20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

3.1. ZD ∞ -comp<strong>on</strong>ents. We assume for <str<strong>on</strong>g>the</str<strong>on</strong>g> remainder <str<strong>on</strong>g>of</str<strong>on</strong>g> this secti<strong>on</strong> that C is a c<strong>on</strong>nected<br />

Ausl<strong>and</strong>er-Reiten comp<strong>on</strong>ent whose stable part is <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> form ZD ∞ . Let C be an<br />

indecomposable module lying <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> boundary <str<strong>on</strong>g>of</str<strong>on</strong>g> C. Then, without loss <str<strong>on</strong>g>of</str<strong>on</strong>g> generality we<br />

may assume that C is Ω-perfect, by Remark 11. In this c<strong>on</strong>text we have <str<strong>on</strong>g>the</str<strong>on</strong>g> following:<br />

Lemma 20. Let A <strong>and</strong> B be two indecomposable modules lying <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> boundary <str<strong>on</strong>g>of</str<strong>on</strong>g> C with<br />

Ausl<strong>and</strong>er-Reiten sequences 0 → τA f 1<br />

−→ M g 1<br />

−→ A → 0 <strong>and</strong> 0 → τB f 2<br />

−→ M g 2<br />

−→ B → 0.<br />

Then <str<strong>on</strong>g>the</str<strong>on</strong>g> irreducible map [g 1 , g 2 ] t : M → A ⊕ B is an epimorphism if <strong>and</strong> <strong>on</strong>ly if <str<strong>on</strong>g>the</str<strong>on</strong>g> map<br />

[f 1 , f 2 ]: τA ⊕ τB → M is also an epimorphism.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Counting lengths, we have l(τA)+l(A)+l(τB)+l(B) = 2l(M). This means that<br />

l(A) + l(B) < l(M) if <strong>and</strong> <strong>on</strong>ly if l(τA) + l(τB) > l(M). The result follows, since an<br />

irreducible map is ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r a m<strong>on</strong>omorphism, or an epimorphism.<br />

□<br />

Keeping <str<strong>on</strong>g>the</str<strong>on</strong>g> notati<strong>on</strong> from <str<strong>on</strong>g>the</str<strong>on</strong>g> lemma, we may clearly assume that <str<strong>on</strong>g>the</str<strong>on</strong>g> modules A <strong>and</strong><br />

B lying <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> boundary <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> comp<strong>on</strong>ent are Ω-perfect, <strong>and</strong> that <str<strong>on</strong>g>the</str<strong>on</strong>g> Ausl<strong>and</strong>er-Reiten<br />

sequence ending at M is 0 → τM → τA ⊕ τB ⊕ τX → M → 0 for some indecomposable<br />

module X. Since <str<strong>on</strong>g>the</str<strong>on</strong>g> irreducible epimorphisms M → A <strong>and</strong> M → B are Ω-perfect, <str<strong>on</strong>g>the</str<strong>on</strong>g>n<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> irreducible epimorphisms τA ⊕ τX → M <strong>and</strong> τB ⊕ τX → M are also Ω-perfect<br />

being “parallel” to Ω-perfect epimorphisms. Similarly, <str<strong>on</strong>g>the</str<strong>on</strong>g> irreducible m<strong>on</strong>omorphisms<br />

τM → τX ⊕ τA <strong>and</strong> τM → τX ⊕ τB are also Ω-perfect. Putting toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r our remarks,<br />

we have:<br />

Propositi<strong>on</strong> 21. Let C be an Ausl<strong>and</strong>er-Reiten comp<strong>on</strong>ent whose stable part is <str<strong>on</strong>g>of</str<strong>on</strong>g> type<br />

ZD ∞ . Assume that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is an irreducible map between indecomposable n<strong>on</strong> projective<br />

modules X → Y that is not eventually Ω-perfect. Then each n<strong>on</strong> projective module in C<br />

has complexity 2.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. From <str<strong>on</strong>g>the</str<strong>on</strong>g> shape <str<strong>on</strong>g>of</str<strong>on</strong>g> our comp<strong>on</strong>ent, it follows by looking at “parallel” maps <strong>on</strong>e at a<br />

time, that we may assume that <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists an irreducible map <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> form τM → τA⊕τB<br />

or τA ⊕ τB → M that is not eventually Ω-perfect, where A <strong>and</strong> B are indecomposable<br />

modules lying <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> boundary <str<strong>on</strong>g>of</str<strong>on</strong>g> C, <strong>and</strong> M is an indecomposable module. Observe that,<br />

nei<str<strong>on</strong>g>the</str<strong>on</strong>g>r τM → τA ⊕ τB nor τA ⊕ τB → M can be eventually Ω-perfect by Lemma 20.<br />

Being <str<strong>on</strong>g>of</str<strong>on</strong>g> type ZD ∞ means also that C cannot c<strong>on</strong>tain modules <str<strong>on</strong>g>of</str<strong>on</strong>g> complexity 1 by [17].<br />

We apply now 17. <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> result follows.<br />

□<br />

We would like to propose <str<strong>on</strong>g>the</str<strong>on</strong>g> following questi<strong>on</strong>s summarizing <str<strong>on</strong>g>the</str<strong>on</strong>g> discussi<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> first<br />

three secti<strong>on</strong>s. The first <strong>on</strong>e has been around for some time <strong>and</strong> is due to Rickard [25].<br />

Questi<strong>on</strong>s 22. Let R be a selfinjective algebra.<br />

(1) Assume that <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists an indecomposable R-module <str<strong>on</strong>g>of</str<strong>on</strong>g> complexity greater than<br />

2. Is R is <str<strong>on</strong>g>of</str<strong>on</strong>g> wild representati<strong>on</strong> type?<br />

(2) Assume that R has stable comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> type ZD ∞ or ZA ∞ ∞. Is R <str<strong>on</strong>g>of</str<strong>on</strong>g> tame representati<strong>on</strong><br />

type? Must <str<strong>on</strong>g>the</str<strong>on</strong>g>se comp<strong>on</strong>ents have complexity 2?<br />

(3) Assume that R has a stable comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> type ZA ∞ . Is R necessarily <str<strong>on</strong>g>of</str<strong>on</strong>g> wild<br />

representati<strong>on</strong> type?<br />

The answer to <str<strong>on</strong>g>the</str<strong>on</strong>g> first questi<strong>on</strong> is known to be yes if R admits a <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> support<br />

varieties, for instance in <str<strong>on</strong>g>the</str<strong>on</strong>g> group algebras case. See also [14]. The answer to <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d<br />

–86–

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!