20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Now we will show that <str<strong>on</strong>g>the</str<strong>on</strong>g> numbers that are presented in our <str<strong>on</strong>g>the</str<strong>on</strong>g>orems do not depend<br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> choice <str<strong>on</strong>g>of</str<strong>on</strong>g> an orientati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> arrows <str<strong>on</strong>g>of</str<strong>on</strong>g> Q. To do this, we need <str<strong>on</strong>g>the</str<strong>on</strong>g> following lemma:<br />

Lemma 1.2. For any sink a ∈ Q 0 <strong>and</strong> any Λ-module M, if Hom Λ (S(a), M) = 0 <strong>and</strong><br />

Ext 1 Λ(M, S(a)) = 0, <str<strong>on</strong>g>the</str<strong>on</strong>g>n we have Hom Λ (P (tα), M) = 0 for any arrow α : tα → a in Q.<br />

Let σ = σ a be <str<strong>on</strong>g>the</str<strong>on</strong>g> reflecti<strong>on</strong> functor (with <str<strong>on</strong>g>the</str<strong>on</strong>g> APR-tilting module T , see [2, VII Theorem<br />

5.3]) at a sink a ∈ Q 0 , <strong>and</strong> Q ′ <str<strong>on</strong>g>the</str<strong>on</strong>g> quiver obtained by reversing all arrows c<strong>on</strong>necting<br />

with a in Q. For a basic hom-orthog<strong>on</strong>al partial tilting Λ-module X ∼ = ⊕ s<br />

k=1 X k, we<br />

define a Λ ′ -module as follows (here we put Λ ′ = KQ ′ ):<br />

σX := S(a) Λ ′ ⊕ σX 2 ⊕ · · · ⊕ σX s<br />

if X has a direct summ<strong>and</strong> (say, X 1 ) isomorphic to <str<strong>on</strong>g>the</str<strong>on</strong>g> simple module S(a) Λ ; <strong>and</strong><br />

σX := σX 1 ⊕ σX 2 ⊕ · · · ⊕ σX s<br />

if X does not, where we put σX k = Hom Λ (T, X k ) for each indecomposable X k . Let R,<br />

R ′ be <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> isomorphic classes <str<strong>on</strong>g>of</str<strong>on</strong>g> basic hom-orthog<strong>on</strong>al partial tilting Λ-modules,<br />

Λ ′ -modules, having exactly s indecomposable direct summ<strong>and</strong>s, respectively. Then we<br />

have <str<strong>on</strong>g>the</str<strong>on</strong>g> following:<br />

Propositi<strong>on</strong> 1.3. For a basic hom-orthog<strong>on</strong>al partial tilting Λ-module X having s indecomposable<br />

direct summ<strong>and</strong>s, so is Λ ′ -module σX. The corresp<strong>on</strong>dence [X] ↦→ [σX] gives<br />

a bijecti<strong>on</strong> from R to R ′ . In particular, <str<strong>on</strong>g>the</str<strong>on</strong>g> numbers that are presented in Theorem 0.1<br />

do not depend <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> choice <str<strong>on</strong>g>of</str<strong>on</strong>g> an orientati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> arrows.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Let R Q , R Q ′ be <str<strong>on</strong>g>the</str<strong>on</strong>g> representati<strong>on</strong> matrix <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Ring</strong>el form <str<strong>on</strong>g>of</str<strong>on</strong>g> Λ, Λ ′ , respectively.<br />

Let r = r a be <str<strong>on</strong>g>the</str<strong>on</strong>g> simple reflecti<strong>on</strong> <strong>on</strong> Z n corresp<strong>on</strong>ding to <str<strong>on</strong>g>the</str<strong>on</strong>g> vertex a (we also denote by<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> same r its representati<strong>on</strong> matrix). Then we have R Q ′ = t r · R Q · r. On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r h<strong>and</strong>,<br />

we have dim σX k = r·(dim X k ) for X k that is not isomorphic to S(a) Λ , <strong>and</strong> r(e a ) = −e a .<br />

Hence, by calculating with <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Ring</strong>el form (recall Lemma 1.1), we see that σX is also<br />

a basic hom-orthog<strong>on</strong>al partial tilting Λ ′ -module. This corresp<strong>on</strong>dence [X] ↦→ [σX] is<br />

obviously a bijecti<strong>on</strong>.<br />

□<br />

Next we define two subsets <str<strong>on</strong>g>of</str<strong>on</strong>g> R as follows:<br />

R 1 = { [X] ∈ R; X is sincere, but σX is not sincere } ,<br />

R 2 = { [X] ∈ R; X is not sincere, but σX is sincere } .<br />

It follows from Lemma 1.2 that <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong> “sincere” implies that any representative <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

each class <str<strong>on</strong>g>of</str<strong>on</strong>g> R 1 or R 2 does not have a direct summ<strong>and</strong> isomorphic to <str<strong>on</strong>g>the</str<strong>on</strong>g> simple module<br />

S(a) Λ .<br />

Propositi<strong>on</strong> 1.4. We have ♯R 1 = ♯R 2 . In particular, <str<strong>on</strong>g>the</str<strong>on</strong>g> numbers for sincere modules<br />

that are presented in Theorem 0.3 do not depend <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> choice <str<strong>on</strong>g>of</str<strong>on</strong>g> an orientati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> arrows.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Take <str<strong>on</strong>g>the</str<strong>on</strong>g> isomorphic class [X] ∈ R 1 <strong>and</strong> let X ∼ = ⊕ s<br />

k=1 X k be its indecomposable<br />

decompositi<strong>on</strong>. Then, since σX is not sincere, <strong>on</strong>ly <str<strong>on</strong>g>the</str<strong>on</strong>g> a-th entry <str<strong>on</strong>g>of</str<strong>on</strong>g> dim σX = r·(dim X)<br />

is zero. Hence so is <str<strong>on</strong>g>the</str<strong>on</strong>g> a-th entry <str<strong>on</strong>g>of</str<strong>on</strong>g> each r(α k ), where we put α k = dim X k . On<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r h<strong>and</strong>, since σX is a basic hom-orthog<strong>on</strong>al partial tilting Λ ′ -module, we have<br />

t r(α i )·R Q ′ ·r(α j ) = 0 for any pair <str<strong>on</strong>g>of</str<strong>on</strong>g> distinct indices. Then we see that t r(α i )·R Q·r(α j ) =<br />

–128–

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!