20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

where r v ij := a i a j −a j a i <strong>and</strong> a denotes <str<strong>on</strong>g>the</str<strong>on</strong>g> B-orbit <str<strong>on</strong>g>of</str<strong>on</strong>g> a. As motivati<strong>on</strong> for this c<strong>on</strong>structi<strong>on</strong><br />

we remark that Γ(B) is isomorphic to a skew group algebra K[x 1 , . . . , x n+1 ] ∗ H for some<br />

finite abelian subgroup H < SL n+1 (K).<br />

Next we c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> analogue <str<strong>on</strong>g>of</str<strong>on</strong>g> 2-cycles. For every v ∈ Q 0 <strong>and</strong> permutati<strong>on</strong> σ <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

1, . . . , n + 1, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a cyclic path a σ(1) · · · a σ(n+1) from v to v. We call such cyclic paths<br />

small cycles. A subset C ⊂ Q 1 is called a cut if it c<strong>on</strong>tains precisely <strong>on</strong>e arrow from every<br />

small cycle. The symmetry group <str<strong>on</strong>g>of</str<strong>on</strong>g> C is defined as<br />

S C := {g ∈ G | gC = C} ≤ G.<br />

We say that a cut C is acyclic if all paths in Q C := (Q 0 , Q 1 \ C) have length bounded<br />

by some N ≥ 0, <strong>and</strong> periodic if S C is c<str<strong>on</strong>g>of</str<strong>on</strong>g>inite in G. If both <str<strong>on</strong>g>the</str<strong>on</strong>g>se c<strong>on</strong>diti<strong>on</strong>s are satisfied<br />

<strong>and</strong> B ≤ S C is c<str<strong>on</strong>g>of</str<strong>on</strong>g>inite we say that<br />

Γ(B) C := Γ(B)/〈a | a ∈ C/B〉<br />

is n-representati<strong>on</strong> finite <str<strong>on</strong>g>of</str<strong>on</strong>g> type Ã. The name is justified by <str<strong>on</strong>g>the</str<strong>on</strong>g> following Theorem.<br />

Theorem 5. If C is an acyclic periodic cut <strong>and</strong> B ≤ S C is c<str<strong>on</strong>g>of</str<strong>on</strong>g>inite, <str<strong>on</strong>g>the</str<strong>on</strong>g>n Γ(B) C is<br />

n-representati<strong>on</strong> finite.<br />

We remark that if n = 1, <str<strong>on</strong>g>the</str<strong>on</strong>g>n Γ(B) C is a path algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> an acyclic quiver <str<strong>on</strong>g>of</str<strong>on</strong>g> type Ã<br />

c<strong>on</strong>structed exactly as explained above. For n = 2, Q 0 is a triangular lattice in <str<strong>on</strong>g>the</str<strong>on</strong>g> plane<br />

<strong>and</strong> Q is<br />

.<br />

.<br />

• ✶ • • • • • •<br />

✶✶ ✶ ✶✶ ✶ ✶✶ ✶ ✶✶ ✶ ✶✶ ✶ ✶✶<br />

✌ ✌✌ ✌ ✌✌ ✌ ✌✌ ✌ ✌✌ ✌ ✌✌ ✌ ✌✌<br />

· · · • • • • • <br />

✶ • · · ·<br />

✶✶ ✶ ✶✶ ✶ ✶✶ ✶ ✶✶ ✶ ✶✶ ✶ ✶✶<br />

✌ ✌✌ ✌ ✌✌ ✌ ✌✌ ✌ ✌✌ ✌ ✌✌ ✌ ✌✌<br />

• ✶ • • • • • •<br />

✶✶ ✶ ✶✶ ✶ ✶✶ ✶ ✶✶ ✶ ✶✶ ✶ ✶✶<br />

✌ ✌✌ ✌ ✌✌ ✌ ✌✌ ✌ ✌✌ ✌ ✌✌ ✌ ✌✌<br />

· · · • ✶ • • • • • · · ·<br />

✶✶ ✶ ✶✶ ✶ ✶✶ ✶ ✶✶ ✶ ✶✶ ✶ ✶✶<br />

✌ ✌✌ ✌ ✌✌ ✌ ✌✌ ✌ ✌✌ ✌ ✌✌ ✌ ✌✌<br />

• • • • • • •<br />

.<br />

.<br />

where <str<strong>on</strong>g>the</str<strong>on</strong>g> small cycles are formed by <str<strong>on</strong>g>the</str<strong>on</strong>g> small triangles.<br />

Finally we shall generalize <str<strong>on</strong>g>the</str<strong>on</strong>g> alternating orientati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> A ∞ ∞. To do this define ω : G →<br />

Z/(n + 1)Z by ω(f i ) = 1 <strong>and</strong> set<br />

C := {a i : v → v + f i | ω(v) = 0, 1 ≤ i ≤ n + 1}.<br />

Then every path in Q <str<strong>on</strong>g>of</str<strong>on</strong>g> length n+1 intersects C <strong>and</strong> so C is acyclic. Moreover, S C = ker ω<br />

<strong>and</strong> so C is periodic.<br />

For n = 1, Q C is<br />

· · · −2 −1 0 1 2 · · ·<br />

–58–

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!