20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Cluster-tilting <str<strong>on</strong>g>the</str<strong>on</strong>g>ory comes into <str<strong>on</strong>g>the</str<strong>on</strong>g> story because cluster-tilting objects are closely related<br />

to Van den Bergh’s n<strong>on</strong>-commutative crepant resoluti<strong>on</strong>s [16], see [10].<br />

The triangle quotient K b (proj A)/ thick(eA) measures <str<strong>on</strong>g>the</str<strong>on</strong>g> difference between <str<strong>on</strong>g>the</str<strong>on</strong>g> resoluti<strong>on</strong><br />

<strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> smooth part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> singularity, see [5]. So K b (proj A)/ thick(eA) is in some<br />

sense a ‘categorical excepti<strong>on</strong>al locus’. A natural questi<strong>on</strong> is: how is K b (proj A)/ thick(eA)<br />

related to D sg (R)?<br />

C<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> following c<strong>on</strong>diti<strong>on</strong><br />

(c2) MCM(R) is Hom-finite.<br />

Theorem 7. ([12]) Keep <str<strong>on</strong>g>the</str<strong>on</strong>g> above notati<strong>on</strong>s <strong>and</strong> assume that (c1) <strong>and</strong> (c2) hold. There<br />

is a dg algebra B with a morphism f : A → B such that f induces a triangle equivalence<br />

per(B) ∼ = (K b (proj A)/ thick(eA)) ω .<br />

Moreover, B satisfies <str<strong>on</strong>g>the</str<strong>on</strong>g> following properties:<br />

(a) B i = 0 for any i > 0,<br />

(b) H 0 (B) ∼ = A/AeA,<br />

(c) D fd (B) ⊆ per(B),<br />

(d) per(B) is Hom-finite,<br />

(e) <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a triangle equivalence<br />

D sg (R) ω ∼ = (per(B)/Dfd (B)) ω .<br />

Theorem 7 (a–d) are obtained by applying Theorem 3, <strong>and</strong> part (e) needs more work.<br />

This <str<strong>on</strong>g>the</str<strong>on</strong>g>orem was proved by Thanh<str<strong>on</strong>g>of</str<strong>on</strong>g>fer de Völcsey <strong>and</strong> Van den Bergh in [15] for R<br />

being a local complete commutative Gorenstein k-algebra with isolated singularity. As an<br />

applicati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g>y proved <str<strong>on</strong>g>the</str<strong>on</strong>g> following result, which was independently proved by Amiot,<br />

Iyama <strong>and</strong> Reiten.<br />

Theorem 8. ([2, 15]) Let d ∈ N. Let G ⊂ SL d (k) be a finite subgroup, acting naturally<br />

<strong>on</strong> S = k [x 1 , . . . , x d ] <strong>and</strong> let R = S G be <str<strong>on</strong>g>the</str<strong>on</strong>g> ring <str<strong>on</strong>g>of</str<strong>on</strong>g> invariants. Then MCM(R) is a<br />

generalized (d − 1)-cluster category in <str<strong>on</strong>g>the</str<strong>on</strong>g> sense <str<strong>on</strong>g>of</str<strong>on</strong>g> Amiot [1] <strong>and</strong> Guo [9].<br />

References<br />

[1] Claire Amiot, Cluster categories for algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> global dimensi<strong>on</strong> 2 <strong>and</strong> quivers with potential, Ann.<br />

Inst. Fourier (Grenoble) 59 (2009), no. 6, 2525–2590.<br />

[2] Claire Amiot, Osamu Iyama, <strong>and</strong> Idun Reiten, Stable categories <str<strong>on</strong>g>of</str<strong>on</strong>g> Cohen-Macauley modules <strong>and</strong><br />

cluster categories, arXiv:1104.3658.<br />

[3] Alex<strong>and</strong>er A. Beilins<strong>on</strong>, Joseph Bernstein, <strong>and</strong> Pierre Deligne, Analyse et topologie sur les espaces<br />

singuliers, Astérisque, vol. 100, Soc. Math. France, 1982 (French).<br />

[4] Ragnar-Olaf Buchweitz, Maximal Cohen-Macaulay modules <strong>and</strong> Tate-Cohomology over Gorenstein<br />

rings, preprint 1987.<br />

[5] Igor Burban <strong>and</strong> Martin Kalck, Singularity category <str<strong>on</strong>g>of</str<strong>on</strong>g> a n<strong>on</strong>-commutative resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> singularities,<br />

arXiv:1103.3936.<br />

[6] Edward Cline, Brian Parshall, <strong>and</strong> Le<strong>on</strong>ard L. Scott, Finite-dimensi<strong>on</strong>al algebras <strong>and</strong> highest weight<br />

categories, J. reine ang. Math. 391 (1988), 85–99.<br />

–266–

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!