20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Theorem 8. (1)Let U − q (w) → U − q (g) → O q [N w ] be <str<strong>on</strong>g>the</str<strong>on</strong>g> inclusi<strong>on</strong> <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> can<strong>on</strong>ical<br />

projectin<strong>on</strong>. Then <str<strong>on</strong>g>the</str<strong>on</strong>g> composite is m<strong>on</strong>omorphism <str<strong>on</strong>g>of</str<strong>on</strong>g> algebra.<br />

(2) We have B(w) ⊂ B(w, ∞).<br />

4. Quantum flag minor <strong>and</strong> Its multiplicative proprerties<br />

For a dominant integral weight λ ∈ P + , let V (λ) be <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding integrable highest<br />

weight module with highest weight vector u λ . We have symmetric bilinear form ( , ) λ <strong>on</strong><br />

V (λ). Let π λ : U − q (g) ↠ V (λ) be <str<strong>on</strong>g>the</str<strong>on</strong>g> projecti<strong>on</strong> defined by x ↦→ xu λ . Let j λ be dual <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

π λ , that is j λ : V (λ) ↩→ U − q (g). For a Weyl group element w ∈ W , we have <str<strong>on</strong>g>the</str<strong>on</strong>g> extremal<br />

vector u wλ <str<strong>on</strong>g>of</str<strong>on</strong>g> weight λ. It is known that u wλ is c<strong>on</strong>tained in <str<strong>on</strong>g>the</str<strong>on</strong>g> canoical basis <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

dual can<strong>on</strong>cial basis. We set quantum unipotent minro D wλ,λ by<br />

D wλ,λ := j λ (u wλ ).<br />

It is known that D wλ,λ ∈ B up . The following is main result in our study.<br />

Theorem 9. (1) For w ∈ W <strong>and</strong> λ ∈ P + , we have D wλ,λ ∈ U − q (w).<br />

(2) For arbitrary b ∈ B(w), <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists N ∈ Z such that q N G up (b)D wλ,λ ∈ B up (w),<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>re G up (b) is <str<strong>on</strong>g>the</str<strong>on</strong>g> dual can<strong>on</strong>ical basis element which is associated with b ∈ B(w).<br />

Using <str<strong>on</strong>g>the</str<strong>on</strong>g> above <str<strong>on</strong>g>the</str<strong>on</strong>g>orem, we obtain <str<strong>on</strong>g>the</str<strong>on</strong>g> following quantum seed.<br />

For a Weyl group element w, a reduced word −→ w = (i 1 , i 2 , . . . , i l ) <strong>and</strong> c = (c 1 , . . . , c l ) ∈<br />

Z l ≥0, we set<br />

D −→w (c) := ∏<br />

D si1 ...s ik c k ϖ ik ,c k ϖ ik<br />

.<br />

1≤k≤l<br />

Then {D −→w (c)} c∈Z l<br />

≥0<br />

forms a mutually commmuting familty <strong>and</strong> {D −→w (c)} c∈Z l<br />

≥0<br />

is linear<br />

independent over Z[q ±1 ]. {D −→w (c)} c∈Z l<br />

≥0<br />

can be c<strong>on</strong>sidered as a quantum analogue <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

initial seed in [18] <strong>and</strong> we can form <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding quantum cluster algebra by it. Our<br />

c<strong>on</strong>jecture is an Q[q ±1 ]-algebra isomorphism between <str<strong>on</strong>g>the</str<strong>on</strong>g> quantum cluster algebra <strong>and</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> quantum unipotent subgroup O q [N(w)] <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum cluster m<strong>on</strong>omials is<br />

c<strong>on</strong>tained by <str<strong>on</strong>g>the</str<strong>on</strong>g> dual can<strong>on</strong>ical basis B up (w). This is just a quantum analogue <str<strong>on</strong>g>of</str<strong>on</strong>g> [18]<br />

<strong>and</strong> this is compatible with <str<strong>on</strong>g>the</str<strong>on</strong>g>ir open orbit c<strong>on</strong>jecture for symmetric g. Recently <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Q(q)-algebra isomorphism is obtained by [17].<br />

References<br />

[1] A. Berenstein, S. Fomin, <strong>and</strong> A. Zelevinsky. Cluster algebras. III. Upper bounds <strong>and</strong> double Bruhat<br />

cells. Duke Math. J., 126(1):1–52, 2005.<br />

[2] A. Berenstein <strong>and</strong> A. Zelevinsky. String bases for quantum groups <str<strong>on</strong>g>of</str<strong>on</strong>g> type A r . In I. M. Gelf<strong>and</strong><br />

Seminar, volume 16 <str<strong>on</strong>g>of</str<strong>on</strong>g> Adv. Soviet Math., pages 51–89. Amer. Math. Soc., Providence, RI, 1993.<br />

[3] A. Berenstein <strong>and</strong> A. Zelevinsky. Quantum cluster algebras. Adv. Math., 195(2):405–455, 2005.<br />

[4] P. Caldero. On <str<strong>on</strong>g>the</str<strong>on</strong>g> q-commutati<strong>on</strong>s in U q (n) at roots <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e. J. Algebra, 210(2):557–576, 1998.<br />

[5] P. Caldero. Adapted algebras for <str<strong>on</strong>g>the</str<strong>on</strong>g> Berenstein-Zelevinsky c<strong>on</strong>jecture. Transform. Groups, 8(1):37–<br />

50, 2003.<br />

[6] P. Caldero. A multiplicative property <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum flag minors. Represent. <strong>Theory</strong>, 7:164–176 (electr<strong>on</strong>ic),<br />

2003.<br />

[7] V. V. Fock <strong>and</strong> A. B. G<strong>on</strong>charov. The quantum dilogarithm <strong>and</strong> representati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum cluster<br />

varieties. Invent. Math., 175(2):223–286, 2009.<br />

–96–

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!