20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Propositi<strong>on</strong> 4 (Paper III, Propositi<strong>on</strong> 6.7 in [1], Propositi<strong>on</strong> 4.14 in [6]). For any m ≥ 1,<br />

D (m) (I) is a free left S-module with a basis<br />

{ε m , P 1 δ m 1 , . . . , P m δ m m} if m < r − 1,<br />

{P 1 δ m 1 , . . . , P r δ m r } if m = r − 1,<br />

{P 1 δ m 1 , . . . , P r δ m r , Qη (m)<br />

r+1, . . . , Qη (m)<br />

m+1} if m > r − 1,<br />

where <str<strong>on</strong>g>the</str<strong>on</strong>g> set {δ m 1 , . . . , δ m r , η (m)<br />

r+1, . . . , η (m)<br />

m+1} forms a K-basis for ∑ |α|=m K∂α if m > r − 1.<br />

By Propositi<strong>on</strong> 1, we have<br />

( ⊕r−2<br />

( ) )<br />

D(I) = S ⊕ Sεm ⊕ SP 1 δ1 m ⊕ · · · ⊕ SP m δm<br />

m<br />

m=1<br />

( ⊕ (<br />

⊕ SP1 δ1 m ⊕ · · · ⊕ SP r δr m ⊕ SQη (m)<br />

r+1 ⊕ · · · ⊕ SQη m+1) ) (m) .<br />

m≥r−1<br />

For i = 1, . . . , r, we define an additive group<br />

L i := D(I) ∩ (p 1 · · · p i )D(S).<br />

Propositi<strong>on</strong> 5. For i = 1, . . . , r, <str<strong>on</strong>g>the</str<strong>on</strong>g> additive group L i is a two-sided ideal <str<strong>on</strong>g>of</str<strong>on</strong>g> D(I).<br />

We c<strong>on</strong>sider a sequence<br />

(3.1)<br />

ID(S) = L r ⊆ L r−1 ⊆ · · · ⊆ L 1 ⊆ L 0 = D(I)<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> two-sided ideals <str<strong>on</strong>g>of</str<strong>on</strong>g> D(I). If L i−1 /L i is a right Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian D(I)-module for any i, <str<strong>on</strong>g>the</str<strong>on</strong>g>n<br />

D(I)/ID(S) is a right Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian ring. By proving that L i−1 /L i is right Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian for<br />

all i, we obtain <str<strong>on</strong>g>the</str<strong>on</strong>g> following main <str<strong>on</strong>g>the</str<strong>on</strong>g>orem.<br />

Theorem 6. The ring D(S/I) ≃ D(I)/ID(S) <str<strong>on</strong>g>of</str<strong>on</strong>g> differential operators <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> coordinate<br />

ring <str<strong>on</strong>g>of</str<strong>on</strong>g> a central 2-arrangement is Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian (i.e., D(S/I) is right Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian <strong>and</strong> left<br />

Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian).<br />

In c<strong>on</strong>trast, Gr D(S/I) is not Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian when r ≥ 2.<br />

Remark 7. The graded ring Gr D(S/I) associated to <str<strong>on</strong>g>the</str<strong>on</strong>g> order filtrati<strong>on</strong> is a commutative<br />

ring. We c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> ideal M := 〈P 1 δ1<br />

m | m ≥ 1〉 <str<strong>on</strong>g>of</str<strong>on</strong>g> Gr D(S/I).<br />

Assume that M is finitely generated with generators η 1 , . . . , η l . Then <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a<br />

positive integer m such that<br />

Since P 1 δ m 1<br />

(3.2)<br />

∈ M, we can write<br />

M = 〈η 1 , . . . , η l 〉 ⊆ 〈P 1 δ 1 , . . . , P 1 δ m−1<br />

1 〉.<br />

P 1 δ m 1<br />

= P 1 δ 1 · θ 1 + · · · + P 1 δ m−1<br />

1 · θ m−1<br />

for some θ 1 , . . . , θ m−1 ∈ D(I).<br />

If θ ∈ D(I) with ord(θ) ≤ 1, <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> polynomial degree <str<strong>on</strong>g>of</str<strong>on</strong>g> θ is greater than or equal<br />

to 1 by Propositi<strong>on</strong> 4. Since <str<strong>on</strong>g>the</str<strong>on</strong>g> order <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> LHS <str<strong>on</strong>g>of</str<strong>on</strong>g> (3.2) is m, <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists at least <strong>on</strong>e<br />

θ j such that <str<strong>on</strong>g>the</str<strong>on</strong>g> order <str<strong>on</strong>g>of</str<strong>on</strong>g> θ j is greater than or equal to 1. Thus <str<strong>on</strong>g>the</str<strong>on</strong>g> polynomial degree <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

–134–

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!