20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

INTRODUCTION TO REPRESENTATION THEORY OF<br />

COHEN-MACAULAY MODULES AND THEIR DEGENERATIONS<br />

YUJI YOSHINO<br />

Abstract. This is a quick introducti<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> representati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> Cohen-<br />

Macaulay modules <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir degenerati<strong>on</strong>s.<br />

1. Representati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> Cohen-Macaulay modules.<br />

Let k be a field <strong>and</strong> let R be commutative noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian complete local k-algebra with<br />

unique maximal ideal m. We assume k ∼ = R/m naturally. Then it is known that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is<br />

a regular local k-subalgebra T <str<strong>on</strong>g>of</str<strong>on</strong>g> R such that R is a module-finite T -algebra. (Cohen’s<br />

structure <str<strong>on</strong>g>the</str<strong>on</strong>g>orem for complete local rings.) Note that T is isomorphic to a formal power<br />

series ring over k.<br />

Definiti<strong>on</strong> 1. (1) R is called a Cohen-Macaulay ring (a CM ring for short) if R<br />

is free as a T -module.<br />

(2) A finitely generated R-module M is called a Cohen-Macaulay module over R,<br />

or a maximal Cohen-Macaulay module (a CM module or an MCM module for<br />

short) if M is free as a T -module.<br />

Given a CM module M, since M ∼ = T n for some n ≥ 0, we have a k-algebra homomorphism<br />

R → End T (M) ∼ = T n×n , which is a matrix-representati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> R over T .<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> following we always assume that R is a CM complete local k-algebra. We<br />

denote by mod(R) (res. CM(R) ) <str<strong>on</strong>g>the</str<strong>on</strong>g> category <str<strong>on</strong>g>of</str<strong>on</strong>g> finitely generated R-modules (resp. CM<br />

modules over R ) <strong>and</strong> R-homomorphisms.<br />

CM(R) := { CM modules over R} ⊆ mod(R) := {finitely generated R-modules }<br />

Since R is complete, mod(R) <strong>and</strong> CM(R) are Krull-Schmidt categories. Note that CM(R)<br />

is a resolving subcategory <str<strong>on</strong>g>of</str<strong>on</strong>g> mod(R) in <str<strong>on</strong>g>the</str<strong>on</strong>g> following sense: Suppose <str<strong>on</strong>g>the</str<strong>on</strong>g>re is an exact<br />

sequence 0 → L → M → N → 0 in mod(R).<br />

(i) If L, N ∈ CM(R) <str<strong>on</strong>g>the</str<strong>on</strong>g>n M ∈ CM(R).<br />

(ii) If M, N ∈ CM(R) <str<strong>on</strong>g>the</str<strong>on</strong>g>n L ∈ CM(R).<br />

Let d be <str<strong>on</strong>g>the</str<strong>on</strong>g> Krull-dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ring R (so that we can take T = k[[t 1 , . . . , t d ]] <strong>on</strong><br />

which R is finite). If d = 1 <strong>and</strong> if R is reduced, <str<strong>on</strong>g>the</str<strong>on</strong>g>n CM modules are just torsi<strong>on</strong>-free<br />

modules. If d = 2 <strong>and</strong> if R is normal, <str<strong>on</strong>g>the</str<strong>on</strong>g>n CM modules are nothing but reflexive modules.<br />

In general, if d ≥ 3 <strong>and</strong> if R is normal, <str<strong>on</strong>g>the</str<strong>on</strong>g>n CM(R) ⊆ {reflexive modules} but this is not<br />

necessarily an equality. If R is regular (i.e. gl-dimR < ∞) <str<strong>on</strong>g>the</str<strong>on</strong>g>n all CM modules over R<br />

are free.<br />

Let K R := Hom T (R, T ) <strong>and</strong> call it <str<strong>on</strong>g>the</str<strong>on</strong>g> can<strong>on</strong>ical module <str<strong>on</strong>g>of</str<strong>on</strong>g> R. Since R is a CM ring,<br />

K R ∈ CM(R). For any X ∈ mod(R), we have a natural isomorphism Hom R (X, K R ) ∼ =<br />

–268–

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!