20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

We will define a Z n×d -graded chain complex ˜P • <str<strong>on</strong>g>of</str<strong>on</strong>g> free ˜S-modules as follows. First, set<br />

˜P 0 := ˜S. For each q ≥ 1, we set<br />

<strong>and</strong><br />

A q := <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> admissible pairs ( ˜F , ˜m) for b-pol(I) with # ˜F = q,<br />

˜P q :=<br />

where e( ˜F , ˜m) is a basis element with<br />

(<br />

deg e( ˜F<br />

)<br />

, ˜m)<br />

⊕<br />

( ˜F , ˜m)∈A q−1<br />

˜S e( ˜F , ˜m),<br />

⎛<br />

= deg ⎝˜m ×<br />

∏<br />

(i r ,j r )∈ ˜F<br />

x ir,j r<br />

⎞<br />

⎠ ∈ Z n×d .<br />

We define <str<strong>on</strong>g>the</str<strong>on</strong>g> ˜S-homomorphism ∂ : ˜Pq → ˜P q−1 for q ≥ 2 so that e( ˜F , ˜m) with ˜F =<br />

{(i 1 , j 1 ), . . . , (i q , j q )} is sent to<br />

∑<br />

(−1) r · x ir ,j r<br />

· e( ˜F r , ˜m) −<br />

∑<br />

(−1) r · xi r,j r<br />

· ˜m<br />

· e( ˜F r , ˜m ⟨ir ⟩),<br />

1≤r≤q<br />

r∈B( ˜F , ˜m)<br />

<strong>and</strong> ∂ : ˜P 1 → ˜P 0 by e(∅, ˜m) ↦−→ ˜m ∈ ˜S = ˜P 0 . Clearly, ∂ is a Z n×d -graded homomorphism.<br />

Set<br />

∂<br />

˜P • : · · · −→ ˜P<br />

∂ ∂<br />

i −→ · · · −→ ˜P<br />

∂<br />

1 −→ ˜P 0 −→ 0.<br />

Theorem 5 ([14, Theorem 2.6]). The complex ˜P • is a Z n×d -graded minimal ˜S-free resoluti<strong>on</strong><br />

for ˜S/ b-pol(I).<br />

Sketch <str<strong>on</strong>g>of</str<strong>on</strong>g> Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Calculati<strong>on</strong> using Lemma 3 shows that ∂ ◦ ∂(e( ˜F , ˜m)) = 0 for each admissible<br />

pair ( ˜F , ˜m). That is, ˜P • is a chain complex.<br />

Let I = (m 1 , . . . , m t ) with m 1 ≻ · · · ≻ m t , <strong>and</strong> set I r := (m 1 , . . . , m r ). Here ≻ is <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

lexicographic order with x 1 ≻ x 2 ≻ · · · ≻ x n . Then I r are also Borel fixed. The acyclicity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> complex ˜P can be shown inductively by means <str<strong>on</strong>g>of</str<strong>on</strong>g> mapping c<strong>on</strong>es.<br />

□<br />

Remark 6. Herzog <strong>and</strong> Takayama [9] explicitly gave a minimal free resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a m<strong>on</strong>omial<br />

ideal with linear quotients admitting a regular decompositi<strong>on</strong> functi<strong>on</strong>. A Borel fixed<br />

ideal I satisfies this property. However, while Ĩ has linear quotients, <str<strong>on</strong>g>the</str<strong>on</strong>g> decompositi<strong>on</strong><br />

functi<strong>on</strong> can not be regular. Hence <str<strong>on</strong>g>the</str<strong>on</strong>g> method <str<strong>on</strong>g>of</str<strong>on</strong>g> [9] is not applicable to our case.<br />

˜m ⟨ir ⟩<br />

3. Applicati<strong>on</strong>s <strong>and</strong> Remarks<br />

Let I ⊂ S be a Borel fixed ideal, <strong>and</strong> Θ ⊂ ˜S <str<strong>on</strong>g>the</str<strong>on</strong>g> sequence defined in Introducti<strong>on</strong>. As<br />

remarked before, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a <strong>on</strong>e-to-<strong>on</strong>e corresp<strong>on</strong>dence between <str<strong>on</strong>g>the</str<strong>on</strong>g> admissible pairs for Ĩ<br />

<strong>and</strong> those for I, <strong>and</strong> if ( ˜F , ˜m) corresp<strong>on</strong>ds to (F, m) <str<strong>on</strong>g>the</str<strong>on</strong>g>n # ˜F = #F . Hence we have<br />

(3.1) β ˜S<br />

i,j (Ĩ) = βS i,j(I)<br />

for all i, j, where S <strong>and</strong> ˜S are c<strong>on</strong>sidered to be Z-graded. Of course, this equati<strong>on</strong> is clear,<br />

if <strong>on</strong>e knows <str<strong>on</strong>g>the</str<strong>on</strong>g> fact that Ĩ is a polarizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> I ([16, Theorem 3.4]). C<strong>on</strong>versely, we can<br />

show this fact by <str<strong>on</strong>g>the</str<strong>on</strong>g> equati<strong>on</strong> (3.1) <strong>and</strong> [13, Lemma 6.9].<br />

–147–

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!