20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

By virtue <str<strong>on</strong>g>of</str<strong>on</strong>g> this <str<strong>on</strong>g>the</str<strong>on</strong>g>orem toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r with a <str<strong>on</strong>g>the</str<strong>on</strong>g>orem <str<strong>on</strong>g>of</str<strong>on</strong>g> Zwara [17, Theorem 1], we see that<br />

if R is a finite-dimensi<strong>on</strong>al algebra over k, <str<strong>on</strong>g>the</str<strong>on</strong>g>n our definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> degenerati<strong>on</strong> agrees with<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> classical (geometric) definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> degenerati<strong>on</strong>s using module varieties <str<strong>on</strong>g>of</str<strong>on</strong>g> R-module<br />

structures.<br />

We prove here <str<strong>on</strong>g>the</str<strong>on</strong>g> implicati<strong>on</strong> (2) ⇒ (1).<br />

Suppose that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is an exact sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> finitely generated left R-modules<br />

0 → Z f= ( φ ψ)<br />

−→ M ⊕ Z → N → 0,<br />

such that ψ is nilpotent. C<strong>on</strong>sidering a trivial exact sequence<br />

0 → Z j=(0 1)<br />

−→ M ⊕ Z → M → 0,<br />

we shall combine <str<strong>on</strong>g>the</str<strong>on</strong>g>se two exact sequences al<strong>on</strong>g a [0, 1]-interval. More precisely, let V<br />

be <str<strong>on</strong>g>the</str<strong>on</strong>g> discrete valuati<strong>on</strong> ring k[t] (t) , where t in an indeterminate over k, <strong>and</strong> c<strong>on</strong>sider a<br />

left R ⊗ k V -homomorphism<br />

(<br />

g = j ⊗ t + f ⊗ (1 − t) =<br />

φ ⊗ (1 − t)<br />

1 ⊗ t + ψ ⊗ (1 − t)<br />

)<br />

: Z ⊗ k V → (M ⊕ Z) ⊗ k V.<br />

We can easily show that g is a m<strong>on</strong>omorphism.<br />

Setting <str<strong>on</strong>g>the</str<strong>on</strong>g> cokernel <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> m<strong>on</strong>omorphism g as Q, we have an exact sequence in<br />

modR ⊗ k V :<br />

0 → Z ⊗ k V g → (Z ⊗ k V ) ⊕ (M ⊗ k V ) → Q → 0.<br />

Since g ⊗ k V/tV = f is an injecti<strong>on</strong> <strong>and</strong> since <strong>on</strong>e can easily show Tor V 1 (Q, V/tV ) = 0,<br />

we c<strong>on</strong>clude that Q is flat over V <strong>and</strong> Q/tQ ∼ = N.<br />

Finally note that <str<strong>on</strong>g>the</str<strong>on</strong>g> morphism g ⊗ k V [ 1 ] is essentially <str<strong>on</strong>g>the</str<strong>on</strong>g> same as <str<strong>on</strong>g>the</str<strong>on</strong>g> morphism<br />

t<br />

Z ⊗ k V [ 1 t ]<br />

⎛<br />

⎞<br />

sφ ⎝ ⎠<br />

1 + sψ<br />

−−−−−−−→ M ⊗ k V [ 1] ⊕ Z ⊗ t k V [ 1],<br />

t<br />

where s = 1−t ∈ V [ 1]. Note that sψ : Z ⊗ t t k V [ 1] → Z ⊗ t k V [ 1 ] is nilpotent as well as<br />

t<br />

ψ, hence 1 + sψ is an automorphism <strong>on</strong> Z ⊗ k V [ 1 ]. Therefore we have an isomorphism<br />

t<br />

Q[ 1] ∼ t<br />

= M ⊗ k V [ 1 ]. This completes <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>orem. ✷<br />

t<br />

We remark from this pro<str<strong>on</strong>g>of</str<strong>on</strong>g> that we can always take k[t] (t) as V in Definiti<strong>on</strong> 12.<br />

We give an outline <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> (1) ⇒ (2). (See [12] for <str<strong>on</strong>g>the</str<strong>on</strong>g> detail.)<br />

We can take Q in Definiti<strong>on</strong> 12 so that M ⊗ k V ⊆ Q. Then we have an exact sequence<br />

0 → Q/(M ⊗ k V )<br />

t<br />

−→ Q/(M ⊗ k tV ) −→ Q/tQ → 0<br />

Setting Z = Q/(M ⊗ k V ), we can see that <str<strong>on</strong>g>the</str<strong>on</strong>g> middle term will be M ⊕ Z <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> right<br />

term is N. ✷<br />

Lemma 16. If <str<strong>on</strong>g>the</str<strong>on</strong>g>re is an exact sequence 0 → L → i M<br />

degenerates to L ⊕ N.<br />

p → N → 0 in mod(R), <str<strong>on</strong>g>the</str<strong>on</strong>g>n M<br />

–273–

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!