20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Example 23. Let R = k[[x, y]]/(x 3 −y 2 ). It is known that <str<strong>on</strong>g>the</str<strong>on</strong>g> maximal ideal m = (x, y) is<br />

a unique n<strong>on</strong>-free indecomposable Cohen-Macaulay module over R. See [10, Propositi<strong>on</strong><br />

5.11]. In fact it is given by a matrix factorizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> polynomial x 3 − y 2 ;<br />

((<br />

y x<br />

(ϕ, ψ) =<br />

x 2 y<br />

Therefore <str<strong>on</strong>g>the</str<strong>on</strong>g>re is an exact sequence<br />

)<br />

,<br />

(<br />

y −x<br />

−x 2 y<br />

))<br />

.<br />

· · · −−−→ R 2 ϕ<br />

−−−→ R 2 ψ<br />

−−−→ R 2 ϕ<br />

−−−→ R 2 −−−→ m −−−→ 0.<br />

Now we deform <str<strong>on</strong>g>the</str<strong>on</strong>g>se matrices <strong>and</strong> c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> pair <str<strong>on</strong>g>of</str<strong>on</strong>g> matrices over R ⊗ k K;<br />

(( ) ( ))<br />

y − xt x − t<br />

2 y + xt −x + t<br />

2<br />

(Φ, Ψ) =<br />

x 2<br />

,<br />

y + xt −x 2<br />

.<br />

y − xt<br />

Define <str<strong>on</strong>g>the</str<strong>on</strong>g> R ⊗ k K-module P by <str<strong>on</strong>g>the</str<strong>on</strong>g> following exact sequence;<br />

· · · −−−→ (R ⊗ k K) 2 Ψ<br />

−−−→ (R ⊗ k K) 2<br />

Φ<br />

−−−→ (R ⊗ k K) 2 −−−→ P −−−→ 0.<br />

In this case we can prove that P is a projective module <str<strong>on</strong>g>of</str<strong>on</strong>g> rank <strong>on</strong>e over R ⊗ k K but n<strong>on</strong>-free.<br />

(Hence <str<strong>on</strong>g>the</str<strong>on</strong>g> Picard group <str<strong>on</strong>g>of</str<strong>on</strong>g> R ⊗ k K is n<strong>on</strong>-trivial.)<br />

Let A be a commutative Gorenstein ring which is not necessarily local. We say that a<br />

finitely generated A-module M is CM if Ext i A(M, A) = 0 for all i > 0. We c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

category <str<strong>on</strong>g>of</str<strong>on</strong>g> all CM modules over A with all A-module homomorphisms:<br />

CM(A) := {M ∈ mod(A) | M is a Cohen-Macaulay module over A}.<br />

We can <str<strong>on</strong>g>the</str<strong>on</strong>g>n c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> stable category <str<strong>on</strong>g>of</str<strong>on</strong>g> CM(A), which we denote by CM(A). This<br />

is similarly defined as in local cases, but <str<strong>on</strong>g>the</str<strong>on</strong>g> morphisms <str<strong>on</strong>g>of</str<strong>on</strong>g> CM(A) are elements <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Hom A (M, N) := Hom A (M, N)/P (M, N) for M, N ∈ CM(A), where P (M, N) denotes<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> morphisms from M to N factoring through projective A-modules (not necessarily<br />

free).<br />

Note that M ∼ = N in CM(A) if <strong>and</strong> <strong>on</strong>ly if <str<strong>on</strong>g>the</str<strong>on</strong>g>re are projective A-modules P 1 <strong>and</strong> P 2<br />

such that M ⊕ P 1<br />

∼ = N ⊕ P2 in CM(A).<br />

Under such circumstances it is known that CM(A) has a structure <str<strong>on</strong>g>of</str<strong>on</strong>g> triangulated<br />

category as well as in local cases.<br />

Let x ∈ A be a n<strong>on</strong>-zero divisor <strong>on</strong> A. Note that x is a n<strong>on</strong>-zero divisor <strong>on</strong> every<br />

CM module over A. Thus <str<strong>on</strong>g>the</str<strong>on</strong>g> functor − ⊗ A A/xA sends a CM module over A to that<br />

over A/xA. Therefore it yields a functor CM(A) → CM(A/xA). Since this functor maps<br />

projective A-modules to projective A/xA-modules, it induces <str<strong>on</strong>g>the</str<strong>on</strong>g> functor R : CM(A) →<br />

CM(A/xA). It is easy to verify that R is a triangle functor.<br />

Now let S ⊂ A be a multiplicative subset <str<strong>on</strong>g>of</str<strong>on</strong>g> A. Then, by a similar reas<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> above,<br />

we have a triangle functor L : CM(A) → CM(S −1 A) which maps M to S −1 M.<br />

As before, let (R, m, k) be a Gorenstein local ring that is a k-algebra <strong>and</strong> let V = k[t] (t)<br />

<strong>and</strong> K = k(t). Since R⊗ k V <strong>and</strong> R⊗ k K are Gorenstein rings, we can apply <str<strong>on</strong>g>the</str<strong>on</strong>g> observati<strong>on</strong><br />

above. Actually, t ∈ R ⊗ k V is a n<strong>on</strong>-zero divisor <strong>on</strong> R ⊗ k V <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>re are isomorphisms<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> k-algebras; (R ⊗ k V )/t(R ⊗ k V ) ∼ = R <strong>and</strong> (R ⊗ k V ) t<br />

∼ = R ⊗k K. Thus <str<strong>on</strong>g>the</str<strong>on</strong>g>re are<br />

triangle functors L : CM(R ⊗ k V ) → CM(R ⊗ k K) defined by <str<strong>on</strong>g>the</str<strong>on</strong>g> localizati<strong>on</strong> by t, <strong>and</strong><br />

–277–

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!