20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

says that comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> type ZA ∞ cannot occur. In fact, we shall see in <str<strong>on</strong>g>the</str<strong>on</strong>g> next secti<strong>on</strong><br />

that we cannot have comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> type Z∆ for ∆ = Ã1, Ẽ6, Ẽ7, or Ẽ8 ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r. At this<br />

point we would like to state a sec<strong>on</strong>d questi<strong>on</strong> that has actually been around in <str<strong>on</strong>g>the</str<strong>on</strong>g> area<br />

for some time.<br />

Questi<strong>on</strong> 8. Let R be a selfinjective algebra <strong>and</strong> assume that its Ausl<strong>and</strong>er-Reiten quiver<br />

c<strong>on</strong>tains a comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> type Z∆ where ∆ = Ãn, ˜D n , Ẽ6, Ẽ7, Ẽ8, D ∞ or A ∞ ∞. Does this<br />

imply that R is a tame algebra?<br />

The answer to <str<strong>on</strong>g>the</str<strong>on</strong>g> above questi<strong>on</strong> is affirmative in <str<strong>on</strong>g>the</str<strong>on</strong>g> group algebra case, see [12]. Therefore<br />

it seems that given a selfinjective algebra, almost all <str<strong>on</strong>g>the</str<strong>on</strong>g> indecomposable modules are<br />

eventually Ω-perfect. We will discuss more about this phenomen<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> next secti<strong>on</strong>.<br />

C<strong>on</strong>sidering Theorem 2.7, it turns out that a similar result holds for comp<strong>on</strong>ents c<strong>on</strong>taining<br />

modules <str<strong>on</strong>g>of</str<strong>on</strong>g> finite complexity. The following result was proved in [20]. It is a<br />

generalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Webb’s <str<strong>on</strong>g>the</str<strong>on</strong>g>orem who had proved it first for group algebras [28].<br />

Theorem 9. Let R be a selfinjective algebra <strong>and</strong> let C s be a stable comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Ausl<strong>and</strong>er-Reiten quiver <str<strong>on</strong>g>of</str<strong>on</strong>g> R c<strong>on</strong>taining a module <str<strong>on</strong>g>of</str<strong>on</strong>g> finite complexity. Assume in additi<strong>on</strong><br />

that <str<strong>on</strong>g>the</str<strong>on</strong>g> comp<strong>on</strong>ent is not τ-periodic. Then C s is <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> form Z∆ where ∆ is <str<strong>on</strong>g>of</str<strong>on</strong>g> type<br />

à n , ˜D n , Ẽ6, Ẽ7, Ẽ8, or an infinite Dynkin tree <str<strong>on</strong>g>of</str<strong>on</strong>g> type A ∞ , D ∞ or A ∞ ∞.<br />

□<br />

3. Ω-perfect modules<br />

In this secti<strong>on</strong> we c<strong>on</strong>tinue <str<strong>on</strong>g>the</str<strong>on</strong>g> study <str<strong>on</strong>g>of</str<strong>on</strong>g> Ω-perfect modules over a selfinjective algebra<br />

<strong>and</strong> show that every comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> type ZẼi for i = 6, 7, 8 or ZÃ1 c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> eventually<br />

Ω-perfect modules. We also give an example <str<strong>on</strong>g>of</str<strong>on</strong>g> a comp<strong>on</strong>ent c<strong>on</strong>taining <strong>on</strong>ly modules<br />

that are not Ω-perfect, <strong>and</strong> discuss possible values for complexities. We also pose some<br />

new questi<strong>on</strong>s. We will need <str<strong>on</strong>g>the</str<strong>on</strong>g> noti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> τ-perfect irreducible map. It is obviously very<br />

similar to <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> Ω-perfect map: we say that an irreducible map g : B → C is called<br />

τ-perfect if for all n ≥ 0 <str<strong>on</strong>g>the</str<strong>on</strong>g> induced maps τ n g : τ n B → τ n C are all m<strong>on</strong>omorphisms or<br />

are all epimorphisms.<br />

If C is a comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Ausl<strong>and</strong>er-Reiten quiver <str<strong>on</strong>g>of</str<strong>on</strong>g> R, we will denote by C s its stable<br />

part, <strong>and</strong> by ΩC <str<strong>on</strong>g>the</str<strong>on</strong>g> comp<strong>on</strong>ent c<strong>on</strong>taining all <str<strong>on</strong>g>the</str<strong>on</strong>g> modules <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> form ΩX for X ∈ C<br />

n<strong>on</strong> projective. We have <str<strong>on</strong>g>the</str<strong>on</strong>g> following:<br />

Propositi<strong>on</strong> 10. Let R be a selfinjective artin algebra <strong>and</strong> let C be an Ausl<strong>and</strong>er-Reiten<br />

comp<strong>on</strong>ent. If <str<strong>on</strong>g>the</str<strong>on</strong>g> module X ∈ C does not have any projective or simple predecessors in<br />

C, <str<strong>on</strong>g>the</str<strong>on</strong>g>n ΩX does not have ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r any simple or projective predecessors in ΩC.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Assume that ΩX has a simple predecessor S in <str<strong>on</strong>g>the</str<strong>on</strong>g> comp<strong>on</strong>ent ΩC. By applying<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> inverse syzygy operator we obtain in C a chain <str<strong>on</strong>g>of</str<strong>on</strong>g> irreducible maps Ω −1 S → · · · → X.<br />

Denote by P <str<strong>on</strong>g>the</str<strong>on</strong>g> indecomposable projective-injective with socle S. We have an Ausl<strong>and</strong>er-<br />

Reiten sequence 0 → rP → P ⊕ rP/S → P/S → 0, <strong>and</strong> since P/S ∼ = Ω −1 S, we see that<br />

P is a predecessor <str<strong>on</strong>g>of</str<strong>on</strong>g> X in C. Assume now that ΩX has a projective predecessor in its<br />

comp<strong>on</strong>ent, so <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a chain <str<strong>on</strong>g>of</str<strong>on</strong>g> irreducible maps P → P/S → · · · → ΩX where S<br />

is <str<strong>on</strong>g>the</str<strong>on</strong>g> socle <str<strong>on</strong>g>of</str<strong>on</strong>g> P . As before, we have that P/S ∼ = Ω −1 S, so <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a chain <str<strong>on</strong>g>of</str<strong>on</strong>g> irreducible<br />

maps in Ω 2 C from S to Ω 2 X. Applying <str<strong>on</strong>g>the</str<strong>on</strong>g> Nakayama functor, we obtain that τX, <strong>and</strong><br />

hence X have a simple predecessor since <str<strong>on</strong>g>the</str<strong>on</strong>g> Nakayama functor preserves lengths. □<br />

–80–

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!