20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Note that P <strong>and</strong> I are well-defined as subcategories <str<strong>on</strong>g>of</str<strong>on</strong>g> mod Λ since Λ is n-representati<strong>on</strong><br />

infinite. Many properties <str<strong>on</strong>g>of</str<strong>on</strong>g> representati<strong>on</strong> infinite hereditary algebras generalize to n-<br />

representati<strong>on</strong> infinite algebras. For instance n-regular modules can be characterized by<br />

R = {X ∈ mod Λ | ν i n(X) ∈ mod Λ for all i ∈ Z}. Moreover, <strong>on</strong>e has <str<strong>on</strong>g>the</str<strong>on</strong>g> following result<br />

about vanishing <str<strong>on</strong>g>of</str<strong>on</strong>g> homomorphisms <strong>and</strong> extensi<strong>on</strong>s.<br />

Theorem 4. Let Λ be an n-representati<strong>on</strong> infinite algebra. Then <str<strong>on</strong>g>the</str<strong>on</strong>g> following holds:<br />

Hom Λ (R, P) = 0, Hom Λ (I, P) = 0, Hom Λ (I, R) = 0,<br />

Ext n Λ(P, R) = 0, Ext n Λ(P, I) = 0, Ext n Λ(R, I) = 0.<br />

3. n-representati<strong>on</strong> infinite algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> type Ã<br />

In this secti<strong>on</strong> we assume that K is an algebraically closed field <str<strong>on</strong>g>of</str<strong>on</strong>g> characteristic zero.<br />

We shall present a family <str<strong>on</strong>g>of</str<strong>on</strong>g> n-representati<strong>on</strong> infinite algebras by generalizing <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

simplest classes <str<strong>on</strong>g>of</str<strong>on</strong>g> representati<strong>on</strong> infinite hereditary algebras, namely path algebras <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

extended Dynkin quivers <str<strong>on</strong>g>of</str<strong>on</strong>g> type Ã.<br />

On can c<strong>on</strong>struct extended Dynkin quivers <str<strong>on</strong>g>of</str<strong>on</strong>g> type à by taking <str<strong>on</strong>g>the</str<strong>on</strong>g> following steps.<br />

Start with <str<strong>on</strong>g>the</str<strong>on</strong>g> double quiver <str<strong>on</strong>g>of</str<strong>on</strong>g> A ∞ ∞:<br />

· · · −2 −1 0 1 2 · · ·<br />

Identify vertices <strong>and</strong> arrows modulo m for some m ≥ 1 <strong>and</strong> remove <strong>on</strong>e arrow from each<br />

2-cycle. For instance, choosing m = 2 <strong>and</strong> removing <str<strong>on</strong>g>the</str<strong>on</strong>g> arrows starting in <str<strong>on</strong>g>the</str<strong>on</strong>g> odd vertex<br />

gives <str<strong>on</strong>g>the</str<strong>on</strong>g> Kr<strong>on</strong>ecker quiver:<br />

<br />

0 1.<br />

We shall c<strong>on</strong>struct <str<strong>on</strong>g>the</str<strong>on</strong>g> n-representati<strong>on</strong> infinite algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> type à similarly. First we<br />

define <str<strong>on</strong>g>the</str<strong>on</strong>g> covering quiver Q. As vertices in Q we take <str<strong>on</strong>g>the</str<strong>on</strong>g> lattice<br />

{ ∣ }<br />

∣∣∣∣ ∑n+1<br />

Q 0 = G := v ∈ Z n+1 v i = 0 .<br />

It is freely generated as an abelian group by <str<strong>on</strong>g>the</str<strong>on</strong>g> elements f i := e i+1 − e i for 1 ≤ i ≤ n.<br />

We also define f n+1 := e 1 − e n+1 , so that ∑ n+1<br />

i=1 f i = 0. As arrows in Q we take<br />

i=1<br />

Q 1 := {a i : v → v + f i | v ∈ G, 1 ≤ i ≤ n + 1}.<br />

Then Q is <str<strong>on</strong>g>the</str<strong>on</strong>g> double <str<strong>on</strong>g>of</str<strong>on</strong>g> A ∞ ∞ for n = 1. For n ≥ 2 we need to introduce certain relati<strong>on</strong>s.<br />

Let v ∈ Q 0 <strong>and</strong> i, j ∈ {1, . . . , n + 1}. We c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> relati<strong>on</strong> r v ij := a i a j − a j a i from v to<br />

v + f i + f j <strong>and</strong> let I be <str<strong>on</strong>g>the</str<strong>on</strong>g> two-sided ideal in KQ generated by<br />

{r v ij | v ∈ Q 0 , 1 ≤ i, j ≤ n + 1}.<br />

Since G is an abelian group it acts <strong>on</strong> itself by translati<strong>on</strong>s. This extends to a unique<br />

G-acti<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> quiver Q. We say that a subgroup B ≤ G is c<str<strong>on</strong>g>of</str<strong>on</strong>g>inite if G/B is finite.<br />

In that case we define Γ(B) as <str<strong>on</strong>g>the</str<strong>on</strong>g> orbit algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> KQ/I. More explicitly we define<br />

Q/B := (Q 0 /B, Q 1 /B) <strong>and</strong> set<br />

Γ(B) := K(Q/B)/〈r v ij | v ∈ Q 0 /B, 1 ≤ i, j ≤ n + 1〉<br />

–57–

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!