20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

n-REPRESENTATION INFINITE ALGEBRAS<br />

MARTIN HERSCHEND<br />

Abstract. We introduce <str<strong>on</strong>g>the</str<strong>on</strong>g> class <str<strong>on</strong>g>of</str<strong>on</strong>g> n-representati<strong>on</strong> infinite algebras <strong>and</strong> discuss some<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir homological properties. We also present <str<strong>on</strong>g>the</str<strong>on</strong>g> family <str<strong>on</strong>g>of</str<strong>on</strong>g> n-representati<strong>on</strong> infinite<br />

algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> type Ã.<br />

1. Introducti<strong>on</strong><br />

This brief survey c<strong>on</strong>tains <str<strong>on</strong>g>the</str<strong>on</strong>g> results from my presentati<strong>on</strong> at <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>44th</str<strong>on</strong>g> <str<strong>on</strong>g>Symposium</str<strong>on</strong>g> <strong>on</strong><br />

<strong>Ring</strong> <strong>Theory</strong> <strong>and</strong> Representati<strong>on</strong> <strong>Theory</strong> in Okayama. It is based <strong>on</strong> joint work Osamu<br />

Iyama <strong>and</strong> Steffen Oppermann. A detailed final versi<strong>on</strong> will be published elsewhere.<br />

The class <str<strong>on</strong>g>of</str<strong>on</strong>g> hereditary finite dimensi<strong>on</strong>al algebras is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> best understood in terms<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> representati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory, especially in <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g> Ausl<strong>and</strong>er-Reiten <str<strong>on</strong>g>the</str<strong>on</strong>g>ory. This applies<br />

in particular to representati<strong>on</strong> finite hereditary algebras. In higher dimensi<strong>on</strong>al Ausl<strong>and</strong>er-<br />

Reiten <str<strong>on</strong>g>the</str<strong>on</strong>g>ory an analogue <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se algebras is given by <str<strong>on</strong>g>the</str<strong>on</strong>g> class <str<strong>on</strong>g>of</str<strong>on</strong>g> n-representati<strong>on</strong> finite<br />

algebras [1, 2]. Recall that a finite dimensi<strong>on</strong>al algebra is called n-representati<strong>on</strong> finite<br />

if it has global dimensi<strong>on</strong> at most n <strong>and</strong> admits an n-cluster tilting module. Since a<br />

1-cluster tilting module is <str<strong>on</strong>g>the</str<strong>on</strong>g> same as an additive generator <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> module category,<br />

1-representati<strong>on</strong> finite means precisely hereditary <strong>and</strong> representati<strong>on</strong> finite.<br />

The aim <str<strong>on</strong>g>of</str<strong>on</strong>g> this report is to define <str<strong>on</strong>g>the</str<strong>on</strong>g> class <str<strong>on</strong>g>of</str<strong>on</strong>g> n-representati<strong>on</strong> infinite algebras, that will<br />

in a similar way be a higher dimensi<strong>on</strong>al analogue <str<strong>on</strong>g>of</str<strong>on</strong>g> representati<strong>on</strong> infinite hereditary<br />

algebras. To do this we begin by recalling some properties <str<strong>on</strong>g>of</str<strong>on</strong>g> n-representati<strong>on</strong> finite<br />

algebras.<br />

Let K be a field <strong>and</strong> Λ a finite dimensi<strong>on</strong>al K-algebra with gl.dim Λ ≤ n. We always<br />

assume that Λ is ring indecomposable. Denote by mod Λ <str<strong>on</strong>g>the</str<strong>on</strong>g> category <str<strong>on</strong>g>of</str<strong>on</strong>g> finite dimensi<strong>on</strong>al<br />

left Λ-modules <strong>and</strong> by D b (Λ) <str<strong>on</strong>g>the</str<strong>on</strong>g> bounded derived category <str<strong>on</strong>g>of</str<strong>on</strong>g> mod Λ. Combining <str<strong>on</strong>g>the</str<strong>on</strong>g> K-<br />

dual D := Hom K (−, K) with <str<strong>on</strong>g>the</str<strong>on</strong>g> Λ-dual we obtain <str<strong>on</strong>g>the</str<strong>on</strong>g> Nakayama functor<br />

ν := DRHom(−, Λ) : D b (Λ) → D b (Λ).<br />

It is a Serre functor in <str<strong>on</strong>g>the</str<strong>on</strong>g> sense that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a functorial ismorphism<br />

Hom D b (Λ)(X, Y ) ≃ D Hom D b (Λ)(Y, ν(X)).<br />

We combine ν with <str<strong>on</strong>g>the</str<strong>on</strong>g> shift functor <strong>on</strong> D b (Λ) to obtain <str<strong>on</strong>g>the</str<strong>on</strong>g> autoequivalence<br />

ν n := ν ◦ [−n] : D b (Λ) → D b (Λ).<br />

It plays <str<strong>on</strong>g>the</str<strong>on</strong>g> role <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> higher Ausl<strong>and</strong>er-Reiten translati<strong>on</strong> in D b (Λ). More precisely,<br />

define<br />

τ n := D Ext n Λ(−, Λ) : mod Λ → mod Λ<br />

The detailed versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper will be submitted for publicati<strong>on</strong> elsewhere.<br />

–55–

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!