>on</strong>g> triangle<br />

inequality. The minimum distance <str<strong>on</strong>g>of</str<strong>on</strong>g> a code C ⊂ F n is <str<strong>on</strong>g>the</str<strong>on</strong>g> smallest value d C <str<strong>on</strong>g>of</str<strong>on</strong>g> d(x, y)<br />

for x ≠ y, x, y ∈ C. When C is a linear code, d C equals <str<strong>on</strong>g>the</str<strong>on</strong>g> smallest value <str<strong>on</strong>g>of</str<strong>on</strong>g> wt(x) for<br />

x ≠ 0, x ∈ C.<br />

The minimum distance <str<strong>on</strong>g>of</str<strong>on</strong>g> a code C is a measure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> code’s error-correcting capability.<br />

Let B(x, r) = {y ∈ F n : d(x, y) ≤ r} be <str<strong>on</strong>g>the</str<strong>on</strong>g> ball in F n centered at x <str<strong>on</strong>g>of</str<strong>on</strong>g> radius r. Set<br />

r 0 = [(d C − 1)/2], <str<strong>on</strong>g>the</str<strong>on</strong>g> greatest integer less than or equal to (d C − 1)/2. Then all <str<strong>on</strong>g>the</str<strong>on</strong>g> balls<br />

B(x, r 0 ) for x ∈ C are disjoint. Suppose x ∈ C is transmitted <strong>and</strong> y ∈ F n is received.<br />

Decode y to <str<strong>on</strong>g>the</str<strong>on</strong>g> nearest element in <str<strong>on</strong>g>the</str<strong>on</strong>g> code C (<strong>and</strong> flip a coin if <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a tie). If at<br />

most r 0 entries <str<strong>on</strong>g>of</str<strong>on</strong>g> x are corrupted in <str<strong>on</strong>g>the</str<strong>on</strong>g> transmissi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g>n this method always decodes<br />

correctly. We say that C corrects r 0 errors. The larger d C is, <str<strong>on</strong>g>the</str<strong>on</strong>g> more errors that can be<br />

corrected.<br />

3.3. Weight Enumerators. It is useful to keep track <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> weights <str<strong>on</strong>g>of</str<strong>on</strong>g> all <str<strong>on</strong>g>the</str<strong>on</strong>g> elements<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a code C. The Hamming weight enumerator W C (X, Y ) is a polynomial (generating<br />

functi<strong>on</strong>) defined by<br />

W C (X, Y ) = ∑ x∈C<br />

X n−wt(x) Y wt(x) =<br />

n∑<br />

A i X n−i Y i ,<br />

i=0<br />

where A i is <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> elements <str<strong>on</strong>g>of</str<strong>on</strong>g> weight i in C. Only <str<strong>on</strong>g>the</str<strong>on</strong>g> zero vector has weight 0.<br />

In a linear code, A 0 = 1, <strong>and</strong> A i = 0 for 0 < i < d C .<br />

Define an F-valued inner product <strong>on</strong> F n by<br />

x · y =<br />

n∑<br />

x i y i , x = (x 1 , . . . , x n ), y = (y 1 , . . . , y n ) ∈ F n .<br />

i=1<br />

Associated to every linear code C ⊂ F n is its dual code C ⊥ :<br />

C ⊥ = {y ∈ F n : x · y = 0, x ∈ C}.<br />

If k = dim C, <str<strong>on</strong>g>the</str<strong>on</strong>g>n dim C ⊥ = n − k.<br />

One <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> most famous results in algebraic coding <str<strong>on</strong>g>the</str<strong>on</strong>g>ory relates <str<strong>on</strong>g>the</str<strong>on</strong>g> Hamming weight<br />

enumerator <str<strong>on</strong>g>of</str<strong>on</strong>g> a linear code C to that <str<strong>on</strong>g>of</str<strong>on</strong>g> its dual code C ⊥ : <str<strong>on</strong>g>the</str<strong>on</strong>g> MacWilliams identities,<br />

which is <str<strong>on</strong>g>the</str<strong>on</strong>g> subject <str<strong>on</strong>g>of</str<strong>on</strong>g> Secti<strong>on</strong> 4.<br />

Theorem 20 (MacWilliams Identities). Let C be a linear code in F n q . Then<br />

W C (X, Y ) = 1<br />

|C ⊥ | W C⊥(X + (q − 1)Y, X − Y ).<br />

Of special interest are self-dual codes. A linear code C is self-orthog<strong>on</strong>al if C ⊂ C ⊥ ; C<br />

is self-dual if C = C ⊥ . Note that a self-dual code C <str<strong>on</strong>g>of</str<strong>on</strong>g> length n <strong>and</strong> dimensi<strong>on</strong> k satisfies<br />

n = 2k, so that n must be even.<br />

–232–


3.4. Linear Codes over <strong>Ring</strong>s. While <str<strong>on</strong>g>the</str<strong>on</strong>g>re had been some early work <strong>on</strong> linear codes<br />

defined over <str<strong>on</strong>g>the</str<strong>on</strong>g> rings Z/kZ, a major breakthrough came in 1994 with <str<strong>on</strong>g>the</str<strong>on</strong>g> paper [13].<br />

(There was similar, independent work in [25].) It had been noticed that <str<strong>on</strong>g>the</str<strong>on</strong>g>re were<br />

two families <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>linear binary codes that behaved as if <str<strong>on</strong>g>the</str<strong>on</strong>g>y were duals; <str<strong>on</strong>g>the</str<strong>on</strong>g>ir weight<br />

enumerators satisfied <str<strong>on</strong>g>the</str<strong>on</strong>g> MacWilliams identities. This phenomen<strong>on</strong> was explained in [13].<br />

The authors discovered two families <str<strong>on</strong>g>of</str<strong>on</strong>g> linear codes over Z/4Z that are duals <str<strong>on</strong>g>of</str<strong>on</strong>g> each o<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

<strong>and</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g>refore, <str<strong>on</strong>g>the</str<strong>on</strong>g>ir weight enumerators satisfy <str<strong>on</strong>g>the</str<strong>on</strong>g> MacWilliams identities. In additi<strong>on</strong>,<br />

by using a so-called Gray map g : Z/4Z → F 2 2 defined by g(0) = 00, g(1) = 01, g(2) = 11,<br />

<strong>and</strong> g(3) = 10 (g is not a homomorphism), <str<strong>on</strong>g>the</str<strong>on</strong>g> authors showed that <str<strong>on</strong>g>the</str<strong>on</strong>g> two families <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

linear codes over Z/4Z are mapped to <str<strong>on</strong>g>the</str<strong>on</strong>g> original families <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>linear codes over F 2 .<br />

The paper [13] launched an interest in linear codes defined over rings that c<strong>on</strong>tinues to<br />

this day.<br />

Definiti<strong>on</strong> 21. Let R be a finite ring. A left (right) linear code C <str<strong>on</strong>g>of</str<strong>on</strong>g> length n over R is<br />

a left (right) R-submodule C ⊂ R n .<br />

It will be useful in Secti<strong>on</strong> 5 to be even more general <strong>and</strong> to define linear codes over<br />

modules. These ideas were introduced first by Nechaev <strong>and</strong> his colloborators [18].<br />

Definiti<strong>on</strong> 22. Let R be a finite ring, <strong>and</strong> let A (for alphabet) be a finite left R-module.<br />

A left linear code C over A <str<strong>on</strong>g>of</str<strong>on</strong>g> length n is a left R-submodule C ⊂ A n .<br />

The Hamming weight is defined in <str<strong>on</strong>g>the</str<strong>on</strong>g> same way as for fields. For x = (x 1 , . . . , x n ) ∈ R n<br />

(or A n ), define wt(x) = |{i : x i ≠ 0}|, <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>zero entries in <str<strong>on</strong>g>the</str<strong>on</strong>g> vector x.<br />

4. The MacWilliams Identities<br />

In this secti<strong>on</strong>, we present a pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> MacWilliams identities that is valid over any<br />

finite Frobenius ring. The pro<str<strong>on</strong>g>of</str<strong>on</strong>g>, which dates to [31, Theorem 8.3], is essentially <str<strong>on</strong>g>the</str<strong>on</strong>g> same<br />

as <strong>on</strong>e due to Gleas<strong>on</strong> found in [3, §1.12]. While <str<strong>on</strong>g>the</str<strong>on</strong>g> MacWilliams identities hold in even<br />

more general settings (see <str<strong>on</strong>g>the</str<strong>on</strong>g> later secti<strong>on</strong>s in [33], for example), <str<strong>on</strong>g>the</str<strong>on</strong>g> setting <str<strong>on</strong>g>of</str<strong>on</strong>g> linear<br />

codes over a finite Frobenius ring will show clearly <str<strong>on</strong>g>the</str<strong>on</strong>g> role <str<strong>on</strong>g>of</str<strong>on</strong>g> characters in <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g>.<br />

Let R be a finite ring. As we did earlier for fields, we define a dot product <strong>on</strong> R n by<br />

n∑<br />

x · y = x i y i , x = (x 1 , . . . , x n ), y = (y 1 , . . . , y n ) ∈ R n .<br />

i=1<br />

For a left linear code C ⊂ R n , define <str<strong>on</strong>g>the</str<strong>on</strong>g> right annihilator r(C) by r(C) = {y ∈ R n :<br />

x·y = 0, x ∈ C}. The right annihilator will play <str<strong>on</strong>g>the</str<strong>on</strong>g> role <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dual code C ⊥ . (Because R<br />

may be n<strong>on</strong>-commutative, <strong>on</strong>e must choose between a left <strong>and</strong> a right annihilator.) The<br />

Hamming weight enumerator W C (X, Y ) <str<strong>on</strong>g>of</str<strong>on</strong>g> a left linear code C is defined exactly as for<br />

fields.<br />

Theorem 23 (MacWilliams Identities). Let R be a finite Frobenius ring, <strong>and</strong> let C ⊂ R n<br />

be a left linear code. Then<br />

W C (X, Y ) = 1<br />

|r(C)| W r(C)(X + (|R| − 1)Y, X − Y ).<br />

–233–


4.1. Fourier Transform. Gleas<strong>on</strong>’s pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> MacWilliams identities uses <str<strong>on</strong>g>the</str<strong>on</strong>g> Fourier<br />

transform <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Poiss<strong>on</strong> summati<strong>on</strong> formula, which we describe in this subsecti<strong>on</strong>. Let<br />

(G, +) be a finite abelian group.<br />

Throughout this secti<strong>on</strong>, we will use <str<strong>on</strong>g>the</str<strong>on</strong>g> multiplicative form <str<strong>on</strong>g>of</str<strong>on</strong>g> characters; that is,<br />

characters are group homomorphisms π : (G, +) → (C × , ·) from a finite abelian group to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> multiplicative group <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>zero complex numbers. The set Ĝ <str<strong>on</strong>g>of</str<strong>on</strong>g> all characters <str<strong>on</strong>g>of</str<strong>on</strong>g> G<br />

forms an abelian group under pointwise multiplicati<strong>on</strong>. The following list <str<strong>on</strong>g>of</str<strong>on</strong>g> properties <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

characters is well-known <strong>and</strong> presented without pro<str<strong>on</strong>g>of</str<strong>on</strong>g> (see [26] or [28]).<br />

Lemma 24. Characters <str<strong>on</strong>g>of</str<strong>on</strong>g> a finite abelian group G satisfy <str<strong>on</strong>g>the</str<strong>on</strong>g> following properties.<br />

(1) |Ĝ| = |G|;<br />

(2) (G 1 × G 2 )̂ ∼ = Ĝ1 × Ĝ2;<br />

(3) ∑ {<br />

x∈G π(x) = |G|, π = 1,<br />

0, π ≠ 1;<br />

(4) ∑ {<br />

π∈Ĝ π(x) = |G|, x = 0,<br />

0, x ≠ 0;<br />

(5) The characters form a linearly independent subset <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> vector space <str<strong>on</strong>g>of</str<strong>on</strong>g> complexvalued<br />

functi<strong>on</strong>s <strong>on</strong> G. (In fact, <str<strong>on</strong>g>the</str<strong>on</strong>g> characters form a basis.)<br />

□<br />

Let V be a vector space over <str<strong>on</strong>g>the</str<strong>on</strong>g> complex numbers. For any functi<strong>on</strong> f : G → V , define<br />

its Fourier transform ˆf : Ĝ → V by<br />

ˆf(π) = ∑ x∈G<br />

π(x)f(x), π ∈ Ĝ.<br />

Given a subgroup H ⊂ G, define <str<strong>on</strong>g>the</str<strong>on</strong>g> annihilator (Ĝ : H) = {π ∈ Ĝ : π(H) = 1}. As we<br />

saw in (2.5), |(Ĝ : H)| = |G|/|H|.<br />

The Poiss<strong>on</strong> summati<strong>on</strong> formula relates <str<strong>on</strong>g>the</str<strong>on</strong>g> sum <str<strong>on</strong>g>of</str<strong>on</strong>g> a functi<strong>on</strong> over a subgroup to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

sum <str<strong>on</strong>g>of</str<strong>on</strong>g> its Fourier transform over <str<strong>on</strong>g>the</str<strong>on</strong>g> annihilator <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> subgroup. The pro<str<strong>on</strong>g>of</str<strong>on</strong>g> is an exercise.<br />

Propositi<strong>on</strong> 25 (Poiss<strong>on</strong> Summati<strong>on</strong> Formula). Let H ⊂ G be a subgroup, <strong>and</strong> let<br />

f : G → V be any functi<strong>on</strong> from G to a complex vector space V . Then<br />

∑<br />

1 ∑<br />

f(x) =<br />

|(Ĝ : H)|<br />

x∈H<br />

π∈(Ĝ:H) ˆf(π).<br />

The next technical result describes <str<strong>on</strong>g>the</str<strong>on</strong>g> Fourier transform <str<strong>on</strong>g>of</str<strong>on</strong>g> a functi<strong>on</strong> that is <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

product <str<strong>on</strong>g>of</str<strong>on</strong>g> functi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e variable. Again, <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> is an exercise for <str<strong>on</strong>g>the</str<strong>on</strong>g> reader.<br />

Lemma 26. Suppose V is a commutative algebra over <str<strong>on</strong>g>the</str<strong>on</strong>g> complex numbers, <strong>and</strong> suppose<br />

f i : G → V , i = 1, . . . , n, are functi<strong>on</strong>s from G to V . Let f : G n → V be defined by<br />

f(x 1 , . . . , x n ) = ∏ n<br />

i=1 f i(x i ). Then<br />

n∏<br />

ˆf(π 1 , . . . , π n ) = ˆf i (π i ).<br />

–234–<br />

i=1


4.2. Gleas<strong>on</strong>’s Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 23. Given a left linear code C ⊂ R n , we apply <str<strong>on</strong>g>the</str<strong>on</strong>g> Poiss<strong>on</strong> summati<strong>on</strong><br />

formula with G = R n , H = C, <strong>and</strong> V = C[X, Y ], <str<strong>on</strong>g>the</str<strong>on</strong>g> polynomial ring over C in two<br />

indeterminates. Define f i : R → C[X, Y ] by f i (x i ) = X 1−wt(xi) Y wt(xi) , x i ∈ R, where<br />

wt(r) = 0 for r = 0, <strong>and</strong> wt(r) = 1 for r ≠ 0 in R. Let f : R n → C[X, Y ] be <str<strong>on</strong>g>the</str<strong>on</strong>g> product<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> f i ; i.e.,<br />

n∏<br />

f(x 1 , . . . , x n ) = X 1−wt(xi) Y wt(xi) = X n−wt(x) Y wt(x) ,<br />

i=1<br />

where x = (x 1 , . . . , x n ) ∈ R n . We recognize that ∑ x∈H<br />

f(x), <str<strong>on</strong>g>the</str<strong>on</strong>g> left side <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Poiss<strong>on</strong><br />

summati<strong>on</strong> formula, is simply <str<strong>on</strong>g>the</str<strong>on</strong>g> Hamming weight enumerator W C (X, Y ).<br />

To begin to simplify <str<strong>on</strong>g>the</str<strong>on</strong>g> right side <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Poiss<strong>on</strong> summati<strong>on</strong> formula, we must calculate<br />

ˆf. By Lemma 26, we first calculate ˆf i .<br />

ˆf i (π i ) = ∑ π i (a)f i (a) = ∑ π i (a)X 1−wt(a) Y wt(a) = X + ∑ π i (a)Y<br />

a∈R<br />

a∈R<br />

a≠0<br />

{<br />

X + (|R| − 1)Y, π i = 1,<br />

=<br />

X − Y, π i ≠ 1.<br />

At <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> first line, <strong>on</strong>e evaluates <str<strong>on</strong>g>the</str<strong>on</strong>g> case a = 0 versus <str<strong>on</strong>g>the</str<strong>on</strong>g> cases where a ≠ 0. In<br />

going to <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d line, <strong>on</strong>e uses Lemma 24. Using Lemma 26, we see that<br />

ˆf(π) = (X + (|R| − 1)Y ) n−wt(π) (X − Y ) wt(π) ,<br />

where π = (π 1 , . . . , π n ) ∈ ̂R n <strong>and</strong> wt(π) counts <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> π i such that π i ≠ 1.<br />

The last task is to identify <str<strong>on</strong>g>the</str<strong>on</strong>g> character-<str<strong>on</strong>g>the</str<strong>on</strong>g>oretic annihilator (Ĝ : H) = ( ̂R n : C) with<br />

r(C), which is where R being Frobenius enters <str<strong>on</strong>g>the</str<strong>on</strong>g> picture. Let ρ be a generating character<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> R. We use ρ to define a homomorphism β : R → ̂R. For r ∈ R, <str<strong>on</strong>g>the</str<strong>on</strong>g> character β(r) ∈ ̂R<br />

has <str<strong>on</strong>g>the</str<strong>on</strong>g> form β(r)(s) = (rρ)(s) = ρ(sr) for s ∈ R. One can verify that β : R → ̂R is an<br />

isomorphism <str<strong>on</strong>g>of</str<strong>on</strong>g> left R-modules. In particular, wt(r) = wt(β(r)).<br />

Extend β to an isomorphism β : R n → ̂R n <str<strong>on</strong>g>of</str<strong>on</strong>g> left R-modules, via β(x)(y) = ρ(y · x), for<br />

x, y ∈ R n . Again, wt(x) = wt(β(x)). For x ∈ R n , when is β(x) ∈ ( ̂R n : C)? This occurs<br />

when β(x)(C) = 1; that is, when ρ(C · x) = 1. This means that <str<strong>on</strong>g>the</str<strong>on</strong>g> left ideal C · x <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

R is c<strong>on</strong>tained in ker ρ. Because ρ is a generating character, Propositi<strong>on</strong> 7 implies that<br />

C · x = 0. Thus x ∈ r(C). The c<strong>on</strong>verse is obvious. Thus r(C) corresp<strong>on</strong>ds to ( ̂R n : C)<br />

under <str<strong>on</strong>g>the</str<strong>on</strong>g> isomorphism β.<br />

The right side <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Poiss<strong>on</strong> summati<strong>on</strong> formula now simplifies as follows:<br />

1 ∑<br />

1 ∑<br />

ˆf(π) =<br />

|(Ĝ : H)|<br />

(X + (|R| − 1)Y ) n−wt(x) (X − Y ) wt(x)<br />

|r(C)|<br />

π∈(Ĝ:H) x∈r(C)<br />

as desired.<br />

= 1<br />

|r(C)| W r(C)(X + (|R| − 1)Y, X − Y ),<br />

–235–<br />


5. The Extensi<strong>on</strong> Problem<br />

In this secti<strong>on</strong>, we will discuss <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> problem, which originated from underst<strong>and</strong>ing<br />

equivalence <str<strong>on</strong>g>of</str<strong>on</strong>g> codes. The main result is that a finite ring has <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong><br />

property for linear codes with respect to <str<strong>on</strong>g>the</str<strong>on</strong>g> Hamming weight if <strong>and</strong> <strong>on</strong>ly if <str<strong>on</strong>g>the</str<strong>on</strong>g> ring is<br />

Frobenius.<br />

5.1. Equivalence <str<strong>on</strong>g>of</str<strong>on</strong>g> Codes. When should two linear codes be c<strong>on</strong>sidered to be <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

same? That is, what should it mean for two linear codes to be equivalent? There are<br />

two (related) approaches to this questi<strong>on</strong>: via m<strong>on</strong>omial transformati<strong>on</strong>s <strong>and</strong> via weightpreserving<br />

isomorphisms.<br />

Definiti<strong>on</strong> 27. Let R be a finite ring. A (left) m<strong>on</strong>omial transformati<strong>on</strong> T : R n → R n<br />

is a left R-linear homomorphism <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> form<br />

T (x 1 , . . . , x n ) = (x σ(1) u 1 , . . . , x σ(n) u n ), (x 1 , . . . , x n ) ∈ R n ,<br />

for some permutati<strong>on</strong> σ <str<strong>on</strong>g>of</str<strong>on</strong>g> {1, 2, . . . , n} <strong>and</strong> units u 1 , . . . , u n <str<strong>on</strong>g>of</str<strong>on</strong>g> R.<br />

Two left linear codes C 1 , C 2 ⊂ R n are equivalent if <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a m<strong>on</strong>omial transformati<strong>on</strong><br />

T : R n → R n such that T (C 1 ) = C 2 .<br />

Ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r possible definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> equivalence <str<strong>on</strong>g>of</str<strong>on</strong>g> linear codes C 1 , C 2 ⊂ R n is this: <str<strong>on</strong>g>the</str<strong>on</strong>g>re<br />

exists an R-linear isomorphism f : C 1 → C 2 that preserves <str<strong>on</strong>g>the</str<strong>on</strong>g> Hamming weight, i.e.,<br />

wt(f(x)) = wt(x), for all x ∈ C 1 . The next lemma shows that equivalence using m<strong>on</strong>omial<br />

transformati<strong>on</strong>s implies equivalence using a Hamming weight-preserving isomorphism.<br />

Lemma 28. If T : R n → R n is a m<strong>on</strong>omial transformati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g>n T preserves <str<strong>on</strong>g>the</str<strong>on</strong>g> Hamming<br />

weight: wt(T (x)) = wt(x), for all x ∈ R n . If linear codes C 1 , C 2 ⊂ R n are equivalent<br />

via a m<strong>on</strong>omial transformati<strong>on</strong> T , <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> restricti<strong>on</strong> f <str<strong>on</strong>g>of</str<strong>on</strong>g> T to C 1 is an R-linear isomorphism<br />

C 1 → C 2 that preserves <str<strong>on</strong>g>the</str<strong>on</strong>g> Hamming weight.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. For any r ∈ R <strong>and</strong> any unit u ∈ R, r = 0 if <strong>and</strong> <strong>on</strong>ly if ru = 0. The result follows<br />

easily from this.<br />

□<br />

Does <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>verse hold? This is an extensi<strong>on</strong> problem: given C 1 , C 2 ⊂ R n <strong>and</strong> an<br />

R-linear isomorphism f : C 1 → C 2 that preserves <str<strong>on</strong>g>the</str<strong>on</strong>g> Hamming weight, does f extend to<br />

a m<strong>on</strong>omial transformati<strong>on</strong> T : R n → R n ? We will phrase this in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> a property.<br />

Definiti<strong>on</strong> 29. Let R be a finite ring. The ring R has <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> property (EP) with<br />

respect to <str<strong>on</strong>g>the</str<strong>on</strong>g> Hamming weight if, whenever two left linear codes C 1 , C 2 ⊂ R n admit an<br />

R-linear isomorphism f : C 1 → C 2 that preserves <str<strong>on</strong>g>the</str<strong>on</strong>g> Hamming weight, it follows that f<br />

extends to a m<strong>on</strong>omial transformati<strong>on</strong> T : R n → R n .<br />

Thus, <str<strong>on</strong>g>the</str<strong>on</strong>g> two noti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> equivalence coincide precisely when <str<strong>on</strong>g>the</str<strong>on</strong>g> ring R satisfies <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

extensi<strong>on</strong> property. Ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r important <str<strong>on</strong>g>the</str<strong>on</strong>g>orem <str<strong>on</strong>g>of</str<strong>on</strong>g> MacWilliams is that finite fields have<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> property [21], [22].<br />

Theorem 30 (MacWilliams). Finite fields have <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> property with respect to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Hamming weight.<br />

–236–


O<str<strong>on</strong>g>the</str<strong>on</strong>g>r pro<str<strong>on</strong>g>of</str<strong>on</strong>g>s that finite fields have <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> property with respect to <str<strong>on</strong>g>the</str<strong>on</strong>g> Hamming<br />

weight have been given by Bogart, Goldberg, <strong>and</strong> Gord<strong>on</strong> [5] <strong>and</strong> by Ward <strong>and</strong> Wood<br />

[29]. We will not prove <str<strong>on</strong>g>the</str<strong>on</strong>g> finite field case separately, because it is a special case <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

main <str<strong>on</strong>g>the</str<strong>on</strong>g>orem <str<strong>on</strong>g>of</str<strong>on</strong>g> this secti<strong>on</strong>:<br />

Theorem 31. Let R be a finite ring. Then R has <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> property with respect to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Hamming weight if <strong>and</strong> <strong>on</strong>ly if R is Frobenius.<br />

One directi<strong>on</strong>, that finite Frobenius rings have <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> property, first appeared in<br />

[31, Theorem 6.3]. The pro<str<strong>on</strong>g>of</str<strong>on</strong>g> (which will be given in subsecti<strong>on</strong> 5.2) is based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> linear<br />

independence <str<strong>on</strong>g>of</str<strong>on</strong>g> characters <strong>and</strong> is modeled <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> in [29] <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> finite field case. A<br />

combinatorial pro<str<strong>on</strong>g>of</str<strong>on</strong>g> appears in work <str<strong>on</strong>g>of</str<strong>on</strong>g> Greferath <strong>and</strong> Schmidt [12]. More generally yet,<br />

Greferath, Nechaev, <strong>and</strong> Wisbauer have shown that <str<strong>on</strong>g>the</str<strong>on</strong>g> character module <str<strong>on</strong>g>of</str<strong>on</strong>g> any finite<br />

ring has <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> property for <str<strong>on</strong>g>the</str<strong>on</strong>g> homogeneous <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Hamming weights [11]. Ideas<br />

from this latter paper greatly influenced <str<strong>on</strong>g>the</str<strong>on</strong>g> work presented in subsecti<strong>on</strong> 5.4.<br />

The o<str<strong>on</strong>g>the</str<strong>on</strong>g>r directi<strong>on</strong>, that <strong>on</strong>ly finite Frobenius rings have <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> property, first<br />

appeared in [32]. That paper carried out a strategy due to Dinh <strong>and</strong> López-Permouth [8].<br />

Additi<strong>on</strong>al relevant material appeared in [33].<br />

The rest <str<strong>on</strong>g>of</str<strong>on</strong>g> this secti<strong>on</strong> will be devoted to <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 31.<br />

5.2. Frobenius is Sufficient. In this subsecti<strong>on</strong> we prove half <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 31, that a<br />

finite Frobenius ring has <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> property, following <str<strong>on</strong>g>the</str<strong>on</strong>g> treatment in [31, Theorem<br />

6.3].<br />

Assume C 1 , C 2 ⊂ R n are two left linear codes, <strong>and</strong> assume f : C 1 → C 2 is an R-linear<br />

isomorphism that preserves <str<strong>on</strong>g>the</str<strong>on</strong>g> Hamming weight. We want to show that f extends to<br />

a m<strong>on</strong>omial transformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> R n . The core idea is to express <str<strong>on</strong>g>the</str<strong>on</strong>g> weight-preservati<strong>on</strong><br />

property <str<strong>on</strong>g>of</str<strong>on</strong>g> f as an equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> characters <str<strong>on</strong>g>of</str<strong>on</strong>g> C 1 <strong>and</strong> to use <str<strong>on</strong>g>the</str<strong>on</strong>g> linear independence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

characters to match up terms.<br />

Let pr 1 , . . . , pr n : R n → R be <str<strong>on</strong>g>the</str<strong>on</strong>g> coordinate projecti<strong>on</strong>s, so that pr i (x 1 , . . . , x n ) = x i ,<br />

(x 1 , . . . , x n ) ∈ R n . Let λ 1 , . . . , λ n denote <str<strong>on</strong>g>the</str<strong>on</strong>g> restricti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> pr 1 , . . . , pr n to C 1 ⊂ R n .<br />

Similarly, let µ 1 , . . . , µ n : C 1 → R be given by µ i = pr i ◦f. Then λ 1 , . . . , λ n , µ 1 , . . . , µ n ∈<br />

Hom R (C 1 , R) are left R-linear functi<strong>on</strong>als <strong>on</strong> C 1 . It will suffice to prove <str<strong>on</strong>g>the</str<strong>on</strong>g> existence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a permutati<strong>on</strong> σ <str<strong>on</strong>g>of</str<strong>on</strong>g> {1, . . . , n} <strong>and</strong> units u 1 , . . . , u n <str<strong>on</strong>g>of</str<strong>on</strong>g> R such that µ i = λ σ(i) u i , for<br />

i = 1, . . . , n.<br />

For any x ∈ C 1 , <str<strong>on</strong>g>the</str<strong>on</strong>g> Hamming weight <str<strong>on</strong>g>of</str<strong>on</strong>g> x is given by wt(x) = ∑ n<br />

i=1 wt(λ i(x)), while<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Hamming weight <str<strong>on</strong>g>of</str<strong>on</strong>g> f(x) is given by wt(f(x)) = ∑ n<br />

i=1 wt(µ i(x)). Because f preserves<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Hamming weight, we have<br />

n∑<br />

n∑<br />

(5.1)<br />

wt(λ i (x)) = wt(µ i (x)).<br />

i=1<br />

Using Lemma 24, observe that 1 − wt(r) = (1/|R|) ∑ π∈ ̂R<br />

π(r), for any r ∈ R. Apply this<br />

observati<strong>on</strong> to (5.1) <strong>and</strong> simplify:<br />

n∑ ∑<br />

n∑ ∑<br />

(5.2)<br />

π(λ i (x)) = π(µ i (x)), x ∈ C 1 .<br />

i=1 π∈ ̂R<br />

i=1<br />

i=1 π∈ ̂R<br />

–237–


Because R is assumed to be Frobenius, R admits a (left) generating character ρ. Every<br />

character π ∈ ̂R thus has <str<strong>on</strong>g>the</str<strong>on</strong>g> form π = aρ, for some a ∈ R. Recall that <str<strong>on</strong>g>the</str<strong>on</strong>g> scalar<br />

multiplicati<strong>on</strong> means that π(r) = (aρ)(r) = ρ(ra), for r ∈ R. Use this to simplify (5.2)<br />

(<strong>and</strong> use different indices <strong>on</strong> each side <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> resulting equati<strong>on</strong>):<br />

n∑ ∑<br />

n∑ ∑<br />

(5.3)<br />

ρ ◦ (λ i a) = ρ ◦ (µ j b).<br />

i=1 a∈R<br />

j=1 b∈R<br />

This is an equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> characters <str<strong>on</strong>g>of</str<strong>on</strong>g> C 1 . Because characters are linearly independent, we<br />

can match up terms from <str<strong>on</strong>g>the</str<strong>on</strong>g> left <strong>and</strong> right sides <str<strong>on</strong>g>of</str<strong>on</strong>g> (5.3). In order to get unit multiples,<br />

some care must be taken.<br />

Because C 1 is a left R-module, Hom R (C 1 , R) is a right R-module. Define a preorder ≼<br />

<strong>on</strong> Hom R (C 1 , R) by λ ≼ µ if λ = µr for some r ∈ R. By a result <str<strong>on</strong>g>of</str<strong>on</strong>g> Bass [4, Lemma 6.4],<br />

λ ≼ µ <strong>and</strong> µ ≼ λ imply µ = λu for some unit u <str<strong>on</strong>g>of</str<strong>on</strong>g> R.<br />

Am<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> linear functi<strong>on</strong>als λ 1 , . . . , λ n , µ 1 , . . . , µ n (a finite list), choose <strong>on</strong>e that is<br />

maximal in <str<strong>on</strong>g>the</str<strong>on</strong>g> preorder ≼. Without loss <str<strong>on</strong>g>of</str<strong>on</strong>g> generality, assume µ 1 is maximal in ≼. (This<br />

means: if µ 1 ≼ λ for some λ, <str<strong>on</strong>g>the</str<strong>on</strong>g>n µ 1 = λu for some unit u <str<strong>on</strong>g>of</str<strong>on</strong>g> R.) In (5.3), c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

term <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> right side with j = 1 <strong>and</strong> b = 1. By linear independence <str<strong>on</strong>g>of</str<strong>on</strong>g> characters, <str<strong>on</strong>g>the</str<strong>on</strong>g>re<br />

exists i 1 , 1 ≤ i 1 ≤ n, <strong>and</strong> a ∈ R such that ρ ◦ (λ i1 a) = ρ ◦ µ 1 . This equati<strong>on</strong> implies<br />

that im(µ 1 − λ i1 a) ⊂ ker ρ. But im(µ 1 − λ i1 a) is a left ideal <str<strong>on</strong>g>of</str<strong>on</strong>g> R, <strong>and</strong> ρ is a generating<br />

character <str<strong>on</strong>g>of</str<strong>on</strong>g> R. By Propositi<strong>on</strong> 7, im(µ 1 − λ i1 a) = 0, so that µ 1 = λ i1 a. This means that<br />

µ 1 ≼ λ i1 . Because µ 1 was chosen to be maximal, we have µ 1 = λ i1 u 1 , for some unit u 1 <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

R. Begin to define a permutati<strong>on</strong> σ by σ(1) = i 1 .<br />

By a reindexing argument, all <str<strong>on</strong>g>the</str<strong>on</strong>g> terms <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> left side <str<strong>on</strong>g>of</str<strong>on</strong>g> (5.3) with i = i 1 match <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

terms <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> right side <str<strong>on</strong>g>of</str<strong>on</strong>g> (5.3) with j = 1. That is, ∑ a∈R ρ ◦ (λ i 1<br />

a) = ∑ b∈R ρ ◦ (µ 1b).<br />

Subtract <str<strong>on</strong>g>the</str<strong>on</strong>g>se sums from (5.3), <str<strong>on</strong>g>the</str<strong>on</strong>g>reby reducing <str<strong>on</strong>g>the</str<strong>on</strong>g> size <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> outer summati<strong>on</strong>s by<br />

<strong>on</strong>e. Proceed by inducti<strong>on</strong>, building a permutati<strong>on</strong> σ <strong>and</strong> finding units u 1 , . . . , u n <str<strong>on</strong>g>of</str<strong>on</strong>g> R,<br />

as desired.<br />

5.3. Reformulating <str<strong>on</strong>g>the</str<strong>on</strong>g> Problem. The pro<str<strong>on</strong>g>of</str<strong>on</strong>g> that being a finite Frobenius ring is sufficient<br />

for having <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> property with respect to <str<strong>on</strong>g>the</str<strong>on</strong>g> Hamming weight was based<br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>orem over finite fields that used <str<strong>on</strong>g>the</str<strong>on</strong>g> linear independence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> characters [29]. In c<strong>on</strong>trast, <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> that Frobenius is necessary will make use <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> approach for proving <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>orem due to Bogart, et al. [5]. This requires a<br />

reformulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> problem.<br />

Every left linear code C ⊂ R n can be viewed as <str<strong>on</strong>g>the</str<strong>on</strong>g> image <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> inclusi<strong>on</strong> map C →<br />

R n . More generally, every left linear code is <str<strong>on</strong>g>the</str<strong>on</strong>g> image <str<strong>on</strong>g>of</str<strong>on</strong>g> an R-linear homomorphism<br />

Λ : M → R n , for some finite left R-module M. By composing with <str<strong>on</strong>g>the</str<strong>on</strong>g> coordinate<br />

projecti<strong>on</strong>s pr i , <str<strong>on</strong>g>the</str<strong>on</strong>g> homomorphism Λ can be expressed as an n-tuple Λ = (λ 1 , . . . , λ n ),<br />

where each λ i ∈ Hom R (M, R). The λ i will be called <str<strong>on</strong>g>the</str<strong>on</strong>g> coordinate functi<strong>on</strong>als <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

linear code.<br />

Remark 32. It is typical in coding <str<strong>on</strong>g>the</str<strong>on</strong>g>ory to present a linear code C ⊂ R n by means <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a generator matrix G. The matrix G has entries from R, <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> columns <str<strong>on</strong>g>of</str<strong>on</strong>g> G<br />

equals <str<strong>on</strong>g>the</str<strong>on</strong>g> length n <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> code C, <strong>and</strong> (most importantly) <str<strong>on</strong>g>the</str<strong>on</strong>g> rows <str<strong>on</strong>g>of</str<strong>on</strong>g> G generate C as<br />

a left submodule <str<strong>on</strong>g>of</str<strong>on</strong>g> R n .<br />

–238–


The descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a linear code via coordinate functi<strong>on</strong>als is essentially equivalent to<br />

that using generator matrices. If <strong>on</strong>e has coordinate functi<strong>on</strong>als λ 1 , . . . , λ n , <str<strong>on</strong>g>the</str<strong>on</strong>g>n <strong>on</strong>e can<br />

produce a generator matrix G by choosing a set v 1 , . . . , v k <str<strong>on</strong>g>of</str<strong>on</strong>g> generators for C as a left<br />

module over R <strong>and</strong> taking as <str<strong>on</strong>g>the</str<strong>on</strong>g> (i, j)-entry <str<strong>on</strong>g>of</str<strong>on</strong>g> G <str<strong>on</strong>g>the</str<strong>on</strong>g> value λ j (v i ). C<strong>on</strong>versely, given<br />

a generator matrix, its columns define coordinate functi<strong>on</strong>als. Thus, using coordinate<br />

functi<strong>on</strong>als is a “basis-free” approach to generator matrices. This idea goes back to [2].<br />

We are interested in linear codes up to equivalence. For a linear code given by Λ =<br />

(λ 1 , . . . , λ n ) : M → R n , <str<strong>on</strong>g>the</str<strong>on</strong>g> order <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> coordinate functi<strong>on</strong>als λ 1 , . . . , λ n is irrelevant, as<br />

is replacing any λ i with λ i u i , for some unit u i <str<strong>on</strong>g>of</str<strong>on</strong>g> R. We want to encode this informati<strong>on</strong><br />

systematically. Let U be <str<strong>on</strong>g>the</str<strong>on</strong>g> group <str<strong>on</strong>g>of</str<strong>on</strong>g> units <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ring R. The group U acts <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> module<br />

Hom R (M, R) by right scalar multiplicati<strong>on</strong>; let O ♯ denote <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> orbits <str<strong>on</strong>g>of</str<strong>on</strong>g> this acti<strong>on</strong>:<br />

O ♯ = Hom R (M, R)/U. Then a linear code M → R n , up to equivalence, is specified by<br />

choosing n elements <str<strong>on</strong>g>of</str<strong>on</strong>g> O ♯ (counting with multiplicities). This choice can be encoded<br />

by specifying a functi<strong>on</strong> (a multiplicity functi<strong>on</strong>) η : O ♯ → N, <str<strong>on</strong>g>the</str<strong>on</strong>g> n<strong>on</strong>negative integers,<br />

where η(λ) is <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> times λ (or a unit multiple <str<strong>on</strong>g>of</str<strong>on</strong>g> λ) appears as a coordinate<br />

functi<strong>on</strong>al. The length n <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> linear code is given by ∑ λ∈O<br />

η(λ).<br />

♯<br />

In summary, linear codes M → R n (for fixed M, but any n), up to equivalence, are<br />

given by multiplicity functi<strong>on</strong>s η : O ♯ → N. Denote <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> all such functi<strong>on</strong>s by<br />

F (O ♯ , N) = {η : O ♯ → N}, <strong>and</strong> define F 0 (O ♯ , N) = {η ∈ F (O ♯ , N) : η(0) = 0}.<br />

We are also interested in <str<strong>on</strong>g>the</str<strong>on</strong>g> Hamming weight <str<strong>on</strong>g>of</str<strong>on</strong>g> codewords <strong>and</strong> in how to describe<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Hamming weight in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> multiplicity functi<strong>on</strong> η. Fix a multiplicity functi<strong>on</strong><br />

η : O ♯ → N. Define W η : M → N by<br />

(5.4) W η (x) = ∑ λ∈O ♯ wt(λ(x)) η(λ), x ∈ M.<br />

Then W η (x) equals <str<strong>on</strong>g>the</str<strong>on</strong>g> Hamming weight <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> codeword given by x ∈ M. Notice that<br />

W η (0) = 0.<br />

Lemma 33. For x ∈ M <strong>and</strong> unit u ∈ U, W η (ux) = W η (x).<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. This follows immediately from <str<strong>on</strong>g>the</str<strong>on</strong>g> fact that wt(ur) = wt(r) for r ∈ R <strong>and</strong> unit<br />

u ∈ U; that is, ur = 0 if <strong>and</strong> <strong>on</strong>ly if r = 0.<br />

□<br />

Because M is a left R-module, <str<strong>on</strong>g>the</str<strong>on</strong>g> group <str<strong>on</strong>g>of</str<strong>on</strong>g> units U acts <strong>on</strong> M <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> left. Let O denote<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> orbits <str<strong>on</strong>g>of</str<strong>on</strong>g> this acti<strong>on</strong>. Observe that Lemma 33 implies that W η is a well-defined<br />

functi<strong>on</strong> from O to N. Let F (O, N) denote <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> all functi<strong>on</strong>s from O to N, <strong>and</strong><br />

define F 0 (O, N) = {w ∈ F (O, N) : w(0) = 0}. Now define W : F (O ♯ , N) → F 0 (O, N) by<br />

η ∈ F (O ♯ , N) ↦→ W η ∈ F 0 (O, N). (Remember that W η (0) = 0.) Thus W associates to<br />

every linear code, up to equivalence, a listing <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Hamming weights <str<strong>on</strong>g>of</str<strong>on</strong>g> all <str<strong>on</strong>g>the</str<strong>on</strong>g> codewords.<br />

The discussi<strong>on</strong> to this point (plus a technical argument <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> role <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> zero functi<strong>on</strong>al,<br />

which is relegated to subsecti<strong>on</strong> 5.5) proves <str<strong>on</strong>g>the</str<strong>on</strong>g> following reformulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong><br />

property.<br />

Theorem 34. A finite ring R has <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> property with respect to <str<strong>on</strong>g>the</str<strong>on</strong>g> Hamming<br />

weight if <strong>and</strong> <strong>on</strong>ly if <str<strong>on</strong>g>the</str<strong>on</strong>g> functi<strong>on</strong><br />

W : F 0 (O ♯ , N) → F 0 (O, N), η ↦→ W η ,<br />

–239–


is injective for every finite left R-module M.<br />

Observe that <str<strong>on</strong>g>the</str<strong>on</strong>g> functi<strong>on</strong> spaces F 0 (O ♯ , N), F 0 (O, N) are additive m<strong>on</strong>oids <strong>and</strong> that<br />

W : F 0 (O ♯ , N) → F 0 (O, N) is additive, i.e., a m<strong>on</strong>oid homomorphism. If we tensor<br />

with <str<strong>on</strong>g>the</str<strong>on</strong>g> rati<strong>on</strong>al numbers Q (which means we formally allow coordinate functi<strong>on</strong>als to<br />

have multiplicities equal to any rati<strong>on</strong>al number), it is straight-forward to generalize<br />

Theorem 34 to:<br />

Theorem 35. A finite ring R has <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> property with respect to <str<strong>on</strong>g>the</str<strong>on</strong>g> Hamming<br />

weight if <strong>and</strong> <strong>on</strong>ly if <str<strong>on</strong>g>the</str<strong>on</strong>g> Q-linear homomorphism<br />

W : F 0 (O ♯ , Q) → F 0 (O, Q), η ↦→ W η ,<br />

is injective for every finite left R-module M.<br />

Theorem 35 is very c<strong>on</strong>venient because <str<strong>on</strong>g>the</str<strong>on</strong>g> functi<strong>on</strong> spaces F 0 (O ♯ , Q), F 0 (O, Q) are Q-<br />

vector spaces, <strong>and</strong> we can use <str<strong>on</strong>g>the</str<strong>on</strong>g> tools <str<strong>on</strong>g>of</str<strong>on</strong>g> linear algebra over fields to analyze <str<strong>on</strong>g>the</str<strong>on</strong>g> linear<br />

homomorphism W . In fact, in [5], Bogart et al. prove <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>orem over finite<br />

fields by showing that <str<strong>on</strong>g>the</str<strong>on</strong>g> matrix representing W is invertible. The form <str<strong>on</strong>g>of</str<strong>on</strong>g> that matrix<br />

is apparent from (5.4). Greferath generalized that approach in [10].<br />

For use in <str<strong>on</strong>g>the</str<strong>on</strong>g> next subsecti<strong>on</strong>, we will need a versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 35 for linear codes<br />

defined over an alphabet A. Let A be a finite left R-module, with automorphism group<br />

Aut(A). A left R-linear code in A n is given by <str<strong>on</strong>g>the</str<strong>on</strong>g> image <str<strong>on</strong>g>of</str<strong>on</strong>g> an R-linear homomorphism<br />

M → A n , for some finite left R-module M. In this case, <str<strong>on</strong>g>the</str<strong>on</strong>g> coordinate functi<strong>on</strong>als will<br />

bel<strong>on</strong>g to Hom R (M, A). The group Aut(A) acts <strong>on</strong> Hom R (M, A) <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> right; let O ♯<br />

denote <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> orbits <str<strong>on</strong>g>of</str<strong>on</strong>g> this acti<strong>on</strong>. A linear code over A, up to equivalence, is again<br />

specified by a multiplicity functi<strong>on</strong> η ∈ F (O ♯ , N).<br />

Just as before, <str<strong>on</strong>g>the</str<strong>on</strong>g> group <str<strong>on</strong>g>of</str<strong>on</strong>g> units U <str<strong>on</strong>g>of</str<strong>on</strong>g> R acts <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> module M <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> left, with set O<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> orbits. In <str<strong>on</strong>g>the</str<strong>on</strong>g> same way as above, we formulate <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> property for <str<strong>on</strong>g>the</str<strong>on</strong>g> alphabet<br />

A as:<br />

Theorem 36. Let A be a finite left R-module. Then A has <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> property with<br />

respect to <str<strong>on</strong>g>the</str<strong>on</strong>g> Hamming weight if <strong>and</strong> <strong>on</strong>ly if <str<strong>on</strong>g>the</str<strong>on</strong>g> linear homomorphism<br />

W : F 0 (O ♯ , Q) → F 0 (O, Q), η ↦→ W η ,<br />

is injective for every finite left R-module M.<br />

5.4. Frobenius is Necessary. In this subsecti<strong>on</strong> we follow a strategy <str<strong>on</strong>g>of</str<strong>on</strong>g> Dinh <strong>and</strong> López-<br />

Permouth [8] <strong>and</strong> use Theorem 35 to prove <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 31; viz., if a<br />

finite ring has <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> property with respect to <str<strong>on</strong>g>the</str<strong>on</strong>g> Hamming weight, <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> ring<br />

must be Frobenius.<br />

The strategy <str<strong>on</strong>g>of</str<strong>on</strong>g> Dinh <strong>and</strong> López-Permouth [8] can be summarized as follows.<br />

(1) If a finite ring R is not Frobenius, <str<strong>on</strong>g>the</str<strong>on</strong>g>n its left socle c<strong>on</strong>tains a left R-module <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> form M m×k (F q ) with m < k, for some q (cf., (2.1) <strong>and</strong> (2.3)).<br />

(2) Use <str<strong>on</strong>g>the</str<strong>on</strong>g> matrix module M m×k (F q ) as <str<strong>on</strong>g>the</str<strong>on</strong>g> alphabet A. If m < k, show that A does<br />

not have <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> property.<br />

(3) Take <str<strong>on</strong>g>the</str<strong>on</strong>g> counter-examples over A to <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> property, c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g>m as R-<br />

modules, <strong>and</strong> show that <str<strong>on</strong>g>the</str<strong>on</strong>g>y are also counter-examples to <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> property<br />

over R.<br />

–240–


The first <strong>and</strong> last points were already proved in [8]. Here’s <strong>on</strong>e way to see <str<strong>on</strong>g>the</str<strong>on</strong>g> first point.<br />

We know from (2.3) that soc( R R) is a sum <str<strong>on</strong>g>of</str<strong>on</strong>g> matrix modules M mi ×s i<br />

(F qi ). If m i ≥ s i for<br />

all i, <str<strong>on</strong>g>the</str<strong>on</strong>g>n each <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> M mi ×s i<br />

(F qi ) would admit a generating character, by Theorem 13. By<br />

adding <str<strong>on</strong>g>the</str<strong>on</strong>g>se generating characters, <strong>on</strong>e would obtain a generating character for soc( R R)<br />

itself. Then, by Propositi<strong>on</strong> 14, R would admit a generating character, <strong>and</strong> hence would<br />

be Frobenius by Theorem 5.<br />

For <str<strong>on</strong>g>the</str<strong>on</strong>g> third point, c<strong>on</strong>sider counter-examples C 1 , C 2 ⊂ A n to <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> property<br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> alphabet A with respect to <str<strong>on</strong>g>the</str<strong>on</strong>g> Hamming weight. Because A n ⊂ soc( R R) n ⊂ R R n ,<br />

C 1 , C 2 can also be viewed as R-modules via (2.1). The Hamming weight <str<strong>on</strong>g>of</str<strong>on</strong>g> an element<br />

x <str<strong>on</strong>g>of</str<strong>on</strong>g> A n equals <str<strong>on</strong>g>the</str<strong>on</strong>g> Hamming weight <str<strong>on</strong>g>of</str<strong>on</strong>g> x c<strong>on</strong>sidered as an element <str<strong>on</strong>g>of</str<strong>on</strong>g> R n , because <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Hamming weight just depends up<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> entries <str<strong>on</strong>g>of</str<strong>on</strong>g> x being zero or not. In this way, C 1 , C 2<br />

will also be counter-examples to <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> property for <str<strong>on</strong>g>the</str<strong>on</strong>g> alphabet R with respect<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> Hamming weight.<br />

Thus, <str<strong>on</strong>g>the</str<strong>on</strong>g> key step remaining is <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d point in <str<strong>on</strong>g>the</str<strong>on</strong>g> strategy. An explicit c<strong>on</strong>structi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> counter-examples to <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> property for <str<strong>on</strong>g>the</str<strong>on</strong>g> alphabet A = M m×k (F q ),<br />

m < k, was given in [32]. Here, we give a short existence pro<str<strong>on</strong>g>of</str<strong>on</strong>g>; more details are available<br />

in [32] <strong>and</strong> [33].<br />

Let R = M m (F q ) be <str<strong>on</strong>g>the</str<strong>on</strong>g> ring <str<strong>on</strong>g>of</str<strong>on</strong>g> m × m matrices over F q . Let A = M m×k (F q ), with<br />

m < k; A is a left R-module. It is clear from Theorem 36 that A will fail to have <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

extensi<strong>on</strong> property with respect to <str<strong>on</strong>g>the</str<strong>on</strong>g> Hamming weight if we can find a finite left R-<br />

module M with dim Q F 0 (O ♯ , Q) > dim Q F 0 (O, Q). It turns out that this inequality will<br />

hold for any n<strong>on</strong>zero M.<br />

Because R is simple, any finite left R-module M has <str<strong>on</strong>g>the</str<strong>on</strong>g> form M = M m×l (F q ), for some<br />

l. First, let us determine O, which is <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> left U-orbits <strong>on</strong> M. The group U is <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

group <str<strong>on</strong>g>of</str<strong>on</strong>g> units <str<strong>on</strong>g>of</str<strong>on</strong>g> R, which is precisely <str<strong>on</strong>g>the</str<strong>on</strong>g> general linear group GL m (F q ). The left orbits<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> GL m (F q ) <strong>on</strong> M = M m×l (F q ) are represented by <str<strong>on</strong>g>the</str<strong>on</strong>g> row reduced echel<strong>on</strong> matrices 1 over<br />

F q <str<strong>on</strong>g>of</str<strong>on</strong>g> size m × l.<br />

Now, let us determine O ♯ , which is <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> right Aut(A)-orbits <strong>on</strong> Hom R (M, A). The<br />

automorphism group Aut(A) equals GL k (F q ), acting <strong>on</strong> A = M m×k (F q ) by right matrix<br />

multiplicati<strong>on</strong>. On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r h<strong>and</strong>, Hom R (M, A) = M l×k (F q ), again using right matrix<br />

multiplicati<strong>on</strong>. Thus O ♯ c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> right orbits <str<strong>on</strong>g>of</str<strong>on</strong>g> GL k (F q ) acting <strong>on</strong> M l×k (F q ). These<br />

orbits are represented by <str<strong>on</strong>g>the</str<strong>on</strong>g> column reduced echel<strong>on</strong> matrices over F q <str<strong>on</strong>g>of</str<strong>on</strong>g> size l × k.<br />

Because <str<strong>on</strong>g>the</str<strong>on</strong>g> matrix transpose interchanges row reduced echel<strong>on</strong> matrices <strong>and</strong> column<br />

reduced echel<strong>on</strong> matrices, we see that |O ♯ | > |O| if <strong>and</strong> <strong>on</strong>ly if k > m (for any positive l).<br />

Finally, notice that dim Q F 0 (O ♯ , Q) = |O ♯ |−1 <strong>and</strong> dim Q F 0 (O, Q) = |O|−1. Thus, for any<br />

n<strong>on</strong>zero module M, dim Q F 0 (O ♯ , Q) > dim Q F 0 (O, Q) if <strong>and</strong> <strong>on</strong>ly if m < k. C<strong>on</strong>sequently,<br />

if m < k, <str<strong>on</strong>g>the</str<strong>on</strong>g>n W fails to be injective <strong>and</strong> A fails to have <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> property with<br />

respect to Hamming weight.<br />

5.5. Technical Remarks. Here is <str<strong>on</strong>g>the</str<strong>on</strong>g> technical argument regarding <str<strong>on</strong>g>the</str<strong>on</strong>g> zero functi<strong>on</strong>al<br />

needed to justify Theorem 34.<br />

Remark 37. For η ∈ F (O ♯ , N), define <str<strong>on</strong>g>the</str<strong>on</strong>g> length <str<strong>on</strong>g>of</str<strong>on</strong>g> η to be l(η) = ∑ λ∈O<br />

η(λ) <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

♯<br />

essential length <str<strong>on</strong>g>of</str<strong>on</strong>g> η to be l 0 (η) = ∑ λ≠0<br />

η(λ). The length l(η) equals <str<strong>on</strong>g>the</str<strong>on</strong>g> length <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

1 Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Yamagata tells me that <str<strong>on</strong>g>the</str<strong>on</strong>g> Japanese name for this c<strong>on</strong>cept translates literally as “step matrices.”<br />

–241–


linear code defined by η; <str<strong>on</strong>g>the</str<strong>on</strong>g> reduced length l 0 (η) equals <str<strong>on</strong>g>the</str<strong>on</strong>g> length <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> linear code<br />

defined by η after any all-zero positi<strong>on</strong>s have been removed. (In terms <str<strong>on</strong>g>of</str<strong>on</strong>g> a generator<br />

matrix, <strong>on</strong>e removes all <str<strong>on</strong>g>the</str<strong>on</strong>g> zero columns.)<br />

Assume <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> property holds with respect to <str<strong>on</strong>g>the</str<strong>on</strong>g> Hamming weight. This means<br />

that if η, η ′ ∈ F (O ♯ , N) satisfy l(η) = l(η ′ ) <strong>and</strong> W η = W η ′, <str<strong>on</strong>g>the</str<strong>on</strong>g>n η = η ′ . That is, W is<br />

injective al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> level sets <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> length functi<strong>on</strong> l. If l(η ′ ) < l(η) <strong>and</strong> W η = W η ′, <str<strong>on</strong>g>the</str<strong>on</strong>g>n<br />

we can append zeros to η ′ until its length is <str<strong>on</strong>g>the</str<strong>on</strong>g> same as l(η) without changing W η ′. More<br />

precisely, define η ′′ by η ′′ (λ) = η ′ (λ) for λ ≠ 0 <strong>and</strong> set η ′′ (0) = η ′ (0) + l(η) − l(η ′ ). Then<br />

l(η ′′ ) = l(η) <strong>and</strong> W η ′′ = W η . Then η ′′ = η, by <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> property. In particular, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

reduced lengths are equal: l 0 (η) = l 0 (η ′ ) = l 0 (η ′′ ).<br />

There is a projecti<strong>on</strong> pr : F (O ♯ , N) → F 0 (O ♯ , N) which sets (pr η)(0) = 0 <strong>and</strong> leaves<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r values unchanged, (pr η)(λ) = η(λ), λ ≠ 0. This projecti<strong>on</strong> splits <str<strong>on</strong>g>the</str<strong>on</strong>g> m<strong>on</strong>oid<br />

as F (O ♯ , N) = F 0 (O ♯ , N) ⊕ N. The argument <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> previous paragraph shows that if<br />

W η = W η ′, <str<strong>on</strong>g>the</str<strong>on</strong>g>n pr η = pr η ′ as elements <str<strong>on</strong>g>of</str<strong>on</strong>g> F 0 (O ♯ , N).<br />

C<strong>on</strong>versely, suppose W : F 0 (O ♯ , N) → F 0 (O, N) is injective. Let η, η ′ ∈ F (O ♯ , N) satisfy<br />

l(η) = l(η ′ ) <strong>and</strong> W η = W η ′. Because <str<strong>on</strong>g>the</str<strong>on</strong>g> value <str<strong>on</strong>g>of</str<strong>on</strong>g> η(0) does not affect W η , we see that<br />

W pr η = W pr η ′. By assumpti<strong>on</strong>, W is injective <strong>on</strong> F 0 (O ♯ , N), so that pr η = pr η ′ . In<br />

particular, l 0 (η) = l 0 (η ′ ). Since l(η) = l(η ′ ), we must also have η(0) = η ′ (0), <strong>and</strong> thus<br />

η = η ′ .<br />

6. Self-Dual Codes<br />

I want to finish this article by touching <strong>on</strong> a very active research topic: self-dual codes.<br />

As we saw in subsecti<strong>on</strong> 3.3, if C ⊂ F n is a linear code <str<strong>on</strong>g>of</str<strong>on</strong>g> length n over a finite field F,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>n its dual code C ⊥ is defined by C ⊥ = {y ∈ F n : x · y = 0, x ∈ C}. A linear code C<br />

is self-orthog<strong>on</strong>al if C ⊂ C ⊥ <strong>and</strong> is self-dual if C = C ⊥ . Because dim C ⊥ = n − dim C,<br />

a necessary c<strong>on</strong>diti<strong>on</strong> for <str<strong>on</strong>g>the</str<strong>on</strong>g> existence <str<strong>on</strong>g>of</str<strong>on</strong>g> a self-dual code C over a finite field is that <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

length n must be even; <str<strong>on</strong>g>the</str<strong>on</strong>g>n dim C = n/2.<br />

The Hamming weight enumerator <str<strong>on</strong>g>of</str<strong>on</strong>g> a self-dual code appears <strong>on</strong> both sides <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

MacWilliams identities:<br />

W C (X, Y ) = 1<br />

|C| W C(X + (q − 1)Y, X − Y ),<br />

where C is self-dual over F q . As |C| = q n/2 <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> total degree <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> polynomial<br />

W C (X, Y ) is n, <str<strong>on</strong>g>the</str<strong>on</strong>g> MacWilliams identities for a self-dual code can be written in <str<strong>on</strong>g>the</str<strong>on</strong>g> form<br />

W C (X, Y ) = W C<br />

( X + (q − 1)Y<br />

√ q<br />

, X √ − Y )<br />

. q<br />

Every element x <str<strong>on</strong>g>of</str<strong>on</strong>g> a self-dual code satisfies x · x = 0. In <str<strong>on</strong>g>the</str<strong>on</strong>g> binary case, q = 2, notice<br />

that x · x ≡ wt(x) mod 2. Thus, every element <str<strong>on</strong>g>of</str<strong>on</strong>g> a binary self-dual code C has even<br />

length. This implies that W C (X, −Y ) = W C (X, Y ).<br />

Restrict to <str<strong>on</strong>g>the</str<strong>on</strong>g> binary case, q = 2. Define two complex 2 × 2 matrices P, Q by<br />

P =<br />

(<br />

1/<br />

√<br />

2 1/<br />

√<br />

2<br />

1/ √ 2 −1/ √ 2<br />

–242–<br />

)<br />

, Q =<br />

(<br />

1 0<br />

0 −1<br />

)<br />

.


Notice that P 2 = Q 2 = I. Let G be <str<strong>on</strong>g>the</str<strong>on</strong>g> group generated by P <strong>and</strong> Q (inside GL 2 (C)).<br />

Define an acti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> G <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> polynomial ring C[X, Y ] by linear substituti<strong>on</strong>: (fS)(X, Y ) =<br />

f((X, Y )S) for S ∈ G. The paragraphs above prove <str<strong>on</strong>g>the</str<strong>on</strong>g> following<br />

Propositi<strong>on</strong> 38. Let C be a self-dual binary code. Then its Hamming weight enumerator<br />

W C (X, Y ) is invariant under <str<strong>on</strong>g>the</str<strong>on</strong>g> acti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> group G. That is, W C (X, Y ) ∈ C[X, Y ] G ,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> ring <str<strong>on</strong>g>of</str<strong>on</strong>g> G-invariant polynomials.<br />

Much more is true, in fact. Let C 2 ⊂ F 2 2 be <str<strong>on</strong>g>the</str<strong>on</strong>g> linear code C 2 = {00, 11}. Then C 2 is<br />

self-dual, <strong>and</strong> W C2 (X, Y ) = X 2 + Y 2 . Let E 8 ⊂ F 8 2 be <str<strong>on</strong>g>the</str<strong>on</strong>g> linear code generated by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

rows <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> following binary matrix<br />

⎛<br />

⎞<br />

1 1 1 1 0 0 0 0<br />

⎜0 0 1 1 1 1 0 0<br />

⎟<br />

⎝0 0 0 0 1 1 1 1⎠ .<br />

1 0 1 0 1 0 1 0<br />

Then E 8 is also self-dual, with W E8 (X, Y ) = X 8 + 14X 4 Y 4 + Y 8 .<br />

Theorem 39 (Gleas<strong>on</strong> (1970)). The ring <str<strong>on</strong>g>of</str<strong>on</strong>g> G-invariant polynomials is generated as an<br />

algebra by W C2 <strong>and</strong> W E8 . That is,<br />

C[X, Y ] G = C[X 2 + Y 2 , X 8 + 14X 4 Y 4 + Y 8 ].<br />

Gleas<strong>on</strong> proved similar statements in several o<str<strong>on</strong>g>the</str<strong>on</strong>g>r c<strong>on</strong>texts (doubly-even self-dual binary<br />

codes, self-dual ternary codes, Hermitian self-dual quaternary codes) [9]. The results<br />

all have this form: for linear codes <str<strong>on</strong>g>of</str<strong>on</strong>g> a certain type (e.g., binary self-dual), <str<strong>on</strong>g>the</str<strong>on</strong>g>ir Hamming<br />

weight enumerators are invariant under a certain finite matrix group G, <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> ring<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> G-invariant polynomials is generated as an algebra by <str<strong>on</strong>g>the</str<strong>on</strong>g> weight enumerators <str<strong>on</strong>g>of</str<strong>on</strong>g> two<br />

explicit linear codes <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> given type.<br />

Gleas<strong>on</strong>’s Theorem has been generalized greatly by Nebe, Rains, <strong>and</strong> Sloane [24]. Those<br />

authors have a general definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> type <str<strong>on</strong>g>of</str<strong>on</strong>g> a self-dual linear code defined over an<br />

alphabet A, where A is a finite left R-module. Associated to every type is a finite group<br />

G, called <str<strong>on</strong>g>the</str<strong>on</strong>g> Clifford-Weil group, <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> (complete) weight enumerator <str<strong>on</strong>g>of</str<strong>on</strong>g> every selfdual<br />

linear code <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> given type is G-invariant. Finally, <str<strong>on</strong>g>the</str<strong>on</strong>g> authors show (under certain<br />

hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>ses <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> ring R) that <str<strong>on</strong>g>the</str<strong>on</strong>g> ring <str<strong>on</strong>g>of</str<strong>on</strong>g> all G-invariant polynomials is spanned by<br />

weight enumerators <str<strong>on</strong>g>of</str<strong>on</strong>g> self-dual codes <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> given type.<br />

In order to define self-dual codes over n<strong>on</strong>-commutative rings, Nebe, Rains, <strong>and</strong> Sloane<br />

must cope with <str<strong>on</strong>g>the</str<strong>on</strong>g> difficulty that <str<strong>on</strong>g>the</str<strong>on</strong>g> dual code <str<strong>on</strong>g>of</str<strong>on</strong>g> a left linear code C in A n is a right linear<br />

code <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> form (Ân : C) ⊂ Ân (cf., <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 23 in subsecti<strong>on</strong> 4.2). This<br />

difficulty can be addressed first by assuming that <str<strong>on</strong>g>the</str<strong>on</strong>g> ring R admits an anti-isomorphism ε,<br />

i.e., an isomorphism ε : R → R <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> additive group, with ε(rs) = ε(s)ε(r), for r, s ∈ R.<br />

Then every left (resp., right) R-module M defines a right (resp., left) R-module ε(M).<br />

The additive group <str<strong>on</strong>g>of</str<strong>on</strong>g> ε(M) is <str<strong>on</strong>g>the</str<strong>on</strong>g> same as that <str<strong>on</strong>g>of</str<strong>on</strong>g> M, <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> right scalar multiplicati<strong>on</strong><br />

<strong>on</strong> ε(M) is mr := ε(r)m, m ∈ M, r ∈ R, where ε(r)m uses <str<strong>on</strong>g>the</str<strong>on</strong>g> left scalar multiplicati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> M. (And similarly for right modules.)<br />

Sec<strong>on</strong>dly, in order to identify <str<strong>on</strong>g>the</str<strong>on</strong>g> character-<str<strong>on</strong>g>the</str<strong>on</strong>g>oretic annihilator (Ân : C) ⊂ Ân with<br />

a submodule in A n , Nebe, Rains, <strong>and</strong> Sloane assume <str<strong>on</strong>g>the</str<strong>on</strong>g> existence <str<strong>on</strong>g>of</str<strong>on</strong>g> an isomorphism<br />

–243–


ψ : ε(A) → Â. In this way, C⊥ := ε −1 ψ −1 (Ân : C) can be viewed as <str<strong>on</strong>g>the</str<strong>on</strong>g> dual code <str<strong>on</strong>g>of</str<strong>on</strong>g> C;<br />

C ⊥ is a left linear code in A n if C is. With <strong>on</strong>e additi<strong>on</strong>al hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>sis <strong>on</strong> ψ, C ⊥ satisfies all<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> properties <strong>on</strong>e would want from a dual code, such as (C ⊥ ) ⊥ = C <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> MacWilliams<br />

identities. (See [34] for an expositi<strong>on</strong>.)<br />

There are several questi<strong>on</strong>s that arise immediately from <str<strong>on</strong>g>the</str<strong>on</strong>g> work <str<strong>on</strong>g>of</str<strong>on</strong>g> Nebe, Rains, <strong>and</strong><br />

Sloane that may be <str<strong>on</strong>g>of</str<strong>on</strong>g> interest to ring <str<strong>on</strong>g>the</str<strong>on</strong>g>orists.<br />

(1) Which finite rings admit anti-isomorphisms? Involuti<strong>on</strong>s?<br />

(2) Assume a finite ring R admits an anti-isomorphism ε. Which finite left R-modules<br />

A admit an isomorphism ψ : ε(A) → Â?<br />

(3) Even in <str<strong>on</strong>g>the</str<strong>on</strong>g> absence <str<strong>on</strong>g>of</str<strong>on</strong>g> complete answers to <str<strong>on</strong>g>the</str<strong>on</strong>g> preceding, are <str<strong>on</strong>g>the</str<strong>on</strong>g>re good sources<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> examples?<br />

There are a few results in [34], but much more is needed. Progress <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>se questi<strong>on</strong>s may<br />

prove helpful in underst<strong>and</strong>ing <str<strong>on</strong>g>the</str<strong>on</strong>g> limits <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> proper setting for <str<strong>on</strong>g>the</str<strong>on</strong>g> work <str<strong>on</strong>g>of</str<strong>on</strong>g> Nebe,<br />

Rains, <strong>and</strong> Sloane.<br />

References<br />

[1] Č. Arf, Untersuchungen über quadratische Formen in Körpern der Charakteristik 2. I., J. Reine.<br />

Angew. Math. 183 (1941), 148–167. MR 0008069 (4,237f)<br />

[2] E. F. Assmus, Jr. <strong>and</strong> H. F. Matts<strong>on</strong>, Jr., Error-correcting codes: An axiomatic approach, Inform.<br />

<strong>and</strong> C<strong>on</strong>trol 6 (1963), 315–330. MR 0178997 (31 #3251)<br />

[3] , Coding <strong>and</strong> combinatorics, SIAM Rev. 16 (1974), 349–388. MR 0359982 (50 #12432)<br />

[4] H. Bass, K-<str<strong>on</strong>g>the</str<strong>on</strong>g>ory <strong>and</strong> stable algebra, Inst. Hautes Études Sci. Publ. Math. 22 (1964), 5–60.<br />

MR 0174604 (30 #4805)<br />

[5] K. Bogart, D. Goldberg, <strong>and</strong> J. Gord<strong>on</strong>, An elementary pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> MacWilliams <str<strong>on</strong>g>the</str<strong>on</strong>g>orem <strong>on</strong> equivalence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> codes, Inform. <strong>and</strong> C<strong>on</strong>trol 37 (1978), no. 1, 19–22. MR 0479646 (57 #19067)<br />

[6] H. L. Claasen <strong>and</strong> R. W. Goldbach, A field-like property <str<strong>on</strong>g>of</str<strong>on</strong>g> finite rings, Indag. Math. (N.S.) 3 (1992),<br />

no. 1, 11–26. MR 1157515 (93b:16038)<br />

[7] C. W. Curtis <strong>and</strong> I. Reiner, Representati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> finite groups <strong>and</strong> associative algebras, Pure <strong>and</strong><br />

Applied Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics, vol. XI, Interscience Publishers, a divisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> John Wiley & S<strong>on</strong>s, New York,<br />

L<strong>on</strong>d<strong>on</strong>, 1962. MR 0144979 (26 #2519)<br />

[8] H. Q. Dinh <strong>and</strong> S. R. López-Permouth, On <str<strong>on</strong>g>the</str<strong>on</strong>g> equivalence <str<strong>on</strong>g>of</str<strong>on</strong>g> codes over rings <strong>and</strong> modules, Finite<br />

Fields Appl. 10 (2004), no. 4, 615–625. MR 2094161 (2005g:94098)<br />

[9] A. M. Gleas<strong>on</strong>, Weight polynomials <str<strong>on</strong>g>of</str<strong>on</strong>g> self-dual codes <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> MacWilliams identities, Actes du<br />

C<strong>on</strong>grès Internati<strong>on</strong>al des Mathématiciens (Nice, 1970), Tome 3, Gauthier-Villars, Paris, 1971,<br />

pp. 211–215. MR 0424391 (54 #12354)<br />

[10] M. Greferath, Orthog<strong>on</strong>ality matrices for modules over finite Frobenius rings <strong>and</strong> MacWilliams’<br />

equivalence <str<strong>on</strong>g>the</str<strong>on</strong>g>orem, Finite Fields Appl. 8 (2002), no. 3, 323–331. MR 1910395 (2003d:94107)<br />

[11] M. Greferath, A. Nechaev, <strong>and</strong> R. Wisbauer, Finite quasi-Frobenius modules <strong>and</strong> linear codes, J.<br />

Algebra Appl. 3 (2004), no. 3, 247–272. MR 2096449 (2005g:94099)<br />

[12] M. Greferath <strong>and</strong> S. E. Schmidt, Finite-ring combinatorics <strong>and</strong> MacWilliams’s equivalence <str<strong>on</strong>g>the</str<strong>on</strong>g>orem,<br />

J. Combin. <strong>Theory</strong> Ser. A 92 (2000), no. 1, 17–28. MR 1783936 (2001j:94045)<br />

[13] A. R. Hamm<strong>on</strong>s, Jr., P. V. Kumar, A. R. Calderbank, N. J. A. Sloane, <strong>and</strong> P. Solé, The Z 4 -linearity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Kerdock, Preparata, Goethals, <strong>and</strong> related codes, IEEE Trans. Inform. <strong>Theory</strong> 40 (1994), no. 2,<br />

301–319. MR 1294046 (95k:94030)<br />

[14] Y. Hirano, On admissible rings, Indag. Math. (N.S.) 8 (1997), no. 1, 55–59. MR 1617802 (99b:16034)<br />

[15] T. H<strong>on</strong>old, Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> finite Frobenius rings, Arch. Math. (Basel) 76 (2001), no. 6, 406–415.<br />

MR 1831096 (2002b:16033)<br />

–244–


[16] W. C. Huffman <strong>and</strong> V. Pless, Fundamentals <str<strong>on</strong>g>of</str<strong>on</strong>g> error-correcting codes, Cambridge University Press,<br />

Cambridge, 2003. MR 1996953 (2004k:94077)<br />

[17] M. Klemm, Eine Invarianzgruppe für die vollständige Gewichtsfunkti<strong>on</strong> selbstdualer Codes, Arch.<br />

Math. (Basel) 53 (1989), no. 4, 332–336. MR 1015996 (91a:94032)<br />

[18] V. L. Kurakin, A. S. Kuzmin, V. T. Markov, A. V. Mikhalev, <strong>and</strong> A. A. Nechaev, Linear codes<br />

<strong>and</strong> polylinear recurrences over finite rings <strong>and</strong> modules (a survey), Applied algebra, algebraic algorithms<br />

<strong>and</strong> error-correcting codes (H<strong>on</strong>olulu, HI, 1999) (M. Fossorier, H. Imai, S. Lin, <strong>and</strong> A. Poli,<br />

eds.), Lecture Notes in Comput. Sci., vol. 1719, Springer, Berlin, 1999, pp. 365–391. MR 1846512<br />

(2002h:94092)<br />

[19] T. Y. Lam, Lectures <strong>on</strong> modules <strong>and</strong> rings, Graduate Texts in Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics, vol. 189, Springer-Verlag,<br />

New York, 1999. MR 1653294 (99i:16001)<br />

[20] , A first course in n<strong>on</strong>commutative rings, sec<strong>on</strong>d ed., Graduate Texts in Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics, vol.<br />

131, Springer-Verlag, New York, 2001. MR 1838439 (2002c:16001)<br />

[21] F. J. MacWilliams, Error-correcting codes for multiple-level transmissi<strong>on</strong>, Bell System Tech. J. 40<br />

(1961), 281–308. MR 0141541 (25 #4945)<br />

[22] , Combinatorial properties <str<strong>on</strong>g>of</str<strong>on</strong>g> elementary abelian groups, Ph.D. <str<strong>on</strong>g>the</str<strong>on</strong>g>sis, Radcliffe College, Cambridge,<br />

Mass., 1962.<br />

[23] F. J. MacWilliams <strong>and</strong> N. J. A. Sloane, The <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> error-correcting codes, North-Holl<strong>and</strong> Publishing<br />

Co., Amsterdam, 1977, North-Holl<strong>and</strong> Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical Library, Vol. 16. MR 0465509 (57 #5408a)<br />

[24] G. Nebe, E. M. Rains, <strong>and</strong> N. J. A. Sloane, Self-dual codes <strong>and</strong> invariant <str<strong>on</strong>g>the</str<strong>on</strong>g>ory, Algorithms <strong>and</strong><br />

Computati<strong>on</strong> in Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics, vol. 17, Springer-Verlag, Berlin, 2006. MR 2209183 (2007d:94066)<br />

[25] A. A. Nechaev, Kerdock code in cyclic form, Discrete Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics <strong>and</strong> Applicati<strong>on</strong>s 1 (1991), no. 4,<br />

365–384.<br />

[26] J.-P. Serre, Linear representati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> finite groups, Springer-Verlag, New York, 1977, Translated<br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d French editi<strong>on</strong> by Le<strong>on</strong>ard L. Scott, Graduate Texts in Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics, Vol. 42.<br />

MR 0450380 (56 #8675)<br />

[27] C. E. Shann<strong>on</strong>, A ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> communicati<strong>on</strong>, Bell System Tech. J. 27 (1948), 379–423,<br />

623–656. MR 0026286 (10,133e)<br />

[28] A. Terras, Fourier analysis <strong>on</strong> finite groups <strong>and</strong> applicati<strong>on</strong>s, L<strong>on</strong>d<strong>on</strong> Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical Society Student<br />

Texts, vol. 43, Cambridge University Press, Cambridge, 1999. MR 1695775 (2000d:11003)<br />

[29] H. N. Ward <strong>and</strong> J. A. Wood, Characters <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> equivalence <str<strong>on</strong>g>of</str<strong>on</strong>g> codes, J. Combin. <strong>Theory</strong> Ser. A 73<br />

(1996), no. 2, 348–352. MR 1370137 (96i:94028)<br />

[30] E. Witt, Theorie der quadratischen Formen in beliebigen Körpern, J. Reine. Angew. Math. 176<br />

(1937), 31–44.<br />

[31] J. A. Wood, Duality for modules over finite rings <strong>and</strong> applicati<strong>on</strong>s to coding <str<strong>on</strong>g>the</str<strong>on</strong>g>ory, Amer. J. Math.<br />

121 (1999), no. 3, 555–575. MR 1738408 (2001d:94033)<br />

[32] , Code equivalence characterizes finite Frobenius rings, Proc. Amer. Math. Soc. 136 (2008),<br />

no. 2, 699–706. MR 2358511 (2008j:94062)<br />

[33] , Foundati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> linear codes defined over finite modules: <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>orem <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

MacWilliams identities, Codes over rings (Ankara, 2008) (P. Solé, ed.), World Scientific, Singapore,<br />

2009.<br />

[34] , Anti-isomorphisms, character modules <strong>and</strong> self-dual codes over n<strong>on</strong>-commutative rings, Int.<br />

J. Informati<strong>on</strong> <strong>and</strong> Coding <strong>Theory</strong> 1 (2010), no. 4, 429–444, Special Issue <strong>on</strong> Algebraic <strong>and</strong> Combinatorial<br />

Coding <strong>Theory</strong>: in H<strong>on</strong>our <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Retirement <str<strong>on</strong>g>of</str<strong>on</strong>g> Vera Pless. Series 3.<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics<br />

Western Michigan University<br />

1903 W. Michigan Ave.<br />

Kalamazoo, MI 49008–5248 USA<br />

E-mail address: jay.wood@wmich.edu<br />

–245–


REALIZING STABLE CATEGORIES AS DERIVE CATEGORIES<br />

KOTA YAMAURA<br />

Abstract. In this paper, we compare two different kinds <str<strong>on</strong>g>of</str<strong>on</strong>g> triangulated categories.<br />

First <strong>on</strong>e is <str<strong>on</strong>g>the</str<strong>on</strong>g> stable category modA <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> category <str<strong>on</strong>g>of</str<strong>on</strong>g> Z-graded modules over a positively<br />

grade self-injective algebra A. Sec<strong>on</strong>d <strong>on</strong>e is <str<strong>on</strong>g>the</str<strong>on</strong>g> derived category D b (modΛ) <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> category <str<strong>on</strong>g>of</str<strong>on</strong>g> modules over an algebra Λ. Our aim is give <str<strong>on</strong>g>the</str<strong>on</strong>g> complete answer to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> following questi<strong>on</strong>. For a positively graded self-injective algebra A, when is modA<br />

triangle-equivalent to D b (modΛ) for some algebra Λ ? The main result <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper<br />

gives <str<strong>on</strong>g>the</str<strong>on</strong>g> following very simple answer. modA is triangle-equivalent to D b (modΛ) for<br />

some algebra Λ if <strong>and</strong> <strong>on</strong>ly if <str<strong>on</strong>g>the</str<strong>on</strong>g> 0-th subring A 0 <str<strong>on</strong>g>of</str<strong>on</strong>g> A has finite global dimensi<strong>on</strong>.<br />

1. Main Result<br />

There are two kinds <str<strong>on</strong>g>of</str<strong>on</strong>g> triangulated categories which are important for representati<strong>on</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>ory for algebras. First <strong>on</strong>e is <str<strong>on</strong>g>the</str<strong>on</strong>g> derived category D b (modΛ) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> category modA <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

modules over an algebra Λ. Sec<strong>on</strong>d <strong>on</strong>e is algebraic triangulated categories, that is <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

stable categories <str<strong>on</strong>g>of</str<strong>on</strong>g> Frobenius categories (cf. [5]). A typical example is <str<strong>on</strong>g>the</str<strong>on</strong>g> stable category<br />

modA <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> category modA <str<strong>on</strong>g>of</str<strong>on</strong>g> modules over a self-injective algebra A.<br />

In this paper, our aim is to compare derived categories <str<strong>on</strong>g>of</str<strong>on</strong>g> algebras <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> stable<br />

categories <str<strong>on</strong>g>of</str<strong>on</strong>g> self-injective algebras, <strong>and</strong> find a ”nice” relati<strong>on</strong>ship between <str<strong>on</strong>g>the</str<strong>on</strong>g>m. If we<br />

find it, <str<strong>on</strong>g>the</str<strong>on</strong>g>n those triangulated categories can be investigated from mutual viewpoints.<br />

There several method to compare derived categories <str<strong>on</strong>g>of</str<strong>on</strong>g> algebras <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> stable categories<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> self-injective algebras. We focus <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> following Happel’s result. For any algebra Λ,<br />

<strong>on</strong>e can associate a self-injective algebra A which is called <str<strong>on</strong>g>the</str<strong>on</strong>g> trivial extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Λ.<br />

A admits a natural positively grading such that A 0 = Λ where A 0 is <str<strong>on</strong>g>the</str<strong>on</strong>g> 0-th subring.<br />

Therefore A is a positively graded self-injective algebra. So <str<strong>on</strong>g>the</str<strong>on</strong>g> stable category mod Z A <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> category mod Z A <str<strong>on</strong>g>of</str<strong>on</strong>g> Z-graded A-modules has <str<strong>on</strong>g>the</str<strong>on</strong>g> structure <str<strong>on</strong>g>of</str<strong>on</strong>g> triangulated category.<br />

In this setting, D. Happel [6] showed that Λ has finite global dimensi<strong>on</strong> if <strong>and</strong> <strong>on</strong>ly if<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a triangle-eqiuvalence<br />

(1.1)<br />

mod Z A ≃ D b (modΛ).<br />

This equivalence gives a ”nice” relati<strong>on</strong>ship between derived category D b (modΛ) <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

stable categories mod Z A. The above result asserts that sometimes representati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Λ <strong>and</strong> that <str<strong>on</strong>g>of</str<strong>on</strong>g> A are deeply related.<br />

We c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> drastic generalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> above Happel’s result. Happel started<br />

from an algebra Λ, <strong>and</strong> c<strong>on</strong>structed <str<strong>on</strong>g>the</str<strong>on</strong>g> special positively graded self-injective algebra <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

A. In c<strong>on</strong>trast, we start from a positively graded self-injective algebra A = ⊕ i≥0 A i, <strong>and</strong><br />

suggest <str<strong>on</strong>g>the</str<strong>on</strong>g> following questi<strong>on</strong>.<br />

The detailed versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper will be submitted for publicati<strong>on</strong> elsewhere.<br />

The author is supported by JSPS Fellowships for Young Scientists No.22-5801.<br />

–246–


Questi<strong>on</strong>. When is mod Z A triangle-equivalent to <str<strong>on</strong>g>the</str<strong>on</strong>g> derived category D b (modΛ) for<br />

some algebra Λ ?<br />

The following result is main <str<strong>on</strong>g>the</str<strong>on</strong>g>orem <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper which gives <str<strong>on</strong>g>the</str<strong>on</strong>g> complete answer to<br />

our questi<strong>on</strong>.<br />

Theorem 1. Let A be a positively graded self-injective algebra. Then <str<strong>on</strong>g>the</str<strong>on</strong>g> following are<br />

equivalent.<br />

(1) The global dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> A 0 is finite.<br />

(2) There exists an algebra Λ, <strong>and</strong> a triangle-equivalence<br />

(1.2)<br />

mod Z A ≃ D b (modΛ).<br />

The aim <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> rest <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper is to give an explanati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 1,<br />

<strong>and</strong> some examples. Our plan is as follows.<br />

In Secti<strong>on</strong> 2, we give two preliminaries. First we recall that mod Z A for a positively<br />

graded algebra A is a Frobenius category, <strong>and</strong> so its stable category mod Z A is an algebraic<br />

triangulated category. Sec<strong>on</strong>dly we give an explanati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Keller’s tilting <str<strong>on</strong>g>the</str<strong>on</strong>g>orem.<br />

Our approach to <str<strong>on</strong>g>the</str<strong>on</strong>g> questi<strong>on</strong> is using Keller’s titling <str<strong>on</strong>g>the</str<strong>on</strong>g>orem for algebraic triangulated<br />

categories. B. Keller [7] introduced <strong>and</strong> investigated differential graded categories <strong>and</strong><br />

its derived categories. In his work, it was determine when is an algebraic triangulated<br />

category triangle-equivalent to <str<strong>on</strong>g>the</str<strong>on</strong>g> derived category <str<strong>on</strong>g>of</str<strong>on</strong>g> some algebra by <str<strong>on</strong>g>the</str<strong>on</strong>g> existence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

tilting objects (tilting <str<strong>on</strong>g>the</str<strong>on</strong>g>orem). In Secti<strong>on</strong> 3, we apply Keller’s tilting <str<strong>on</strong>g>the</str<strong>on</strong>g>orem to our<br />

study.<br />

In Secti<strong>on</strong> 3, we give an outline <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 1. We omit <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> (2) ⇒<br />

(1). We give pro<str<strong>on</strong>g>of</str<strong>on</strong>g>s (1) ⇒ (2). We start from finding a c<strong>on</strong>crete tilting object in mod Z A<br />

which has ”good” properties. After finding it, we show two ways to prove (1) ⇒ (2). The<br />

first pro<str<strong>on</strong>g>of</str<strong>on</strong>g> is based <strong>on</strong> Keller’s tilting <str<strong>on</strong>g>the</str<strong>on</strong>g>orem, namely we entrust with c<strong>on</strong>structing <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

triangle-equivalence (1.2). The sec<strong>on</strong>d pro<str<strong>on</strong>g>of</str<strong>on</strong>g> is direct more than <str<strong>on</strong>g>the</str<strong>on</strong>g> first <strong>on</strong>e, namely we<br />

c<strong>on</strong>struct <str<strong>on</strong>g>the</str<strong>on</strong>g> triangle-equivalence (1.2) explicitly.<br />

In Secti<strong>on</strong> 4, we give some examples <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 1. In particular as an applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

our main <str<strong>on</strong>g>the</str<strong>on</strong>g>orem, we show Happel’s result, <strong>and</strong> its generalizati<strong>on</strong> shown by X-W Chen<br />

[2].<br />

Throughout this paper, let K be an algebraically closed field. An algebra means a<br />

finite dimensi<strong>on</strong>al associative algebra over K. We always deal with finitely generated<br />

right modules over algebras. For an algebra Λ, we denote by modΛ <str<strong>on</strong>g>the</str<strong>on</strong>g> category <str<strong>on</strong>g>of</str<strong>on</strong>g> Λ-<br />

modules, projΛ <str<strong>on</strong>g>the</str<strong>on</strong>g> category <str<strong>on</strong>g>of</str<strong>on</strong>g> projective Λ-modules. The same notati<strong>on</strong>s is used for<br />

graded case. For an additive category A, we denote by K b (A) <str<strong>on</strong>g>the</str<strong>on</strong>g> homotopy category <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

bounded complexes <str<strong>on</strong>g>of</str<strong>on</strong>g> A. For an abelian category A, we denote by D b (A) <str<strong>on</strong>g>the</str<strong>on</strong>g> bounded<br />

derived category <str<strong>on</strong>g>of</str<strong>on</strong>g> A.<br />

2. Preliminaries<br />

In this secti<strong>on</strong>, we recall basic facts about representati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> a positively graded<br />

algebras, <strong>and</strong> tilting <str<strong>on</strong>g>the</str<strong>on</strong>g>orem for algebraic triangulated categories for <str<strong>on</strong>g>the</str<strong>on</strong>g> readers c<strong>on</strong>venient.<br />

–247–


2.1. Positively graded self-injective algebras. In this subsecti<strong>on</strong>, our aim is to recall<br />

that <str<strong>on</strong>g>the</str<strong>on</strong>g> stable category <str<strong>on</strong>g>of</str<strong>on</strong>g> Z-graded modules over positively graded self-injective algebras<br />

are algebraic triangulated categories. Most <str<strong>on</strong>g>of</str<strong>on</strong>g> results stated here are due to Gord<strong>on</strong>-Green<br />

[3, 4]. In details, readers should refer to [3, 4].<br />

We start with setting notati<strong>on</strong>s. Let A = ⊕ i≥0 A i be a positively graded self-injective<br />

algebra. We say that an A-module is Z-gradable if it can be regarded as a Z-graded<br />

A-module. For a Z-graded A-module X, we write X i <str<strong>on</strong>g>the</str<strong>on</strong>g> i-degree part <str<strong>on</strong>g>of</str<strong>on</strong>g> X. We denote<br />

by mod Z A <str<strong>on</strong>g>the</str<strong>on</strong>g> category <str<strong>on</strong>g>of</str<strong>on</strong>g> Z-graded A-modules. For Z-graded A-modules X <strong>and</strong> Y , we<br />

write Hom A (X, Y ) 0 <str<strong>on</strong>g>the</str<strong>on</strong>g> morphism space in mod Z A from X to Y .<br />

We recall that mod Z A has two important functors. The first <strong>on</strong>e is <str<strong>on</strong>g>the</str<strong>on</strong>g> grading shift<br />

functor. For i ∈ Z, we denote by<br />

(i) : mod Z A → mod Z A<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> grading shift functor, that is defined as follows. For a Z-graded A-module X,<br />

• X(i) := X as an A-module,<br />

• Z-grading <strong>on</strong> X(i) is defined by X(i) j := X j+i for any j ∈ Z.<br />

This is an aut<str<strong>on</strong>g>of</str<strong>on</strong>g>unctor <strong>on</strong> mod Z A whose inverse is (−i).<br />

The sec<strong>on</strong>d <strong>on</strong>e is <str<strong>on</strong>g>the</str<strong>on</strong>g> K-dual. It is already known that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is <str<strong>on</strong>g>the</str<strong>on</strong>g> st<strong>and</strong>ard duality<br />

D := Hom K (−, K) : modA → modA op .<br />

This functor induces <str<strong>on</strong>g>the</str<strong>on</strong>g> following duality. For a Z-graded A-module X, we regard DX as<br />

a Z-graded A op -module by defining (DX) i := D(X −i ) for any i ∈ Z. By this observati<strong>on</strong>,<br />

we have <str<strong>on</strong>g>the</str<strong>on</strong>g> duality<br />

D : mod Z A → mod Z A op .<br />

Next we recall a few important facts about objects <strong>and</strong> morphism spaces in mod Z A.<br />

The following results are two <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> most basic categorical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> mod Z A.<br />

Propositi<strong>on</strong> 2. mod Z A is a Hom-finite Krull-Schmidt category<br />

Propositi<strong>on</strong> 3. [3, Theorem 3.2. Theorem 3.3.] The following asserti<strong>on</strong>s hold.<br />

(1) A Z-graded A-module is indecomposable in mod Z A if <strong>and</strong> <strong>on</strong>ly if it is an indecompsable<br />

A-module.<br />

(2) Any direct summ<strong>and</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a Z-gradable A-module is also Z-gradable.<br />

(3) Let X <strong>and</strong> Y be indecomposable Z-graded A-modules. If X <strong>and</strong> Y are isomorphic<br />

to each o<str<strong>on</strong>g>the</str<strong>on</strong>g>r in modA, <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists i ∈ Z such that X <strong>and</strong> Y (i) are isomorphic<br />

to each o<str<strong>on</strong>g>the</str<strong>on</strong>g>r in mod Z A.<br />

Next we recall what are projective objects <strong>and</strong> injective objects in mod Z A. A is naturally<br />

regarded as a Z-graded A-module. By Propositi<strong>on</strong> 3 (2), any projective A-modules<br />

are Z-gradable. Moreover it is easy to check that all projective object in mod Z A is given<br />

by projective A-modules. By <str<strong>on</strong>g>the</str<strong>on</strong>g> st<strong>and</strong>ard duality, <str<strong>on</strong>g>the</str<strong>on</strong>g> same argument hold for injective<br />

objects in mod Z A.<br />

Propositi<strong>on</strong> 4. A complete list <str<strong>on</strong>g>of</str<strong>on</strong>g> indecomposable projective objects in mod Z A is given<br />

by<br />

{P (i) | i ∈ Z, P is an indecomposable projective A-module}.<br />

–248–


Dually a complete list <str<strong>on</strong>g>of</str<strong>on</strong>g> indecomposable injective objects in mod Z A is given by<br />

{I(i) | i ∈ Z, I is an indecomposable injective A-module}.<br />

If A is self-injective, <str<strong>on</strong>g>the</str<strong>on</strong>g>n mod Z A is a Frobenius category by Propositi<strong>on</strong> 3 <strong>and</strong> Propositi<strong>on</strong><br />

4. So in this case, <str<strong>on</strong>g>the</str<strong>on</strong>g> stable category mod Z A has a structure <str<strong>on</strong>g>of</str<strong>on</strong>g> triangulated category<br />

by [5].<br />

Lemma 5. If A is self-injective, <str<strong>on</strong>g>the</str<strong>on</strong>g> following asserti<strong>on</strong>s hold.<br />

(1) mod Z A is a Frobenius category.<br />

(2) mod Z A has a structure <str<strong>on</strong>g>of</str<strong>on</strong>g> triangulated category whose shift functor [1] is given by<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> graded cosyzygy functor Ω −1 : mod Z A → mod Z A.<br />

2.2. Tilting <str<strong>on</strong>g>the</str<strong>on</strong>g>orem for algebraic triangulated categories. In this subsecti<strong>on</strong>, we<br />

recall tilting <str<strong>on</strong>g>the</str<strong>on</strong>g>orem for algebraic triangulated categories which is due to Keller [7]. It<br />

is a <str<strong>on</strong>g>the</str<strong>on</strong>g>orem which provides a method for comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> given triangulated category <strong>and</strong><br />

homotopy category <str<strong>on</strong>g>of</str<strong>on</strong>g> bounded complexes <str<strong>on</strong>g>of</str<strong>on</strong>g> projective modules over some algebra.<br />

First let us recall <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> algebraic triangulated categories again.<br />

Definiti<strong>on</strong> 6. A triangulated category T is algebraic if it is triangle-equivalent to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

stable category <str<strong>on</strong>g>of</str<strong>on</strong>g> some Frobenius category.<br />

A class <str<strong>on</strong>g>of</str<strong>on</strong>g> algebraic triangulated categories c<strong>on</strong>tains <str<strong>on</strong>g>the</str<strong>on</strong>g> following important examples.<br />

Example 7. (1) Let Z be an abelian group, <strong>and</strong> A a Z-graded self-injective algebra.<br />

Then mod Z A is a Frobenius category, <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> stable category mod Z A is an algebraic<br />

triangulated category (Lemma 5).<br />

(2) Let Λ be an algebra. The category C b (projΛ) <str<strong>on</strong>g>of</str<strong>on</strong>g> bounded complexes <str<strong>on</strong>g>of</str<strong>on</strong>g> projective<br />

Λ-modules can be regarded as a Frobenius category whose stable category is <str<strong>on</strong>g>the</str<strong>on</strong>g> homotopy<br />

category K b (projΛ) <str<strong>on</strong>g>of</str<strong>on</strong>g> bounded complexes <str<strong>on</strong>g>of</str<strong>on</strong>g> projective Λ-modules (cf. [5]).<br />

In tilting <str<strong>on</strong>g>the</str<strong>on</strong>g>ory, tilting objects which is defined as follows play an important role.<br />

Definiti<strong>on</strong> 8. Let T be a triangulated category. An object T ∈ T is called a tilting object<br />

in T if it satisfies <str<strong>on</strong>g>the</str<strong>on</strong>g> following c<strong>on</strong>diti<strong>on</strong>s.<br />

(1) Hom T (T, T [i]) = 0 for i ≠ 0.<br />

(2) T = thickT .<br />

Here thickT is <str<strong>on</strong>g>the</str<strong>on</strong>g> smallest triangulated full subcategory <str<strong>on</strong>g>of</str<strong>on</strong>g> T which c<strong>on</strong>tains T , <strong>and</strong> is<br />

closed under direct summ<strong>and</strong>s.<br />

The following is a typical example <str<strong>on</strong>g>of</str<strong>on</strong>g> tilting objects.<br />

Example 9. Let Λ be a ring. Λ can be regarded as a complex which c<strong>on</strong>centrates in<br />

degree 0. So Λ is c<strong>on</strong>tained in a triangulated category K b (projΛ). It is a tilting object in<br />

K b (projΛ).<br />

The following result is Keller’s tilting <str<strong>on</strong>g>the</str<strong>on</strong>g>orem which determine when is an algebraic<br />

triangulated category triangle-equivalent to K b (projΛ) for some algebra Λ,<br />

Theorem 10. [7, Theorem 4.3.] Let T be an algebraic triangulated category. If T has a<br />

tilting object T , <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a triangle-equivalence up to direct summ<strong>and</strong>s<br />

T ≃ K b (projEnd T (T )).<br />

–249–


By <str<strong>on</strong>g>the</str<strong>on</strong>g> above result, finding tilting objects is a basic problem for <str<strong>on</strong>g>the</str<strong>on</strong>g> study <str<strong>on</strong>g>of</str<strong>on</strong>g> a given<br />

algebraic triangulated category. We will c<strong>on</strong>sider this problem for Example 7 (1) in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

next secti<strong>on</strong> (Theorem 11).<br />

3. Triangle-equivalences between stable categories <strong>and</strong> derived<br />

categories<br />

Throughout this secti<strong>on</strong>, let A be a positively graded self-injective algebra. In this<br />

secti<strong>on</strong>, we discuss triangle-equivalences between <str<strong>on</strong>g>the</str<strong>on</strong>g> stable category mod Z A <strong>and</strong> derived<br />

categories <str<strong>on</strong>g>of</str<strong>on</strong>g> algebras.<br />

First we prove Theorem 1 in <str<strong>on</strong>g>the</str<strong>on</strong>g> half <str<strong>on</strong>g>of</str<strong>on</strong>g> this secti<strong>on</strong>. We omit <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> (2) ⇒ (1).<br />

We prove (1) ⇒ (2). We begin <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> from giving <str<strong>on</strong>g>the</str<strong>on</strong>g> necessary <strong>and</strong> sufficient c<strong>on</strong>diti<strong>on</strong><br />

for existence <str<strong>on</strong>g>of</str<strong>on</strong>g> tilting objects in <str<strong>on</strong>g>the</str<strong>on</strong>g> stable category mod Z A. The necessary <strong>and</strong> sufficient<br />

c<strong>on</strong>diti<strong>on</strong> is described by important homological property <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> subring A 0 <str<strong>on</strong>g>of</str<strong>on</strong>g> A which is<br />

stated as follows.<br />

Theorem 11. mod Z A has a tilting object if <strong>and</strong> <strong>on</strong>ly if A 0 has finite global dimensi<strong>on</strong>.<br />

We omit <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>ly if part <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 11. In <str<strong>on</strong>g>the</str<strong>on</strong>g> following, we show <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> if part <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 11 which is given by c<strong>on</strong>structing a tilting object in mod Z A. To<br />

c<strong>on</strong>struct it, we c<strong>on</strong>sider truncati<strong>on</strong> functors<br />

<strong>and</strong><br />

(−) ≥i : modA → modA<br />

(−) ≤i : modA → modA<br />

which are defined as follows. For a Z-graded A-module X, X ≥i is a Z-graded sub A-module<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> X defined by<br />

{<br />

0 (j < i)<br />

(X ≥i ) j :=<br />

(j ≥ i),<br />

<strong>and</strong> X ≤i is a Z-graded factor A-module X/X ≥i+1 <str<strong>on</strong>g>of</str<strong>on</strong>g> X.<br />

Now we define<br />

(3.1)<br />

X j<br />

T := ⊕ i≥0<br />

A(i) ≤0 .<br />

which is an object in Mod Z A but not an object in mod Z A. However since A(i) ≤0 = A(i)<br />

for enough large i, T can be regarded as an object in mod Z A.<br />

Then we have <str<strong>on</strong>g>the</str<strong>on</strong>g> following result.<br />

Theorem 12. Under <str<strong>on</strong>g>the</str<strong>on</strong>g> above setting, <str<strong>on</strong>g>the</str<strong>on</strong>g> following asserti<strong>on</strong>s hold.<br />

(1) T is a tilting object in thickT .<br />

(2) If A 0 has finite global dimensi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g>n T is a tilting object in mod Z A.<br />

It is proved that T satisfies <str<strong>on</strong>g>the</str<strong>on</strong>g> first c<strong>on</strong>diti<strong>on</strong> in Definiti<strong>on</strong> 8 with no assumpti<strong>on</strong>s for<br />

A, <strong>and</strong> T satisfies <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d c<strong>on</strong>diti<strong>on</strong> in Definiti<strong>on</strong> 8 if A 0 has finite global dimensi<strong>on</strong>.<br />

Then we finish <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> if part <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 11.<br />

□<br />

–250–


Now we keep <str<strong>on</strong>g>the</str<strong>on</strong>g> notati<strong>on</strong> as above <strong>and</strong> put<br />

Γ := End A (T ) 0 .<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> endomorphism algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> T in mod Z A.<br />

homological property if so does A 0 .<br />

Theorem 13. If A 0 has finite global dimensi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g>n so does Γ.<br />

Now we ready to prove Theorem 1 (1) ⇒ (2).<br />

This endomorphism algebra Γ has a nice<br />

Theorem 14. Under <str<strong>on</strong>g>the</str<strong>on</strong>g> above setting, <str<strong>on</strong>g>the</str<strong>on</strong>g> following asserti<strong>on</strong>s hold.<br />

(1) There exists a triangle-equivalence<br />

thickT −→ K b (projΓ).<br />

(2) If A 0 has finite global dimensi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a triangle-equivalence<br />

mod Z A −→ D b (modΓ).<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. (1) By Theorem 10 <strong>and</strong> Theorem 12 (1), we have <str<strong>on</strong>g>the</str<strong>on</strong>g> triangle-equivalence thickT −→<br />

K b (projΓ).<br />

(2) We assume that A 0 has finite global dimensi<strong>on</strong>. First by Theorem 10 <strong>and</strong> Theorem<br />

12 (2), we have <str<strong>on</strong>g>the</str<strong>on</strong>g> triangle-equivalence mod Z A −→ K b (projΓ). Next by Theorem 13, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

natural triangle-functor K b (projΛ) −→ D b (modΓ) is an equivalence. Finally by composing<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>se equivalences, we have a triangle-equivalence<br />

mod Z A −→ D b (modΓ).<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> above pro<str<strong>on</strong>g>of</str<strong>on</strong>g>, <str<strong>on</strong>g>the</str<strong>on</strong>g> triangle-equivalence mod Z A → D b (modΓ) was given by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

existence <str<strong>on</strong>g>of</str<strong>on</strong>g> tilting object T in mod Z A <strong>and</strong> Keller’s Theorem 10 automatically. In <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

rest <str<strong>on</strong>g>of</str<strong>on</strong>g> this secti<strong>on</strong>, we c<strong>on</strong>struct a triangle-equivalence D b (modΓ) → mod Z A by derived<br />

tensor functor directly.<br />

To c<strong>on</strong>struct <str<strong>on</strong>g>the</str<strong>on</strong>g> triangle-equivalence, first we want to c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> derived tensor functor<br />

− L ⊗ Γ T : D b (modΓ) → D b (mod Z A). However Γ does not act <strong>on</strong> T naturally since Γ<br />

is defined by <str<strong>on</strong>g>the</str<strong>on</strong>g> morphism space in <str<strong>on</strong>g>the</str<strong>on</strong>g> stable category mod Z A. To solve this problem,<br />

we give <str<strong>on</strong>g>the</str<strong>on</strong>g> descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> T in mod Z A below. The descripti<strong>on</strong> allow us to realize Γ as <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

morphism space in <str<strong>on</strong>g>the</str<strong>on</strong>g> category mod Z A.<br />

Propositi<strong>on</strong> 15. T is decomposed as T = T ⊕ P where T is a direct sum <str<strong>on</strong>g>of</str<strong>on</strong>g> all indecomposable<br />

n<strong>on</strong>-projective direct summ<strong>and</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> T . Then <str<strong>on</strong>g>the</str<strong>on</strong>g> following asserti<strong>on</strong>s hold.<br />

(1) T is in mod Z A.<br />

(2) T <strong>and</strong> T are isomorphic to each o<str<strong>on</strong>g>the</str<strong>on</strong>g>r in mod Z A.<br />

(3) There exists an algebra isomorphism Γ ≃ End A (T ) 0 .<br />

Let T = T ⊕P be <str<strong>on</strong>g>the</str<strong>on</strong>g> decompositi<strong>on</strong> which was given in Propositi<strong>on</strong> 15. By Propositi<strong>on</strong><br />

15 (3), T is regarded as a Z-graded Γ op ⊗ K A-module naturally. So we have <str<strong>on</strong>g>the</str<strong>on</strong>g> left derived<br />

tensor functor<br />

− L ⊗ Γ T : D b (modΓ) → D b (mod Z A).<br />

–251–<br />


Next we c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> quotient category D b (mod Z A)/K b (proj Z A) <str<strong>on</strong>g>of</str<strong>on</strong>g> D b (mod Z A), <strong>and</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> quotient functor<br />

D b (mod Z A) −→ D b (mod Z A)/K b (proj Z A).<br />

The following triangle-equivalence is <str<strong>on</strong>g>the</str<strong>on</strong>g> realizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mod Z A as <str<strong>on</strong>g>the</str<strong>on</strong>g> quotient category<br />

D b (mod Z A)/K b (proj Z A). The ungraded versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this realizati<strong>on</strong> was studied by several<br />

authors [1], [8] <strong>and</strong> [9].<br />

Theorem 16. [9, Theorem 2.1.] The natural embedding mod Z A → D b (mod Z A) induces<br />

a triangle-equivalence<br />

mod Z A −→ D b (mod Z A)/K b (proj Z A)<br />

Now we c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> following compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> above three functors<br />

G : D b (modΓ)<br />

− L ⊗ Γ T<br />

−−−−→ D b (mod Z A) −→ D b (mod Z A)/K b (proj Z A) −→ mod Z A.<br />

where <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d <strong>on</strong>e is <str<strong>on</strong>g>the</str<strong>on</strong>g> quotient functor, <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> third <strong>on</strong>e is a quasi-inverse <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Theorem 16. This is <str<strong>on</strong>g>the</str<strong>on</strong>g> triangle-functor which we want.<br />

Theorem 17. Under <str<strong>on</strong>g>the</str<strong>on</strong>g> above setting, <str<strong>on</strong>g>the</str<strong>on</strong>g> following asserti<strong>on</strong>s hold.<br />

(1) G is fully faithful <strong>on</strong> K b (projΓ).<br />

(2) A 0 has finite global dimensi<strong>on</strong> if <strong>and</strong> <strong>on</strong>ly if G is a triangle-equivalence.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. (1) It is easy to check that G(Γ) is isomorphic to T , so is isomorphic to T . Moreover<br />

by Theorem 12 (1), G induces an isomorphism<br />

Hom D b (modΓ)(Γ, Γ[i]) ≃ Hom A (G(Γ), G(Γ)[i]) 0<br />

for any i ∈ Z. By this <strong>and</strong> thickΓ = K b (projΓ), G is fully faithful <strong>on</strong> K b (projΓ). Thus G<br />

induces a triangle-equivalence K b (projΓ) → thickT .<br />

(2) We assume that A 0 has finite global dimensi<strong>on</strong>. Then Γ has finite global dimensi<strong>on</strong><br />

by Theorem 13. Thus we have thickΓ = D b (modΓ), <strong>and</strong> so G is fully faithful. Again since<br />

A 0 has finite global dimensi<strong>on</strong>, we have thickT = mod Z A by Theorem 12 (2). Thus G is<br />

dense.<br />

We omit <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>verse.<br />

□<br />

4. Examples<br />

In this secti<strong>on</strong>, we show some examples <strong>and</strong> applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> results which was shown in<br />

previous secti<strong>on</strong>.<br />

First example is famous Happel’s result [6], which gives a relati<strong>on</strong>ship between representati<strong>on</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> algebras <strong>and</strong> that <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> trivial extensi<strong>on</strong>s. We show it as an applicati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 1.<br />

Example 18. If an algebra is given, <str<strong>on</strong>g>the</str<strong>on</strong>g>n we can always c<strong>on</strong>struct a positively graded selfinjective<br />

algebra called trivial extensi<strong>on</strong>, which c<strong>on</strong>tains original algebra as a subalgebra.<br />

Let us recall <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> trivial extensi<strong>on</strong>s. Let Λ be an algebra. The trivial extensi<strong>on</strong><br />

A <str<strong>on</strong>g>of</str<strong>on</strong>g> Λ is defined as follows.<br />

• A := Λ ⊕ DΛ as an abelian group.<br />

–252–


• The multiplicati<strong>on</strong> <strong>on</strong> A is defined by<br />

(x, f) · (y, g) := (xy, xg + fy).<br />

for any x, y ∈ Λ <strong>and</strong> f, g ∈ DΛ. Here xg <strong>and</strong> fy is defined by (Λ, Λ)-bimodule<br />

structure <strong>on</strong> DΛ.<br />

This A becomes an algebra with respect to <str<strong>on</strong>g>the</str<strong>on</strong>g> above operati<strong>on</strong>s. Moreover it is known<br />

that A is self-injective.<br />

Now we introduce a positively grading <strong>on</strong> A by<br />

⎧<br />

⎪⎨ Λ (i = 0),<br />

A i := DΛ (i = 1),<br />

⎪⎩<br />

0 (i ≥ 2).<br />

Then obviously A = ⊕ i≥0 A i becomes a positively graded self-injective algebra.<br />

Under <str<strong>on</strong>g>the</str<strong>on</strong>g> above setting, we apply Theorem 17 to <str<strong>on</strong>g>the</str<strong>on</strong>g> trivial extensi<strong>on</strong> A <str<strong>on</strong>g>of</str<strong>on</strong>g> an algebra<br />

Λ. Then we have <str<strong>on</strong>g>the</str<strong>on</strong>g> following Happel’s triangle-equivalence.<br />

Theorem 19. [6, Theorem 2. 3.] Under <str<strong>on</strong>g>the</str<strong>on</strong>g> above setting, <str<strong>on</strong>g>the</str<strong>on</strong>g> following are equivalent.<br />

(1) Λ has finite global dimensi<strong>on</strong>.<br />

(2) There exists an triangle-equivalence<br />

mod Z A ≃ D b (modΛ).<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. We calculate T c<strong>on</strong>structed in (3.1) for our setting. Then <strong>on</strong>e can check that<br />

T = Λ, <strong>and</strong> End A (T ) 0 = End A (T ) 0 ≃ Λ. Thus <str<strong>on</strong>g>the</str<strong>on</strong>g> asserti<strong>on</strong> follows from this <strong>and</strong><br />

Theorem 17.<br />

□<br />

Next example is X-W Chen’s result [2] which gives a generalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Happel’s result.<br />

Example 20. Chen [2] studied relati<strong>on</strong>ship between <str<strong>on</strong>g>the</str<strong>on</strong>g> stable category mod Z A <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

positively graded self-injective algebra A which has Gorenstein parameter <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> derived<br />

category D b (modΓ) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Beilins<strong>on</strong> algebra Γ <str<strong>on</strong>g>of</str<strong>on</strong>g> A. The noti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Gorenstein parameter<br />

is defined as follows.<br />

Definiti<strong>on</strong> 21. Let A be a positively graded self-injective algebra. We say that A has<br />

Gorenstein parameter l if SocA is c<strong>on</strong>tained in A l .<br />

Let A be a positively graded self-injective algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> Gorenstein parameter l.<br />

Beilins<strong>on</strong> algebra Γ <str<strong>on</strong>g>of</str<strong>on</strong>g> A is defined by<br />

⎛<br />

⎞<br />

A 0 A 1 · · · A l−2 A l−1<br />

A 0 · · · A l−3 A l−2<br />

Γ :=<br />

. ⎜ . . . .<br />

⎟<br />

⎝<br />

A 0 A ⎠ .<br />

1<br />

0 A 0<br />

Then Chen showed <str<strong>on</strong>g>the</str<strong>on</strong>g> following result.<br />

Theorem 22. [2, Corollary 1.2.] Under <str<strong>on</strong>g>the</str<strong>on</strong>g> above setting, <str<strong>on</strong>g>the</str<strong>on</strong>g> following are equivalent.<br />

(1) A 0 has finite global dimensi<strong>on</strong>.<br />

–253–<br />

The


(2) There exists a triangle-equivalence<br />

mod Z A ≃ D b (modΓ).<br />

As an applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 12, we give a pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> above result. Let T be <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

object defined in (3.1), <strong>and</strong> T <str<strong>on</strong>g>the</str<strong>on</strong>g> direct summ<strong>and</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> T defined in Propositi<strong>on</strong> 15. We<br />

calculate T <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> endomorphism algebra End A (T ) 0 . Then since A has Gorenstein<br />

parameter l, those can be represented as <str<strong>on</strong>g>the</str<strong>on</strong>g> following explicit form.<br />

Propositi<strong>on</strong> 23. Under <str<strong>on</strong>g>the</str<strong>on</strong>g> above setting, <str<strong>on</strong>g>the</str<strong>on</strong>g> following asserti<strong>on</strong>s hold<br />

(1) T = ⊕ l−1<br />

i=0 A(i) ≤0.<br />

(2) There exists an algebra isomorphism End A (T ) 0 ≃ Γ.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Since A has Gorenstein parameter l, we have T = ⊕ l−1<br />

i=0 A(i) ≤0 by <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> T . ( Moreover it is easy to calculate that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is an algebra isomorphism End A (T ) 0 =<br />

⊕l−1<br />

)<br />

End A i=0 A(i) ≤0 ≃ Γ.<br />

□<br />

0<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 22. The asserti<strong>on</strong> follows from Theorem 17 <strong>and</strong> Propositi<strong>on</strong> 23.<br />

Remark 24. The trivial extensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> algebras are positively graded self-injective algebras<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Gorenstein parameter 1. Thus Theorem 22 c<strong>on</strong>tains Theorem 19.<br />

Next we show a c<strong>on</strong>crete examples.<br />

Example 25. We c<strong>on</strong>sider A := K[x]/(x n+1 ), <strong>and</strong> define a grading <strong>on</strong> A by deg x := 1.<br />

Then A is a positively graded self-injective algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> Gorenstein parameter n.<br />

Since <str<strong>on</strong>g>the</str<strong>on</strong>g> global dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> A 0 = K is equal to zero, mod Z A has a tilting object by<br />

Theorem 11. Let T be <str<strong>on</strong>g>the</str<strong>on</strong>g> object in mod Z A which was defined in (3.1). Since A has a<br />

unique chain<br />

A ⊃ (x)/(x n+1 ) ⊃ (x 2 )/(x n+1 ) ⊃ · · · ⊃ (x n )/(x n+1 )<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Z-graded A-submodules <str<strong>on</strong>g>of</str<strong>on</strong>g> A, it is easy to calculate that <str<strong>on</strong>g>the</str<strong>on</strong>g> endomorphism algebra<br />

Γ := End A (T ) 0 <str<strong>on</strong>g>of</str<strong>on</strong>g> T is isomorphic to <str<strong>on</strong>g>the</str<strong>on</strong>g> n × n upper triangular matrix algebra over K.<br />

By Theorem 12, <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a triangle-equivalence<br />

mod Z A ≃ D b (modΓ).<br />

We observe <str<strong>on</strong>g>the</str<strong>on</strong>g> above triangle-equivalences by c<strong>on</strong>sidering <str<strong>on</strong>g>the</str<strong>on</strong>g> case that n = 2, namely<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> case that A = K[x]/(x 3 ). For i = 1, 2, we put X i := (x i )/(x 3 ) <str<strong>on</strong>g>the</str<strong>on</strong>g> Z-graded A-<br />

submodule <str<strong>on</strong>g>of</str<strong>on</strong>g> A. Then we have a chain A ⊃ X 1 ⊃ X 2 <str<strong>on</strong>g>of</str<strong>on</strong>g> Z-graded A-submodules <str<strong>on</strong>g>of</str<strong>on</strong>g> A. It<br />

is known that {X i (j) | i = 1, 2, j ∈ Z} is a complete set <str<strong>on</strong>g>of</str<strong>on</strong>g> indecomposable n<strong>on</strong>-projective<br />

Z-graded A-modules.<br />

The Ausl<strong>and</strong>er-Reiten quiver <str<strong>on</strong>g>of</str<strong>on</strong>g> mod Z A is as follows.<br />

X 1 (−2) X 1 (−1) <br />

❄<br />

X 1 X 1 (1) X 1 (2)<br />

❄<br />

❄❄❄❄❄<br />

❄<br />

<br />

❄❄❄❄❄<br />

❄<br />

❄❄❄❄❄<br />

❄❄❄❄❄<br />

· · · · · · · · · · · ·<br />

88888<br />

X 2 8<br />

88888<br />

(−2) X 2 8<br />

8 88888<br />

(−1) X 2 8<br />

88888<br />

X 2 8<br />

(1) X 2 8<br />

<br />

888888<br />

(2)<br />

Here dotted arrows mean <str<strong>on</strong>g>the</str<strong>on</strong>g> Ausl<strong>and</strong>er-Reiten translati<strong>on</strong> in mod Z A. We can observe<br />

that <str<strong>on</strong>g>the</str<strong>on</strong>g> Ausl<strong>and</strong>er-Reiten translati<strong>on</strong> coincides with <str<strong>on</strong>g>the</str<strong>on</strong>g> graded shift functor (−1).<br />

–254–<br />


Next we write <str<strong>on</strong>g>the</str<strong>on</strong>g> Ausl<strong>and</strong>er-Reiten quiver <str<strong>on</strong>g>of</str<strong>on</strong>g> D b (modΓ). In this case, Γ = End A (T ) 0<br />

is isomorphic to 2 × 2 upper triangular matrix algebra over K. We put P 1 := (KK),<br />

P 2 := (0K) <strong>and</strong> I 1 := (K0). It is known that <str<strong>on</strong>g>the</str<strong>on</strong>g> set {P 1 , P 2 , I 1 } is a complete set <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

indecomposable Γ-modules, <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Ausl<strong>and</strong>er-Reiten quiver <str<strong>on</strong>g>of</str<strong>on</strong>g> D b (modΓ) is as follows.<br />

I 1 [−1] <br />

❄ P 1 P 2 [1] I 1 [1] P 1 [2]<br />

❄<br />

<br />

❄❄❄❄❄<br />

❄ ❄<br />

❄❄❄❄❄<br />

❄<br />

❄❄❄❄❄<br />

❄❄❄❄❄<br />

· · · · · · · · · · · ·<br />

88888<br />

P 1 8<br />

8 88888<br />

[−1] P 2 8<br />

88888<br />

I 1 8<br />

88888<br />

P 1 8<br />

[1] P 2 8<br />

<br />

888888<br />

[2]<br />

Here dotted arrows mean <str<strong>on</strong>g>the</str<strong>on</strong>g> Ausl<strong>and</strong>er-Reiten translati<strong>on</strong> in D b (modΓ).<br />

From shape <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> above Ausl<strong>and</strong>er-Reiten quivers, <strong>on</strong>e can see that mod Z A <strong>and</strong><br />

D b (modΓ) should be equivalent to each o<str<strong>on</strong>g>the</str<strong>on</strong>g>r. In fact, we gave a triangle-equivalence<br />

between those.<br />

References<br />

[1] R. O. Buchweitz, Maximal Cohen-Macaulay modules <strong>and</strong> Tate-cohomology over Gorenstein rings,<br />

preprint.<br />

[2] Xiao-Wu Chen, Graded self-injective algebras ”are” trivial extensi<strong>on</strong>s, J. Algebra 322 (2009), no. 7,<br />

2601–2606.<br />

[3] R. Gord<strong>on</strong> <strong>and</strong> E. L . Green, Graded Artin algebras, J. Algebra 76 (1982), no. 1, 111–137.<br />

[4] , Representati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> graded Artin algebras, J. Algebra 76 (1982), no. 1, 138–152.<br />

[5] D. Happel, Triangulated categories in <str<strong>on</strong>g>the</str<strong>on</strong>g> representati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> finite-dimensi<strong>on</strong>al algebras, L<strong>on</strong>d<strong>on</strong><br />

Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical Society Lecture Note Series, 119. Cambridge University Press, Cambridge, 1988.<br />

[6] , Ausl<strong>and</strong>er-Reiten triangles in derived categories <str<strong>on</strong>g>of</str<strong>on</strong>g> finite-dimensi<strong>on</strong>al algebras, Proc. Amer.<br />

Math. Soc. 112 (1991), no. 3, 641–648.<br />

[7] B. Keller, Deriving DG categories, Ann. Sci. Ecole Norm. Sup. (4) 27 (1994), no. 1, 63–102.<br />

[8] B. Keller, D. Vossieck, Sous les catégories dérivées, (French), C. R. Acad. Sci. Paris Sér. I Math. 305<br />

(1987), no. 6, 225–228.<br />

[9] J. Rickard, Derived categories <strong>and</strong> stable equivalence, J. Pure Appl. Algebra 61 (1989), no. 3, 303–317.<br />

Graduate School <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics<br />

NagoyaUniversity<br />

Frocho, Chikusaku, Nagoya 464-8602 Japan<br />

E-mail address: m07052d@math.nagoya-u.ac.jp<br />

–255–


ALGEBRAIC STRATIFICATIONS OF DERIVED MODULE<br />

CATEGORIES AND DERIVED SIMPLE ALGEBRAS<br />

DONG YANG<br />

Abstract. In this note I will survey <strong>on</strong> some recent progress in <str<strong>on</strong>g>the</str<strong>on</strong>g> study <str<strong>on</strong>g>of</str<strong>on</strong>g> recollements<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> derived module categories.<br />

Key Words: Recollement, Algebraic stratificati<strong>on</strong>, Derived simple algebra.<br />

2010 Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics Subject Classificati<strong>on</strong>: 16E35.<br />

The noti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> recollement <str<strong>on</strong>g>of</str<strong>on</strong>g> triangulated categories was introduced in [5] as an analogue<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> short exact sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> modules or groups. In representati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> algebras it<br />

provides us with reducti<strong>on</strong> techniques, which have proved very useful, for example, in<br />

• proving c<strong>on</strong>jectures <strong>on</strong> homological dimensi<strong>on</strong>s, see [9];<br />

• computing homological invariants, see [11, 12];<br />

• classifying t-structures, see [14].<br />

In this note I will survey <strong>on</strong> some recent progress in <str<strong>on</strong>g>the</str<strong>on</strong>g> study <str<strong>on</strong>g>of</str<strong>on</strong>g> recollements <str<strong>on</strong>g>of</str<strong>on</strong>g> derived<br />

module categories.<br />

1. Recollements<br />

Let k be a field. For a k-algebra A denote by D(A) = D(Mod A) <str<strong>on</strong>g>the</str<strong>on</strong>g> (unbounded)<br />

derived category <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> category Mod A <str<strong>on</strong>g>of</str<strong>on</strong>g> right A-modules. The objects <str<strong>on</strong>g>of</str<strong>on</strong>g> D(A) are<br />

complexes <str<strong>on</strong>g>of</str<strong>on</strong>g> right A-modules. The category D(A) is triangulated with shift functor Σ<br />

being <str<strong>on</strong>g>the</str<strong>on</strong>g> shift <str<strong>on</strong>g>of</str<strong>on</strong>g> complexes. See [10] for a nice introducti<strong>on</strong> <strong>on</strong> derived categories.<br />

A recollement <str<strong>on</strong>g>of</str<strong>on</strong>g> derived module categories is a diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> derived module categories<br />

<strong>and</strong> triangle functors<br />

(1.1)<br />

i ∗<br />

j !<br />

D(B) i ∗ =i !<br />

D(A) j ! =j ∗ D(C),<br />

i !<br />

j ∗<br />

where A, B <strong>and</strong> C are k-algebras, such that<br />

(1) (i ∗ , i ∗ = i ! , i ! ) <strong>and</strong> (j ! , j ! = j ∗ , j ∗ ) are adjoint triples;<br />

(2) j ! , i ∗ <strong>and</strong> j ∗ are fully faithful;<br />

(3) j ∗ i ∗ = 0;<br />

The detailed /final/ versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper will be /has been/ submitted for publicati<strong>on</strong> elsewhere.<br />

–256–


(4) for every object M <str<strong>on</strong>g>of</str<strong>on</strong>g> D(A) <str<strong>on</strong>g>the</str<strong>on</strong>g>re are two triangles<br />

<strong>and</strong><br />

i ! i ! M M j ∗ j ∗ M Σi ! i ! M<br />

j ! j ! M M i ∗ i ∗ M Σj ! j ! M ,<br />

where <str<strong>on</strong>g>the</str<strong>on</strong>g> four morphisms starting from <strong>and</strong> ending at M are <str<strong>on</strong>g>the</str<strong>on</strong>g> units <strong>and</strong> counits.<br />

Necessary <strong>and</strong> sufficient c<strong>on</strong>diti<strong>on</strong>s under which such a recollement exists were discussed<br />

in [13, 16].<br />

Example 1. Let A be <str<strong>on</strong>g>the</str<strong>on</strong>g> path algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Kr<strong>on</strong>ecker quiver<br />

1<br />

The trivial path e 1 at 1 is an idempotent <str<strong>on</strong>g>of</str<strong>on</strong>g> A <strong>and</strong> e 1 A is a projective A-module. The<br />

following diagram is a recollement<br />

? L ⊗ A A/Ae 1 A<br />

<br />

2 .<br />

? L ⊗ e1 Ae 1 e 1 A<br />

D(A/Ae 1 A) ? ⊗ L A/Ae1 AA/Ae 1 A D(A) ? ⊗ L <br />

A Ae 1<br />

D(e 1 Ae 1 ).<br />

RHom A (A/Ae 1 A,?)<br />

RHom e1 Ae 1 (Ae 1 ,?)<br />

Note that both e 1 Ae 1 <strong>and</strong> A/Ae 1 A are isomorphic to k.<br />

2. Algebraic stratificati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> derived module categories<br />

Let A be an algebra. An algebraic stratificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> D(A) is a sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> iterated n<strong>on</strong>trivial<br />

recollements <str<strong>on</strong>g>of</str<strong>on</strong>g> derived module categories. It can be depicted as a binary tree as<br />

below, where each edge represents an adjoint triple <str<strong>on</strong>g>of</str<strong>on</strong>g> triangle functors <strong>and</strong> each hook<br />

represents a recollement<br />

D(A)<br />

❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥ ❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙<br />

D(B)<br />

D(C)<br />

✈ ✈✈✈✈✈✈✈✈<br />

D(B ′ )<br />

✽ ✽✽✽✽ ✽<br />

❍ ❍❍❍❍❍❍ ❍<br />

❍<br />

D(B ′′ )<br />

✽ ✽✽✽✽ ✽<br />

✈ ✈✈✈✈✈✈✈✈<br />

D(C ′ )<br />

❍ ❍❍❍❍❍❍ ❍<br />

❍<br />

D(C ′′ )<br />

✞ ✞✞✞✞✞✞ ✽<br />

✝ ✝✝✝✝✝✝ ✽<br />

✞ ✞✞✞✞✞✞ ✼<br />

✝ ✝✝✝✝✝✝ ✽<br />

· · · · · · · ·<br />

✼ ✼✼✼✼ ✼<br />

.<br />

.<br />

.<br />

✽ ✽✽✽✽ ✽<br />

–257–


The leaves <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> tree are <str<strong>on</strong>g>the</str<strong>on</strong>g> simple factors <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> stratificati<strong>on</strong>. The following questi<strong>on</strong>s<br />

are basic:<br />

(a) Does every derived module category admit a finite algebraic stratificati<strong>on</strong>?<br />

(b) Do two finite algebraic stratificati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> a derived module category have <str<strong>on</strong>g>the</str<strong>on</strong>g> same<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> simple factors? Do <str<strong>on</strong>g>the</str<strong>on</strong>g>y have <str<strong>on</strong>g>the</str<strong>on</strong>g> same simple factors (up to triangle<br />

equivalence <strong>and</strong> up to reordering)?<br />

(c) Which derived module categories occur as simple factors <str<strong>on</strong>g>of</str<strong>on</strong>g> some algebraic stratificati<strong>on</strong>s?<br />

The questi<strong>on</strong> (c) will be discussed in <str<strong>on</strong>g>the</str<strong>on</strong>g> next secti<strong>on</strong>. The questi<strong>on</strong>s (a) <strong>and</strong> (b) ask for<br />

a Jordan–Hölder type result for derived module categories. For general (possibly infinitedimensi<strong>on</strong>al)<br />

algebras <str<strong>on</strong>g>the</str<strong>on</strong>g> answers are negative. Below we give some (counter-)examples.<br />

Example 2. ([2]) Let A = ∏ N<br />

k. Then D(A) does not admit a finite algebraic stratificati<strong>on</strong>.<br />

Example 3. ([6]) Let A be as in Example 1. Let V be a regular simple A-module, namely,<br />

V corresp<strong>on</strong>ds to <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> following representati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Kr<strong>on</strong>ecker quiver<br />

k<br />

1 <br />

λ<br />

k (λ ∈ k),<br />

k<br />

0 <br />

1<br />

k .<br />

Let ϕ : A → A V be <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding universal localisati<strong>on</strong>. Then T = A ⊕ A V /ϕ(A) is<br />

an (infinitely generated) tilting A-module. We refer to [6] for <str<strong>on</strong>g>the</str<strong>on</strong>g> unexplained noti<strong>on</strong>s.<br />

Let B = End A (T ). Then <str<strong>on</strong>g>the</str<strong>on</strong>g>re are two algebraic stratificati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> D(B) <str<strong>on</strong>g>of</str<strong>on</strong>g> length 3 <strong>and</strong><br />

2 respectively :<br />

D(B)<br />

D(B)<br />

<br />

D(k (t ))<br />

❍ ❍❍❍❍❍❍ ❍<br />

D(A)<br />

● ●●●●● ●<br />

✉ ✉✉✉✉✉✉✉✉<br />

D(k[t])<br />

❏ ❏❏❏❏❏❏ ❏ ❏<br />

D(k [t])<br />

✈ ✈✈✈✈✈✈✈✈<br />

D(k)<br />

●<br />

D(k)<br />

Examples <str<strong>on</strong>g>of</str<strong>on</strong>g> this type are systematically studied in [7].<br />

Notice that <str<strong>on</strong>g>the</str<strong>on</strong>g> algebra B in <str<strong>on</strong>g>the</str<strong>on</strong>g> preceding example is infinite-dimensi<strong>on</strong>al. For finitedimensi<strong>on</strong>al<br />

algebras, <str<strong>on</strong>g>the</str<strong>on</strong>g> questi<strong>on</strong>s (a) <strong>and</strong> (b) are open. For piecewise hereditary algebras<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> answers to <str<strong>on</strong>g>the</str<strong>on</strong>g>m are positive. Recall that a finite-dimensi<strong>on</strong>al algebra is piecewise<br />

hereditary if it is derived equivalent to a hereditary abelian category.<br />

Theorem 4. ([1, 3]) Let A be a piecewise hereditary algebra. Then any algebraic stratificati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> D(A) has <str<strong>on</strong>g>the</str<strong>on</strong>g> same set (with multiplicities) <str<strong>on</strong>g>of</str<strong>on</strong>g> simple factors: <str<strong>on</strong>g>the</str<strong>on</strong>g>y are precisely<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> derived categories <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> endomorphism algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> simple A-modules.<br />

–258–


3. Derived simple algebras<br />

An algebra is said to be derived simple if its derived category does not admit any<br />

n<strong>on</strong>-trivial recollements <str<strong>on</strong>g>of</str<strong>on</strong>g> derived module categories. For example, <str<strong>on</strong>g>the</str<strong>on</strong>g> field k is derived<br />

simple. Derived simple algebras are precisely those algebras whose derived categories<br />

occur as simple factors <str<strong>on</strong>g>of</str<strong>on</strong>g> some algebraic stratificati<strong>on</strong>s.<br />

Example 5. ([17, 4]) Let n ∈ N. Let A be <str<strong>on</strong>g>the</str<strong>on</strong>g> algebra given by <str<strong>on</strong>g>the</str<strong>on</strong>g> quiver<br />

1<br />

α<br />

β<br />

2<br />

with relati<strong>on</strong>s (αβ) n = 0 = (βα) n or with relati<strong>on</strong>s (αβ) n α = 0 = β(αβ) n . Then A is<br />

derived simple.<br />

Example 6. ([8]) There are finite-dimensi<strong>on</strong>al derived simple algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> finite global<br />

dimensi<strong>on</strong>. In [8], Happel c<strong>on</strong>structed a family <str<strong>on</strong>g>of</str<strong>on</strong>g> finite-dimensi<strong>on</strong>al algebras A m (m ∈ N)<br />

such that<br />

– <str<strong>on</strong>g>the</str<strong>on</strong>g> global dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> A m is 6m − 3,<br />

– A m is derived simple.<br />

All <str<strong>on</strong>g>the</str<strong>on</strong>g>se algebras have exactly two isomorphism classes <str<strong>on</strong>g>of</str<strong>on</strong>g> simple modules. For example,<br />

A 1 is given by <str<strong>on</strong>g>the</str<strong>on</strong>g> quiver<br />

with relati<strong>on</strong>s βα = 0 = γβ.<br />

1<br />

α<br />

β<br />

γ<br />

The classificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> derived simple algebras turns out to be a wild problem. Besides<br />

those in <str<strong>on</strong>g>the</str<strong>on</strong>g> above examples, <strong>on</strong>ly a few families <str<strong>on</strong>g>of</str<strong>on</strong>g> algebras have been shown to be derived<br />

simple.<br />

Theorem 7. The following algebras are derived simple:<br />

(a) ([2]) local algebras,<br />

(b) ([2]) simple artinian algebras,<br />

(c) ([4]) indecomposable commutative algebras,<br />

(d) ([15]) blocks <str<strong>on</strong>g>of</str<strong>on</strong>g> finite group algebras.<br />

Sketch <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> for (d): First recall that a block <str<strong>on</strong>g>of</str<strong>on</strong>g> an algebra is an indecomposable<br />

algebra direct summ<strong>and</strong>.<br />

Step 1: Let A, B <strong>and</strong> C be finite-dimensi<strong>on</strong>al algebras such that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a recollement<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> form (1.1). Then i ∗ (B) <strong>and</strong> j ! (C) has no self-extensi<strong>on</strong>s. Moreover,<br />

i ∗ (B) ∈ D b (mod A), j ! (C) ∈ K b (proj A) <strong>and</strong> i ∗ (A) ∈ K b (proj B). Here D b (mod) denotes<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> bounded derived category <str<strong>on</strong>g>of</str<strong>on</strong>g> finite-dimensi<strong>on</strong>al modules <strong>and</strong> K b (proj) denotes <str<strong>on</strong>g>the</str<strong>on</strong>g> homotopy<br />

category <str<strong>on</strong>g>of</str<strong>on</strong>g> bounded complexes <str<strong>on</strong>g>of</str<strong>on</strong>g> finite-dimensi<strong>on</strong>al projective modules. They<br />

can be c<strong>on</strong>sidered as triangulated subcategories <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> (unbounded) derived category.<br />

2<br />

–259–


Step 2: Let A be a finite-dimensi<strong>on</strong>al symmetric algebra, i.e. D(A) ∼ = A as A-Abimodules.<br />

Here D = Hom k (?, k) is <str<strong>on</strong>g>the</str<strong>on</strong>g> k-dual. Then for M, N ∈ K b (proj A), we have<br />

D Hom A (M, N) ∼ = Hom A (N, M).<br />

Step 3: Let A be a finite-dimensi<strong>on</strong>al symmetric algebra satisfying <str<strong>on</strong>g>the</str<strong>on</strong>g> following c<strong>on</strong>diti<strong>on</strong><br />

(#) for any finite-dimensi<strong>on</strong>al A-module M, <str<strong>on</strong>g>the</str<strong>on</strong>g> space ⊕ i∈Z Exti A(M, M) is infinitedimensi<strong>on</strong>al.<br />

Let M ∈ D b (mod A). Then ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r M ∈ K b (proj A) or <str<strong>on</strong>g>the</str<strong>on</strong>g> space ⊕ i∈Z Hom A(M, Σ i M) is<br />

infinite-dimensi<strong>on</strong>al.<br />

Step 4: Let G be a finite group. Then <str<strong>on</strong>g>the</str<strong>on</strong>g> group algebra kG satisfies <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong> (#).<br />

So each block <str<strong>on</strong>g>of</str<strong>on</strong>g> kG is a finite-dimensi<strong>on</strong>al indecomposable symmetric algebra satisfying<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong> (#).<br />

Step 5: Let A be a finite-dimensi<strong>on</strong>al indecomposable symmetric algebra satisfying <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

c<strong>on</strong>diti<strong>on</strong> (#). Then A is derived simple.<br />

To show this, suppose <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trary that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a n<strong>on</strong>-trivial recollement <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

form (1.1). Then <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a triangle<br />

(3.1)<br />

j ! j ! (A) A i ∗ i ∗ (A) Σj ! j ! (A).<br />

By Steps 1 <strong>and</strong> 3, we know that i ∗ (B) ∈ K b (proj A), which implies that i ∗ i ∗ (A) ∈<br />

K b (proj A), <strong>and</strong> hence j ! j ! (A) ∈ K b (proj A) as well. For any n ∈ Z we have<br />

(3.2)<br />

Hom A (j ! j ! (A), Σ n i ∗ i ∗ (A)) = Hom A (j ! (A), Σ n j ∗ i ∗ i ∗ (A)) = 0,<br />

where <str<strong>on</strong>g>the</str<strong>on</strong>g> first equality follows from <str<strong>on</strong>g>the</str<strong>on</strong>g> adjointness <str<strong>on</strong>g>of</str<strong>on</strong>g> j ! <strong>and</strong> j ∗ , <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d <strong>on</strong>e<br />

follows from <str<strong>on</strong>g>the</str<strong>on</strong>g> fact that j ∗ i ∗ = 0 (<str<strong>on</strong>g>the</str<strong>on</strong>g> third c<strong>on</strong>diti<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a recollement).<br />

It <str<strong>on</strong>g>the</str<strong>on</strong>g>n follows from <str<strong>on</strong>g>the</str<strong>on</strong>g> formula in Step 2 that for any n ∈ Z<br />

(3.3)<br />

Hom A (i ∗ i ∗ (A), Σ n j ! j ! (A)) = 0.<br />

Taking n = 1, we see that <str<strong>on</strong>g>the</str<strong>on</strong>g> triangle (3.1) splits, <strong>and</strong> hence A = j ! j ! (A) ⊕ i ∗ i ∗ (A). The<br />

formulas (3.2) <strong>and</strong> (3.3) for n = 0 say that <str<strong>on</strong>g>the</str<strong>on</strong>g>re are no morphisms between j ! j ! (A) <strong>and</strong><br />

i ∗ i ∗ (A). Thus we have<br />

A = End A (A) = End A (j ! j ! (A) ⊕ i ∗ i ∗ (A)) = End A (j ! j ! (A)) ⊕ End A (i ∗ i ∗ (A)),<br />

c<strong>on</strong>tradicting <str<strong>on</strong>g>the</str<strong>on</strong>g> assumpti<strong>on</strong> that A is indecomposable.<br />

References<br />

[1] Lidia Angeleri Hügel, Steffen Koenig, <strong>and</strong> Qunhua Liu, On <str<strong>on</strong>g>the</str<strong>on</strong>g> uniqueness <str<strong>on</strong>g>of</str<strong>on</strong>g> stratificati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> derived<br />

module categories, J. Algebra, to appear. Also arXiv:1006.5301.<br />

[2] , Recollements <strong>and</strong> tilting objects, J. Pure Appl. Algebra 215 (2011), no. 4, 420–438.<br />

[3] , Jordan-Hölder <str<strong>on</strong>g>the</str<strong>on</strong>g>orems for derived module categories <str<strong>on</strong>g>of</str<strong>on</strong>g> piecewise hereidtary algebras, J.<br />

Algebra 352 (2012), 361–381.<br />

–260–<br />


[4] Lidia Angeleri Hügel, Steffen Koenig, Qunhua Liu, <strong>and</strong> D<strong>on</strong>g Yang, Derived simple algebras <strong>and</strong><br />

restricti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> recollements <str<strong>on</strong>g>of</str<strong>on</strong>g> derived module categories, preprint, 2012.<br />

[5] Alex<strong>and</strong>er A. Beilins<strong>on</strong>, Joseph Bernstein, <strong>and</strong> Pierre Deligne, Analyse et topologie sur les espaces<br />

singuliers, Astérisque, vol. 100, Soc. Math. France, 1982 (French).<br />

[6] H<strong>on</strong>gxing Chen <strong>and</strong> Changchang Xi, Good tilting modules <strong>and</strong> recollements <str<strong>on</strong>g>of</str<strong>on</strong>g> derived module categories,<br />

Proc. L<strong>on</strong>. Math. Soc, to appear. Also arXiv:1012.2176.<br />

[7] , Stratificati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> derived categories from tilting modules over tame hereditary algebras,<br />

preprint, 2011, arXiv:1107.0444.<br />

[8] Dieter Happel, A family <str<strong>on</strong>g>of</str<strong>on</strong>g> algebras with two simple modules <strong>and</strong> Fib<strong>on</strong>acci numbers, Arch. Math.<br />

(Basel) 57 (1991), no. 2, 133–139.<br />

[9] , Reducti<strong>on</strong> techniques for homological c<strong>on</strong>jectures, Tsukuba J. Math. 17 (1993), no. 1, 115–<br />

130.<br />

[10] Bernhard Keller, Introducti<strong>on</strong> to abelian <strong>and</strong> derived categories, Representati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> reductive groups,<br />

Publ. Newt<strong>on</strong> Inst., Cambridge Univ. Press, Cambridge, 1998, pp. 41–61.<br />

[11] , Invariance <strong>and</strong> localizati<strong>on</strong> for cyclic homology <str<strong>on</strong>g>of</str<strong>on</strong>g> DG algebras, J. Pure Appl. Algebra 123<br />

(1998), no. 1-3, 223–273.<br />

[12] Steffen Koenig <strong>and</strong> Hiroshi Nagase, Hochschild cohomologies <strong>and</strong> stratifying ideals, J. Pure Appl.<br />

Algebra 213 (2009), no. 4, 886–891.<br />

[13] Steffen König, Tilting complexes, perpendicular categories <strong>and</strong> recollements <str<strong>on</strong>g>of</str<strong>on</strong>g> derived module categories<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> rings, J. Pure Appl. Algebra 73 (1991), no. 3, 211–232.<br />

[14] Qunhua Liu <strong>and</strong> Jorge Vitória, t-structures via recollements for piecewise hereditary algebras, J. Pure<br />

Appl. Algebra 216 (2012), 837–849.<br />

[15] Qunhua Liu <strong>and</strong> D<strong>on</strong>g Yang, Blocks <str<strong>on</strong>g>of</str<strong>on</strong>g> group algebras are derived simple, in press,<br />

doi:10.1007/s00209-011-0963-y. Also arXiv:1104.0500.<br />

[16] Pedro Nicolás <strong>and</strong> Manuel Saorín, Parametrizing recollement data for triangulated categories, J.<br />

Algebra 322 (2009), no. 4, 1220–1250.<br />

[17] Alfred Wiedemann, On stratificati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> derived module categories, Canad. Math. Bull. 34 (1991),<br />

no. 2, 275–280.<br />

Universität Stuttgart<br />

Institut für Algebra und Zahlen<str<strong>on</strong>g>the</str<strong>on</strong>g>orie<br />

Pfaffenwaldring 57, D-70569 Stuttgart, Germany<br />

E-mail address: d<strong>on</strong>gyang2002@gmail.com<br />

–261–


RECOLLEMENTS GENERATED BY IDEMPOTENTS AND<br />

APPLICATION TO SINGULARITY CATEGORIES<br />

DONG YANG<br />

Abstract. In this note I report <strong>on</strong> an <strong>on</strong>going work joint with Martin Kalck, which<br />

generalises <strong>and</strong> improves a c<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Thanh<str<strong>on</strong>g>of</str<strong>on</strong>g>fer de Völcsey <strong>and</strong> Van den Bergh.<br />

Key Words: Recollement, Singularity category, N<strong>on</strong>-commutative resoluti<strong>on</strong>.<br />

2010 Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics Subject Classificati<strong>on</strong>: 16E35, 16E45, 16G50.<br />

In [15] Thanh<str<strong>on</strong>g>of</str<strong>on</strong>g>fer de Völcsey <strong>and</strong> Van den Bergh showed that <str<strong>on</strong>g>the</str<strong>on</strong>g> stable category <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

maximal Cohen–Macaulay modules over a local complete commutative Gorenstein algebra<br />

with isolated singularity can be realized as <str<strong>on</strong>g>the</str<strong>on</strong>g> triangle quotient <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> perfect derived<br />

category by <str<strong>on</strong>g>the</str<strong>on</strong>g> finite-dimensi<strong>on</strong>al category <str<strong>on</strong>g>of</str<strong>on</strong>g> a certain nice dg algebra c<strong>on</strong>structed from<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> given Gorenstein algebra. We generalises <strong>and</strong> improves <str<strong>on</strong>g>the</str<strong>on</strong>g>ir c<strong>on</strong>structi<strong>on</strong> by studying<br />

recollements <str<strong>on</strong>g>of</str<strong>on</strong>g> derived categories generated by idempotents.<br />

1. Recollements generated by idempotents<br />

Let k be a field, let A be a k-algebra <strong>and</strong> e ∈ A be an idempotent. Let D(A) denote<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> (unbounded) derived category <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> category <str<strong>on</strong>g>of</str<strong>on</strong>g> right modules over A. This is a<br />

triangulated category with shift functor Σ being <str<strong>on</strong>g>the</str<strong>on</strong>g> shift <str<strong>on</strong>g>of</str<strong>on</strong>g> complexes. C<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

following st<strong>and</strong>ard diagram<br />

(1.1)<br />

i ∗<br />

j !<br />

D(A/AeA) i ∗ =i !<br />

D(A) j ! =j ∗ D(eAe)<br />

where<br />

i !<br />

i ∗ =? ⊗ L A A/AeA,<br />

j ! =? ⊗ L eAe eA,<br />

i ∗ = RHom A/AeA (A/AeA, ?), j ! = RHom A (eA, ?),<br />

i ! =? ⊗ L A/AeA A/AeA, j ∗ =? ⊗ L A Ae,<br />

i ! = RHom A (A/AeA, ?), j ∗ = RHom eAe (Ae, ?).<br />

One asks when this diagram is a recollement ([3]), i.e. <str<strong>on</strong>g>the</str<strong>on</strong>g> following c<strong>on</strong>diti<strong>on</strong>s hold<br />

(1) (i ∗ , i ∗ = i ! , i ! ) <strong>and</strong> (j ! , j ! = j ∗ , j ∗ ) are adjoint triples;<br />

(2r) j ! <strong>and</strong> j ∗ are fully faithful;<br />

(2l) i ∗ = i ! is fully faithful;<br />

The detailed versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper will be submitted for publicati<strong>on</strong> elsewhere.<br />

–262–<br />

j ∗


(3) j ∗ i ∗ = 0;<br />

(4) for every object M <str<strong>on</strong>g>of</str<strong>on</strong>g> D(A) <str<strong>on</strong>g>the</str<strong>on</strong>g>re are two triangles<br />

<strong>and</strong><br />

i ! i ! M M j ∗ j ∗ M Σi ! i ! M<br />

j ! j ! M M i ∗ i ∗ M Σj ! j ! M ,<br />

where <str<strong>on</strong>g>the</str<strong>on</strong>g> four morphisms starting from <strong>and</strong> ending at M are <str<strong>on</strong>g>the</str<strong>on</strong>g> units <strong>and</strong> counits.<br />

This type <str<strong>on</strong>g>of</str<strong>on</strong>g> recollements attracts c<strong>on</strong>siderable attenti<strong>on</strong>, see for example [6, 8, 7, 14]. The<br />

c<strong>on</strong>diti<strong>on</strong>s (1) <strong>and</strong> (3) are easy to check, <strong>and</strong> it is known that (2r) holds (by applying [11,<br />

Propositi<strong>on</strong> 3.2] to eA). However, in general (2l) is not necessarily true, as seen from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

next example.<br />

Example 1. Let A be <str<strong>on</strong>g>the</str<strong>on</strong>g> finite-dimensi<strong>on</strong>al algebra given by <str<strong>on</strong>g>the</str<strong>on</strong>g> quiver<br />

1<br />

α<br />

β<br />

2<br />

with relati<strong>on</strong> αβ = 0. Take <str<strong>on</strong>g>the</str<strong>on</strong>g> idempotent e = e 1 , <str<strong>on</strong>g>the</str<strong>on</strong>g> trivial path at <str<strong>on</strong>g>the</str<strong>on</strong>g> vertex 1. Then<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> associated functor i ∗ : D(A/AeA) → D(A) is not fully faithful. Indeed, i ∗ (A/AeA)<br />

is <str<strong>on</strong>g>the</str<strong>on</strong>g> simple A-module at vertex 2, which has n<strong>on</strong>-vanishing self-extensi<strong>on</strong>s in degree 2,<br />

while as an A/AeA-module A/AeA has no self-extensi<strong>on</strong>s.<br />

Theorem 2. ([8]) The following c<strong>on</strong>diti<strong>on</strong>s are equivalent<br />

(i) <str<strong>on</strong>g>the</str<strong>on</strong>g> st<strong>and</strong>ard diagram (1.1) is a recollement,<br />

(ii) <str<strong>on</strong>g>the</str<strong>on</strong>g> homomorphism A → A/AeA is a homological epimorphism, i.e.<br />

i ∗ : D(A/AeA) → D(A) is fully faithful,<br />

(iii) <str<strong>on</strong>g>the</str<strong>on</strong>g> ideal AeA is a stratifying ideal, i.e.<br />

isomorphism Ae L ⊗ eAe eA ∼ = AeA.<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> functor<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> counit Ae L ⊗ eAe eA → A induces an<br />

In general, to make <str<strong>on</strong>g>the</str<strong>on</strong>g> st<strong>and</strong>ard diagram (1.1) a recollement, <strong>on</strong>e needs to replace<br />

A/AeA by a dg (=differential graded) algebra, which, in some sense, enhances A/AeA.<br />

For dg algebras <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir derived categories, we refer to [13]. We remark that a k-algebra<br />

can be viewed as a dg k-algebra c<strong>on</strong>centrated in degree 0.<br />

Theorem 3. ([12]) Let A <strong>and</strong> e ∈ A be as above. There is a dg k-algebra B with a<br />

homomorphism <str<strong>on</strong>g>of</str<strong>on</strong>g> dg algebras f : A → B <strong>and</strong> a recollement <str<strong>on</strong>g>of</str<strong>on</strong>g> derived categories<br />

i ∗<br />

D(B) i ∗ =i !<br />

D(A) j ! =j ∗ D(eAe) ,<br />

j !<br />

i !<br />

j ∗<br />

such that<br />

–263–


(a) <str<strong>on</strong>g>the</str<strong>on</strong>g> adjoint triples (i ∗ , i ∗ = i ! , i ! ) <strong>and</strong> (j ! , j ! = j ∗ , j ∗ ) are given by<br />

i ∗ =? ⊗ L A B, j ! =? ⊗ L eAe eA,<br />

i ∗ = RHom B (B, ?), j ! = RHom A (eA, ?),<br />

i ! =? ⊗ L B B, j ∗ =? ⊗ L A Ae,<br />

i ! = RHom A (B, ?), j ∗ = RHom eAe (Ae, ?),<br />

where B is c<strong>on</strong>sidered as a left A-module <strong>and</strong> as a right A-module via <str<strong>on</strong>g>the</str<strong>on</strong>g> homomorphism<br />

f;<br />

(b) <str<strong>on</strong>g>the</str<strong>on</strong>g> degree i comp<strong>on</strong>ent B i <str<strong>on</strong>g>of</str<strong>on</strong>g> B vanishes for i > 0;<br />

(c) <str<strong>on</strong>g>the</str<strong>on</strong>g> 0-th cohomology H 0 (B) <str<strong>on</strong>g>of</str<strong>on</strong>g> B is isomorphic to A/AeA.<br />

As a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> recollement, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a triangle equivalence<br />

per(B) ∼ = (K b (proj A)/ thick(eA)) ω .<br />

Here per(B) is <str<strong>on</strong>g>the</str<strong>on</strong>g> smallest triangulated subcategory <str<strong>on</strong>g>of</str<strong>on</strong>g> D(B) which c<strong>on</strong>tains B <strong>and</strong> which<br />

is closed under taking direct summ<strong>and</strong>s, K b (proj A) is <str<strong>on</strong>g>the</str<strong>on</strong>g> homotopy category <str<strong>on</strong>g>of</str<strong>on</strong>g> bounded<br />

complexes <str<strong>on</strong>g>of</str<strong>on</strong>g> finitely generated projective A-modules, thick(eA) is <str<strong>on</strong>g>the</str<strong>on</strong>g> smallest triangulated<br />

subcategory <str<strong>on</strong>g>of</str<strong>on</strong>g> K b (proj A) which c<strong>on</strong>tains eA <strong>and</strong> which is closed under taking direct<br />

summ<strong>and</strong>s, <strong>and</strong> () ω denotes <str<strong>on</strong>g>the</str<strong>on</strong>g> idempotent completi<strong>on</strong>.<br />

Assume fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r that A/AeA is finite-dimensi<strong>on</strong>al <strong>and</strong> that each simple A/AeA-module<br />

has finite projective dimensi<strong>on</strong> over A. Then<br />

(d) H i (B) is finite-dimensi<strong>on</strong>al over k for any i ∈ Z, equivalently, per(B) is Homfinite,<br />

i.e. Hom(M, N) is finite-dimensi<strong>on</strong>al over k for any M, N ∈ per(B),<br />

(e) D fd (B) ⊆ per(B), here D fd (B) denotes <str<strong>on</strong>g>the</str<strong>on</strong>g> full subcategory <str<strong>on</strong>g>of</str<strong>on</strong>g> D(B) c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

those objects whose total cohomology is finite-dimensi<strong>on</strong>al over k,<br />

(f) per(B) has a t-structure whose heart is fdmod −A/AeA, <str<strong>on</strong>g>the</str<strong>on</strong>g> category <str<strong>on</strong>g>of</str<strong>on</strong>g> finitedimensi<strong>on</strong>al<br />

modules over A/AeA,<br />

(g) if moreover <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a quasi-isomorphism from a dg algebra à = ( ̂kQ, d) to A, where<br />

Q is a graded quiver c<strong>on</strong>centrated in n<strong>on</strong>-positive degrees <strong>and</strong> d : ̂kQ → ̂kQ is a<br />

c<strong>on</strong>tinuous k-linear differential satisfying <str<strong>on</strong>g>the</str<strong>on</strong>g> graded Leibniz rule <strong>and</strong> d(̂m) ⊆ ̂m 2 ,<br />

such that e is <str<strong>on</strong>g>the</str<strong>on</strong>g> image <str<strong>on</strong>g>of</str<strong>on</strong>g> a sum ẽ <str<strong>on</strong>g>of</str<strong>on</strong>g> some trivial paths <str<strong>on</strong>g>of</str<strong>on</strong>g> Q, <str<strong>on</strong>g>the</str<strong>on</strong>g>n B is quasiisomorphic<br />

to Ã/ÃẽÃ. Here ̂kQ is <str<strong>on</strong>g>the</str<strong>on</strong>g> completi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> path algebra kQ with<br />

respect to <str<strong>on</strong>g>the</str<strong>on</strong>g> m-adic topology in <str<strong>on</strong>g>the</str<strong>on</strong>g> category <str<strong>on</strong>g>of</str<strong>on</strong>g> graded algebras for <str<strong>on</strong>g>the</str<strong>on</strong>g> ideal m<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> kQ generated by all arrows, <strong>and</strong> ÃẽÃ is <str<strong>on</strong>g>the</str<strong>on</strong>g> closure <str<strong>on</strong>g>of</str<strong>on</strong>g> ÃẽÃ under <str<strong>on</strong>g>the</str<strong>on</strong>g> ̂m-adic<br />

topology for <str<strong>on</strong>g>the</str<strong>on</strong>g> ideal ̂m <str<strong>on</strong>g>of</str<strong>on</strong>g> ̂kQ generated by all arrows.<br />

Thanks to <str<strong>on</strong>g>the</str<strong>on</strong>g> following lemma due to Keller, Theorem 3 (g) becomes practical when<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> global dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> A is 2.<br />

Lemma 4. Let A = ̂kQ ′ /(R) be <str<strong>on</strong>g>of</str<strong>on</strong>g> global dimensi<strong>on</strong> 2, where Q ′ is a finite (ordinary)<br />

quiver <strong>and</strong> R is a finite set <str<strong>on</strong>g>of</str<strong>on</strong>g> minimal relati<strong>on</strong>s. Let Q be <str<strong>on</strong>g>the</str<strong>on</strong>g> graded quiver obtained<br />

from Q ′ by adding an arrow ρ r <str<strong>on</strong>g>of</str<strong>on</strong>g> degree −1 from <str<strong>on</strong>g>the</str<strong>on</strong>g> source <str<strong>on</strong>g>of</str<strong>on</strong>g> r to <str<strong>on</strong>g>the</str<strong>on</strong>g> target <str<strong>on</strong>g>of</str<strong>on</strong>g> r for<br />

–264–


each relati<strong>on</strong> r ∈ R. Let d be <str<strong>on</strong>g>the</str<strong>on</strong>g> unique c<strong>on</strong>tinuous k-linear automorphism <str<strong>on</strong>g>of</str<strong>on</strong>g> ̂kQ which<br />

satisfies <str<strong>on</strong>g>the</str<strong>on</strong>g> graded Leibniz rule <strong>and</strong> which takes ρ r to r for each relati<strong>on</strong> r ∈ R. Then<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>re is a quasi-isomorphism from ( ̂kQ, d) to A.<br />

Example 5. Let A be as in Example 1. Let Q be <str<strong>on</strong>g>the</str<strong>on</strong>g> graded quiver<br />

1<br />

α<br />

β<br />

2<br />

ρ<br />

where α <strong>and</strong> β are in degree 0 <strong>and</strong> ρ is in degree −1. Let d be <str<strong>on</strong>g>the</str<strong>on</strong>g> unique c<strong>on</strong>tinuous<br />

k-linear automorphism <str<strong>on</strong>g>of</str<strong>on</strong>g> ̂kQ which satisfies <str<strong>on</strong>g>the</str<strong>on</strong>g> graded Leibniz rule <strong>and</strong> which takes ρ<br />

to αβ. Then <str<strong>on</strong>g>the</str<strong>on</strong>g> obvious map from ( ̂kQ, d) to A is a quasi-isomorphism.<br />

Let e = e 1 . The associated dg algebra B as in Theorem 3 is (quasi-isomorphic to) <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

dg algebra k[ρ] with ρ in degree −1 <strong>and</strong> with vanishing differential.<br />

2. Applicati<strong>on</strong> to singularity categories<br />

Let k be a field, <strong>and</strong> let R be a Iwanaga–Gorenstein k-algebra, i.e. R is left <strong>and</strong> right<br />

noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian as a ring <strong>and</strong> R has finite injective dimensi<strong>on</strong> both as left R-module <strong>and</strong> as<br />

right R-module. Let mod R denote <str<strong>on</strong>g>the</str<strong>on</strong>g> category <str<strong>on</strong>g>of</str<strong>on</strong>g> finitely generated right R-modules.<br />

On <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>e h<strong>and</strong>, <strong>on</strong>e defines <str<strong>on</strong>g>the</str<strong>on</strong>g> singularity category<br />

D sg (R) := D b (mod R)/K b (proj R),<br />

which measures <str<strong>on</strong>g>the</str<strong>on</strong>g> complexity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> singularity <str<strong>on</strong>g>of</str<strong>on</strong>g> R. (K b (proj R) is c<strong>on</strong>sidered as <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

smooth part.) On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r h<strong>and</strong>, <strong>on</strong>e defines <str<strong>on</strong>g>the</str<strong>on</strong>g> category MCM(R) <str<strong>on</strong>g>of</str<strong>on</strong>g> maximal Cohen–<br />

Macaulay R-modules<br />

MCM(R) := {M ∈ mod R | Ext i R(M, R) = 0 for any i > 0}.<br />

The following nice result <str<strong>on</strong>g>of</str<strong>on</strong>g> Buchweitz relates <str<strong>on</strong>g>the</str<strong>on</strong>g>se categories.<br />

Theorem 6. ([4]) MCM(R) is a Frobenius category whose full subcategory <str<strong>on</strong>g>of</str<strong>on</strong>g> projectiveinjective<br />

objects is precisely proj R. Moreover, <str<strong>on</strong>g>the</str<strong>on</strong>g> embedding MCM(R) → mod R induces a<br />

triangle equivalence from <str<strong>on</strong>g>the</str<strong>on</strong>g> stable category MCM(R) to <str<strong>on</strong>g>the</str<strong>on</strong>g> singularity category D sg (R).<br />

Let M 1 , . . . , M r ∈ MCM(R) be pairwise n<strong>on</strong>-isomorphic n<strong>on</strong>-projective R-modules <strong>and</strong><br />

let M = R ⊕ M 1 ⊕ . . . ⊕ M r . Let A = End R (M) <strong>and</strong> e = id R c<strong>on</strong>sidered as an element <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

A. Then R = eAe <strong>and</strong> A/AeA = End MCM(R) (M). For example, <str<strong>on</strong>g>the</str<strong>on</strong>g> ring R = k[x]/x 2 has<br />

a unique simple module S, <strong>and</strong> letting M = R ⊕ S we obtain that A = End R (M) is <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

algebra given in Example 1.<br />

There is always an embedding <str<strong>on</strong>g>of</str<strong>on</strong>g> K b (proj R) into K b (proj A) with essential image being<br />

thick(eA). If <str<strong>on</strong>g>the</str<strong>on</strong>g> following c<strong>on</strong>diti<strong>on</strong> is satisfied<br />

(c1) A has finite global dimensi<strong>on</strong>,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>n A becomes a n<strong>on</strong>-commutative/categorical resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> R. The c<strong>on</strong>diti<strong>on</strong> (c1) has<br />

an interesting c<strong>on</strong>sequence: <str<strong>on</strong>g>the</str<strong>on</strong>g> object M generates MCM(R) as a triangulated category.<br />

–265–


Cluster-tilting <str<strong>on</strong>g>the</str<strong>on</strong>g>ory comes into <str<strong>on</strong>g>the</str<strong>on</strong>g> story because cluster-tilting objects are closely related<br />

to Van den Bergh’s n<strong>on</strong>-commutative crepant resoluti<strong>on</strong>s [16], see [10].<br />

The triangle quotient K b (proj A)/ thick(eA) measures <str<strong>on</strong>g>the</str<strong>on</strong>g> difference between <str<strong>on</strong>g>the</str<strong>on</strong>g> resoluti<strong>on</strong><br />

<strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> smooth part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> singularity, see [5]. So K b (proj A)/ thick(eA) is in some<br />

sense a ‘categorical excepti<strong>on</strong>al locus’. A natural questi<strong>on</strong> is: how is K b (proj A)/ thick(eA)<br />

related to D sg (R)?<br />

C<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> following c<strong>on</strong>diti<strong>on</strong><br />

(c2) MCM(R) is Hom-finite.<br />

Theorem 7. ([12]) Keep <str<strong>on</strong>g>the</str<strong>on</strong>g> above notati<strong>on</strong>s <strong>and</strong> assume that (c1) <strong>and</strong> (c2) hold. There<br />

is a dg algebra B with a morphism f : A → B such that f induces a triangle equivalence<br />

per(B) ∼ = (K b (proj A)/ thick(eA)) ω .<br />

Moreover, B satisfies <str<strong>on</strong>g>the</str<strong>on</strong>g> following properties:<br />

(a) B i = 0 for any i > 0,<br />

(b) H 0 (B) ∼ = A/AeA,<br />

(c) D fd (B) ⊆ per(B),<br />

(d) per(B) is Hom-finite,<br />

(e) <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a triangle equivalence<br />

D sg (R) ω ∼ = (per(B)/Dfd (B)) ω .<br />

Theorem 7 (a–d) are obtained by applying Theorem 3, <strong>and</strong> part (e) needs more work.<br />

This <str<strong>on</strong>g>the</str<strong>on</strong>g>orem was proved by Thanh<str<strong>on</strong>g>of</str<strong>on</strong>g>fer de Völcsey <strong>and</strong> Van den Bergh in [15] for R<br />

being a local complete commutative Gorenstein k-algebra with isolated singularity. As an<br />

applicati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g>y proved <str<strong>on</strong>g>the</str<strong>on</strong>g> following result, which was independently proved by Amiot,<br />

Iyama <strong>and</strong> Reiten.<br />

Theorem 8. ([2, 15]) Let d ∈ N. Let G ⊂ SL d (k) be a finite subgroup, acting naturally<br />

<strong>on</strong> S = k [x 1 , . . . , x d ] <strong>and</strong> let R = S G be <str<strong>on</strong>g>the</str<strong>on</strong>g> ring <str<strong>on</strong>g>of</str<strong>on</strong>g> invariants. Then MCM(R) is a<br />

generalized (d − 1)-cluster category in <str<strong>on</strong>g>the</str<strong>on</strong>g> sense <str<strong>on</strong>g>of</str<strong>on</strong>g> Amiot [1] <strong>and</strong> Guo [9].<br />

References<br />

[1] Claire Amiot, Cluster categories for algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> global dimensi<strong>on</strong> 2 <strong>and</strong> quivers with potential, Ann.<br />

Inst. Fourier (Grenoble) 59 (2009), no. 6, 2525–2590.<br />

[2] Claire Amiot, Osamu Iyama, <strong>and</strong> Idun Reiten, Stable categories <str<strong>on</strong>g>of</str<strong>on</strong>g> Cohen-Macauley modules <strong>and</strong><br />

cluster categories, arXiv:1104.3658.<br />

[3] Alex<strong>and</strong>er A. Beilins<strong>on</strong>, Joseph Bernstein, <strong>and</strong> Pierre Deligne, Analyse et topologie sur les espaces<br />

singuliers, Astérisque, vol. 100, Soc. Math. France, 1982 (French).<br />

[4] Ragnar-Olaf Buchweitz, Maximal Cohen-Macaulay modules <strong>and</strong> Tate-Cohomology over Gorenstein<br />

rings, preprint 1987.<br />

[5] Igor Burban <strong>and</strong> Martin Kalck, Singularity category <str<strong>on</strong>g>of</str<strong>on</strong>g> a n<strong>on</strong>-commutative resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> singularities,<br />

arXiv:1103.3936.<br />

[6] Edward Cline, Brian Parshall, <strong>and</strong> Le<strong>on</strong>ard L. Scott, Finite-dimensi<strong>on</strong>al algebras <strong>and</strong> highest weight<br />

categories, J. reine ang. Math. 391 (1988), 85–99.<br />

–266–


[7] , Endomorphism algebras <strong>and</strong> representati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory, Algebraic groups <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir representati<strong>on</strong>s<br />

(Cambridge, 1997), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 517, Kluwer Acad.<br />

Publ., Dordrecht, 1998, pp. 131–149.<br />

[8] , Stratifying endomorphism algebras, Mem. Amer. Math. Soc. 124 (1996), no. 591.<br />

[9] Lingyan Guo, Cluster tilting objects in generalized higher cluster categories, J. Pure Appl. Algebra<br />

215 (2011), no. 9, 2055–2071.<br />

[10] Osamu Iyama, Ausl<strong>and</strong>er corresp<strong>on</strong>dence, Adv. Math. 210 (2007), no. 1, 51–82.<br />

[11] Peter Jørgensen, Recollement for differential graded algebras, J. Algebra 299 (2006), no. 2, 589–601.<br />

[12] Martin Kalck <strong>and</strong> D<strong>on</strong>g Yang, work in preparati<strong>on</strong>.<br />

[13] , Deriving DG categories, Ann. Sci. École Norm. Sup. (4) 27 (1994), no. 1, 63–102.<br />

[14] Steffen Koenig <strong>and</strong> Hiroshi Nagase, Hochschild cohomologies <strong>and</strong> stratifying ideals, J. Pure Appl.<br />

Algebra 213 (2009), no. 4, 886–891.<br />

[15] Louis de Thanh<str<strong>on</strong>g>of</str<strong>on</strong>g>fer de Völcsey <strong>and</strong> Michel Van den Bergh, Explicit models for some stable categories<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> maximal Cohen-Macaulay modules, arXiv:1006.2021.<br />

[16] Michel Van den Bergh, N<strong>on</strong>-commutative crepant resoluti<strong>on</strong>s, The legacy <str<strong>on</strong>g>of</str<strong>on</strong>g> Niels Henrik Abel,<br />

Springer, Berlin, 2004, pp. 749–770.<br />

Universität Stuttgart<br />

Institut für Algebra und Zahlen<str<strong>on</strong>g>the</str<strong>on</strong>g>orie<br />

Pfaffenwaldring 57, D-70569 Stuttgart, Germany<br />

E-mail address: d<strong>on</strong>gyang2002@gmail.com<br />

–267–


INTRODUCTION TO REPRESENTATION THEORY OF<br />

COHEN-MACAULAY MODULES AND THEIR DEGENERATIONS<br />

YUJI YOSHINO<br />

Abstract. This is a quick introducti<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> representati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> Cohen-<br />

Macaulay modules <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir degenerati<strong>on</strong>s.<br />

1. Representati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> Cohen-Macaulay modules.<br />

Let k be a field <strong>and</strong> let R be commutative noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian complete local k-algebra with<br />

unique maximal ideal m. We assume k ∼ = R/m naturally. Then it is known that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is<br />

a regular local k-subalgebra T <str<strong>on</strong>g>of</str<strong>on</strong>g> R such that R is a module-finite T -algebra. (Cohen’s<br />

structure <str<strong>on</strong>g>the</str<strong>on</strong>g>orem for complete local rings.) Note that T is isomorphic to a formal power<br />

series ring over k.<br />

Definiti<strong>on</strong> 1. (1) R is called a Cohen-Macaulay ring (a CM ring for short) if R<br />

is free as a T -module.<br />

(2) A finitely generated R-module M is called a Cohen-Macaulay module over R,<br />

or a maximal Cohen-Macaulay module (a CM module or an MCM module for<br />

short) if M is free as a T -module.<br />

Given a CM module M, since M ∼ = T n for some n ≥ 0, we have a k-algebra homomorphism<br />

R → End T (M) ∼ = T n×n , which is a matrix-representati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> R over T .<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> following we always assume that R is a CM complete local k-algebra. We<br />

denote by mod(R) (res. CM(R) ) <str<strong>on</strong>g>the</str<strong>on</strong>g> category <str<strong>on</strong>g>of</str<strong>on</strong>g> finitely generated R-modules (resp. CM<br />

modules over R ) <strong>and</strong> R-homomorphisms.<br />

CM(R) := { CM modules over R} ⊆ mod(R) := {finitely generated R-modules }<br />

Since R is complete, mod(R) <strong>and</strong> CM(R) are Krull-Schmidt categories. Note that CM(R)<br />

is a resolving subcategory <str<strong>on</strong>g>of</str<strong>on</strong>g> mod(R) in <str<strong>on</strong>g>the</str<strong>on</strong>g> following sense: Suppose <str<strong>on</strong>g>the</str<strong>on</strong>g>re is an exact<br />

sequence 0 → L → M → N → 0 in mod(R).<br />

(i) If L, N ∈ CM(R) <str<strong>on</strong>g>the</str<strong>on</strong>g>n M ∈ CM(R).<br />

(ii) If M, N ∈ CM(R) <str<strong>on</strong>g>the</str<strong>on</strong>g>n L ∈ CM(R).<br />

Let d be <str<strong>on</strong>g>the</str<strong>on</strong>g> Krull-dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ring R (so that we can take T = k[[t 1 , . . . , t d ]] <strong>on</strong><br />

which R is finite). If d = 1 <strong>and</strong> if R is reduced, <str<strong>on</strong>g>the</str<strong>on</strong>g>n CM modules are just torsi<strong>on</strong>-free<br />

modules. If d = 2 <strong>and</strong> if R is normal, <str<strong>on</strong>g>the</str<strong>on</strong>g>n CM modules are nothing but reflexive modules.<br />

In general, if d ≥ 3 <strong>and</strong> if R is normal, <str<strong>on</strong>g>the</str<strong>on</strong>g>n CM(R) ⊆ {reflexive modules} but this is not<br />

necessarily an equality. If R is regular (i.e. gl-dimR < ∞) <str<strong>on</strong>g>the</str<strong>on</strong>g>n all CM modules over R<br />

are free.<br />

Let K R := Hom T (R, T ) <strong>and</strong> call it <str<strong>on</strong>g>the</str<strong>on</strong>g> can<strong>on</strong>ical module <str<strong>on</strong>g>of</str<strong>on</strong>g> R. Since R is a CM ring,<br />

K R ∈ CM(R). For any X ∈ mod(R), we have a natural isomorphism Hom R (X, K R ) ∼ =<br />

–268–


Hom T (X, T ). It follows that Hom R (−, K R ) gives duality CM(R) → CM(R) op . Gro<str<strong>on</strong>g>the</str<strong>on</strong>g>ndieck’s<br />

local duality <str<strong>on</strong>g>the</str<strong>on</strong>g>orem claims <str<strong>on</strong>g>the</str<strong>on</strong>g> existence <str<strong>on</strong>g>of</str<strong>on</strong>g> natural isomorphisms<br />

Ext i R(M, K R ) ∼ = Hom R (H d−i<br />

m (M), E R (k)) (∀i ∈ N)<br />

whenever R is a CM complete ring <strong>and</strong> M ∈ mod(R). Thus it is easy to see <str<strong>on</strong>g>the</str<strong>on</strong>g> following<br />

Lemma 2. The following are equivalent for M ∈ mod(R):<br />

(1) M ∈ CM(R),<br />

(2) Ext i R(M, K R ) = 0 (∀i > 0),<br />

(3) H j m(M) = 0 (∀j < d),<br />

(4) Ext i R(k, M) = 0 (∀i < d).<br />

Now recall that R is called an isolated singularity if R p is a regular local ring for<br />

each prime p ≠ m. It is not hard to prove <str<strong>on</strong>g>the</str<strong>on</strong>g> following<br />

Lemma 3. Let R be a CM local ring as above. The R is an isolated singularity if <strong>and</strong><br />

<strong>on</strong>ly if Ext 1 R(M, N) is <str<strong>on</strong>g>of</str<strong>on</strong>g> finite length for each M, N ∈ CM(R).<br />

Definiti<strong>on</strong> 4. A CM local ring R is said to be <str<strong>on</strong>g>of</str<strong>on</strong>g> finite CM representati<strong>on</strong> type if<br />

CM(R) has <strong>on</strong>ly a finite number <str<strong>on</strong>g>of</str<strong>on</strong>g> isomorphism classes <str<strong>on</strong>g>of</str<strong>on</strong>g> indecomposable modules.<br />

The first celebrated result about finiteness <str<strong>on</strong>g>of</str<strong>on</strong>g> CM representati<strong>on</strong> type was due to<br />

M. Ausl<strong>and</strong>er.<br />

Theorem 5. [Ausl<strong>and</strong>er, 1986] Let R be a CM complete local ring. If R is <str<strong>on</strong>g>of</str<strong>on</strong>g> finite CM<br />

representati<strong>on</strong> type, <str<strong>on</strong>g>the</str<strong>on</strong>g>n R is an isolated singularity.<br />

We prove this <str<strong>on</strong>g>the</str<strong>on</strong>g>orem by using an idea <str<strong>on</strong>g>of</str<strong>on</strong>g> Huneke <strong>and</strong> Leuschke [6].<br />

Lemma 3 it is enough to prove <str<strong>on</strong>g>the</str<strong>on</strong>g> following:<br />

By virtue <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

(*) Let a 1 , a 2 , a 3 , . . . be any countable sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> elements in m <strong>and</strong> let M, N ∈ CM(R)<br />

be any indecomposable CM modules. Then <str<strong>on</strong>g>the</str<strong>on</strong>g>re is an integer n such that<br />

a 1 a 2 · · · · a n Ext 1 R(M, N) = 0.<br />

Actually this will imply that a power <str<strong>on</strong>g>of</str<strong>on</strong>g> m annihilates Ext 1 R(M, N), hence <str<strong>on</strong>g>the</str<strong>on</strong>g> length <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Ext 1 R(M, N) is finite. To prove (∗), take a σ ∈ Ext 1 R(M, N) that corresp<strong>on</strong>ds to a short<br />

exact sequence σ : 0 → N → E 0 → M → 0. Now assume <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding sequence<br />

to a 1 a 2 · · · a n σ ∈ Ext 1 R(M, N) is 0 → N → E n → M → 0 for any integer n. Note that<br />

each E n is a direct sum <str<strong>on</strong>g>of</str<strong>on</strong>g> indecomposable CM modules <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> multiplicity (or <str<strong>on</strong>g>the</str<strong>on</strong>g> rank<br />

if it is defined) e(E n ) is c<strong>on</strong>stantly equal to e(M) + e(N). Therefore <str<strong>on</strong>g>the</str<strong>on</strong>g> possibilities <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

such E n are finite, <strong>and</strong> hence <str<strong>on</strong>g>the</str<strong>on</strong>g>re are integers n <strong>and</strong> r > 0 such that E n<br />

∼ = En+r . By<br />

definiti<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a commutative diagram with exact rows:<br />

a 1 · · · a n σ :<br />

0 −−−→ N<br />

j<br />

−−−→ E n −−−→ M −−−→ 0<br />

b:=a n+1···a n+r<br />

⏐ ⏐↓<br />

⏐ ⏐↓<br />

⏐ ⏐↓<br />

=<br />

a 1 · · · a n+r σ : 0 −−−→ N −−−→ E n+r −−−→ M −−−→ 0,<br />

where <str<strong>on</strong>g>the</str<strong>on</strong>g> first square is a push-out. Hence,<br />

0 −−−→ N (j b)<br />

−−−→ E n ⊕ N −−−→ E n+r −−−→ 0<br />

–269–


is exact. Since E n<br />

∼ = En+r , Miyata’s <str<strong>on</strong>g>the</str<strong>on</strong>g>orem forces that ( j<br />

b)<br />

is a split m<strong>on</strong>omorphism.<br />

Then <strong>on</strong>e can see that j is also a split m<strong>on</strong>omorphism. (pj + qb = 1 N in <str<strong>on</strong>g>the</str<strong>on</strong>g> local ring<br />

End R (N).) Hence a 1 · · · a n σ = 0 as an element <str<strong>on</strong>g>of</str<strong>on</strong>g> Ext 1 R(M, N). ✷<br />

By a similar idea to <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> above, Huneke <strong>and</strong> Leuschke [7] was able to prove <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

following <str<strong>on</strong>g>the</str<strong>on</strong>g>orem which had been c<strong>on</strong>jectured by F.-O.Schreyer in 1987.<br />

Theorem 6. [Huneke-Leuschke 2003] Let R be a CM complete local ring <strong>and</strong> assume<br />

that R is <str<strong>on</strong>g>of</str<strong>on</strong>g> countable CM representati<strong>on</strong> type (i.e. CM(R) has <strong>on</strong>ly a countable number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> isomorphism classes <str<strong>on</strong>g>of</str<strong>on</strong>g> indecomposable modules). Then <str<strong>on</strong>g>the</str<strong>on</strong>g> singular locus <str<strong>on</strong>g>of</str<strong>on</strong>g> R has at<br />

most <strong>on</strong>e-dimensi<strong>on</strong>, i.e. R p is regular for each prime p with dim R/p > 1.<br />

(Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>) Let {M i | i = 1, 2, . . .} be a complete list <str<strong>on</strong>g>of</str<strong>on</strong>g> isomorphism classes <str<strong>on</strong>g>of</str<strong>on</strong>g> indecomposable<br />

CM modules, <strong>and</strong> set<br />

Λ = {p ∈ Spec(R) | p = Ann R Ext 1 R(M i , M j ) for some i, j <strong>and</strong> dim R/p = 1},<br />

which is a countable set <str<strong>on</strong>g>of</str<strong>on</strong>g> prime ideals. Let J be an ideal defining <str<strong>on</strong>g>the</str<strong>on</strong>g> singular locus <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Spec(R) <strong>and</strong> we want to show dim R/J ≤ 1. Assume c<strong>on</strong>trarily dim R/J ≥ 2. If p ∈ Λ<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>n, since (M i ) p is not free, we have J ⊆ p. Thus J ⊆ ∩ p∈Λ<br />

p. By countable prime<br />

avoidance, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is an f ∈ m\ ∪ p∈Λ<br />

p, <strong>and</strong> we can find a prime q so that q ⊇ J + fR <strong>and</strong><br />

dim R/q = 1. Set X i = Ω i R (R/q) <str<strong>on</strong>g>the</str<strong>on</strong>g> ith syzygy for i ≥ 0. Then X i ∈ CM(R) if i ≥ d<br />

<strong>and</strong> <strong>on</strong>e can show that Ann R Ext 1 R(X d , X d+1 ) = q. The CM modules X d <strong>and</strong> X d+1 is a<br />

direct sum <str<strong>on</strong>g>of</str<strong>on</strong>g> indecomposables as X d<br />

∼<br />

⊕ r = u=1 M i u<br />

<strong>and</strong> X d+1<br />

∼<br />

⊕ s = v=1 M j u<br />

. Thus since<br />

q = ∩ u,v Ann R Ext 1 R(M iu , M jv ), we have q = Ann R Ext 1 R(M iu , M jv ) for some u, v. Thus<br />

q ∈ Λ, but this is a c<strong>on</strong>tradicti<strong>on</strong> for f ∈ q. ✷<br />

Ausl<strong>and</strong>er’s original pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 5 uses AR-sequences.<br />

Definiti<strong>on</strong> 7. A n<strong>on</strong>-split short exact sequence 0 → N → E<br />

called an AR-sequence (ending in M) if<br />

p → M → 0 in CM(R) is<br />

(1) M <strong>and</strong> N are indecomposable,<br />

(2) if f : X → M is any morphism in CM(R) that is not a splitting epimorphism,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>n f factors through p.<br />

We say that <str<strong>on</strong>g>the</str<strong>on</strong>g> category CM(R) admits AR-sequences if, for any indecomposable M ∈<br />

CM(R), <str<strong>on</strong>g>the</str<strong>on</strong>g>re is an AR-sequence ending in M.<br />

M.Ausl<strong>and</strong>er proved <str<strong>on</strong>g>the</str<strong>on</strong>g> following <str<strong>on</strong>g>the</str<strong>on</strong>g>orems.<br />

Theorem 8. Let R be a CM complete local ring <strong>and</strong> assume that R is <str<strong>on</strong>g>of</str<strong>on</strong>g> finite CM<br />

representati<strong>on</strong> type. Then CM(R) admits AR-sequences.<br />

Theorem 9. Let R be a CM complete local ring. Then CM(R) admits AR-sequences if<br />

<strong>and</strong> <strong>on</strong>ly if R is an isolated singularity.<br />

The most difficult part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorems 8 <strong>and</strong> 9 is to show <str<strong>on</strong>g>the</str<strong>on</strong>g> implicati<strong>on</strong><br />

”being isolated singularity ⇒ admitting AR-sequences”. This implicati<strong>on</strong> follows from<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> following isomorphism which is called <str<strong>on</strong>g>the</str<strong>on</strong>g> Ausl<strong>and</strong>er-Reiten duality :<br />

–270–


Theorem 10. Assume that a CM complete local ring R is an isolated singularity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

dimensi<strong>on</strong> d. Then, for any M, N ∈ CM(R), <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a natural isomorphism<br />

Ext d R(Hom R (N, M), K R ) ∼ = Ext 1 R(M, Hom R (Ω d Rtr(N), K R )).<br />

Now we discuss some generalities about stable categories. For this let R be a CM<br />

complete local ring <str<strong>on</strong>g>of</str<strong>on</strong>g> dimensi<strong>on</strong> d. We denote by CM(R) <str<strong>on</strong>g>the</str<strong>on</strong>g> stable category <str<strong>on</strong>g>of</str<strong>on</strong>g> CM(R).<br />

By definiti<strong>on</strong>, CM(R) is <str<strong>on</strong>g>the</str<strong>on</strong>g> factor category CM(R)/[R]. Recall that <str<strong>on</strong>g>the</str<strong>on</strong>g> objects <str<strong>on</strong>g>of</str<strong>on</strong>g> CM(R)<br />

is CM modules over R, <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> morphisms <str<strong>on</strong>g>of</str<strong>on</strong>g> CM(R) are elements <str<strong>on</strong>g>of</str<strong>on</strong>g> Hom R (M, N) :=<br />

Hom R (M, N)/P (M, N) for M, N ∈ CM(R), where P (M, N) denotes <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> morphisms<br />

from M to N factoring through projective R-modules. For a CM module M we denote<br />

it by M to indicate that it is an object <str<strong>on</strong>g>of</str<strong>on</strong>g> CM(R).<br />

Since R is a complete local ring, note that M is isomorphic to N in CM(R) if <strong>and</strong> <strong>on</strong>ly<br />

if M ⊕ P ∼ = N ⊕ Q in CM(R) for some projective (hence free) R-modules P <strong>and</strong> Q.<br />

For any R-module M, we denote <str<strong>on</strong>g>the</str<strong>on</strong>g> first syzygy module <str<strong>on</strong>g>of</str<strong>on</strong>g> M by Ω R M. We should<br />

note that Ω R M is uniquely determined up to isomorphism as an object in <str<strong>on</strong>g>the</str<strong>on</strong>g> stable<br />

category. The nth syzygy module Ω n R M is defined inductively by Ωn R M = Ω R(Ω n−1<br />

R<br />

M),<br />

for any n<strong>on</strong>negative integer n.<br />

We say that R is a Gorenstein ring if K R<br />

∼ = R. If R is Gorenstein, <str<strong>on</strong>g>the</str<strong>on</strong>g>n it is easy<br />

to see that <str<strong>on</strong>g>the</str<strong>on</strong>g> syzygy functor Ω A : CM(R) → CM(R) is an autoequivalence. Hence, in<br />

particular, <strong>on</strong>e can define <str<strong>on</strong>g>the</str<strong>on</strong>g> cosyzygy functor Ω −1<br />

R<br />

<strong>on</strong> CM(R) which is <str<strong>on</strong>g>the</str<strong>on</strong>g> inverse <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Ω R . We note from [3, 2.6] that CM(R) is a triangulated category with shifting functor<br />

[1] = Ω −1<br />

R<br />

. In fact, if <str<strong>on</strong>g>the</str<strong>on</strong>g>re is an exact sequence 0 → L → M → N → 0 in CM(R), <str<strong>on</strong>g>the</str<strong>on</strong>g>n<br />

we have <str<strong>on</strong>g>the</str<strong>on</strong>g> following commutative diagram by taking <str<strong>on</strong>g>the</str<strong>on</strong>g> pushout:<br />

0 −−−→ L −−−→ M −−−→ N −−−→ 0<br />

⏐ ⏐<br />

∥ ↓ ↓<br />

0 −−−→ L −−−→ P −−−→ Ω −1 L −−−→ 0,<br />

where P is projective (hence free). We define <str<strong>on</strong>g>the</str<strong>on</strong>g> triangles in CM(R) are <str<strong>on</strong>g>the</str<strong>on</strong>g> sequences<br />

L −−−→ M −−−→ N −−−→ L[1]<br />

obtained in such a way.<br />

Now we remark <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> fundamental dualities called <str<strong>on</strong>g>the</str<strong>on</strong>g> Ausl<strong>and</strong>er-Reiten-Serre<br />

duality, which essentially follows from Theorem 10.<br />

Theorem 11. Let R be a Gorenstein complete local ring <str<strong>on</strong>g>of</str<strong>on</strong>g> dimensi<strong>on</strong> d. Suppose that R is<br />

an isolated singularity. Then, for any X, Y ∈ CM(R), we have a functorial isomorphism<br />

Ext d R(Hom R (X, Y ), R) ∼ = Hom R (Y, X[d − 1]).<br />

Therefore <str<strong>on</strong>g>the</str<strong>on</strong>g> triangulated category CM(R) is a (d − 1)-Calabi-Yau category.<br />

2. Degenerati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> modules<br />

Let us recall <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> degenerati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> finitely generated modules over a noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian<br />

algebra, which is given in [12].<br />

Let R be an associative k-algebra where k is any field. We take a discrete valuati<strong>on</strong><br />

ring (V, tV, k) which is a k-algebra <strong>and</strong> t is a prime element. We denote by K <str<strong>on</strong>g>the</str<strong>on</strong>g> quotient<br />

–271–


field <str<strong>on</strong>g>of</str<strong>on</strong>g> V . We denote by mod(R) <str<strong>on</strong>g>the</str<strong>on</strong>g> category <str<strong>on</strong>g>of</str<strong>on</strong>g> all finitely generated left R-modules<br />

<strong>and</strong> R-homomorphisms as before. Then we have <str<strong>on</strong>g>the</str<strong>on</strong>g> natural functors<br />

mod(R)<br />

r<br />

←−−− mod(R ⊗ k V )<br />

l<br />

−−−→ mod(R ⊗ k K),<br />

where r = − ⊗ V V/tV <strong>and</strong> l = − ⊗ V K. (”r” for residue, <strong>and</strong> ”l” for localizati<strong>on</strong>.)<br />

Definiti<strong>on</strong> 12. For modules M, N ∈ mod(R), we say that M degenerates to N if<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>re exist a discrete valuati<strong>on</strong> ring (V, tV, k) which is a k-algebra <strong>and</strong> a module Q ∈<br />

mod(R ⊗ k V ) that is V -flat such that l(Q) ∼ = M ⊗ k K <strong>and</strong> r(Q) ∼ = N.<br />

The module Q, regarded as a bimodule R Q V , is a flat family <str<strong>on</strong>g>of</str<strong>on</strong>g> R-modules with parameter<br />

in V . At <str<strong>on</strong>g>the</str<strong>on</strong>g> closed point in <str<strong>on</strong>g>the</str<strong>on</strong>g> parameter space SpecV , <str<strong>on</strong>g>the</str<strong>on</strong>g> fiber <str<strong>on</strong>g>of</str<strong>on</strong>g> Q is N,<br />

which is a meaning <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> isomorphism r(Q) ∼ = N. On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r h<strong>and</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> isomorphism<br />

l(Q) ∼ = M ⊗ k K means that <str<strong>on</strong>g>the</str<strong>on</strong>g> generic fiber <str<strong>on</strong>g>of</str<strong>on</strong>g> Q is essentially given by M.<br />

Example 13. Let R = k[[x, y]]/(x 2 ), where k is a field. In this case, a pair <str<strong>on</strong>g>of</str<strong>on</strong>g> matrices<br />

(( ) ( ))<br />

x y<br />

2 x −y<br />

2<br />

(ϕ, ψ) = ,<br />

0 x 0 x<br />

over k[[x, y]] is a matrix factorizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> x 2 , giving a CM R-module N that is isomorphic<br />

to an ideal I = (x, y 2 )R. Thus <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a periodic free resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> N;<br />

· · · −−−→ R 2 ψ<br />

−−−→ R 2 ϕ<br />

−−−→ R 2<br />

Now we deform <str<strong>on</strong>g>the</str<strong>on</strong>g> matices to<br />

(( )<br />

x + ty y<br />

2<br />

(Φ, Ψ) =<br />

−t 2 x − ty<br />

ψ<br />

−−−→ R 2<br />

ϕ<br />

−−−→ R 2 −−−→ N −−−→ 0.<br />

( ))<br />

x − ty −y<br />

2<br />

,<br />

t 2 x + ty<br />

over R ⊗ k V . Since this is a matrix factorizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> x 2 again, we have a free resoluti<strong>on</strong><br />

· · ·<br />

Φ<br />

−−−→ (R ⊗ k V ) 2<br />

Ψ<br />

−−−→ (R ⊗ k V ) 2<br />

Φ<br />

−−−→ (R ⊗ k V ) 2 −−−→ Q −−−→ 0.<br />

It is obvious to see that r(Q) = Q/tQ ∼ = N, since ( Φ ⊗)<br />

V V/tV = ϕ. On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r h<strong>and</strong>,<br />

since t 2 is a unit in R ⊗ k K, we have Φ ⊗ V K ∼ 0 0<br />

= after elementary transformati<strong>on</strong>s<br />

1 0<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> matrices. Hence, l(Q) = Q t<br />

∼ = R ⊗k K. As a c<strong>on</strong>clusi<strong>on</strong>, we see that R degenerates to<br />

I = (x, y 2 )R !<br />

Theorem 14 ([12]). The following c<strong>on</strong>diti<strong>on</strong>s are equivalent for finitely generated left<br />

R-modules M <strong>and</strong> N.<br />

(1) M degenerates to N.<br />

(2) There is a short exact sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> finitely generated left R-modules<br />

0 → Z (φ ψ)<br />

−→ M ⊕ Z → N → 0,<br />

such that <str<strong>on</strong>g>the</str<strong>on</strong>g> endomorphism ψ <str<strong>on</strong>g>of</str<strong>on</strong>g> Z is nilpotent, i.e. ψ n = 0 for n ≫ 1.<br />

Example 15. In Example 13, we have an exact sequence<br />

such that x y<br />

0 −−−→ m (−1, x y<br />

−−−−→ )<br />

R ⊕ m (x y)<br />

−−−→ I −−−→ 0,<br />

: m → m is nilpotent, where m = (x, y)R.<br />

–272–


By virtue <str<strong>on</strong>g>of</str<strong>on</strong>g> this <str<strong>on</strong>g>the</str<strong>on</strong>g>orem toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r with a <str<strong>on</strong>g>the</str<strong>on</strong>g>orem <str<strong>on</strong>g>of</str<strong>on</strong>g> Zwara [17, Theorem 1], we see that<br />

if R is a finite-dimensi<strong>on</strong>al algebra over k, <str<strong>on</strong>g>the</str<strong>on</strong>g>n our definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> degenerati<strong>on</strong> agrees with<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> classical (geometric) definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> degenerati<strong>on</strong>s using module varieties <str<strong>on</strong>g>of</str<strong>on</strong>g> R-module<br />

structures.<br />

We prove here <str<strong>on</strong>g>the</str<strong>on</strong>g> implicati<strong>on</strong> (2) ⇒ (1).<br />

Suppose that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is an exact sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> finitely generated left R-modules<br />

0 → Z f= ( φ ψ)<br />

−→ M ⊕ Z → N → 0,<br />

such that ψ is nilpotent. C<strong>on</strong>sidering a trivial exact sequence<br />

0 → Z j=(0 1)<br />

−→ M ⊕ Z → M → 0,<br />

we shall combine <str<strong>on</strong>g>the</str<strong>on</strong>g>se two exact sequences al<strong>on</strong>g a [0, 1]-interval. More precisely, let V<br />

be <str<strong>on</strong>g>the</str<strong>on</strong>g> discrete valuati<strong>on</strong> ring k[t] (t) , where t in an indeterminate over k, <strong>and</strong> c<strong>on</strong>sider a<br />

left R ⊗ k V -homomorphism<br />

(<br />

g = j ⊗ t + f ⊗ (1 − t) =<br />

φ ⊗ (1 − t)<br />

1 ⊗ t + ψ ⊗ (1 − t)<br />

)<br />

: Z ⊗ k V → (M ⊕ Z) ⊗ k V.<br />

We can easily show that g is a m<strong>on</strong>omorphism.<br />

Setting <str<strong>on</strong>g>the</str<strong>on</strong>g> cokernel <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> m<strong>on</strong>omorphism g as Q, we have an exact sequence in<br />

modR ⊗ k V :<br />

0 → Z ⊗ k V g → (Z ⊗ k V ) ⊕ (M ⊗ k V ) → Q → 0.<br />

Since g ⊗ k V/tV = f is an injecti<strong>on</strong> <strong>and</strong> since <strong>on</strong>e can easily show Tor V 1 (Q, V/tV ) = 0,<br />

we c<strong>on</strong>clude that Q is flat over V <strong>and</strong> Q/tQ ∼ = N.<br />

Finally note that <str<strong>on</strong>g>the</str<strong>on</strong>g> morphism g ⊗ k V [ 1 ] is essentially <str<strong>on</strong>g>the</str<strong>on</strong>g> same as <str<strong>on</strong>g>the</str<strong>on</strong>g> morphism<br />

t<br />

Z ⊗ k V [ 1 t ]<br />

⎛<br />

⎞<br />

sφ ⎝ ⎠<br />

1 + sψ<br />

−−−−−−−→ M ⊗ k V [ 1] ⊕ Z ⊗ t k V [ 1],<br />

t<br />

where s = 1−t ∈ V [ 1]. Note that sψ : Z ⊗ t t k V [ 1] → Z ⊗ t k V [ 1 ] is nilpotent as well as<br />

t<br />

ψ, hence 1 + sψ is an automorphism <strong>on</strong> Z ⊗ k V [ 1 ]. Therefore we have an isomorphism<br />

t<br />

Q[ 1] ∼ t<br />

= M ⊗ k V [ 1 ]. This completes <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>orem. ✷<br />

t<br />

We remark from this pro<str<strong>on</strong>g>of</str<strong>on</strong>g> that we can always take k[t] (t) as V in Definiti<strong>on</strong> 12.<br />

We give an outline <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> (1) ⇒ (2). (See [12] for <str<strong>on</strong>g>the</str<strong>on</strong>g> detail.)<br />

We can take Q in Definiti<strong>on</strong> 12 so that M ⊗ k V ⊆ Q. Then we have an exact sequence<br />

0 → Q/(M ⊗ k V )<br />

t<br />

−→ Q/(M ⊗ k tV ) −→ Q/tQ → 0<br />

Setting Z = Q/(M ⊗ k V ), we can see that <str<strong>on</strong>g>the</str<strong>on</strong>g> middle term will be M ⊕ Z <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> right<br />

term is N. ✷<br />

Lemma 16. If <str<strong>on</strong>g>the</str<strong>on</strong>g>re is an exact sequence 0 → L → i M<br />

degenerates to L ⊕ N.<br />

p → N → 0 in mod(R), <str<strong>on</strong>g>the</str<strong>on</strong>g>n M<br />

–273–


(Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>)<br />

( ) p 0<br />

0 −−−→ L (i 0)<br />

0 1<br />

−−−→ M ⊕ L −−−−→ N ⊕ L −−−→ 0<br />

is exact where 0 : L → L is <str<strong>on</strong>g>of</str<strong>on</strong>g> course nilpotent. ✷<br />

Such a degenerati<strong>on</strong> given as in <str<strong>on</strong>g>the</str<strong>on</strong>g> lemma will be called a degenerati<strong>on</strong> by an extensi<strong>on</strong>.<br />

There is a degenerati<strong>on</strong> which is not a degenerati<strong>on</strong> by an extensi<strong>on</strong>. See <str<strong>on</strong>g>the</str<strong>on</strong>g> degenerati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Example 13.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> rest we mainly treat <str<strong>on</strong>g>the</str<strong>on</strong>g> case when R is a commutative ring.<br />

Remark 17. Let R be a commutative noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian algebra over k, <strong>and</strong> suppose that a finitely<br />

generated R-module M degenerates to a finitely generated R-module N. Then:<br />

(1) The modules M <strong>and</strong> N give <str<strong>on</strong>g>the</str<strong>on</strong>g> same class in <str<strong>on</strong>g>the</str<strong>on</strong>g> Gro<str<strong>on</strong>g>the</str<strong>on</strong>g>ndieck group, i.e. [M] = [N]<br />

as elements <str<strong>on</strong>g>of</str<strong>on</strong>g> K 0 (mod(R)). This is actually a direct c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> 0 → Z → M ⊕<br />

Z → N → 0. In particular, rank M = rank N if <str<strong>on</strong>g>the</str<strong>on</strong>g> ranks are defined for R-modules.<br />

Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, if (R, m) is a local ring, <str<strong>on</strong>g>the</str<strong>on</strong>g>n e(I, M) = e(I, N) for any m-primary ideal I,<br />

where e(I, M) denotes <str<strong>on</strong>g>the</str<strong>on</strong>g> multiplicity <str<strong>on</strong>g>of</str<strong>on</strong>g> M al<strong>on</strong>g I.<br />

(2) If L is an R-module <str<strong>on</strong>g>of</str<strong>on</strong>g> finite length, <str<strong>on</strong>g>the</str<strong>on</strong>g>n we have <str<strong>on</strong>g>the</str<strong>on</strong>g> following inequalities <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

lengths for any integer i:<br />

{<br />

length R (Ext i R(L, M)) ≦ length R (Ext i R(L, N)),<br />

length R (Ext i R(M, L)) ≦ length R (Ext i R(N, L)).<br />

In particular, when R is a local ring, <str<strong>on</strong>g>the</str<strong>on</strong>g>n<br />

ν(M) ≦ ν(N), β i (M) ≦ β i (N) <strong>and</strong> µ i (M) ≦ µ i (N) (i ≧ 0),<br />

where ν, β i <strong>and</strong> µ i denote <str<strong>on</strong>g>the</str<strong>on</strong>g> minimal number <str<strong>on</strong>g>of</str<strong>on</strong>g> generators, <str<strong>on</strong>g>the</str<strong>on</strong>g> ith Betti number <strong>and</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> ith Bass number respectively.<br />

(3) We also have pd R M ≤ pd R N, depth R M ≥ depth R N <strong>and</strong> similar inequalities like<br />

G-dim R M ≤ G-dim R N. Roughly speaking, when <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a degenerati<strong>on</strong> from M to N,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>n M is a better module than N.<br />

Recall that a finitely generated R-module is called rigid if it satisfies Ext 1 R(N, N) = 0.<br />

Lemma 18. Let R be a complete local k-algebra <strong>and</strong> let M, N ∈ mod(R). Assume that<br />

N is rigid. If M degenerates to N, <str<strong>on</strong>g>the</str<strong>on</strong>g>n M ∼ = N.<br />

(Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>) From <str<strong>on</strong>g>the</str<strong>on</strong>g> sequence 0 → Z (φ ψ)<br />

−→ M ⊕ Z → N → 0, we have an exact sequence<br />

Ext 1 R(N, Z) (φ ψ)<br />

−→ Ext 1 R(N, M) ⊕ Ext 1 R(N, Z) → Ext 1 R(N, N),<br />

where ψ is nilpotent <strong>and</strong> Ext 1 R(N, N) = 0. Thus we have Ext 1 R(N, Z) = 0. It follows <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

first sequence splits, <strong>and</strong> thus M ⊕ Z ∼ = N ⊕ Z. Since R is complete, it forces M ∼ = N. ✷<br />

We recall <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Fitting ideal <str<strong>on</strong>g>of</str<strong>on</strong>g> a finitely presented module. Suppose<br />

that a module M over a commutative ring R is given by a finitely free presentati<strong>on</strong><br />

R m<br />

C<br />

−−−→ R n −−−→ M −−−→ 0,<br />

–274–


where C is an n × m-matrix with entries in R. Then recall that <str<strong>on</strong>g>the</str<strong>on</strong>g> ith Fitting ideal<br />

F R i (M) <str<strong>on</strong>g>of</str<strong>on</strong>g> M is defined to be <str<strong>on</strong>g>the</str<strong>on</strong>g> ideal I n−i (C) <str<strong>on</strong>g>of</str<strong>on</strong>g> R generated by all <str<strong>on</strong>g>the</str<strong>on</strong>g> (n − i)-minors<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> matrix C. (We use <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>venti<strong>on</strong> that I r (C) = R for r ≦ 0 <strong>and</strong> I r (C) = 0 for<br />

r > min{m, n}.) It is known that F R i (M) depends <strong>on</strong>ly <strong>on</strong> M <strong>and</strong> i, <strong>and</strong> independent<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> choice <str<strong>on</strong>g>of</str<strong>on</strong>g> free presentati<strong>on</strong>, <strong>and</strong> F R 0 (M) ⊆ F R 1 (M) ⊆ · · · ⊆ F R n (M) = R. The<br />

following lemma will be used to prove <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>orem.<br />

Lemma 19. Let f : A → B be a ring homomorphism <strong>and</strong> let M be an A-module which<br />

possesses a finitely free presentati<strong>on</strong>. Then F B i (M ⊗ A B) = f(F A i (M))B for all i ≧ 0.<br />

(Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>) If M has a presentati<strong>on</strong> A m → C A n → M → 0, <str<strong>on</strong>g>the</str<strong>on</strong>g>n M ⊗ A B has a presentati<strong>on</strong><br />

B m f(C)<br />

→ B n → M ⊗ A B → 0. Thus Fi B (M ⊗ A B) = I n−i (f(C)) = f(I n−i (C))B =<br />

f(Fi A (M))B. ✷<br />

Theorem 20. [Y, 2011] Let R be a noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian commutative algebra over k, <strong>and</strong> M <strong>and</strong><br />

N finitely generated R-modules. Suppose M degenerates to N. Then we have F R i (M) <br />

F R i (N) for all i ≧ 0.<br />

(Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>) By <str<strong>on</strong>g>the</str<strong>on</strong>g> assumpti<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a finitely generated R ⊗ k V -module Q such that<br />

Q t<br />

∼ = M ⊗k K <strong>and</strong> Q/tQ ∼ = N, where V = k[t] (t) <strong>and</strong> K = k(t). Note that R ⊗ k V ∼ =<br />

S −1 R[t] where S = k[t]\(t). Since Q is finitely generated, we can find a finitely generated<br />

R[t]-module Q ′ such that Q ′ ⊗ R[t] (R ⊗ k V ) ∼ = Q. For a fixed integer i we now c<strong>on</strong>sider<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Fitting ideal J := F R[t]<br />

i (Q ′ ) R[t]. Apply Lemma 19 to <str<strong>on</strong>g>the</str<strong>on</strong>g> ring homomorphism<br />

R[t] → R = R[t]/tR[t], <strong>and</strong> noting that Q ′ ⊗ R[t] R ∼ = N, we have<br />

(2.1) F R i (N) = J + tR[t]/tR[t]<br />

as an ideal <str<strong>on</strong>g>of</str<strong>on</strong>g> R = R[t]/tR[t]. On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r h<strong>and</strong>, applying Lemma 19 to R[t] → R⊗ k K =<br />

T −1 R[t] where T = k[t]\{0}, we have F R i (M)T −1 R[t] = JT −1 R[t]. Therefore <str<strong>on</strong>g>the</str<strong>on</strong>g>re is an<br />

element f(t) ∈ T such that f(t)J ⊆ F R i (M)R[t].<br />

Now to prove <str<strong>on</strong>g>the</str<strong>on</strong>g> inclusi<strong>on</strong> F R i (N) F R i (M), take an arbitrary element a ∈ F R i (N). It<br />

follows from (2.1) that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a polynomial <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> form a + b 1 t + b 2 t 2 + · · · + b r t r (b i ∈ R)<br />

that bel<strong>on</strong>gs to J. Then, we have f(t)(a + b 1 t + b 2 t 2 + · · · + b r t r ) ∈ F R i (M)R[t]. Since<br />

f(t) is a n<strong>on</strong>-zero polynomial whose coefficients are all in k, looking at <str<strong>on</strong>g>the</str<strong>on</strong>g> coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> n<strong>on</strong>-zero term <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> least degree in <str<strong>on</strong>g>the</str<strong>on</strong>g> polynomial f(t)(a + b 1 t + · · · + b r t r ), we have<br />

that a ∈ F R i (M). ✷<br />

Example 21. Let R = k[[x, y]]/(x 2 , y 2 ). Note that R is an artinian Gorenstein local ring.<br />

Now c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> modules M λ = R/(x − λy)R for all λ ∈ k. We denote by k <str<strong>on</strong>g>the</str<strong>on</strong>g> unique<br />

simple module R/(x, y)R over R.<br />

(1) R degenerates to M λ ⊕M −λ for ∀λ ∈ k, since <str<strong>on</strong>g>the</str<strong>on</strong>g>re is an exact sequence 0 → M −λ →<br />

R → M λ → 0.<br />

(2) There is a sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> degenerati<strong>on</strong>s from R ⊕ k 2 to M λ ⊕ M µ ⊕ k 2 for any choice<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> λ, µ ∈ k. ([9, Example 3.1])<br />

(Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>) There are exact sequences; 0 → m → R⊕m/(xy) → R/(xy) → 0, 0 → M λ →<br />

m → k → 0 <strong>and</strong> 0 → k x−µy<br />

→ R/(xy) → M µ → 0 for any λ, µ ∈ k. Noting m/(xy) ∼ = k 2 ,<br />

–275–


we have a sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> degenerati<strong>on</strong>s R ⊕ k 2 ⇒ m ⊕ R/(xy) ⇒ (M µ ⊕ k) ⊕ (M λ ⊕ k) =<br />

M λ ⊕ M µ ⊕ k 2 . ✷<br />

(3) There is no sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> degenerati<strong>on</strong>s from R to M λ ⊕ M µ if λ + µ ≠ 0.<br />

(Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>) If <str<strong>on</strong>g>the</str<strong>on</strong>g>re are such degenerati<strong>on</strong>s, <str<strong>on</strong>g>the</str<strong>on</strong>g>n we have an inclusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Fitting ideals;<br />

F R n (M λ ⊕ M µ ) ⊆ F R n (R) for all n. Note that F R 0 (R) = 0, <strong>and</strong><br />

F R 0 (M λ ⊕ M µ ) = F R 0 (M λ )F R 0 (M µ ) = (x − λy)(x − µy)R = (λ + µ)xyR.<br />

Hence we must have λ + µ = 0. ✷<br />

This example shows <str<strong>on</strong>g>the</str<strong>on</strong>g> cancellati<strong>on</strong> law does not hold for degenerati<strong>on</strong>.<br />

Example 22. Let R = k[[t]] be a formal power series ring over a field k with <strong>on</strong>e variable<br />

t <strong>and</strong> let M be an R-module <str<strong>on</strong>g>of</str<strong>on</strong>g> length n. It is easy to see that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is an isomorphism<br />

(2.2) M ∼ = R/(t p 1<br />

) ⊕ · · · ⊕ R/(t p n<br />

),<br />

where<br />

(2.3) p 1 ≥ p 2 ≥ · · · ≥ p n ≥ 0 <strong>and</strong><br />

In this case <str<strong>on</strong>g>the</str<strong>on</strong>g> ith Fitting ideal <str<strong>on</strong>g>of</str<strong>on</strong>g> M is given as<br />

n∑<br />

p i = n.<br />

i=1<br />

F R i (M) = (t p i+1+···+p n<br />

) (i ≥ 0).<br />

We denote by p M <str<strong>on</strong>g>the</str<strong>on</strong>g> sequence (p 1 , p 2 , · · · , p n ) <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-negative integers. Recall that such<br />

a sequence satisfying (2.3) is called a partiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> n.<br />

C<strong>on</strong>versely, given a partiti<strong>on</strong> p = (p 1 , p 2 , · · · , p n ) <str<strong>on</strong>g>of</str<strong>on</strong>g> n, we can associate an R-module <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

length n by (2.2), which we denote by M(p). In such a way <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a <strong>on</strong>e-<strong>on</strong>e corresp<strong>on</strong>dence<br />

between <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> partiti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> n <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> isomorphism classes <str<strong>on</strong>g>of</str<strong>on</strong>g> R-modules<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> length n.<br />

Let p = (p 1 , p 2 , · · · , p n ) <strong>and</strong> q = (q 1 , q 2 , · · · , q n ) be partiti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> n. Then we denote<br />

p ≽ q if it satisfies ∑ j<br />

i=1 p i ≥ ∑ j<br />

i=1 q i for all 1 ≤ j ≤ n. This ≽ is known to be a partial<br />

order <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> partiti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> n <strong>and</strong> called <str<strong>on</strong>g>the</str<strong>on</strong>g> dominance order.<br />

Then we can show that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a degenerati<strong>on</strong> from M to N if <strong>and</strong> <strong>on</strong>ly if p M ≽ p N .<br />

3. Stable degenerati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> CM modules<br />

In this secti<strong>on</strong> we are interested in <str<strong>on</strong>g>the</str<strong>on</strong>g> stable analogue <str<strong>on</strong>g>of</str<strong>on</strong>g> degenerati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Cohen-<br />

Macaulay modules over a commutative Gorenstein local ring. For this purpose, (R, m, k)<br />

always denotes a Gorenstein local ring which is a k-algebra, <strong>and</strong> V = k[t] (t) <strong>and</strong> K = k(t)<br />

where t is a variable. We note that R ⊗ k V <strong>and</strong> R ⊗ k K are Gorenstein as well as R <strong>and</strong><br />

we have <str<strong>on</strong>g>the</str<strong>on</strong>g> equality <str<strong>on</strong>g>of</str<strong>on</strong>g> Krull dimensi<strong>on</strong>;<br />

dim R ⊗ k V = dim R + 1, dim R ⊗ k K = dim R.<br />

If dim R = 0 (i.e. R is artinian), <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> rings R ⊗ k V <strong>and</strong> R ⊗ k K are local. However<br />

we should note that R ⊗ k V <strong>and</strong> R ⊗ k K will never be local rings if dim R > 0. Since<br />

R ⊗ k K is n<strong>on</strong>-local, <str<strong>on</strong>g>the</str<strong>on</strong>g>re may be a lot <str<strong>on</strong>g>of</str<strong>on</strong>g> projective modules which are not free.<br />

–276–


Example 23. Let R = k[[x, y]]/(x 3 −y 2 ). It is known that <str<strong>on</strong>g>the</str<strong>on</strong>g> maximal ideal m = (x, y) is<br />

a unique n<strong>on</strong>-free indecomposable Cohen-Macaulay module over R. See [10, Propositi<strong>on</strong><br />

5.11]. In fact it is given by a matrix factorizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> polynomial x 3 − y 2 ;<br />

((<br />

y x<br />

(ϕ, ψ) =<br />

x 2 y<br />

Therefore <str<strong>on</strong>g>the</str<strong>on</strong>g>re is an exact sequence<br />

)<br />

,<br />

(<br />

y −x<br />

−x 2 y<br />

))<br />

.<br />

· · · −−−→ R 2 ϕ<br />

−−−→ R 2 ψ<br />

−−−→ R 2 ϕ<br />

−−−→ R 2 −−−→ m −−−→ 0.<br />

Now we deform <str<strong>on</strong>g>the</str<strong>on</strong>g>se matrices <strong>and</strong> c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> pair <str<strong>on</strong>g>of</str<strong>on</strong>g> matrices over R ⊗ k K;<br />

(( ) ( ))<br />

y − xt x − t<br />

2 y + xt −x + t<br />

2<br />

(Φ, Ψ) =<br />

x 2<br />

,<br />

y + xt −x 2<br />

.<br />

y − xt<br />

Define <str<strong>on</strong>g>the</str<strong>on</strong>g> R ⊗ k K-module P by <str<strong>on</strong>g>the</str<strong>on</strong>g> following exact sequence;<br />

· · · −−−→ (R ⊗ k K) 2 Ψ<br />

−−−→ (R ⊗ k K) 2<br />

Φ<br />

−−−→ (R ⊗ k K) 2 −−−→ P −−−→ 0.<br />

In this case we can prove that P is a projective module <str<strong>on</strong>g>of</str<strong>on</strong>g> rank <strong>on</strong>e over R ⊗ k K but n<strong>on</strong>-free.<br />

(Hence <str<strong>on</strong>g>the</str<strong>on</strong>g> Picard group <str<strong>on</strong>g>of</str<strong>on</strong>g> R ⊗ k K is n<strong>on</strong>-trivial.)<br />

Let A be a commutative Gorenstein ring which is not necessarily local. We say that a<br />

finitely generated A-module M is CM if Ext i A(M, A) = 0 for all i > 0. We c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

category <str<strong>on</strong>g>of</str<strong>on</strong>g> all CM modules over A with all A-module homomorphisms:<br />

CM(A) := {M ∈ mod(A) | M is a Cohen-Macaulay module over A}.<br />

We can <str<strong>on</strong>g>the</str<strong>on</strong>g>n c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> stable category <str<strong>on</strong>g>of</str<strong>on</strong>g> CM(A), which we denote by CM(A). This<br />

is similarly defined as in local cases, but <str<strong>on</strong>g>the</str<strong>on</strong>g> morphisms <str<strong>on</strong>g>of</str<strong>on</strong>g> CM(A) are elements <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Hom A (M, N) := Hom A (M, N)/P (M, N) for M, N ∈ CM(A), where P (M, N) denotes<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> morphisms from M to N factoring through projective A-modules (not necessarily<br />

free).<br />

Note that M ∼ = N in CM(A) if <strong>and</strong> <strong>on</strong>ly if <str<strong>on</strong>g>the</str<strong>on</strong>g>re are projective A-modules P 1 <strong>and</strong> P 2<br />

such that M ⊕ P 1<br />

∼ = N ⊕ P2 in CM(A).<br />

Under such circumstances it is known that CM(A) has a structure <str<strong>on</strong>g>of</str<strong>on</strong>g> triangulated<br />

category as well as in local cases.<br />

Let x ∈ A be a n<strong>on</strong>-zero divisor <strong>on</strong> A. Note that x is a n<strong>on</strong>-zero divisor <strong>on</strong> every<br />

CM module over A. Thus <str<strong>on</strong>g>the</str<strong>on</strong>g> functor − ⊗ A A/xA sends a CM module over A to that<br />

over A/xA. Therefore it yields a functor CM(A) → CM(A/xA). Since this functor maps<br />

projective A-modules to projective A/xA-modules, it induces <str<strong>on</strong>g>the</str<strong>on</strong>g> functor R : CM(A) →<br />

CM(A/xA). It is easy to verify that R is a triangle functor.<br />

Now let S ⊂ A be a multiplicative subset <str<strong>on</strong>g>of</str<strong>on</strong>g> A. Then, by a similar reas<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> above,<br />

we have a triangle functor L : CM(A) → CM(S −1 A) which maps M to S −1 M.<br />

As before, let (R, m, k) be a Gorenstein local ring that is a k-algebra <strong>and</strong> let V = k[t] (t)<br />

<strong>and</strong> K = k(t). Since R⊗ k V <strong>and</strong> R⊗ k K are Gorenstein rings, we can apply <str<strong>on</strong>g>the</str<strong>on</strong>g> observati<strong>on</strong><br />

above. Actually, t ∈ R ⊗ k V is a n<strong>on</strong>-zero divisor <strong>on</strong> R ⊗ k V <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>re are isomorphisms<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> k-algebras; (R ⊗ k V )/t(R ⊗ k V ) ∼ = R <strong>and</strong> (R ⊗ k V ) t<br />

∼ = R ⊗k K. Thus <str<strong>on</strong>g>the</str<strong>on</strong>g>re are<br />

triangle functors L : CM(R ⊗ k V ) → CM(R ⊗ k K) defined by <str<strong>on</strong>g>the</str<strong>on</strong>g> localizati<strong>on</strong> by t, <strong>and</strong><br />

–277–


R : CM(R⊗ k V ) → CM(R) defined by taking −⊗ R⊗k V (R⊗ k V )/t(R⊗ k V ) = −⊗ V V/tV .<br />

Now we define <str<strong>on</strong>g>the</str<strong>on</strong>g> stable degenerati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CM modules.<br />

Definiti<strong>on</strong> 24. Let M, N ∈ CM(R). We say that M stably degenerates to N if <str<strong>on</strong>g>the</str<strong>on</strong>g>re<br />

is a Cohen-Macaulay module Q ∈ CM(R⊗ k V ) such that L(Q) ∼ = M ⊗ k K in CM(R⊗ k K)<br />

<strong>and</strong> R(Q) ∼ = N in CM(R).<br />

Lemma 25. [15, Lemma 4.2, Propositi<strong>on</strong> 4.3]<br />

(1) Let M, N ∈ CM(R). If M degenerates to N, <str<strong>on</strong>g>the</str<strong>on</strong>g>n M stably degenerates to N.<br />

(2) Suppose that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a triangle in CM(R);<br />

L<br />

α<br />

−−−→ M<br />

β<br />

−−−→ N<br />

Then M stably degenerates to L ⊕ N.<br />

γ<br />

−−−→ L[1].<br />

Lemma 26. [15, Propositi<strong>on</strong> 4.4] Let M, N ∈ CM(R) <strong>and</strong> suppose that M stably degenerates<br />

to N. Then <str<strong>on</strong>g>the</str<strong>on</strong>g> following hold.<br />

(1) M[1] (resp. M[−1]) stably degenerates to N[1] (resp. N[−1]).<br />

(2) M ∗ stably degenerates to N ∗ , where M ∗ denotes <str<strong>on</strong>g>the</str<strong>on</strong>g> R-dual Hom R (M, R).<br />

Lemma 27. [15, Propositi<strong>on</strong> 4.5] Let M, N, X ∈ CM(R). If M ⊕ X stably degenerates<br />

to N, <str<strong>on</strong>g>the</str<strong>on</strong>g>n M stably degenerates to N ⊕ X[1].<br />

Remark 28. The zero object in CM(R) can stably degenerate to a n<strong>on</strong>-zero object. In<br />

fact, in Example 13 <str<strong>on</strong>g>the</str<strong>on</strong>g> free module R degenerates to an ideal N. Hence it follows from<br />

Propositi<strong>on</strong> 25(1) that 0 = R stably degenerates to N.<br />

For ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r example, note that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a triangle<br />

X −−−→ 0 −−−→ X[1]<br />

1<br />

−−−→ X[1],<br />

for any X ∈ CM(R). Hence 0 stably degenerates to X ⊕ X[1] by Propositi<strong>on</strong> 25(2).<br />

Let (R, m, k) be a Gorenstein complete local k-algebra <strong>and</strong> assume for simplicity that<br />

k is an infinite field. For Cohen-Macaulay R-modules M <strong>and</strong> N we c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> following<br />

four c<strong>on</strong>diti<strong>on</strong>s:<br />

(1) R m ⊕ M degenerates to R n ⊕ N for some m, n ∈ N.<br />

(2) There is a triangle Z (φ ψ)<br />

→ M ⊕ Z → N → Z[1] in CM(R), where ψ is a nilpotent<br />

element <str<strong>on</strong>g>of</str<strong>on</strong>g> End R (Z).<br />

(3) M stably degenerates to N.<br />

(4) There exists an X ∈ CM(R) such that M ⊕ R m ⊕ X degenerates to N ⊕ R n ⊕ X<br />

for some m, n ∈ N.<br />

In [15] we proved <str<strong>on</strong>g>the</str<strong>on</strong>g> following implicati<strong>on</strong>s <strong>and</strong> equivalences <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se c<strong>on</strong>diti<strong>on</strong>s:<br />

Theorem 29. (i) In general, (1) ⇒ (2) ⇒ (3) ⇒ (4) holds.<br />

(ii) If dim R = 0, <str<strong>on</strong>g>the</str<strong>on</strong>g>n (1) ⇔ (2) ⇔ (3) holds.<br />

(iii) If R is an isolated singularity <str<strong>on</strong>g>of</str<strong>on</strong>g> any dimensi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g>n (2) ⇔ (3) holds.<br />

(iv) There is an example <str<strong>on</strong>g>of</str<strong>on</strong>g> isolated singularity <str<strong>on</strong>g>of</str<strong>on</strong>g> dim R = 1 for which (2) ⇒ (1) fails.<br />

(v) There is an example <str<strong>on</strong>g>of</str<strong>on</strong>g> dim R = 0 for which (4) ⇒ (3) fails.<br />

–278–


We give here an outline <str<strong>on</strong>g>of</str<strong>on</strong>g> some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g>s.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> (1) ⇒ (2) : By Theorem 14, <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists an exact sequence<br />

0 → Z (φ ψ)<br />

−→ (R m ⊕ M) ⊕ Z → (R n ⊕ N) → 0,<br />

where ψ is nilpotent. In such a case Z ia a Cohen-Macaulay module as well. Then<br />

c<strong>on</strong>verting this into a triangle in CM(R), <strong>and</strong> noting that <str<strong>on</strong>g>the</str<strong>on</strong>g> nilpotency <str<strong>on</strong>g>of</str<strong>on</strong>g> ψ ∈ End R (Z)<br />

forces <str<strong>on</strong>g>the</str<strong>on</strong>g> nilpotency <str<strong>on</strong>g>of</str<strong>on</strong>g> ψ ∈ End R (Z), we can see that (2) holds. ✷<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> (2) ⇒ (3): Suppose that <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a triangle Z (φ ψ)<br />

−→ M ⊕ Z → N → Z[1],<br />

where ψ is nilpotent. Then we have a triangle <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> form;<br />

Z ⊗ k V ( t+ψ)<br />

φ<br />

−→ M ⊗ k V ⊕ Z ⊗ k V −→ Q −→ Z ⊗ k V [1],<br />

for a Q ∈ CM(R ⊗ k V ). Note L(t + ψ) is an isomorphism in CM(R ⊗ k K). Thus<br />

L(Q) ∼ = L(M ⊗ k V ) = M ⊗ k K. On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r h<strong>and</strong>, since R(t + ψ) = ψ, R(Q) ∼ = N.<br />

Thus M stably degenerates to N. ✷<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> (3) ⇒ (1) when dim R = 0: In this pro<str<strong>on</strong>g>of</str<strong>on</strong>g> we assume dim R = 0. Suppose that<br />

M stably degenerates to N. Then <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a Q ∈ CM(R ⊗ k V ) with L(Q) ∼ = M ⊗ k K<br />

<strong>and</strong> R(Q) ∼ = N. By definiti<strong>on</strong>, we have isomorphisms Q t ⊕ P 1<br />

∼ = (M ⊗k K) ⊕ P 2 in<br />

CM(R ⊗ k K) for some projective R ⊗ k K-modules P 1 , P 2 , <strong>and</strong> Q/tQ ⊕ R a ∼ = N ⊕ R<br />

b<br />

in CM(R) for some a, b ∈ N. Since R ⊗ k K is a local ring, P 1 <strong>and</strong> P 2 are free. Thus<br />

Q t ⊕ (R ⊗ k K) c ∼ = (M ⊗k K) ⊕ (R ⊗ k K) d for some c, d ∈ N. Setting ˜Q = Q ⊕ (R ⊗ k V ) a+c ,<br />

we have isomorphisms<br />

˜Q t<br />

∼ = (M ⊕ R a+d ) ⊗ k K, ˜Q/t ˜Q ∼ = N ⊕ R b+c .<br />

Since ˜Q is V -flat, M ⊕ R a+d degenerates to N ⊕ R b+c . ✷<br />

The difficult part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> is to show <str<strong>on</strong>g>the</str<strong>on</strong>g> implicati<strong>on</strong>s (3) ⇒ (4) <strong>and</strong> (3) ⇒ (2).<br />

Actually it is technically difficult to show <str<strong>on</strong>g>the</str<strong>on</strong>g> existence <str<strong>on</strong>g>of</str<strong>on</strong>g> a Cohen-Macaulay module Z<br />

<strong>and</strong> X in each case. To get over this difficulty, we use <str<strong>on</strong>g>the</str<strong>on</strong>g> following lemma called Swan’s<br />

Lemma in Algebraic K-<strong>Theory</strong>.<br />

Lemma 30. [8, Lemma 5.1] Let R be a noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian ring <strong>and</strong> t a variable. Assume that an<br />

R[t]-module L is a submodule <str<strong>on</strong>g>of</str<strong>on</strong>g> W ⊗ R R[t] with W being a finitely generated R-module.<br />

Then <str<strong>on</strong>g>the</str<strong>on</strong>g>re is an exact sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> R[t]-modules;<br />

0 −−−→ X ⊗ R R[t] −−−→ Y ⊗ R R[t] −−−→ L −−−→ 0,<br />

where X <strong>and</strong> Y are finitely generated R-modules.<br />

By virtue <str<strong>on</strong>g>of</str<strong>on</strong>g> Swan’s lemma we can prove <str<strong>on</strong>g>the</str<strong>on</strong>g> following propositi<strong>on</strong> that will play an<br />

essential role in <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 29.<br />

Propositi<strong>on</strong> 31. Let R be a Gorenstein local k-algebra, where k is an infinite field.<br />

Suppose we are given a Cohen-Macaulay R ⊗ k V -module P ′ satisfying that <str<strong>on</strong>g>the</str<strong>on</strong>g> localizati<strong>on</strong><br />

–279–


P = P ′<br />

t by t is a projective R ⊗ k K-module. Then <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a Cohen-Macaulay R-module<br />

X with a triangle in CM(R ⊗ k V ) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> following form:<br />

(3.1) X ⊗ k V −−−→ X ⊗ k V −−−→ P ′ −−−→ X ⊗ k V [1].<br />

As a direct c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 29, we have <str<strong>on</strong>g>the</str<strong>on</strong>g> following corollary.<br />

Corollary 32. Let (R 1 , m 1 , k) <strong>and</strong> (R 2 , m 2 , k) be Gorenstein complete local k-algebras.<br />

Assume that <str<strong>on</strong>g>the</str<strong>on</strong>g> both R 1 <strong>and</strong> R 2 are isolated singularities, <strong>and</strong> that k is an infinite field.<br />

Suppose <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a k-linear equivalence F : CM(R 1 ) → CM(R 2 ) <str<strong>on</strong>g>of</str<strong>on</strong>g> triangulated categories.<br />

Then, for M, N ∈ CM(R 1 ), M stably degenerates to N if <strong>and</strong> <strong>on</strong>ly if F (M) stably<br />

degenerates to F (N).<br />

Remark 33. Let (R 1 , m 1 , k) <strong>and</strong> (R 2 , m 2 , k) be Gorenstein complete local k-algebras as<br />

above. Then it hardly occurs that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a k-linear equivalence <str<strong>on</strong>g>of</str<strong>on</strong>g> categories between<br />

CM(R 1 ) <strong>and</strong> CM(R 2 ). In fact, if it occurs, <str<strong>on</strong>g>the</str<strong>on</strong>g>n R 1 is isomorphic to R 2 as a k-algebra.<br />

(See [4, Propositi<strong>on</strong> 5.1].)<br />

On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r h<strong>and</strong>, an equivalence between CM(R 1 ) <strong>and</strong> CM(R 2 ) may happen for n<strong>on</strong>isomorphic<br />

k-algebras. For example, let R 1 = k[[x, y, z]]/(x n +y 2 +z 2 ) <strong>and</strong> R 2 = k[[x]]/(x n )<br />

with characteristic <str<strong>on</strong>g>of</str<strong>on</strong>g> k not being 2 <strong>and</strong> n ∈ N. Then, by Knoerrer’s periodicity ([10, Theorem<br />

12.10]), we have an equivalence CM(k[[x, y, z]]/(x n + y 2 + z 2 )) ∼ = CM(k[[x]]/(x n )).<br />

Since k[[x]]/(x n ) is an artinian Gorenstein ring, <str<strong>on</strong>g>the</str<strong>on</strong>g> stable degenerati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> modules over<br />

k[[x]]/(x n ) is equivalent to a degenerati<strong>on</strong> up to free summ<strong>and</strong>s by Theorem 29(ii). Moreover<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> degenerati<strong>on</strong> problem for modules over k[[x]]/(x n ) is known to be equivalent to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> degenerati<strong>on</strong> problem for Jordan can<strong>on</strong>ical forms <str<strong>on</strong>g>of</str<strong>on</strong>g> square matrices <str<strong>on</strong>g>of</str<strong>on</strong>g> size n. (See Example<br />

22.) Thus by virtue <str<strong>on</strong>g>of</str<strong>on</strong>g> Corollary 32, it is easy to describe <str<strong>on</strong>g>the</str<strong>on</strong>g> stable degenerati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Cohen-Macaulay modules over k[[x, y, z]]/(x n + y 2 + z 2 ).<br />

References<br />

1. K. B<strong>on</strong>gartz, A generalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a <str<strong>on</strong>g>the</str<strong>on</strong>g>orem <str<strong>on</strong>g>of</str<strong>on</strong>g> M. Ausl<strong>and</strong>er, Bull. L<strong>on</strong>d<strong>on</strong> Math. Soc. 21 (1989), no.<br />

3, 255-256.<br />

2. K. B<strong>on</strong>gartz, On degenerati<strong>on</strong>s <strong>and</strong> extensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> finite-dimensi<strong>on</strong>al modules, Adv. Math. 121 (1996),<br />

no. 2, 245–287.<br />

3. D. Happel, Triangulated categories in <str<strong>on</strong>g>the</str<strong>on</strong>g> representati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> finite-dimensi<strong>on</strong>al algebras, L<strong>on</strong>d<strong>on</strong><br />

Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical Society Lecture Note Series, vol.119. Cambridge University Press, Cambridge, 1988.<br />

x+208 pp.<br />

4. N. Hiramatsu <strong>and</strong> Y. Yoshino, Automorphism groups <strong>and</strong> Picard groups <str<strong>on</strong>g>of</str<strong>on</strong>g> additive full subcategories,<br />

Math. Sc<strong>and</strong>. 107 (2010), 5–29.<br />

5. , Examples <str<strong>on</strong>g>of</str<strong>on</strong>g> degenerati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Cohen-Macaulay modules, Preprint (2010). [arXiv:1012.5346]<br />

6. C.Huneke <strong>and</strong> G.Leuschke, Two <str<strong>on</strong>g>the</str<strong>on</strong>g>orems about maximal Cohen-Macaulay modules, Math. Ann. 324<br />

(2002), no. 2, 391-404.<br />

7. C.Huneke <strong>and</strong> G.Leuschke, Local rings <str<strong>on</strong>g>of</str<strong>on</strong>g> countable Cohen-Macaulay type, Proc. Amer. Math. Soc.<br />

131 (2003), no. 10, 3003-3007.<br />

8. T. Y. Lam, Serre’s c<strong>on</strong>jecture, Lecture Notes in Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics, Vol. 635. Springer-Verlag, Berlin-New<br />

York, 1978. xv+227 pp. ISBN: 3-540-08657-9<br />

9. Ch. Riedtmann, Degenerati<strong>on</strong>s for representati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> quivers with relati<strong>on</strong>s, Ann. Scient. École Normale<br />

Sup. 4 e sèrie 19 (1986), 275–301.<br />

10. Y. Yoshino, Cohen-Macaulay modules over Cohen-Macaulay rings, L<strong>on</strong>d<strong>on</strong> Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical Society,<br />

Lecture Notes Series vol. 146, Cambridge University Press, 1990. viii+177 pp.<br />

–280–


11. , On degenerati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Cohen-Macaulay modules, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Algebra 248 (2002), 272–290.<br />

12. , On degenerati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> modules, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Algebra 278 (2004), 217–226.<br />

13. , Degenerati<strong>on</strong> <strong>and</strong> G-dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> modules, Lecture Notes in Pure <strong>and</strong> Applied Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics<br />

vol. 244, ’Commutative Algebra’ Chapman <strong>and</strong> Hall/CRC (2006), 259 – 265.<br />

14. , Universal lifts <str<strong>on</strong>g>of</str<strong>on</strong>g> chain complexes over n<strong>on</strong>-commutative parameter algebras, J. Math. Kyoto<br />

Univ. 48 (2008), no. 4, 793–845.<br />

15. , Stable degenerati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Cohen-Macaulay modules, J. Algebra 332 (2011), 500–521.<br />

16. G. Zwara, A degenerati<strong>on</strong>-like order for modules, Arch. Math. 71 (1998), 437–444.<br />

17. , Degenerati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> finite dimensi<strong>on</strong>al modules are given by extensi<strong>on</strong>s, Compositio Math. 121<br />

(2000), 205–218.<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics<br />

Graduate School <str<strong>on</strong>g>of</str<strong>on</strong>g> Natural Science <strong>and</strong> Tech<strong>on</strong>ology<br />

Okayama University<br />

Okayama, 700-8530 JAPAN<br />

E-mail address: yoshino@math.okayama-u.ac.jp<br />

–281–


SUBCATEGORIES OF EXTENSION MODULES<br />

RELATED TO SERRE SUBCATEGORIES<br />

TAKESHI YOSHIZAWA<br />

Abstract. We c<strong>on</strong>sider subcategories c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> modules in two<br />

given Serre subcategories to find a method <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>structing Serre subcategories <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

module category. We shall give a criteri<strong>on</strong> for this subcategory to be a Serre subcategory.<br />

1. Introducti<strong>on</strong><br />

Let R be a commutative Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian ring. We denote by R-Mod <str<strong>on</strong>g>the</str<strong>on</strong>g> category <str<strong>on</strong>g>of</str<strong>on</strong>g> R-<br />

modules <strong>and</strong> by R-mod <str<strong>on</strong>g>the</str<strong>on</strong>g> full subcategory c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> finitely generated R-modules.<br />

In [2], P. Gabriel showed that <strong>on</strong>e has lattice isomorphisms between <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> Serre<br />

subcategories <str<strong>on</strong>g>of</str<strong>on</strong>g> R-mod, <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> Serre subcategories <str<strong>on</strong>g>of</str<strong>on</strong>g> R-Mod which are closed under<br />

arbitrary direct sums <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> specializati<strong>on</strong> closed subsets <str<strong>on</strong>g>of</str<strong>on</strong>g> Spec (R). By this<br />

result, Serre subcategories <str<strong>on</strong>g>of</str<strong>on</strong>g> R-mod are classified. However, it has not yet classified<br />

Serre subcategories <str<strong>on</strong>g>of</str<strong>on</strong>g> R-Mod. In this paper, we shall give a way <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>structing Serre<br />

subcategories <str<strong>on</strong>g>of</str<strong>on</strong>g> R-Mod by c<strong>on</strong>sidering subcategories <str<strong>on</strong>g>of</str<strong>on</strong>g> extensi<strong>on</strong> modules related to Serre<br />

subcategories.<br />

2. The definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a subcategory <str<strong>on</strong>g>of</str<strong>on</strong>g> extensi<strong>on</strong> modules<br />

by Serre subcategories<br />

We assume that all full subcategories <str<strong>on</strong>g>of</str<strong>on</strong>g> R-Mod are closed under isomorphisms. We<br />

recall that a subcategory S <str<strong>on</strong>g>of</str<strong>on</strong>g> R-Mod is said to be Serre subcategory if <str<strong>on</strong>g>the</str<strong>on</strong>g> following<br />

c<strong>on</strong>diti<strong>on</strong> is satisfied: For any short exact sequence<br />

0 → L → M → N → 0<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> R-modules, it holds that M is in S if <strong>and</strong> <strong>on</strong>ly if L <strong>and</strong> N are in S. In o<str<strong>on</strong>g>the</str<strong>on</strong>g>r words,<br />

S is called a Serre subcategory if it is closed under submodules, quotient modules <strong>and</strong><br />

extensi<strong>on</strong>s.<br />

We give <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a subcategory <str<strong>on</strong>g>of</str<strong>on</strong>g> extensi<strong>on</strong> modules by Serre subcategories.<br />

Definiti<strong>on</strong> 1. Let S 1 <strong>and</strong> S 2 be Serre subcategories <str<strong>on</strong>g>of</str<strong>on</strong>g> R-Mod. We denote by (S 1 , S 2 ) a<br />

subcategory c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> R-modules M with a short exact sequence<br />

0 → X → M → Y → 0<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> R-modules where X is in S 1 <strong>and</strong> Y is in S 2 , that is<br />

⎧<br />

∣<br />

⎨<br />

∣∣∣∣∣ <str<strong>on</strong>g>the</str<strong>on</strong>g>re are X ∈ S 1 <strong>and</strong> Y ∈ S 2 such that<br />

(S 1 , S 2 ) =<br />

⎩ M ∈ R-Mod 0 → X → M → Y → 0<br />

is a short exact sequence.<br />

The detailed versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper has been submitted for publicati<strong>on</strong> elsewhere.<br />

–282–<br />

⎫<br />

⎬<br />

⎭ .


Remark 2. Let S 1 <strong>and</strong> S 2 be Serre subcategories <str<strong>on</strong>g>of</str<strong>on</strong>g> R-Mod.<br />

(1) Since <str<strong>on</strong>g>the</str<strong>on</strong>g> zero module bel<strong>on</strong>gs to any Serre subcategory, <strong>on</strong>e has S 1 ⊆ (S 1 , S 2 ) <strong>and</strong><br />

S 2 ⊆ (S 1 , S 2 ).<br />

(2) It holds S 1 ⊇ S 2 if <strong>and</strong> <strong>on</strong>ly if (S 1 , S 2 ) = S 1 .<br />

(3) It holds S 1 ⊆ S 2 if <strong>and</strong> <strong>on</strong>ly if (S 1 , S 2 ) = S 2 .<br />

(4) A subcategory (S 1 , S 2 ) is closed under finite direct sums.<br />

Example 3. We denote by S f.g. <str<strong>on</strong>g>the</str<strong>on</strong>g> subcategory c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> finitely generated R-<br />

modules <strong>and</strong> by S Artin <str<strong>on</strong>g>the</str<strong>on</strong>g> subcategory c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> Artinian R-modules. If R is a complete<br />

local ring, <str<strong>on</strong>g>the</str<strong>on</strong>g>n a subcategory (S f.g. , S Artin ) is known as <str<strong>on</strong>g>the</str<strong>on</strong>g> subcategory c<strong>on</strong>sisting<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Matlis reflexive R-modules. Therefore, (S f.g. , S Artin ) is a Serre subcategory <str<strong>on</strong>g>of</str<strong>on</strong>g> R-Mod.<br />

The following example shows that a subcategory (S 1 , S 2 ) needs not be a Serre subcategory<br />

for Serre subcategories S 1 <strong>and</strong> S 2 .<br />

Example 4. We shall see that <str<strong>on</strong>g>the</str<strong>on</strong>g> subcategory (S Artin , S f.g. ) needs not be closed under<br />

extensi<strong>on</strong>s.<br />

Let R be a <strong>on</strong>e dimensi<strong>on</strong>al Gorenstein local ring with a maximal ideal m. Then <strong>on</strong>e<br />

has a minimal injective resoluti<strong>on</strong><br />

0 → R → ⊕<br />

E R (R/p) → E R (R/m) → 0<br />

p ∈ Spec(R)<br />

htp = 0<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> R. (E R (M) denotes <str<strong>on</strong>g>the</str<strong>on</strong>g> injective hull <str<strong>on</strong>g>of</str<strong>on</strong>g> an R-module M.) We note that R <strong>and</strong><br />

E R (R/m) are in (S Artin , S f.g. ).<br />

Now, we assume that a subcategory (S Artin , S f.g. ) is closed under extensi<strong>on</strong>s. Then<br />

E R (R) = ⊕ htp=0 E R (R/p) is in (S Artin , S f.g. ). It follows from <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> (S Artin , S f.g. )<br />

that <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists an Artinian R-submodule X <str<strong>on</strong>g>of</str<strong>on</strong>g> E R (R) such that E R (R)/X is a finitely<br />

generated R-module.<br />

If X = 0, <str<strong>on</strong>g>the</str<strong>on</strong>g>n E R (R) is a finitely generated injective R-module. It follows from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Bass formula that <strong>on</strong>e has dim R = depth R = inj dim E R (R) = 0. However, this equality<br />

c<strong>on</strong>tradicts dim R = 1. On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r h<strong>and</strong>, if X ≠ 0, <str<strong>on</strong>g>the</str<strong>on</strong>g>n X is a n<strong>on</strong>-zero Artinian<br />

R-module. Therefore, <strong>on</strong>e has Ass R (X) = {m}. Since X is an R-submodule <str<strong>on</strong>g>of</str<strong>on</strong>g> E R (R),<br />

<strong>on</strong>e has<br />

Ass R (X) ⊆ Ass R (E R (R)) = {p ∈ Spec(R) | ht p = 0}.<br />

This is c<strong>on</strong>tradicti<strong>on</strong> as well.<br />

3. The main result<br />

In this secti<strong>on</strong>, we shall give a criteri<strong>on</strong> for a subcategory (S 1 , S 2 ) to be a Serre subcategory<br />

for Serre subcategories S 1 <strong>and</strong> S 2 .<br />

First <str<strong>on</strong>g>of</str<strong>on</strong>g> all, it is easy to see that <str<strong>on</strong>g>the</str<strong>on</strong>g> following asserti<strong>on</strong> holds.<br />

Propositi<strong>on</strong> 5. Let S 1 <strong>and</strong> S 2 be Serre subcategories <str<strong>on</strong>g>of</str<strong>on</strong>g> R-Mod.<br />

(S 1 , S 2 ) is closed under submodules <strong>and</strong> quotient modules.<br />

–283–<br />

Then a subcategory


Lemma 6. Let S 1 <strong>and</strong> S 2 be Serre subcategories <str<strong>on</strong>g>of</str<strong>on</strong>g> R-Mod. We suppose that a sequence<br />

0 → L → M → N → 0 <str<strong>on</strong>g>of</str<strong>on</strong>g> R-modules is exact. Then <str<strong>on</strong>g>the</str<strong>on</strong>g> following asserti<strong>on</strong>s hold.<br />

(1) If L ∈ S 1 <strong>and</strong> N ∈ (S 1 , S 2 ), <str<strong>on</strong>g>the</str<strong>on</strong>g>n M ∈ (S 1 , S 2 ).<br />

(2) If L ∈ (S 1 , S 2 ) <strong>and</strong> N ∈ S 2 , <str<strong>on</strong>g>the</str<strong>on</strong>g>n M ∈ (S 1 , S 2 ).<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. (1) We assume that L is in S 1 <strong>and</strong> N is in (S 1 , S 2 ). Since N bel<strong>on</strong>gs to (S 1 , S 2 ),<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a short exact sequence<br />

0 → X → N → Y → 0<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> R-modules where X is in S 1 <strong>and</strong> Y is in S 2 . Then we c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> following pull buck<br />

diagram<br />

0 0<br />

⏐ ⏐<br />

↓ ↓<br />

0 −−−→ L −−−→ X ′ −−−→ X −−−→ 0<br />

⏐ ⏐<br />

‖ ↓ ↓<br />

0 −−−→ L −−−→ M −−−→ N −−−→ 0<br />

⏐ ⏐<br />

↓ ↓<br />

Y<br />

⏐<br />

↓<br />

Y<br />

⏐<br />

↓<br />

0 0<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> R-modules with exact rows <strong>and</strong> columns. Since S 1 is a Serre subcategory, it follows<br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> first row in <str<strong>on</strong>g>the</str<strong>on</strong>g> diagram that X ′ bel<strong>on</strong>gs to S 1 . C<strong>on</strong>sequently, we see that M is<br />

in (S 1 , S 2 ) by <str<strong>on</strong>g>the</str<strong>on</strong>g> middle column in <str<strong>on</strong>g>the</str<strong>on</strong>g> diagram.<br />

(2) We can show that <str<strong>on</strong>g>the</str<strong>on</strong>g> asserti<strong>on</strong> holds by <str<strong>on</strong>g>the</str<strong>on</strong>g> similar argument in <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> (1). □<br />

Now, we can show <str<strong>on</strong>g>the</str<strong>on</strong>g> main purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper.<br />

Theorem 7. Let S 1 <strong>and</strong> S 2 be Serre subcategories <str<strong>on</strong>g>of</str<strong>on</strong>g> R-Mod. Then <str<strong>on</strong>g>the</str<strong>on</strong>g> following c<strong>on</strong>diti<strong>on</strong>s<br />

are equivalent:<br />

(1) A subcategory (S 1 , S 2 ) is a Serre subcategory;<br />

(2) One has (S 2 , S 1 ) ⊆ (S 1 , S 2 ).<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. (1) ⇒ (2) We assume that M is in (S 2 , S 1 ). By <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a subcategory<br />

(S 2 , S 1 ), <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a short exact sequence<br />

0 → Y → M → X → 0<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> R-modules where X is in S 1 <strong>and</strong> Y is in S 2 . We note that X <strong>and</strong> Y are also in (S 1 , S 2 ).<br />

Since a subcategory (S 1 , S 2 ) is closed under extensi<strong>on</strong>s by <str<strong>on</strong>g>the</str<strong>on</strong>g> assumpti<strong>on</strong> (1), we see that<br />

M is in (S 1 , S 2 ).<br />

–284–


(2) ⇒ (1) We <strong>on</strong>ly have to prove that a subcategory (S 1 , S 2 ) is closed under extensi<strong>on</strong>s<br />

by Propositi<strong>on</strong> 5. Let 0 → L → M → N → 0 be a short exact sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> R-modules<br />

such that L <strong>and</strong> N are in (S 1 , S 2 ). We shall show that M is also in (S 1 , S 2 ).<br />

Since L is in (S 1 , S 2 ), <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a short exact sequence<br />

0 → S → L → L/S → 0<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> R-modules where S is in S 1 such that L/S is in S 2 . We c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> following push<br />

out diagram<br />

0 0<br />

⏐ ⏐<br />

↓ ↓<br />

S<br />

⏐<br />

↓<br />

S<br />

⏐<br />

↓<br />

0 −−−→ L −−−→ M −−−→ N −−−→ 0<br />

⏐ ⏐<br />

↓ ↓ ‖<br />

0 −−−→ L/S −−−→ P −−−→ N −−−→ 0<br />

⏐ ⏐<br />

↓ ↓<br />

0 0<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> R-modules with exact rows <strong>and</strong> columns. Next, since N is in (S 1 , S 2 ), we have a short<br />

exact sequence<br />

0 → T → N → N/T → 0<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> R-modules where T is in S 1 such that N/T is in S 2 . We c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> following pull<br />

back diagram<br />

0 0<br />

⏐ ⏐<br />

↓ ↓<br />

0 −−−→ L/S −−−→ P ′ −−−→ T −−−→ 0<br />

⏐ ⏐<br />

‖ ↓ ↓<br />

0 −−−→ L/S −−−→ P −−−→ N −−−→ 0<br />

⏐ ⏐<br />

↓ ↓<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> R-modules with exact rows <strong>and</strong> columns.<br />

N/T<br />

⏐<br />

↓<br />

N/T<br />

⏐<br />

↓<br />

0 0<br />

–285–


In <str<strong>on</strong>g>the</str<strong>on</strong>g> first row <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d diagram, since L/S is in S 2 <strong>and</strong> T is in S 1 , P ′ is in<br />

(S 2 , S 1 ). Now here, it follows from <str<strong>on</strong>g>the</str<strong>on</strong>g> assumpti<strong>on</strong> (2) that P ′ is in (S 1 , S 2 ). Next, in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

middle column <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d diagram, we have <str<strong>on</strong>g>the</str<strong>on</strong>g> short exact sequence such that P ′ is<br />

in (S 1 , S 2 ) <strong>and</strong> N/T is in S 2 . Therefore, it follows from Lemma 6 that P is in (S 1 , S 2 ).<br />

Finally, in <str<strong>on</strong>g>the</str<strong>on</strong>g> middle column <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> first diagram, <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists <str<strong>on</strong>g>the</str<strong>on</strong>g> short exact sequence<br />

such that S is in S 1 <strong>and</strong> P is in (S 1 , S 2 ). C<strong>on</strong>sequently, we see that M is in (S 1 , S 2 ) by<br />

Lemma 6.<br />

The pro<str<strong>on</strong>g>of</str<strong>on</strong>g> is completed.<br />

□<br />

Corollary 8. A subcategory (S f.g. , S) is a Serre subcategory for a Serre subcategory S <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

R-Mod.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Let S be a Serre subcategory <str<strong>on</strong>g>of</str<strong>on</strong>g> R-Mod. To prove our asserti<strong>on</strong>, it is enough to<br />

show that <strong>on</strong>e has (S, S f.g. ) ⊆ (S f.g. , S) by Theorem 7. Let M be in (S, S f.g. ). Then<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a short exact sequence 0 → Y → M → M/Y → 0 <str<strong>on</strong>g>of</str<strong>on</strong>g> R-modules where Y<br />

is in S such that M/Y is in S f.g. . It is easy to see that <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a finitely generated<br />

R-submodule X <str<strong>on</strong>g>of</str<strong>on</strong>g> M such that M = X + Y . Since X ⊕ Y is in (S f.g. , S) <strong>and</strong> M is a<br />

homomorphic image <str<strong>on</strong>g>of</str<strong>on</strong>g> X ⊕ Y , M is in (S f.g. , S) by Propositi<strong>on</strong> 5.<br />

□<br />

We note that a subcategory S Artin c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> Artinian R-modules is a Serre subcategory<br />

which is closed under injective hulls. (Also see [1, Example 2.4].) Therefore we<br />

can see that a subcategory (S, S Artin ) is also Serre subcategory for a Serre subcategory <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

R-Mod by <str<strong>on</strong>g>the</str<strong>on</strong>g> following asserti<strong>on</strong>.<br />

Corollary 9. Let S 2 be a Serre subcategory <str<strong>on</strong>g>of</str<strong>on</strong>g> R-Mod which is closed under injective<br />

hulls. Then a subcategory (S 1 , S 2 ) is a Serre subcategory for a Serre subcategory S 1 <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

R-Mod.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. By Theorem 7, it is enough to show that <strong>on</strong>e has (S 2 , S 1 ) ⊆ (S 1 , S 2 ).<br />

We assume that M is in (S 2 , S 1 ) <strong>and</strong> shall show that M is in (S 1 , S 2 ). Then <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists<br />

a short exact sequence<br />

0 → Y → M → X → 0<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> R-modules where X is in S 1 <strong>and</strong> Y is in S 2 . Since S 2 is closed under injective hulls, we<br />

note that <str<strong>on</strong>g>the</str<strong>on</strong>g> injective hull E R (Y ) <str<strong>on</strong>g>of</str<strong>on</strong>g> Y is also in S 2 . We c<strong>on</strong>sider a push out diagram<br />

0 −−−→ Y −−−→ M −−−→ X −−−→ 0<br />

⏐ ⏐<br />

↓ ↓ ‖<br />

0 −−−→ E R (Y ) −−−→ T −−−→ X −−−→ 0<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> R-modules with exact rows <strong>and</strong> injective vertical maps. The sec<strong>on</strong>d exact sequence<br />

splits, <strong>and</strong> we have an injective homomorphism M → X ⊕ E R (Y ). Since <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a short<br />

exact sequence<br />

0 → X → X ⊕ E R (Y ) → E R (Y ) → 0<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> R-modules, <str<strong>on</strong>g>the</str<strong>on</strong>g> R-module X ⊕ E R (Y ) is in (S 1 , S 2 ). C<strong>on</strong>sequently, we see that M is<br />

also in (S 1 , S 2 ) by Propositi<strong>on</strong> 5.<br />

The pro<str<strong>on</strong>g>of</str<strong>on</strong>g> is completed.<br />

□<br />

–286–


Example 10. Let R be a domain but not a field <strong>and</strong> let Q be a field <str<strong>on</strong>g>of</str<strong>on</strong>g> fracti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> R.<br />

We denote by S T or a subcategory c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> torsi<strong>on</strong> R-modules, that is<br />

Then we shall see that <strong>on</strong>e has<br />

S T or = {M ∈ R-Mod | M ⊗ R Q = 0}.<br />

(S T or , S f.g. ) (S f.g. , S T or ) = {M ∈ R-Mod | dim Q M ⊗ R Q < ∞}.<br />

Therefore, a subcategory (S f.g. , S T or ) is a Serre subcategory by Corollary 8, but a subcategory<br />

(S T or , S f.g. ) is not closed under extensi<strong>on</strong>s by Theorem 7.<br />

First <str<strong>on</strong>g>of</str<strong>on</strong>g> all, we shall show that <str<strong>on</strong>g>the</str<strong>on</strong>g> above equality holds. We suppose that M is in<br />

(S f.g. , S T or ). Then <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a short exact sequence<br />

0 → X → M → Y → 0<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> R-modules where X is in S f.g. <strong>and</strong> Y is in S T or . We apply an exact functor − ⊗ R Q to<br />

this sequence. Then we see that <strong>on</strong>e has M ⊗ R Q ∼ = X ⊗ R Q <strong>and</strong> this module is a finite<br />

dimensi<strong>on</strong>al Q-vector space.<br />

C<strong>on</strong>versely, let M be an R-module with dim Q M ⊗ R Q < ∞. Then we can denote<br />

M ⊗ R Q = ∑ n<br />

i=1 Q(m i ⊗ 1 Q ) with m i ∈ M <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> unit element 1 Q <str<strong>on</strong>g>of</str<strong>on</strong>g> Q. We c<strong>on</strong>sider a<br />

short exact sequence<br />

n∑<br />

n∑<br />

0 → Rm i → M → M/ Rm i → 0<br />

i=1<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> R-modules. It is clear that ∑ n<br />

i=1 Rm i is in S f.g. <strong>and</strong> M/ ∑ n<br />

i=1 Rm i is in S T or . So M is<br />

in (S f.g. , S T or ). C<strong>on</strong>sequently, <str<strong>on</strong>g>the</str<strong>on</strong>g> above equality holds.<br />

Next, it is clear that M ⊗ R Q has finite dimensi<strong>on</strong> as Q-vector space for an R-module<br />

M <str<strong>on</strong>g>of</str<strong>on</strong>g> (S T or , S f.g. ). Thus, <strong>on</strong>e has (S T or , S f.g. ) ⊆ (S f.g. , S T or ).<br />

Finally, we shall see that a field <str<strong>on</strong>g>of</str<strong>on</strong>g> fracti<strong>on</strong>s Q <str<strong>on</strong>g>of</str<strong>on</strong>g> R is in (S f.g. , S T or ) but not in<br />

(S T or , S f.g. ), so <strong>on</strong>e has (S T or , S f.g. ) (S f.g. , S T or ). Indeed, it follows from dim Q Q⊗ R Q =<br />

1 that Q is in (S f.g. , S T or ). On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r h<strong>and</strong>, we assume that Q is in (S T or , S f.g. ). Since<br />

R is a domain, a torsi<strong>on</strong> R-submodule <str<strong>on</strong>g>of</str<strong>on</strong>g> Q is <strong>on</strong>ly <str<strong>on</strong>g>the</str<strong>on</strong>g> zero module. It means that Q<br />

must be a finitely generated R-module. But, this is a c<strong>on</strong>tradicti<strong>on</strong>.<br />

i=1<br />

References<br />

[1] M. Aghapournahr <strong>and</strong> L. Melkerss<strong>on</strong>, Local cohomology <strong>and</strong> Serre subcategories, J. Algebra 320<br />

(2008), 1275–1287.<br />

[2] P. Gabriel, Des catégories abéliennes, Bull. Soc. Math. France 90 (1962), 323–448.<br />

[3] T. Yoshizawa, Subcategories <str<strong>on</strong>g>of</str<strong>on</strong>g> extensi<strong>on</strong> modules by Serre subcategories, To appear in Proc. Amer.<br />

Math. Soc.<br />

Graduate School <str<strong>on</strong>g>of</str<strong>on</strong>g> Natural Science <strong>and</strong> Technology<br />

Okayama University<br />

3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530 JAPAN<br />

E-mail address: tyoshiza@math.okayama-u.ac.jp<br />

–287–

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!