20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

The previous propositi<strong>on</strong> has a dual versi<strong>on</strong> which permits to compute minimal right<br />

approximati<strong>on</strong>s. In practice, this computati<strong>on</strong> relies <strong>on</strong> searching morphisms up to factorizati<strong>on</strong><br />

through o<str<strong>on</strong>g>the</str<strong>on</strong>g>r objects. There is an explicit example <str<strong>on</strong>g>of</str<strong>on</strong>g> computati<strong>on</strong> in Example<br />

19.<br />

4. Maximal rigid objects <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir mutati<strong>on</strong>s<br />

Let us introduce <str<strong>on</strong>g>the</str<strong>on</strong>g> objects <str<strong>on</strong>g>the</str<strong>on</strong>g> combinatorics <str<strong>on</strong>g>of</str<strong>on</strong>g> which will play <str<strong>on</strong>g>the</str<strong>on</strong>g> role <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> cluster<br />

algebra structure.<br />

Definiti<strong>on</strong> 12. Let X ∈ mod Π Q .<br />

• The module X is said to be rigid if it has no self-extensi<strong>on</strong>, (i.e., Ext 1 (X, X) = 0).<br />

• The module X is said to be basic maximal rigid if it is basic (i.e., it does not<br />

have two isomorphic indecomposable summ<strong>and</strong>s), rigid, <strong>and</strong> maximal for <str<strong>on</strong>g>the</str<strong>on</strong>g>se<br />

two properties.<br />

Remark 13. A basic maximal rigid Π Q -module c<strong>on</strong>tains Π Q as a direct summ<strong>and</strong> (because<br />

Π Q is both projective <strong>and</strong> injective <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>refore has no extensi<strong>on</strong> with any module).<br />

Example 14. The object<br />

1❁ 3 ❁ ✂<br />

2<br />

✂✂ ⊕ ✂<br />

2<br />

✂✂3<br />

⊕ 1 1[dr]<br />

❁ ❁❁<br />

2 ⊕<br />

2❁ ❁❁<br />

3<br />

2❁ ❁❁<br />

✂<br />

⊕ 1<br />

✂✂<br />

✂<br />

❁ 3 ⊕<br />

✂✂3<br />

❁ ✂<br />

2<br />

✂✂ ✂<br />

1<br />

✂✂2 ,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> last three summ<strong>and</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> which are <str<strong>on</strong>g>the</str<strong>on</strong>g> indecomposable projective-injective Π Q -modules,<br />

is basic maximal rigid. It is easy to check that it is basic <strong>and</strong> rigid, but more difficult to<br />

prove that it is maximal for <str<strong>on</strong>g>the</str<strong>on</strong>g>se properties (see [6] for more details).<br />

Remark 15. We can prove that all basic maximal rigid objects have <str<strong>on</strong>g>the</str<strong>on</strong>g> same number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

indecomposable summ<strong>and</strong>s (six in <str<strong>on</strong>g>the</str<strong>on</strong>g> example we are talking about).<br />

The following result permits to define a mutati<strong>on</strong> <strong>on</strong> basic maximal rigid objects. C<strong>on</strong>sidered<br />

as an operati<strong>on</strong> <strong>on</strong> isomorphism classes <str<strong>on</strong>g>of</str<strong>on</strong>g> basic maximal rigid objects, <str<strong>on</strong>g>the</str<strong>on</strong>g> induced<br />

combinatorial structure will corresp<strong>on</strong>d to <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> a cluster algebra.<br />

Theorem 16 ([6]). Let T ≃ T 1 ⊕ T 2 ⊕ T 3 ⊕ P 1 ⊕ P 2 ⊕ P 3 ∈ mod Π Q be basic maximal<br />

rigid such that P 1 , P 2 <strong>and</strong> P 3 are <str<strong>on</strong>g>the</str<strong>on</strong>g> indecomposable projective Π Q -modules <strong>and</strong> T 1 , T 2<br />

<strong>and</strong> T 3 are indecomposable n<strong>on</strong>-projective Π Q -modules. Then, for i ∈ {1, 2, 3}, <str<strong>on</strong>g>the</str<strong>on</strong>g>re are<br />

two (unique) short exact sequences<br />

f f<br />

0 → T i −→ ′<br />

Ta −→ Ti ∗ → 0 <strong>and</strong> 0 → Ti<br />

∗ g g<br />

−→ T ′<br />

b −→ T i → 0<br />

such that<br />

(1) f <strong>and</strong> g are minimal left add(T/T i )-approximati<strong>on</strong>s ;<br />

(2) f ′ <strong>and</strong> g ′ are minimal right add(T/T i )-approximati<strong>on</strong>s ;<br />

(3) Ti ∗ is indecomposable <strong>and</strong> n<strong>on</strong>-projective ;<br />

(4) dim Ext 1 (T i , Ti ∗ ) = dim Ext 1 (T ∗<br />

split ;<br />

(5) µ i (T ) = T/T i ⊕ T ∗<br />

i is basic maximal rigid ;<br />

i , T i ) = 1 <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> two short exact sequences do not<br />

–36–

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!