20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>and</strong><br />

τ − n := Ext n Λ(DΛ, −) : mod Λ → mod Λ.<br />

Then τ n = H 0 (ν n −) <strong>and</strong> τn<br />

− = H 0 (νn<br />

−1 −). Using <str<strong>on</strong>g>the</str<strong>on</strong>g>se functors we can capture <str<strong>on</strong>g>the</str<strong>on</strong>g> noti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> n-representati<strong>on</strong> finiteness in <str<strong>on</strong>g>the</str<strong>on</strong>g> following way.<br />

Propositi<strong>on</strong> 1. [3] Let Λ be a finite dimensi<strong>on</strong>al K-algebra with gl.dim Λ ≤ n. Then <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

following c<strong>on</strong>diti<strong>on</strong>s are equivalent.<br />

(a) Λ is n-representati<strong>on</strong> finite.<br />

(b) For every indecomposable projective Λ-module P , <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a n<strong>on</strong>-negative integer<br />

l P such that ν −l P<br />

n P is an indecomposable injective Λ-module.<br />

We remark that if c<strong>on</strong>diti<strong>on</strong> (b) is satisfied <str<strong>on</strong>g>the</str<strong>on</strong>g>n νn −i P ≃ τn<br />

−i P for all 0 ≤ i ≤ l P <strong>and</strong><br />

⊕<br />

P<br />

l P<br />

⊕<br />

i=0<br />

τn<br />

−i P = ⊕ P<br />

l P<br />

⊕<br />

i=0<br />

ν −i<br />

n P<br />

is an n-cluster tilting Λ-module [1]. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, since ν −1 sends injectives to projectives<br />

we have<br />

ν −(l P +1)<br />

n P = ν −1 (ν −l P<br />

n P )[n] = P ′ [n] ∈ mod Λ[n]<br />

for some indecomposable projective P ′ . We c<strong>on</strong>clude that knowing <str<strong>on</strong>g>the</str<strong>on</strong>g> τn − -orbits <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

indecomposable projectives in mod Λ is enough to determine <str<strong>on</strong>g>the</str<strong>on</strong>g>ir νn<br />

−1 -orbits. Comparing<br />

this to <str<strong>on</strong>g>the</str<strong>on</strong>g> classical case n = 1 gives us a hint how to define n-representati<strong>on</strong> infinite<br />

algebras.<br />

2. n-representati<strong>on</strong> infinite algebras<br />

Recall that if n = 1 <strong>and</strong> Λ is representati<strong>on</strong> infinite, <str<strong>on</strong>g>the</str<strong>on</strong>g>n τ −i P is never injective for<br />

an indecomposable projective Λ-module P . In fact ν1 −i P = τ −i P ∈ mod Λ for all i ≥ 0.<br />

Inspired by this we make <str<strong>on</strong>g>the</str<strong>on</strong>g> following definiti<strong>on</strong>.<br />

Definiti<strong>on</strong> 2. Let Λ be a finite dimensi<strong>on</strong>al K-algebra with gl.dim Λ ≤ n. We say that<br />

Λ is n-representati<strong>on</strong> infinite if<br />

ν −i<br />

n Λ ∈ mod Λ<br />

for all i ≥ 0.<br />

We remark that this c<strong>on</strong>diti<strong>on</strong> is equivalent to ν i n(DΛ) ∈ mod Λ for all i ≥ 0. In <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

classical setting <str<strong>on</strong>g>of</str<strong>on</strong>g> n = 1 every indecomposable module is ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r preprojective, preinjective<br />

or regular. We define higher analogues <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se classes <str<strong>on</strong>g>of</str<strong>on</strong>g> modules as follows.<br />

Definiti<strong>on</strong> 3. Let Λ be an n-representati<strong>on</strong> infinite algebra. The full subcategories <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

n-preprojective, n-preinjective <strong>and</strong> n-regular modules are defined as<br />

respectively.<br />

P := add{ν −i<br />

n Λ | i ≥ 0},<br />

I := add{ν i n(DΛ) | i ≥ 0},<br />

R := {X ∈ mod Λ | Ext i Λ(P, X) = 0 = Ext i Λ(X, I) for all i ≥ 0},<br />

–56–

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!