20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

3. Periodic Twists<br />

We now describe a generalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> spherical twists described above.<br />

An algebra E is called twisted periodic if <str<strong>on</strong>g>the</str<strong>on</strong>g>re is an algebra automorphism σ : E ∼ → E<br />

<strong>and</strong> an exact sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> E-E-bimodules<br />

0 → E σ → Y n−1 → Y n−2 → · · · → Y 1 → Y 0 → E → 0<br />

where each Y i is a projective E-E-bimodule. This just says that <str<strong>on</strong>g>the</str<strong>on</strong>g> E-E-bimodule E has<br />

a periodic resoluti<strong>on</strong> which is projective up to some automorphism (twist). We say that<br />

E has a period n.<br />

Let A be a symmetric algebra <strong>and</strong> P a projective A-module. Let E = End A (P ) op , so<br />

P is an A-E-bimodule, <strong>and</strong> suppose that E is a periodic algebra. We denote <str<strong>on</strong>g>the</str<strong>on</strong>g> cochain<br />

complex<br />

Y n−1 → Y n−2 → · · · → Y 1 → Y 0<br />

c<strong>on</strong>centrated in degrees n−1 to 0 by Y . Then we have a natural map f : Y → E <str<strong>on</strong>g>of</str<strong>on</strong>g> cochain<br />

complexes <str<strong>on</strong>g>of</str<strong>on</strong>g> E-E-bimodules. We use this to c<strong>on</strong>struct a map g : P ⊗ E Y ⊗ E P ∨ → A <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

cochain complexes <str<strong>on</strong>g>of</str<strong>on</strong>g> A-A-bimodules defined as <str<strong>on</strong>g>the</str<strong>on</strong>g> following compositi<strong>on</strong><br />

P ⊗ E Y ⊗ E P ∨ → P ⊗ E E ⊗ E P ∨<br />

∼ → P ⊗ E P ∨ → A<br />

where <str<strong>on</strong>g>the</str<strong>on</strong>g> first map is given by P ⊗ E f ⊗ E P ∨ <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> last is given by an evaluati<strong>on</strong> map.<br />

We take <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> map g to obtain a cochain complex<br />

P ⊗ E Y n−1 ⊗ E P ∨ → P ⊗ E Y n−2 ⊗ E P ∨ → · · · → P ⊗ E Y 0 ⊗ E P ∨ → A<br />

c<strong>on</strong>centrated in degrees n to 0, which we denote X. By tensoring over A we obtain an<br />

end<str<strong>on</strong>g>of</str<strong>on</strong>g>unctor<br />

which we denote by Ψ P .<br />

X ⊗ A − : D b (A) → D b (A)<br />

Theorem 3 ([Gra]). If <str<strong>on</strong>g>the</str<strong>on</strong>g> algebra E is twisted periodic <str<strong>on</strong>g>the</str<strong>on</strong>g>n Ψ P is an autoequivalence.<br />

Note that <str<strong>on</strong>g>the</str<strong>on</strong>g> functor Ψ P depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> resoluti<strong>on</strong> Y that we choose.<br />

If E ∼ = k[x]/〈x 2 〉 <str<strong>on</strong>g>the</str<strong>on</strong>g>n we recover <str<strong>on</strong>g>the</str<strong>on</strong>g> spherical twists described above by using <str<strong>on</strong>g>the</str<strong>on</strong>g> exact<br />

sequence<br />

0 → E σ → E ⊗ k E → E → 0<br />

where σ is <str<strong>on</strong>g>the</str<strong>on</strong>g> algebra automorphism which sends x to −x.<br />

4. Brauer Tree Algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> Lines<br />

We define a collecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> algebras Γ n , n ≥ 1, which are isomorphic to <str<strong>on</strong>g>the</str<strong>on</strong>g> Brauer tree<br />

algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> lines without multiplicity. Let Γ 1 = k[x]/〈x 2 〉 <strong>and</strong> let Γ 2 = kQ 2 /I 2 , where Q 2<br />

is <str<strong>on</strong>g>the</str<strong>on</strong>g> quiver<br />

Q 2 = 1<br />

–52–<br />

α<br />

β<br />

2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!