20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Propositi<strong>on</strong> 10. The homomorphism δ : C ⊥ → C ◦ sending x to δ x is an isomorphism<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> R-modules.<br />

Theorem 11. Let R be a finite commutative QF ring. For a submodule C ⊆ R n , (C ⊥ ) ⊥ =<br />

C.<br />

By Theorem 1 <strong>and</strong> Theorem 4, we can get <str<strong>on</strong>g>the</str<strong>on</strong>g> following corollary.<br />

Corollary 12. Let R be a finite commutative QF ring. Then C is a polycyclic code if<br />

<strong>and</strong> <strong>on</strong>ly if C ⊥ is a sequential code.<br />

Theorem 13. Let R be a finite commutative QF ring. If C ⊆ R n is a free R-module <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

finite rank, <str<strong>on</strong>g>the</str<strong>on</strong>g>n C ⊥ is a free R-module <str<strong>on</strong>g>of</str<strong>on</strong>g> rankC ⊥ = n − rankC.<br />

We determine <str<strong>on</strong>g>the</str<strong>on</strong>g> parity check matrix <str<strong>on</strong>g>of</str<strong>on</strong>g> a c<strong>on</strong>stacyclic code.<br />

Propositi<strong>on</strong> 14. Let R be a finite commutative QF ring <strong>and</strong> f = X n − α ∈ R[X].<br />

Suppose f = hg ∈ R[X] where g <strong>and</strong> h are polynomials <str<strong>on</strong>g>of</str<strong>on</strong>g> degree n−k <strong>and</strong> k, respectively.<br />

Let C be <str<strong>on</strong>g>the</str<strong>on</strong>g> linear [n, k]-code corresp<strong>on</strong>ding to <str<strong>on</strong>g>the</str<strong>on</strong>g> ideal generated by g in R[X]/(X n − α)<br />

<strong>and</strong> h(X) = h k X k + h k−1 X k−1 + · · · + h 1 X + h 0 . Then C has <str<strong>on</strong>g>the</str<strong>on</strong>g> (n − k) × n parity check<br />

matrix H given by<br />

⎛<br />

⎞<br />

h k · · · h 1 h 0 0 · · · 0<br />

0 h k · · · h 1 h 0 · · · 0<br />

.<br />

H =<br />

0 . .<br />

. . .<br />

. . .<br />

. . .<br />

. . . 0<br />

.<br />

⎜<br />

⎟<br />

⎝ .<br />

. ⎠<br />

0 · · · 0 h k · · · h 1 h 0<br />

Definiti<strong>on</strong> 15. Let R be a finite commutative QF ring. For a sequential code C ⊆ R n , C<br />

is called a principal sequential code if C ⊥ is a principal polycyclic code. And C is called a<br />

principal sequential code with an invertible c<strong>on</strong>stant term if C ⊥ is a principal polycyclic<br />

code with an invertible c<strong>on</strong>stant term.<br />

Now we can get <str<strong>on</strong>g>the</str<strong>on</strong>g> main <str<strong>on</strong>g>the</str<strong>on</strong>g>orem.<br />

Theorem 16. Let R be a finite commutative QF ring. Suppose C is a free codes <str<strong>on</strong>g>of</str<strong>on</strong>g> R n .<br />

Then <str<strong>on</strong>g>the</str<strong>on</strong>g> following c<strong>on</strong>diti<strong>on</strong>s are equivalent:<br />

(1) Both C <strong>and</strong> C ⊥ are principal polycyclic codes with invertible c<strong>on</strong>stant terms.<br />

(2) Both C <strong>and</strong> C ⊥ are principal sequential codes with invertible c<strong>on</strong>stant terms.<br />

(3) C is a principal polycyclic <strong>and</strong> sequential code with an invertible c<strong>on</strong>stant term.<br />

(4) C ⊥ is a principal polycyclic <strong>and</strong> sequential code with an invertible c<strong>on</strong>stant term.<br />

(5) C = (g)/(X n − α) is a c<strong>on</strong>stacyclic code with an invertible α.<br />

(6) C ⊥ = (q)/(X n − β) is a c<strong>on</strong>stacyclic code with an invertible β.<br />

Acknowledgement. The author wishes to thank Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Y. Hirano, Naruto University <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Educati<strong>on</strong>, for his helpful suggesti<strong>on</strong>s <strong>and</strong> valuable comments.<br />

–109–

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!