20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. If A embeds in ̂R, <str<strong>on</strong>g>the</str<strong>on</strong>g>n A admits a generating character, by Lemmas 10 <strong>and</strong> 11.<br />

C<strong>on</strong>versely, let ϱ be a generating character <str<strong>on</strong>g>of</str<strong>on</strong>g> A. We use ϱ to define f : A → ̂R, as<br />

follows. For a ∈ A, define f(a) ∈ ̂R by f(a)(r) = ϱ(ra), r ∈ R. It is easy to check that<br />

f(a) is indeed in ̂R, i.e., that f(a) is a character <str<strong>on</strong>g>of</str<strong>on</strong>g> R. It is also easy to verify that f is<br />

a left R-module homomorphism from A to ̂R. If a ∈ ker f, <str<strong>on</strong>g>the</str<strong>on</strong>g>n ϱ(ra) = 0 for all r ∈ R.<br />

Thus <str<strong>on</strong>g>the</str<strong>on</strong>g> left R-submodule Ra ⊂ ker ϱ. Because ϱ is a generating character, we c<strong>on</strong>clude<br />

that Ra = 0. Thus a = 0, <strong>and</strong> f is injective.<br />

□<br />

When A = R, Propositi<strong>on</strong> 12 is c<strong>on</strong>sistent with <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a generating character<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a ring. Indeed, if R embeds into ̂R, <str<strong>on</strong>g>the</str<strong>on</strong>g>n R <strong>and</strong> ̂R are isomorphic as <strong>on</strong>e-sided modules,<br />

because <str<strong>on</strong>g>the</str<strong>on</strong>g>y have <str<strong>on</strong>g>the</str<strong>on</strong>g> same number <str<strong>on</strong>g>of</str<strong>on</strong>g> elements.<br />

Theorem 13 (†). Let R = M m (F q ) be <str<strong>on</strong>g>the</str<strong>on</strong>g> ring <str<strong>on</strong>g>of</str<strong>on</strong>g> m × m matrices over a finite field F q .<br />

Let A = M m×k (F q ) be <str<strong>on</strong>g>the</str<strong>on</strong>g> left R-module <str<strong>on</strong>g>of</str<strong>on</strong>g> all m × k matrices over F q . Then A admits a<br />

left generating character if <strong>and</strong> <strong>on</strong>ly if m ≥ k.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. If m ≥ k, <str<strong>on</strong>g>the</str<strong>on</strong>g>n, by appending m − k columns <str<strong>on</strong>g>of</str<strong>on</strong>g> zeros, A can be embedded inside<br />

R as a left ideal. By Example 3 <strong>and</strong> Lemma 10, A admits a generating character.<br />

C<strong>on</strong>versely, suppose m < k. We will show that no character <str<strong>on</strong>g>of</str<strong>on</strong>g> A is a generating<br />

character <str<strong>on</strong>g>of</str<strong>on</strong>g> A. To that end, let ϖ be any character <str<strong>on</strong>g>of</str<strong>on</strong>g> A. By Example 3, ϖ has <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

form ϖ Q for some k × m matrix Q over F q . Because k > m, <str<strong>on</strong>g>the</str<strong>on</strong>g> rows <str<strong>on</strong>g>of</str<strong>on</strong>g> Q are linearly<br />

dependent over F q . Let P be any n<strong>on</strong>zero matrix over F q <str<strong>on</strong>g>of</str<strong>on</strong>g> size m × k such that P Q = 0.<br />

Such a P exists because <str<strong>on</strong>g>the</str<strong>on</strong>g> rows <str<strong>on</strong>g>of</str<strong>on</strong>g> Q are linearly dependent: use <str<strong>on</strong>g>the</str<strong>on</strong>g> coefficients <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

n<strong>on</strong>zero dependency relati<strong>on</strong> as <str<strong>on</strong>g>the</str<strong>on</strong>g> entries for a row <str<strong>on</strong>g>of</str<strong>on</strong>g> P . We claim that <str<strong>on</strong>g>the</str<strong>on</strong>g> n<strong>on</strong>zero<br />

left submodule <str<strong>on</strong>g>of</str<strong>on</strong>g> A generated by P is c<strong>on</strong>tained in ker ϖ Q . Indeed, for any B ∈ R,<br />

ϖ Q (BP ) = ϑ q (tr(Q(BP ))) = ϑ q (tr((BP )Q)) = ϑ q (tr(B(P Q))) = 0, using P Q = 0 <strong>and</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> well-known property tr(BC) = tr(CB) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> matrix trace. Thus, no character <str<strong>on</strong>g>of</str<strong>on</strong>g> A<br />

is a generating character.<br />

□<br />

Propositi<strong>on</strong> 14 (†). Suppose A is a finite left R-module. Then A admits a left generating<br />

character if <strong>and</strong> <strong>on</strong>ly if soc(A) admits a left generating character.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. If A admits a generating character, <str<strong>on</strong>g>the</str<strong>on</strong>g>n so does soc(A), by Lemma 10.<br />

C<strong>on</strong>versely, suppose soc(A) admits a generating character ϑ. Utilizing <str<strong>on</strong>g>the</str<strong>on</strong>g> short exact<br />

sequence (2.4), let ϱ be any extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ϑ to a character <str<strong>on</strong>g>of</str<strong>on</strong>g> A . We claim that ϱ is<br />

a generating character <str<strong>on</strong>g>of</str<strong>on</strong>g> A. To that end, suppose B is a submodule <str<strong>on</strong>g>of</str<strong>on</strong>g> A such that<br />

B ⊂ ker ϱ. Then soc(B) ⊂ soc(A) ∩ ker ϱ = soc(A) ∩ ker ϑ, because ϱ is an extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

ϑ. But ϑ is a generating character <str<strong>on</strong>g>of</str<strong>on</strong>g> soc(A), so soc(B) = 0. Since B is a finite module,<br />

we c<strong>on</strong>clude that B = 0. Thus ϱ is a generating character <str<strong>on</strong>g>of</str<strong>on</strong>g> A.<br />

□<br />

Corollary 15 (†). Let A be a finite left R-module. Suppose soc(A) admits a left generating<br />

character ϑ. Then any extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ϑ to a character <str<strong>on</strong>g>of</str<strong>on</strong>g> A is a left generating character<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> A.<br />

We now (finally) turn to <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 5.<br />

(†) Pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 5. Statements (2) <strong>and</strong> (3) are equivalent by Propositi<strong>on</strong> 8. We next<br />

show that (3) implies (1).<br />

–229–

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!