20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Remark 2. Let S 1 <strong>and</strong> S 2 be Serre subcategories <str<strong>on</strong>g>of</str<strong>on</strong>g> R-Mod.<br />

(1) Since <str<strong>on</strong>g>the</str<strong>on</strong>g> zero module bel<strong>on</strong>gs to any Serre subcategory, <strong>on</strong>e has S 1 ⊆ (S 1 , S 2 ) <strong>and</strong><br />

S 2 ⊆ (S 1 , S 2 ).<br />

(2) It holds S 1 ⊇ S 2 if <strong>and</strong> <strong>on</strong>ly if (S 1 , S 2 ) = S 1 .<br />

(3) It holds S 1 ⊆ S 2 if <strong>and</strong> <strong>on</strong>ly if (S 1 , S 2 ) = S 2 .<br />

(4) A subcategory (S 1 , S 2 ) is closed under finite direct sums.<br />

Example 3. We denote by S f.g. <str<strong>on</strong>g>the</str<strong>on</strong>g> subcategory c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> finitely generated R-<br />

modules <strong>and</strong> by S Artin <str<strong>on</strong>g>the</str<strong>on</strong>g> subcategory c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> Artinian R-modules. If R is a complete<br />

local ring, <str<strong>on</strong>g>the</str<strong>on</strong>g>n a subcategory (S f.g. , S Artin ) is known as <str<strong>on</strong>g>the</str<strong>on</strong>g> subcategory c<strong>on</strong>sisting<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Matlis reflexive R-modules. Therefore, (S f.g. , S Artin ) is a Serre subcategory <str<strong>on</strong>g>of</str<strong>on</strong>g> R-Mod.<br />

The following example shows that a subcategory (S 1 , S 2 ) needs not be a Serre subcategory<br />

for Serre subcategories S 1 <strong>and</strong> S 2 .<br />

Example 4. We shall see that <str<strong>on</strong>g>the</str<strong>on</strong>g> subcategory (S Artin , S f.g. ) needs not be closed under<br />

extensi<strong>on</strong>s.<br />

Let R be a <strong>on</strong>e dimensi<strong>on</strong>al Gorenstein local ring with a maximal ideal m. Then <strong>on</strong>e<br />

has a minimal injective resoluti<strong>on</strong><br />

0 → R → ⊕<br />

E R (R/p) → E R (R/m) → 0<br />

p ∈ Spec(R)<br />

htp = 0<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> R. (E R (M) denotes <str<strong>on</strong>g>the</str<strong>on</strong>g> injective hull <str<strong>on</strong>g>of</str<strong>on</strong>g> an R-module M.) We note that R <strong>and</strong><br />

E R (R/m) are in (S Artin , S f.g. ).<br />

Now, we assume that a subcategory (S Artin , S f.g. ) is closed under extensi<strong>on</strong>s. Then<br />

E R (R) = ⊕ htp=0 E R (R/p) is in (S Artin , S f.g. ). It follows from <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> (S Artin , S f.g. )<br />

that <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists an Artinian R-submodule X <str<strong>on</strong>g>of</str<strong>on</strong>g> E R (R) such that E R (R)/X is a finitely<br />

generated R-module.<br />

If X = 0, <str<strong>on</strong>g>the</str<strong>on</strong>g>n E R (R) is a finitely generated injective R-module. It follows from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Bass formula that <strong>on</strong>e has dim R = depth R = inj dim E R (R) = 0. However, this equality<br />

c<strong>on</strong>tradicts dim R = 1. On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r h<strong>and</strong>, if X ≠ 0, <str<strong>on</strong>g>the</str<strong>on</strong>g>n X is a n<strong>on</strong>-zero Artinian<br />

R-module. Therefore, <strong>on</strong>e has Ass R (X) = {m}. Since X is an R-submodule <str<strong>on</strong>g>of</str<strong>on</strong>g> E R (R),<br />

<strong>on</strong>e has<br />

Ass R (X) ⊆ Ass R (E R (R)) = {p ∈ Spec(R) | ht p = 0}.<br />

This is c<strong>on</strong>tradicti<strong>on</strong> as well.<br />

3. The main result<br />

In this secti<strong>on</strong>, we shall give a criteri<strong>on</strong> for a subcategory (S 1 , S 2 ) to be a Serre subcategory<br />

for Serre subcategories S 1 <strong>and</strong> S 2 .<br />

First <str<strong>on</strong>g>of</str<strong>on</strong>g> all, it is easy to see that <str<strong>on</strong>g>the</str<strong>on</strong>g> following asserti<strong>on</strong> holds.<br />

Propositi<strong>on</strong> 5. Let S 1 <strong>and</strong> S 2 be Serre subcategories <str<strong>on</strong>g>of</str<strong>on</strong>g> R-Mod.<br />

(S 1 , S 2 ) is closed under submodules <strong>and</strong> quotient modules.<br />

–283–<br />

Then a subcategory

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!