20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Theorem 15. We proceed by inducti<strong>on</strong> <strong>on</strong> d. Choose a 1 , a 2 , · · · , a d ∈ A so<br />

that Q = (a 1 , a 2 , · · · , a d ) <strong>and</strong> for each 1 ≤ i ≤ d−2, <str<strong>on</strong>g>the</str<strong>on</strong>g> i+2 elements a 1 , a 2 , · · · , a i , a d−1 , a d<br />

form a superficial sequence with respect to Q. We will show that <str<strong>on</strong>g>the</str<strong>on</strong>g>re exist b 2 , b 3 , · · · , b d ∈<br />

A such that b 1 = a d−1 , b 2 , b 3 , · · · , b d forms a d-sequence in A <strong>and</strong> Q = (b 1 , b 2 , · · · , b d ). We<br />

put A = A/(a 1 ), Q = QA, <strong>and</strong> C = A/H 0 m(A) (= A/U(a 1 )).<br />

Suppose that d = 3. Then<br />

e 2 QC(C) = e 2 Q (A) − h0 (A) = e 2 Q(A) − h 0 (A) = h 1 (A) − h 0 (A) = 0,<br />

because h 1 (A) = h 0 (A) (recall that QH 1 m(A) = (0) by Propositi<strong>on</strong> 13). Hence, thanks<br />

to Propositi<strong>on</strong> 8, a 2 , a 3 forms a d-sequence in C, because a 2 is superficial for <str<strong>on</strong>g>the</str<strong>on</strong>g> ideal<br />

QC = (a 2 , a 3 )C. Therefore, since a 1 H 1 m(A) = (0), we have<br />

U(a 2 ) ∩ [Q + U(a 1 )] = (a 2 ),<br />

by Propositi<strong>on</strong> 16. Let Q = (a 2 , a 3 , b 3 ) <strong>and</strong> B = A/U(a 2 ). Then since e 2 QB (B) = 0, by<br />

Propositi<strong>on</strong> 8 <str<strong>on</strong>g>the</str<strong>on</strong>g> sequence b 2 = a 3 , b 3 forms a d-sequence in B, because b 2 is superficial<br />

for QB. Therefore, since U(a 2 ) ∩ Q ⊆ U(a 2 ) ∩ [Q + U(a 1 )] = (a 2 ), <str<strong>on</strong>g>the</str<strong>on</strong>g> sequence b 2 , b 3<br />

forms a d-sequence in A/(a 2 ), so that b 1 = a 2 , b 2 , b 3 forms a d-sequence in A, because b 1<br />

is A-regular.<br />

Assume that d ≥ 4 <strong>and</strong> that our asserti<strong>on</strong> holds true for d−1. Then, thanks to Theorem<br />

13 <strong>and</strong> its pro<str<strong>on</strong>g>of</str<strong>on</strong>g>, we have<br />

e 2 Q(A) = e 2 (A) = ∑d−3<br />

( ) d − 4<br />

Q e2 QC(C) ≤<br />

h j (C)<br />

j − 1<br />

=<br />

=<br />

j=1<br />

∑d−3<br />

( ) d − 4<br />

h j (A)<br />

j − 1<br />

because Q·H j m(A) = (0) for 1 ≤ j ≤ d − 3. Hence<br />

∑d−3<br />

( ) d − 4<br />

e 2 QC(C) =<br />

h j (C).<br />

j − 1<br />

j=1<br />

j=1<br />

∑d−2<br />

( ) d − 3<br />

h j (A) = e 2<br />

j − 1<br />

Q(A),<br />

Therefore, because QC = (a 2 , a 3 , · · · , a d )C <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> sequence a 2 , a 3 , · · · , a i , a d−1 , a d is superficial<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> ideal QC for all 1 ≤ i ≤ d − 2 where a j denotes <str<strong>on</strong>g>the</str<strong>on</strong>g> image <str<strong>on</strong>g>of</str<strong>on</strong>g> a j in C, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>sis <str<strong>on</strong>g>of</str<strong>on</strong>g> inducti<strong>on</strong> <strong>on</strong> d yields that <str<strong>on</strong>g>the</str<strong>on</strong>g>re exist γ 2 , γ 3 , · · · , γ d−1 ∈ C such that <str<strong>on</strong>g>the</str<strong>on</strong>g> sequence<br />

γ 1 = a d−1 , γ 2 , γ 3 , · · · , γ d−1 forms a d-sequence in C <strong>and</strong> QC = (γ 1 , γ 2 , · · · , γ d−1 )C.<br />

Let us write γ j = c j for each 2 ≤ j ≤ d − 1 with c j ∈ Q, where c j denote <str<strong>on</strong>g>the</str<strong>on</strong>g> image<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> c j in C. We put q = (a 1 , a d−1 , c 2 , c 3 , · · · , c d−1 ). Then q is a parameter ideal in A,<br />

a 1 H 1 m(A) = (0), <strong>and</strong> a d−1 , c 2 , c 3 , · · · , c d−1 forms a d-sequence in C. Therefore<br />

j=1<br />

U(a d−1 ) ∩ [Q + U(a 1 )] = U(a d−1 ) ∩ [q + U(a 1 )] = (a d−1 )<br />

by Propositi<strong>on</strong> 16, whence U(a d−1 ) ∩ Q = (a d−1 ).<br />

–163–

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!