20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

(3) → (1) : Let M be in F t . By <str<strong>on</strong>g>the</str<strong>on</strong>g> above commutative diagram, f is an identity. Thus<br />

by <str<strong>on</strong>g>the</str<strong>on</strong>g> assumpti<strong>on</strong> t(P σ (M)) ⊆ ker f = 0, as desired.<br />

(1) → (4) : Let N ∈ F σ be a small submodule <str<strong>on</strong>g>of</str<strong>on</strong>g> a module M such that M/N ∈ F t . By<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> assumpti<strong>on</strong> P σ (M/N) ∈ F t . By Lemma1, P σ (M/N) ≃ P σ (M), <strong>and</strong> so P σ (M) ∈ F t .<br />

C<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> sequence 0 → K σ (M) → P σ (M) → M → 0. Since F t is closed under taking<br />

F σ -factor modules, it follows that M ∈ F t , as desired.<br />

(4) → (1) : Since P σ (M) is σ-coessential extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a module M in F t , F t is closed<br />

under taking σ-projective covers.<br />

□<br />

Remark 3. It is well known that t is epi-preserving if <strong>and</strong> <strong>on</strong>ly if t is a radical <strong>and</strong> F t is<br />

closed under taking factor modules. Therefore if t is epi-preserving <strong>and</strong> σ be an idempotent<br />

radical, <str<strong>on</strong>g>the</str<strong>on</strong>g>n all c<strong>on</strong>diti<strong>on</strong>s in Theorem 2 are equivalent.<br />

Next if σ is identity, <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> following corollary holds. The following have <str<strong>on</strong>g>the</str<strong>on</strong>g> ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem1.1 <str<strong>on</strong>g>of</str<strong>on</strong>g> [3].<br />

Corollary 4. For a radical t <str<strong>on</strong>g>the</str<strong>on</strong>g> following c<strong>on</strong>diti<strong>on</strong>s except (4) are equivalent. Moreover<br />

if t is an epi-preserving preradical, <str<strong>on</strong>g>the</str<strong>on</strong>g>n all c<strong>on</strong>diti<strong>on</strong>s are equivalent.<br />

(1) t is costable, that is, F t is closed under taking projective covers.<br />

(2) P/t(P ) is projective for any projective module P .<br />

(3) P (M)<br />

↓ f<br />

h<br />

→ M → 0<br />

↓ j<br />

P (M/t(M)) →<br />

g<br />

M/t(M) → 0,<br />

where j is a can<strong>on</strong>ical epimorphism, h <strong>and</strong> g are epimorphisms associated with <str<strong>on</strong>g>the</str<strong>on</strong>g>ir<br />

projective covers <strong>and</strong> f is induced by <str<strong>on</strong>g>the</str<strong>on</strong>g> projectivity <str<strong>on</strong>g>of</str<strong>on</strong>g> P (M). Then t(P (M)) is c<strong>on</strong>tained<br />

in kerf.<br />

(4) F t is closed under taking coessential extensi<strong>on</strong>s.<br />

(5) For any projective module P , t(P ) is a direct summ<strong>and</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> P .<br />

3. DUALIZATION OF ECKMAN & SHOPF’S THEOREM<br />

In [8] we state a torsi<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>oretic generalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Eckman & Shopf’s Theorem, as<br />

follows. Let σ be a left exact radical <strong>and</strong> 0 → M → E be a exact sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> Mod-R.<br />

Then <str<strong>on</strong>g>the</str<strong>on</strong>g> following c<strong>on</strong>diti<strong>on</strong>s from (1) to (4) are equivalent. (1) E is σ-injective <strong>and</strong> σ-<br />

essential extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> M. (2) E is minimal in {Y ∈ Mod-R|M ↩→ Y <strong>and</strong> Y is σ-injective}.<br />

(3) E is maximal in {Y ∈ Mod-R|M ↩→ Y <strong>and</strong> Y is σ-essential extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> M}. (4) E<br />

is isomorphic to E σ (M), where σ(E(M)/M) = E σ (M)/M. Here we dualised this.<br />

Lemma 5. If P is σ-projective, <str<strong>on</strong>g>the</str<strong>on</strong>g>n P σ (P ) is isomorphic to P .<br />

Theorem 6. Let P → f M → 0 be a exact sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> Mod-R. Let σ is an idempotent<br />

radical. C<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> following c<strong>on</strong>diti<strong>on</strong>s, <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> implicati<strong>on</strong>s (1) ⇐⇒ (3) <strong>and</strong> (1) =⇒<br />

(2) hold. Moreover if σ is an epi-preserving preradical, <str<strong>on</strong>g>the</str<strong>on</strong>g>n all c<strong>on</strong>diti<strong>on</strong>s are equivalent.<br />

(1) P is σ-projective <strong>and</strong> P f ↠ M is a σ-coessential extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> M.<br />

(2) P is a minimal σ-projective extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> M(i.e. P is σ-projective <strong>and</strong> if I is σ-<br />

projective <strong>and</strong> P h ↠ I, I ↠ M, <str<strong>on</strong>g>the</str<strong>on</strong>g>n h is an isomorphism.).<br />

–211–

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!