20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

(2) Suppose that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a triangle<br />

L −−−→ M −−−→ N −−−→ L[1],<br />

in CM(R). Then M stably degenerates to L ⊕ N, thus M ≤ st L ⊕ N. (See [9,<br />

Propositi<strong>on</strong> 4.3].)<br />

We need <str<strong>on</strong>g>the</str<strong>on</strong>g> following propositi<strong>on</strong> to prove Theorem 12.<br />

Propositi<strong>on</strong> 17. Let (R, m, k) be a Gorenstein complete local ring <strong>and</strong> let M, N ∈<br />

CM(R). Assume [M] = [N] in K 0 (mod(R)). Then M ≤ tri N if <strong>and</strong> <strong>on</strong>ly if M ≤ ext N. □<br />

Now we proceed to <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 12.<br />

Let k be an algebraically closed field <str<strong>on</strong>g>of</str<strong>on</strong>g> characteristic 0 <strong>and</strong> let<br />

R = k[[x 0 , x 1 , x 2 , · · · , x d ]]/(x n+1<br />

0 + x 2 1 + x 2 2 + · · · + x 2 d)<br />

as in <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>orem, where we assume that d is even. Suppose that M ≤ deg N for maximal<br />

Cohen-Macaulay R-modules M <strong>and</strong> N. We want to show M ≤ ext N.<br />

Since M ≤ deg N, we have M ≤ st N in CM(R) <strong>and</strong> [M] = [N] in K 0 (mod(R)), by<br />

Remarks 16(1) <strong>and</strong> 3(3). Now let us denote R ′ = k[[x 0 ]]/(x n+1<br />

0 ), <strong>and</strong> we note that CM(R)<br />

<strong>and</strong> CM(R ′ ) are equivalent to each o<str<strong>on</strong>g>the</str<strong>on</strong>g>r as triangulated categories. In fact this equivalence<br />

is given by using <str<strong>on</strong>g>the</str<strong>on</strong>g> lemma <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Knörrer’s periodicity (cf. [5]), since d is even. Let<br />

Ω : CM(R) → CM(R ′ ) be a triangle functor which gives <str<strong>on</strong>g>the</str<strong>on</strong>g> equivalence. Then, by virtue<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Corollary 14, we have Ω(M) ≤ st Ω(N) in CM(R ′ ). Since R ′ is an artinian algebra, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

equivalence (1) ⇔ (3) holds in Theorem 13, <strong>and</strong> thus we have ˜M ⊕ R ′m ≤ deg Ñ ⊕ R ′n ,<br />

where ˜M (resp. Ñ) is a module in CM(R ′ ) with ˜M ∼ = Ω(M) (resp. Ñ ∼ = Ω(N)) <strong>and</strong> m, n<br />

are n<strong>on</strong>-negative integers. It <str<strong>on</strong>g>the</str<strong>on</strong>g>n follows from Corollary 11 that ˜M ⊕ R ′m ≤ ext Ñ ⊕ R ′n .<br />

Hence, by Propositi<strong>on</strong> 17, we have that Ω(M) ≤ tri Ω(N) in CM(R ′ ). Noting that <str<strong>on</strong>g>the</str<strong>on</strong>g> partial<br />

order ≤ tri is preserved under a triangle functor, we see that M ≤ tri N in CM(R). Since<br />

[M] = [N] in K 0 (mod(R)), applying Propositi<strong>on</strong> 17, we finally obtain that M ≤ ext N. □<br />

Example 18. Let R = k[[x 0 , x 1 , x 2 ]]/(x 3 0 + x 2 1 + x 2 2), where k is an algebraically closed<br />

field <str<strong>on</strong>g>of</str<strong>on</strong>g> characteristic 0. Let p <strong>and</strong> q be <str<strong>on</strong>g>the</str<strong>on</strong>g> ideals generated by (x 0 , x 1 − √ −1 x 2 ) <strong>and</strong><br />

(x 2 0, x 1 + √ −1 x 2 ) respectively. It is known that <str<strong>on</strong>g>the</str<strong>on</strong>g> set {R, p, q} is a complete list <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

isomorphism classes <str<strong>on</strong>g>of</str<strong>on</strong>g> indecomposable maximal Cohen-Macaulay modules over R. The<br />

Hasse diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> degenerati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> maximal Cohen-Macaulay R-modules <str<strong>on</strong>g>of</str<strong>on</strong>g> rank 3 is a<br />

disjoint uni<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> following diagrams:<br />

p ⊕ p ⊕ p<br />

❄ ❄❄❄❄❄<br />

8 88888<br />

R ⊕ p ⊕ q<br />

q ⊕ q ⊕ q<br />

p ⊕ p ⊕ q<br />

R ⊕ q ⊕ q<br />

p ⊕ q ⊕ q<br />

R ⊕ p ⊕ p<br />

R 3 ,<br />

–65–<br />

R 2 ⊕ p,<br />

R 2 ⊕ q.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!