20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Sketch <str<strong>on</strong>g>of</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. We use inducti<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Krull dimensi<strong>on</strong> d := dim R. If d = 0, <str<strong>on</strong>g>the</str<strong>on</strong>g>n R<br />

is an Artinian ring, <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> asserti<strong>on</strong> follows from [14, Propositi<strong>on</strong> 7.37]. Assume d ≥ 1.<br />

By [10, Theorem 6.4], we have a sequence<br />

0 = I 0 ⊆ I 1 ⊆ · · · ⊆ I n = R<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ideals <str<strong>on</strong>g>of</str<strong>on</strong>g> R such that for each 1 ≤ i ≤ n <strong>on</strong>e has I i /I i−1<br />

∼ = R/pi with p i ∈ Spec R. Then<br />

every object X <str<strong>on</strong>g>of</str<strong>on</strong>g> D b (mod R) possesses a sequence<br />

0 = XI 0 ⊆ XI 1 ⊆ · · · ⊆ XI n = X<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> R-subcomplexes. Decompose this into exact triangles<br />

XI i−1 → XI i → XI i /XI i−1 → ΣXI i−1 ,<br />

in D b (mod R), <strong>and</strong> note that each XI i /XI i−1 bel<strong>on</strong>gs to D b (mod R/p i ). Hence <strong>on</strong>e may<br />

assume that R is an integral domain. By [16, Definiti<strong>on</strong>-Propositi<strong>on</strong> (1.20)], we can take a<br />

formal power series subring A = k[[x 1 , . . . , x d ]] <str<strong>on</strong>g>of</str<strong>on</strong>g> R such that R is a finitely generated A-<br />

module <strong>and</strong> that <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> Q(A) ⊆ Q(R) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> quotient fields is finite <strong>and</strong> separable.<br />

Claim 1. We have natural isomorphisms<br />

R ∼ = k[[x]][t]/(f(x, t)) = k[[x, t]]/(f(x, t)),<br />

S := R ⊗ A R ∼ = k[[x]][t, t ′ ]/(f(x, t), f(x, t ′ )) = k[[x, t, t ′ ]]/(f(x, t), f(x, t ′ )),<br />

U := R ̂⊗ k A ∼ = k[[x, t, x ′ ]]/(f(x, t)),<br />

T := R ̂⊗ k R ∼ = k[[x, t, x ′ , t ′ ]]/(f(x, t), f(x ′ , t ′ )).<br />

Here x = x 1 , . . . , x d , x ′ = x ′ 1, . . . , x ′ d , t = t 1, . . . , t n , t ′ = t ′ 1, . . . , t ′ n are indeterminates over<br />

k, <strong>and</strong> f(x, t) = f 1 (x, t), . . . , f m (x, t) are elements <str<strong>on</strong>g>of</str<strong>on</strong>g> k[[x]][t] ⊆ k[[x, t]]. In particular, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

rings S, T, U are Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian commutative complete local rings.<br />

There is a surjective ring homomorphism µ : S = R ⊗ A R → R which sends r ⊗ r ′ to<br />

rr ′ . This makes R an S-module. Using Claim 1, we observe that µ corresp<strong>on</strong>ds to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

map k[[x, t, t ′ ]]/(f(x, t), f(x, t ′ )) → k[[x, t]]/(f(x, t)) given by t ′ ↦→ t. Taking <str<strong>on</strong>g>the</str<strong>on</strong>g> kernel,<br />

we have an exact sequence<br />

0 → I → S µ −→ R → 0<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> finitely generated S-modules. Al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> injective ring homomorphism A → S sending<br />

a ∈ A to a ⊗ 1 = 1 ⊗ a ∈ S, we can regard A as a subring <str<strong>on</strong>g>of</str<strong>on</strong>g> S. Note that S is a finitely<br />

generated A-module. Put W = A \ {0}. This is a multiplicatively closed subset <str<strong>on</strong>g>of</str<strong>on</strong>g> A, R<br />

<strong>and</strong> S, <strong>and</strong> <strong>on</strong>e can take localizati<strong>on</strong> (−) W .<br />

Claim 2. The S W -module R W is projective.<br />

There are ring epimorphisms<br />

α : U → R,<br />

r ̂⊗ a ↦→ ra,<br />

β : T → S, r ̂⊗ r ′ ↦→ r ⊗ r ′ ,<br />

γ : T → R, r ̂⊗ r ′ ↦→ rr ′ .<br />

Identifying <str<strong>on</strong>g>the</str<strong>on</strong>g> rings R, S, T <strong>and</strong> U with <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding residue rings <str<strong>on</strong>g>of</str<strong>on</strong>g> formal power<br />

series rings made in Claim 1, we see that α, β are <str<strong>on</strong>g>the</str<strong>on</strong>g> maps given by x ′ ↦→ x, <strong>and</strong> γ<br />

–11–

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!