20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

(1) If σ is critical, so is σ \ { (˜m σ ) ⟨ir ⟩ } for 1 ≤ r ≤ q.<br />

(2) Let σ <strong>and</strong> τ be (not necessarily critical) cells with P σ,τ ≠ ∅. Then lcm(τ) divides<br />

lcm(σ).<br />

(3) Let σ ∈ X q A , τ ∈ Xq−1 A<br />

<strong>and</strong> assume that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a gradient path σ → σ \ {˜m} =<br />

σ 0 → σ 1 → · · · → σ l = τ. Then #σ l−1 = #τ + 1 = q + 1, #σ i = q or q + 1 for<br />

each i, <strong>and</strong> σ i is not critical for all 0 ≤ i < l. Hence, if l > 1, <str<strong>on</strong>g>the</str<strong>on</strong>g>n ˜m must be ˜m σ .<br />

Next, we will show <str<strong>on</strong>g>the</str<strong>on</strong>g> following.<br />

Propositi<strong>on</strong> 18. Let σ, τ be critical cells with #σ = #τ + 1, <strong>and</strong> ( ˜F σ , ˜m σ ) <strong>and</strong> ( ˜F τ , ˜m τ )<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> admissible pairs corresp<strong>on</strong>ding to σ <strong>and</strong> τ respectively. Set ˜F σ = { (i 1 , j 1 ), . . . , (i q , j q ) }<br />

with i 1 < · · · < i q . Then P σ\{ ˜mσ},τ ≠ ∅ if <strong>and</strong> <strong>on</strong>ly if <str<strong>on</strong>g>the</str<strong>on</strong>g>re is some r ∈ B( ˜F σ , ˜m σ ) with<br />

( ˜F τ , ˜m τ ) = (( ˜F σ ) r , (˜m σ ) ⟨ir ⟩). If this is <str<strong>on</strong>g>the</str<strong>on</strong>g> case, we have #P σ\{ ˜mσ },τ = 1.<br />

Sketch <str<strong>on</strong>g>of</str<strong>on</strong>g> Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Only if part follows from <str<strong>on</strong>g>the</str<strong>on</strong>g> above remark. Note that <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d index<br />

j <str<strong>on</strong>g>of</str<strong>on</strong>g> each x i,j ∈ ˜S restricts <str<strong>on</strong>g>the</str<strong>on</strong>g> choice <str<strong>on</strong>g>of</str<strong>on</strong>g> paths <strong>and</strong> it makes <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> easier.<br />

Next, assuming ˜F τ = ( ˜F σ ) r <strong>and</strong> ˜m τ = (˜m σ ) ⟨ir ⟩ for some r ∈ B( ˜F σ , ˜m σ ), we will c<strong>on</strong>struct<br />

a gradient path from σ \ {˜m σ } to τ. For short notati<strong>on</strong>, set ˜m [s] := (˜m σ ) ⟨is ⟩ <strong>and</strong> ˜m [s,t] :=<br />

((˜m σ ) ⟨is⟩) ⟨it⟩. By (4.1), we have σ 0 := (σ \ {˜m σ }) = { ˜m [s] | 1 ≤ s ≤ q } <strong>and</strong> τ =<br />

{ ˜m [r,s] | 1 ≤ s ≤ q, s ≠ r } ∪ {˜m [r] }. We can inductively c<strong>on</strong>struct a gradient path<br />

σ 0 → σ 1 → · · · → σ t → · · · σ 2(q−r+1)r−2 as follows. Write t = 2pr + λ with t ≠ 0,<br />

0 ≤ p ≤ q − r, <strong>and</strong> 0 ≤ λ < 2r. For 0 < t ≤ 2(q − r), we set<br />

⎧<br />

⎪⎨ σ t−1 ∪ { ˜m [q−p,s] } if λ = 2s − 1 for some 1 ≤ s ≤ r;<br />

σ t = σ t−1 \ { ˜m [q−p+1,s] } if λ = 2s for some 0 < s < r;<br />

⎪⎩<br />

σ t \ { ˜m [q−p+1] } if λ = 0,<br />

where we set ˜m [q+1,s] = ˜m [s] for all s. In <str<strong>on</strong>g>the</str<strong>on</strong>g> case ˜m [s,t] = ˜m [s+1,t] , it seems to cause a<br />

problem, but skipping <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding part <str<strong>on</strong>g>of</str<strong>on</strong>g> path, we can avoid <str<strong>on</strong>g>the</str<strong>on</strong>g> problem. Since<br />

r ∈ B( ˜F σ , ˜m σ ), we have ˜m [s,r] = ˜m [r,s] for all s > r by Lemma 3 (iv). Hence<br />

σ 2(q−r) = { ˜m [r+1,s] | 1 ≤ s < r } ∪ { ˜m [r] } ∪ { ˜m [r,s] | r < s ≤ q }.<br />

Now for s with 0 < s ≤ r − 1, set σ t with 2(q − r)r < t ≤ 2(q − r + 1)r − 2 to be<br />

σ t−1 ∪ { ˜m [r,s] } if s is odd <strong>and</strong> o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise σ t−1 \ { ˜m [r+1,s] }. Then we have σ 2(q−r+1)r−2 = τ,<br />

<strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> gradient path σ ❀ τ.<br />

The uniqueness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> path follows from elementally (but lengthy) argument. □<br />

Sketch <str<strong>on</strong>g>of</str<strong>on</strong>g> Pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 17. Recall that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>e-to-<strong>on</strong>e corresp<strong>on</strong>dence between<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> critical cells σ ⊂ G(Ĩ) <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> admissible pairs ( ˜F σ , ˜m σ ). Hence, for each q, we<br />

have <str<strong>on</strong>g>the</str<strong>on</strong>g> isomorphism ˜Q q → ˜P q induced by e(σ) ↦−→ e( ˜F σ , ˜m σ ).<br />

By Propositi<strong>on</strong> 18, if we forget “coefficients”, <str<strong>on</strong>g>the</str<strong>on</strong>g> differential map <str<strong>on</strong>g>of</str<strong>on</strong>g> ˜Q • <strong>and</strong> that <str<strong>on</strong>g>of</str<strong>on</strong>g> ˜P •<br />

are compatible with <str<strong>on</strong>g>the</str<strong>on</strong>g> maps e(σ) ↦−→ e( ˜F σ , ˜m σ ). So it is enough to check <str<strong>on</strong>g>the</str<strong>on</strong>g> equality<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> coefficients. But it follows from direct computati<strong>on</strong>.<br />

□<br />

Corollary 19 ([14, Corollary 5.12]). The free resoluti<strong>on</strong> ˜P • ⊗ ˜S<br />

˜S/(Θ) (resp. ˜P• ⊗ ˜S<br />

˜S/(Θa ))<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> S/I (resp. T/I γ(a) ) is also a cellular resoluti<strong>on</strong> supported by X A . In particular, <str<strong>on</strong>g>the</str<strong>on</strong>g>se<br />

resoluti<strong>on</strong>s are Batzies-Welker type.<br />

–151–

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!