20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Then we have <str<strong>on</strong>g>the</str<strong>on</strong>g> following result.<br />

Theorem 2. (Theorem 7) Let Λ be a finite dimensi<strong>on</strong>al algebra with gl.dimΛ ≤ 2 <strong>and</strong><br />

T k be <str<strong>on</strong>g>the</str<strong>on</strong>g> APR tilting Λ-module associated with a source k. Then we have an algebra<br />

isomorphism<br />

End Λ (T k ) ∼ = P(µ L k (Q Λ , W Λ , C Λ )).<br />

We give three remarks about <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>orem. First, we can show that P(µ L k (Q Λ, W Λ , C Λ ))<br />

coincides with K(µ k Q) if gl.dimΛ = 1, so that Theorem 2 gives a generalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem<br />

1. Sec<strong>on</strong>d, <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong> gl.dimΛ ≤ 2 is actually not necessary, <strong>and</strong> it is enough<br />

to assume that <str<strong>on</strong>g>the</str<strong>on</strong>g> associated projective module has <str<strong>on</strong>g>the</str<strong>on</strong>g> injective dimensi<strong>on</strong> at most 2.<br />

Finally, this isomorphic provides a bridge <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> two noti<strong>on</strong>s which have entirely different<br />

origins, <strong>and</strong> it implies that <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>temporary c<strong>on</strong>cepts have a pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ound c<strong>on</strong>necti<strong>on</strong> with<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> classical <strong>on</strong>es.<br />

C<strong>on</strong>venti<strong>on</strong>s <strong>and</strong> notati<strong>on</strong>s. We always suppose that K is an algebraically closed field<br />

for simplicity. All modules are left modules <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> compositi<strong>on</strong> fg <str<strong>on</strong>g>of</str<strong>on</strong>g> morphisms means<br />

first f, <str<strong>on</strong>g>the</str<strong>on</strong>g>n g. We denote <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> vertices by Q 0 <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> arrows by Q 1 <str<strong>on</strong>g>of</str<strong>on</strong>g> a quiver<br />

Q. We denote by a : s(a) → e(a) <str<strong>on</strong>g>the</str<strong>on</strong>g> start <strong>and</strong> end vertices <str<strong>on</strong>g>of</str<strong>on</strong>g> an arrow or path a.<br />

2. Preliminaries<br />

In this secti<strong>on</strong>, we give a brief summary <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong>s <strong>and</strong> results we will use in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

next secti<strong>on</strong>s. See references for more detailed arguments <strong>and</strong> precise definiti<strong>on</strong>s.<br />

2.1. Quivers with potentials. We review <str<strong>on</strong>g>the</str<strong>on</strong>g> noti<strong>on</strong>s initiated in [10].<br />

• Let Q be a finite c<strong>on</strong>nected quiver. We denote by KQ i <str<strong>on</strong>g>the</str<strong>on</strong>g> K-vector space with basis<br />

c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> paths <str<strong>on</strong>g>of</str<strong>on</strong>g> length i in Q, <strong>and</strong> by KQ i,cyc <str<strong>on</strong>g>the</str<strong>on</strong>g> subspace <str<strong>on</strong>g>of</str<strong>on</strong>g> KQ i spanned by all<br />

cycles. We denote complete path algebra by<br />

̂KQ = ∏ i≥0<br />

KQ i .<br />

A quiver with potential (QP) is a pair (Q, W ) c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> a quiver Q <strong>and</strong> an element<br />

W ∈ ∏ i≥2 KQ i,cyc, called a potential. For each arrow a in Q, <str<strong>on</strong>g>the</str<strong>on</strong>g> cyclic derivative<br />

∂ a : ̂KQ cyc → ̂KQ is defined by <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tinuous linear map which sends ∂ a (a 1 · · · a d ) =<br />

∑<br />

a i =a a i+1 · · · a d a 1 · · · a i−1 . For a QP (Q, W ), we define <str<strong>on</strong>g>the</str<strong>on</strong>g> Jacobian algebra by<br />

P(Q, W ) = ̂KQ/J (W ),<br />

where J (W ) = 〈∂ a W | a ∈ Q 1 〉 is <str<strong>on</strong>g>the</str<strong>on</strong>g> closure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ideal generated by ∂ a W with respect<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> J ̂KQ<br />

-adic topology.<br />

• A QP (Q, W ) is called reduced if W ∈ ∏ i≥3 KQ i,cyc.<br />

• For two QPs (Q ′ , W ′ ) <strong>and</strong> (Q ′′ , W ′′ ), we define a<br />

∐<br />

new QP (Q, W ) as a direct sum<br />

(Q ′ , W ′ ) ⊕ (Q ′′ , W ′′ ), where Q 0 = Q ′ 0(= Q ′′<br />

0), Q 1 = Q ′ 1 Q<br />

′′<br />

1 <strong>and</strong> W = W ′ + W ′′ .<br />

Definiti<strong>on</strong> 3. For each vertex k in Q not lying <strong>on</strong> a loop nor 2-cycle, we define a mutati<strong>on</strong><br />

µ k (Q, W ) as a reduced part <str<strong>on</strong>g>of</str<strong>on</strong>g> ˜µ k (Q, W ) = (Q ′ , W ′ ), where (Q ′ , W ′ ) is given as follows.<br />

–115–

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!