20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

By Example 3, <str<strong>on</strong>g>the</str<strong>on</strong>g> right R-module (R/ rad(R)) R equals <str<strong>on</strong>g>the</str<strong>on</strong>g> character module <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

left R-module R (R/ rad(R)). By Propositi<strong>on</strong> 9 applied to <str<strong>on</strong>g>the</str<strong>on</strong>g> left R-module A = R R, we<br />

have ( R (R/ rad(R)))̂ ∼ = soc( ̂R R ) ∼ = soc(R R ), because ̂R is assumed to be right free. We<br />

thus have an isomorphism (R/ rad(R)) R<br />

∼ = soc(RR ) <str<strong>on</strong>g>of</str<strong>on</strong>g> right R-modules. One can ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

repeat <str<strong>on</strong>g>the</str<strong>on</strong>g> argument for a left isomorphism (using (2)) or appeal to <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>orem <str<strong>on</strong>g>of</str<strong>on</strong>g> H<strong>on</strong>old<br />

[15, Theorem 2] menti<strong>on</strong>ed after Definiti<strong>on</strong> 1.<br />

Now assume (1). Referring to (2.1), we see that R being Frobenius implies that soc(R)<br />

is a sum <str<strong>on</strong>g>of</str<strong>on</strong>g> matrix modules <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> form M mi (F qi ). By Theorem 13 <strong>and</strong> summing, soc(R)<br />

admits a left generating character. By Propositi<strong>on</strong>s 7 <strong>and</strong> 14, R itself admits a left<br />

generating character. Thus (2) holds.<br />

□<br />

2.4. Frobenius Algebras. In this subsecti<strong>on</strong> I want to point out <str<strong>on</strong>g>the</str<strong>on</strong>g> similarity between<br />

a general (not necessarily finite) Frobenius algebra <strong>and</strong> a finite Frobenius ring. I thank<br />

Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor Yun Fan for suggesting this short expositi<strong>on</strong>.<br />

Definiti<strong>on</strong> 16. A finite-dimensi<strong>on</strong>al algebra A over a field F is a Frobenius algebra if<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a linear functi<strong>on</strong>al λ : A → F such that ker λ c<strong>on</strong>tains no n<strong>on</strong>zero left ideals<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> A.<br />

It is apparent that <str<strong>on</strong>g>the</str<strong>on</strong>g> structure functi<strong>on</strong>al λ plays a role for a Frobenius algebra<br />

comparable to that played by a left generating character ϱ <str<strong>on</strong>g>of</str<strong>on</strong>g> a finite Frobenius ring. As<br />

<strong>on</strong>e might expect, <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>necti<strong>on</strong> between λ <strong>and</strong> ϱ is even str<strong>on</strong>ger when <strong>on</strong>e c<strong>on</strong>siders<br />

a finite Frobenius algebra. Recall that every finite field F q admits a generating character<br />

ϑ q , by Example 2.<br />

Theorem 17 (†). Let R be a Frobenius algebra over a finite field F q , with structure<br />

functi<strong>on</strong>al λ : R → F q . Then R is a finite Frobenius ring with left generating character<br />

ϱ = ϑ q ◦ λ.<br />

C<strong>on</strong>versely, suppose R is a finite-dimensi<strong>on</strong>al algebra over a finite field F q <strong>and</strong> that R<br />

is a Frobenius ring with generating character ϱ. Then R is a Frobenius algebra, <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>re<br />

exists a structure functi<strong>on</strong>al λ : R → F q such that ϱ = ϑ q ◦ λ.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Both R ∗ := Hom Fq (R, F q ) <strong>and</strong> ̂R = Hom Z (R, Q/Z) are (R, R)-bimodules satisfying<br />

|R ∗ | = | ̂R| = |R|. A generating character ϑ q <str<strong>on</strong>g>of</str<strong>on</strong>g> F q induces a bimodule homomorphism<br />

f : R ∗ → ̂R via λ ↦→ ϑ q ◦ λ. We claim that f is injective. To that end, suppose λ ∈ ker f.<br />

Then ϑ q ◦λ = 0, so that λ(R) ⊂ ker ϑ q . Note that λ(R) is an F q -vector subspace c<strong>on</strong>tained<br />

in ker ϑ q ⊂ F q . Because ϑ q is a generating character <str<strong>on</strong>g>of</str<strong>on</strong>g> F q , λ(R) = 0, by Propositi<strong>on</strong> 7.<br />

Thus λ = 0, <strong>and</strong> f is injective. Because |R ∗ | = | ̂R|, f is in fact a bimodule isomorphism.<br />

We next claim that <str<strong>on</strong>g>the</str<strong>on</strong>g> structure functi<strong>on</strong>als in R ∗ corresp<strong>on</strong>d under f to <str<strong>on</strong>g>the</str<strong>on</strong>g> generating<br />

characters in ̂R. That is, if ϖ = f(λ), where λ ∈ R ∗ <strong>and</strong> ϖ ∈ ̂R, <str<strong>on</strong>g>the</str<strong>on</strong>g>n λ satisfies <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

c<strong>on</strong>diti<strong>on</strong> that ker λ c<strong>on</strong>tains no n<strong>on</strong>zero left ideals <str<strong>on</strong>g>of</str<strong>on</strong>g> R if <strong>and</strong> <strong>on</strong>ly if ϖ is a generating<br />

character <str<strong>on</strong>g>of</str<strong>on</strong>g> R (i.e., ker ϖ c<strong>on</strong>tains no n<strong>on</strong>zero left ideals <str<strong>on</strong>g>of</str<strong>on</strong>g> R).<br />

Suppose ϖ is a generating character <str<strong>on</strong>g>of</str<strong>on</strong>g> R, <strong>and</strong> suppose that I is a left ideal <str<strong>on</strong>g>of</str<strong>on</strong>g> R with<br />

I ⊂ ker λ. Since ϖ = ϑ q ◦ λ, we also have I ⊂ ker ϖ. Because ϖ is a generating character,<br />

Propositi<strong>on</strong> 7 implies I = 0, as desired.<br />

C<strong>on</strong>versely, suppose λ satisfies <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong> that ker λ c<strong>on</strong>tains no n<strong>on</strong>zero left ideals<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> R, <strong>and</strong> suppose that I is a left ideal <str<strong>on</strong>g>of</str<strong>on</strong>g> R with I ⊂ ker ϖ. Then λ(I) is an F q -linear<br />

–230–

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!