20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

(2) We give a quiver presentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Gro<str<strong>on</strong>g>the</str<strong>on</strong>g>ndieck c<strong>on</strong>structi<strong>on</strong> Gr(X) for each<br />

functor X : I → k-Cat <strong>and</strong> each small category I when k is a field.<br />

2. Preliminaries<br />

Throughout this report Q = (Q 0 , Q 1 , t, h) is a quiver, where t(α) ∈ Q 0 is <str<strong>on</strong>g>the</str<strong>on</strong>g> tail <strong>and</strong><br />

h(α) ∈ Q 0 is <str<strong>on</strong>g>the</str<strong>on</strong>g> head <str<strong>on</strong>g>of</str<strong>on</strong>g> each arrow α <str<strong>on</strong>g>of</str<strong>on</strong>g> Q. For each path µ <str<strong>on</strong>g>of</str<strong>on</strong>g> Q, <str<strong>on</strong>g>the</str<strong>on</strong>g> tail <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> head<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> µ is denoted by t(µ) <strong>and</strong> h(µ), respectively. For each n<strong>on</strong>-negative integer n <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

all paths <str<strong>on</strong>g>of</str<strong>on</strong>g> Q <str<strong>on</strong>g>of</str<strong>on</strong>g> length at least n is denoted by Q ≥n . In particular Q ≥0 denotes <str<strong>on</strong>g>the</str<strong>on</strong>g> set<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> all paths <str<strong>on</strong>g>of</str<strong>on</strong>g> Q.<br />

A category C is called a k-category if for each x, y ∈ C, C(x, y) is a k-module <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

compositi<strong>on</strong>s are k-bilinear.<br />

Definiti<strong>on</strong> 1. Let Q be a quiver.<br />

(1) The free category PQ <str<strong>on</strong>g>of</str<strong>on</strong>g> Q is <str<strong>on</strong>g>the</str<strong>on</strong>g> category whose underlying quiver is (Q 0 , Q ≥0 , t, h)<br />

with <str<strong>on</strong>g>the</str<strong>on</strong>g> usual compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> paths.<br />

(2) The path k-category <str<strong>on</strong>g>of</str<strong>on</strong>g> Q is <str<strong>on</strong>g>the</str<strong>on</strong>g> k-linearizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> PQ <strong>and</strong> is denoted by kQ.<br />

Definiti<strong>on</strong> 2. Let C be a category. We set<br />

∪<br />

Rel(C) := C(i, j) × C(i, j),<br />

(i,j)∈C 0 ×C 0<br />

elements <str<strong>on</strong>g>of</str<strong>on</strong>g> which are called relati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> C. Let R ⊆ Rel(C). For each i, j ∈ C 0 we set<br />

R(i, j) := R ∩ (C(i, j) × C(i, j)).<br />

(1) The smallest c<strong>on</strong>gruence relati<strong>on</strong><br />

∪<br />

R c := {(dac, dbc) | c ∈ C(−, i), d ∈ C(j, −), (a, b) ∈ R(i, j)}<br />

(i,j)∈C 0 ×C 0<br />

c<strong>on</strong>taining R is called <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>gruence relati<strong>on</strong> generated by R.<br />

(2) For each i, j ∈ C 0 we set<br />

R −1 (i, j) := {(g, f) ∈ C(i, j) × C(i, j) | (f, g) ∈ R(i, j)}<br />

1 C(i,j) := {(f, f) | f ∈ C(i, j)}<br />

S(i, j) := R(i, j) ∪ R −1 (i, j) ∪ 1 C(i,j)<br />

S(i, j) 1 := S(i, j)<br />

S(i, j) n := {(h, f) | ∃g ∈ C(i, j), (g, f) ∈ S(i, j), (h, g) ∈ S(i, j) n−1 } (for all n ≥ 2)<br />

S(i, j) ∞ := ∪ n≥1<br />

S(i, j) n , <strong>and</strong> set<br />

R e :=<br />

∪<br />

(i,j)∈C 0 ×C 0<br />

S(i, j) ∞ .<br />

R e is called <str<strong>on</strong>g>the</str<strong>on</strong>g> equivalence relati<strong>on</strong> generated by R.<br />

(3) We set R # := (R c ) e (cf. [5]).<br />

The following is well known (cf. [6]).<br />

–17–

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!