20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Dually a complete list <str<strong>on</strong>g>of</str<strong>on</strong>g> indecomposable injective objects in mod Z A is given by<br />

{I(i) | i ∈ Z, I is an indecomposable injective A-module}.<br />

If A is self-injective, <str<strong>on</strong>g>the</str<strong>on</strong>g>n mod Z A is a Frobenius category by Propositi<strong>on</strong> 3 <strong>and</strong> Propositi<strong>on</strong><br />

4. So in this case, <str<strong>on</strong>g>the</str<strong>on</strong>g> stable category mod Z A has a structure <str<strong>on</strong>g>of</str<strong>on</strong>g> triangulated category<br />

by [5].<br />

Lemma 5. If A is self-injective, <str<strong>on</strong>g>the</str<strong>on</strong>g> following asserti<strong>on</strong>s hold.<br />

(1) mod Z A is a Frobenius category.<br />

(2) mod Z A has a structure <str<strong>on</strong>g>of</str<strong>on</strong>g> triangulated category whose shift functor [1] is given by<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> graded cosyzygy functor Ω −1 : mod Z A → mod Z A.<br />

2.2. Tilting <str<strong>on</strong>g>the</str<strong>on</strong>g>orem for algebraic triangulated categories. In this subsecti<strong>on</strong>, we<br />

recall tilting <str<strong>on</strong>g>the</str<strong>on</strong>g>orem for algebraic triangulated categories which is due to Keller [7]. It<br />

is a <str<strong>on</strong>g>the</str<strong>on</strong>g>orem which provides a method for comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> given triangulated category <strong>and</strong><br />

homotopy category <str<strong>on</strong>g>of</str<strong>on</strong>g> bounded complexes <str<strong>on</strong>g>of</str<strong>on</strong>g> projective modules over some algebra.<br />

First let us recall <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> algebraic triangulated categories again.<br />

Definiti<strong>on</strong> 6. A triangulated category T is algebraic if it is triangle-equivalent to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

stable category <str<strong>on</strong>g>of</str<strong>on</strong>g> some Frobenius category.<br />

A class <str<strong>on</strong>g>of</str<strong>on</strong>g> algebraic triangulated categories c<strong>on</strong>tains <str<strong>on</strong>g>the</str<strong>on</strong>g> following important examples.<br />

Example 7. (1) Let Z be an abelian group, <strong>and</strong> A a Z-graded self-injective algebra.<br />

Then mod Z A is a Frobenius category, <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> stable category mod Z A is an algebraic<br />

triangulated category (Lemma 5).<br />

(2) Let Λ be an algebra. The category C b (projΛ) <str<strong>on</strong>g>of</str<strong>on</strong>g> bounded complexes <str<strong>on</strong>g>of</str<strong>on</strong>g> projective<br />

Λ-modules can be regarded as a Frobenius category whose stable category is <str<strong>on</strong>g>the</str<strong>on</strong>g> homotopy<br />

category K b (projΛ) <str<strong>on</strong>g>of</str<strong>on</strong>g> bounded complexes <str<strong>on</strong>g>of</str<strong>on</strong>g> projective Λ-modules (cf. [5]).<br />

In tilting <str<strong>on</strong>g>the</str<strong>on</strong>g>ory, tilting objects which is defined as follows play an important role.<br />

Definiti<strong>on</strong> 8. Let T be a triangulated category. An object T ∈ T is called a tilting object<br />

in T if it satisfies <str<strong>on</strong>g>the</str<strong>on</strong>g> following c<strong>on</strong>diti<strong>on</strong>s.<br />

(1) Hom T (T, T [i]) = 0 for i ≠ 0.<br />

(2) T = thickT .<br />

Here thickT is <str<strong>on</strong>g>the</str<strong>on</strong>g> smallest triangulated full subcategory <str<strong>on</strong>g>of</str<strong>on</strong>g> T which c<strong>on</strong>tains T , <strong>and</strong> is<br />

closed under direct summ<strong>and</strong>s.<br />

The following is a typical example <str<strong>on</strong>g>of</str<strong>on</strong>g> tilting objects.<br />

Example 9. Let Λ be a ring. Λ can be regarded as a complex which c<strong>on</strong>centrates in<br />

degree 0. So Λ is c<strong>on</strong>tained in a triangulated category K b (projΛ). It is a tilting object in<br />

K b (projΛ).<br />

The following result is Keller’s tilting <str<strong>on</strong>g>the</str<strong>on</strong>g>orem which determine when is an algebraic<br />

triangulated category triangle-equivalent to K b (projΛ) for some algebra Λ,<br />

Theorem 10. [7, Theorem 4.3.] Let T be an algebraic triangulated category. If T has a<br />

tilting object T , <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a triangle-equivalence up to direct summ<strong>and</strong>s<br />

T ≃ K b (projEnd T (T )).<br />

–249–

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!