20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

group GL n (k), <strong>and</strong> assume that <str<strong>on</strong>g>the</str<strong>on</strong>g> characteristic <str<strong>on</strong>g>of</str<strong>on</strong>g> k does not divide <str<strong>on</strong>g>the</str<strong>on</strong>g> order <str<strong>on</strong>g>of</str<strong>on</strong>g> G. Let<br />

R = S G be <str<strong>on</strong>g>the</str<strong>on</strong>g> invariant subring. Then D b (mod R) = 〈S〉 n+1<br />

holds, <strong>and</strong> hence <strong>on</strong>e has<br />

dim D b (mod R) ≤ n = dim R < ∞.<br />

For a commutative ring R, we denote <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> minimal prime ideals <str<strong>on</strong>g>of</str<strong>on</strong>g> R by Min R.<br />

As is well-known, Min R is a finite set whenever R is Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian. Also, we denote by<br />

λ(R) <str<strong>on</strong>g>the</str<strong>on</strong>g> infimum <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> integers n ≥ 0 such that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a filtrati<strong>on</strong><br />

0 = I 0 ⊆ I 1 ⊆ · · · ⊆ I n = R<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ideals <str<strong>on</strong>g>of</str<strong>on</strong>g> R with I i /I i−1<br />

∼ = R/pi for 1 ≤ i ≤ n, where p i ∈ Spec R. If R is Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>n such a filtrati<strong>on</strong> exists <strong>and</strong> λ(R) is a n<strong>on</strong>-negative integer.<br />

Propositi<strong>on</strong> 7. Let R be a Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian commutative ring.<br />

(1) Suppose that for every p ∈ Min R <str<strong>on</strong>g>the</str<strong>on</strong>g>re exist an R/p-complex G(p) <strong>and</strong> an integer<br />

n(p) ≥ 0 such that D b (mod R/p) = 〈G(p)〉 n(p)<br />

. Then D b (mod R) = 〈G〉 n<br />

holds,<br />

where G = ⊕ p∈Min R<br />

G(p) <strong>and</strong> n = λ(R) · max{ n(p) | p ∈ Min R }.<br />

(2) There is an inequality<br />

dim D b (mod R) ≤ λ(R) · sup{ dim D b (mod R/p) + 1 | p ∈ Min R } − 1.<br />

Let R be a commutative Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian ring. We set<br />

ll(R) = inf{ n ≥ 0 | (rad R) n = 0 },<br />

r(R) = min{ n ≥ 0 | (nil R) n = 0 },<br />

where rad R <strong>and</strong> nil R denote <str<strong>on</strong>g>the</str<strong>on</strong>g> Jacobs<strong>on</strong> radical <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> nilradical <str<strong>on</strong>g>of</str<strong>on</strong>g> R, respectively.<br />

The first number is called <str<strong>on</strong>g>the</str<strong>on</strong>g> Loewy length <str<strong>on</strong>g>of</str<strong>on</strong>g> R <strong>and</strong> is finite if (<strong>and</strong> <strong>on</strong>ly if) R is Artinian,<br />

while <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d <strong>on</strong>e is always finite. Let R red = R/ nil R be <str<strong>on</strong>g>the</str<strong>on</strong>g> associated reduced ring.<br />

When R is reduced, we denote by R <str<strong>on</strong>g>the</str<strong>on</strong>g> integral closure <str<strong>on</strong>g>of</str<strong>on</strong>g> R in <str<strong>on</strong>g>the</str<strong>on</strong>g> total quotient ring<br />

Q <str<strong>on</strong>g>of</str<strong>on</strong>g> R. Let C R denote <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>ductor <str<strong>on</strong>g>of</str<strong>on</strong>g> R, i.e., C R is <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> elements x ∈ Q with<br />

xR ⊆ R. We can give an explicit generator <strong>and</strong> an upper bound <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

bounded derived category <str<strong>on</strong>g>of</str<strong>on</strong>g> finitely generated modules over a <strong>on</strong>e-dimensi<strong>on</strong>al complete<br />

local ring.<br />

Propositi<strong>on</strong> 8. Let R be a Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian commutative complete local ring <str<strong>on</strong>g>of</str<strong>on</strong>g> Krull dimensi<strong>on</strong><br />

<strong>on</strong>e with residue field k. Then it holds that D b (mod R) = 〈R red ⊕k〉 r(R)·(2 ll(Rred /C Rred )+2) .<br />

In particular,<br />

dim D b (mod R) ≤ r(R) · (2 ll(R red /C Rred ) + 2) − 1 < ∞.<br />

Let R be a commutative Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian local ring <str<strong>on</strong>g>of</str<strong>on</strong>g> Krull dimensi<strong>on</strong> d with maximal ideal<br />

d!<br />

m. We denote by e(R) <str<strong>on</strong>g>the</str<strong>on</strong>g> multiplicity <str<strong>on</strong>g>of</str<strong>on</strong>g> R, that is, e(R) = lim n→∞ l<br />

n d R (R/m n+1 ). Recall<br />

that a numerical semigroup is defined as a subsemigroup H <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> additive semigroup<br />

N = {0, 1, 2, . . . } c<strong>on</strong>taining 0 such that N\H is a finite set. For a numerical semigroup<br />

H, let c(H) denote <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>ductor <str<strong>on</strong>g>of</str<strong>on</strong>g> H, that is,<br />

c(H) = max{ i ∈ N | i − 1 /∈ H }.<br />

For a real number α, put ⌈α⌉ = min{ n ∈ Z | n ≥ α }. Making use <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> above<br />

propositi<strong>on</strong>, <strong>on</strong>e can get an upper bound <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> bounded derived category<br />

–9–

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!