20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Because R is assumed to be Frobenius, R admits a (left) generating character ρ. Every<br />

character π ∈ ̂R thus has <str<strong>on</strong>g>the</str<strong>on</strong>g> form π = aρ, for some a ∈ R. Recall that <str<strong>on</strong>g>the</str<strong>on</strong>g> scalar<br />

multiplicati<strong>on</strong> means that π(r) = (aρ)(r) = ρ(ra), for r ∈ R. Use this to simplify (5.2)<br />

(<strong>and</strong> use different indices <strong>on</strong> each side <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> resulting equati<strong>on</strong>):<br />

n∑ ∑<br />

n∑ ∑<br />

(5.3)<br />

ρ ◦ (λ i a) = ρ ◦ (µ j b).<br />

i=1 a∈R<br />

j=1 b∈R<br />

This is an equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> characters <str<strong>on</strong>g>of</str<strong>on</strong>g> C 1 . Because characters are linearly independent, we<br />

can match up terms from <str<strong>on</strong>g>the</str<strong>on</strong>g> left <strong>and</strong> right sides <str<strong>on</strong>g>of</str<strong>on</strong>g> (5.3). In order to get unit multiples,<br />

some care must be taken.<br />

Because C 1 is a left R-module, Hom R (C 1 , R) is a right R-module. Define a preorder ≼<br />

<strong>on</strong> Hom R (C 1 , R) by λ ≼ µ if λ = µr for some r ∈ R. By a result <str<strong>on</strong>g>of</str<strong>on</strong>g> Bass [4, Lemma 6.4],<br />

λ ≼ µ <strong>and</strong> µ ≼ λ imply µ = λu for some unit u <str<strong>on</strong>g>of</str<strong>on</strong>g> R.<br />

Am<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> linear functi<strong>on</strong>als λ 1 , . . . , λ n , µ 1 , . . . , µ n (a finite list), choose <strong>on</strong>e that is<br />

maximal in <str<strong>on</strong>g>the</str<strong>on</strong>g> preorder ≼. Without loss <str<strong>on</strong>g>of</str<strong>on</strong>g> generality, assume µ 1 is maximal in ≼. (This<br />

means: if µ 1 ≼ λ for some λ, <str<strong>on</strong>g>the</str<strong>on</strong>g>n µ 1 = λu for some unit u <str<strong>on</strong>g>of</str<strong>on</strong>g> R.) In (5.3), c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

term <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> right side with j = 1 <strong>and</strong> b = 1. By linear independence <str<strong>on</strong>g>of</str<strong>on</strong>g> characters, <str<strong>on</strong>g>the</str<strong>on</strong>g>re<br />

exists i 1 , 1 ≤ i 1 ≤ n, <strong>and</strong> a ∈ R such that ρ ◦ (λ i1 a) = ρ ◦ µ 1 . This equati<strong>on</strong> implies<br />

that im(µ 1 − λ i1 a) ⊂ ker ρ. But im(µ 1 − λ i1 a) is a left ideal <str<strong>on</strong>g>of</str<strong>on</strong>g> R, <strong>and</strong> ρ is a generating<br />

character <str<strong>on</strong>g>of</str<strong>on</strong>g> R. By Propositi<strong>on</strong> 7, im(µ 1 − λ i1 a) = 0, so that µ 1 = λ i1 a. This means that<br />

µ 1 ≼ λ i1 . Because µ 1 was chosen to be maximal, we have µ 1 = λ i1 u 1 , for some unit u 1 <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

R. Begin to define a permutati<strong>on</strong> σ by σ(1) = i 1 .<br />

By a reindexing argument, all <str<strong>on</strong>g>the</str<strong>on</strong>g> terms <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> left side <str<strong>on</strong>g>of</str<strong>on</strong>g> (5.3) with i = i 1 match <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

terms <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> right side <str<strong>on</strong>g>of</str<strong>on</strong>g> (5.3) with j = 1. That is, ∑ a∈R ρ ◦ (λ i 1<br />

a) = ∑ b∈R ρ ◦ (µ 1b).<br />

Subtract <str<strong>on</strong>g>the</str<strong>on</strong>g>se sums from (5.3), <str<strong>on</strong>g>the</str<strong>on</strong>g>reby reducing <str<strong>on</strong>g>the</str<strong>on</strong>g> size <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> outer summati<strong>on</strong>s by<br />

<strong>on</strong>e. Proceed by inducti<strong>on</strong>, building a permutati<strong>on</strong> σ <strong>and</strong> finding units u 1 , . . . , u n <str<strong>on</strong>g>of</str<strong>on</strong>g> R,<br />

as desired.<br />

5.3. Reformulating <str<strong>on</strong>g>the</str<strong>on</strong>g> Problem. The pro<str<strong>on</strong>g>of</str<strong>on</strong>g> that being a finite Frobenius ring is sufficient<br />

for having <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> property with respect to <str<strong>on</strong>g>the</str<strong>on</strong>g> Hamming weight was based<br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>orem over finite fields that used <str<strong>on</strong>g>the</str<strong>on</strong>g> linear independence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> characters [29]. In c<strong>on</strong>trast, <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> that Frobenius is necessary will make use <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> approach for proving <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>orem due to Bogart, et al. [5]. This requires a<br />

reformulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> problem.<br />

Every left linear code C ⊂ R n can be viewed as <str<strong>on</strong>g>the</str<strong>on</strong>g> image <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> inclusi<strong>on</strong> map C →<br />

R n . More generally, every left linear code is <str<strong>on</strong>g>the</str<strong>on</strong>g> image <str<strong>on</strong>g>of</str<strong>on</strong>g> an R-linear homomorphism<br />

Λ : M → R n , for some finite left R-module M. By composing with <str<strong>on</strong>g>the</str<strong>on</strong>g> coordinate<br />

projecti<strong>on</strong>s pr i , <str<strong>on</strong>g>the</str<strong>on</strong>g> homomorphism Λ can be expressed as an n-tuple Λ = (λ 1 , . . . , λ n ),<br />

where each λ i ∈ Hom R (M, R). The λ i will be called <str<strong>on</strong>g>the</str<strong>on</strong>g> coordinate functi<strong>on</strong>als <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

linear code.<br />

Remark 32. It is typical in coding <str<strong>on</strong>g>the</str<strong>on</strong>g>ory to present a linear code C ⊂ R n by means <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a generator matrix G. The matrix G has entries from R, <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> columns <str<strong>on</strong>g>of</str<strong>on</strong>g> G<br />

equals <str<strong>on</strong>g>the</str<strong>on</strong>g> length n <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> code C, <strong>and</strong> (most importantly) <str<strong>on</strong>g>the</str<strong>on</strong>g> rows <str<strong>on</strong>g>of</str<strong>on</strong>g> G generate C as<br />

a left submodule <str<strong>on</strong>g>of</str<strong>on</strong>g> R n .<br />

–238–

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!