20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

a cochain complex X <str<strong>on</strong>g>of</str<strong>on</strong>g> A-A-bimodules. If this gives us an equivalence <str<strong>on</strong>g>of</str<strong>on</strong>g> triangulated<br />

categories, we call X a two-sided tilting complex [Ric1]. Rickard showed that tensoring<br />

with two-sided tilting complexes does give a subgroup <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> group <str<strong>on</strong>g>of</str<strong>on</strong>g> autoequivalences<br />

[Ric1]. We call this subgroup <str<strong>on</strong>g>the</str<strong>on</strong>g> derived Picard group <str<strong>on</strong>g>of</str<strong>on</strong>g> A, <strong>and</strong> denote it DPic(A). Here<br />

we can work with ordinary tensor products, <strong>and</strong> will not need to c<strong>on</strong>sider derived tensor<br />

products, as all our two-sided tilting complexes will be presented as cochain complexes <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

A-A-bimodules which are projective <strong>on</strong> both sides.<br />

2. Spherical Twists <strong>and</strong> Braid Relati<strong>on</strong>s<br />

Let A be a symmetric algebra <strong>and</strong> let P be a projective A-module. Following [ST], we<br />

say that P is spherical if End A (P ) ∼ = k[x]/〈x 2 〉. In this case, c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> cochain complex<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> A-A-bimodules<br />

P ⊗ k P ∨ → A<br />

c<strong>on</strong>centrated in degrees 1 <strong>and</strong> 0, where <str<strong>on</strong>g>the</str<strong>on</strong>g> n<strong>on</strong>zero map is given by evaluati<strong>on</strong>. We will<br />

denote this complex by X P . It defines an object in <str<strong>on</strong>g>the</str<strong>on</strong>g> bounded derived category D b (A),<br />

which we will also denote by X P . Then tensoring with X P defines an end<str<strong>on</strong>g>of</str<strong>on</strong>g>unctor<br />

which we denote by F P .<br />

X P ⊗ A − : D b (A) → D b (A)<br />

Theorem 1 ([RZ] for Brauer tree algebras, [ST] in general). If <str<strong>on</strong>g>the</str<strong>on</strong>g> projective A-module<br />

P is spherical <str<strong>on</strong>g>the</str<strong>on</strong>g>n F P is an autoequivalence.<br />

Now let P 1 , . . . , P n be a collecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> n spherical projective A-modules. Following [ST],<br />

we say that {P 1 , . . . , P n } is an A n -collecti<strong>on</strong> if<br />

{<br />

0 if |i − j| > 1;<br />

dim k Hom A (P i , P j ) =<br />

1 if |i − j| = 1<br />

for all 1 ≤ i, j ≤ n.<br />

Theorem 2 ([RZ] for Brauer tree algebras, [ST] in general). If {P 1 , . . . , P n } is an A n -<br />

collecti<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> spherical twists F i = F Pi satisfy <str<strong>on</strong>g>the</str<strong>on</strong>g> braid relati<strong>on</strong>s<br />

• F i F j<br />

∼ = Fj F i if |i − j| > 1;<br />

• F i F j F i<br />

∼ = Fj F i F j if |i − j| = 1<br />

for all 1 ≤ i, j ≤ n.<br />

Ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r way to say this is as follows: let B n+1 be <str<strong>on</strong>g>the</str<strong>on</strong>g> braid group <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> letters<br />

{1, . . . , n, n + 1}. This is generated by elements s 1 , . . . , s n <strong>and</strong> has relati<strong>on</strong>s<br />

• s i s j = s j s i if |i − j| > 1;<br />

• s i s j s i = s j s i s j if |i − j| = 1.<br />

If A has an A n -collecti<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>n we have a group homomorphism<br />

B n+1 → DPic(A)<br />

which sends s i to <str<strong>on</strong>g>the</str<strong>on</strong>g> spherical twist F i .<br />

Let S n+1 be <str<strong>on</strong>g>the</str<strong>on</strong>g> symmetric group <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> letters {1, . . . , n, n + 1}. We also denote <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

generators <str<strong>on</strong>g>of</str<strong>on</strong>g> S i by s 1 , . . . , s n , <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>re is an obvious group epimorphism B n+1 ↠ S n+1 .<br />

–51–

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!