20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Definiti<strong>on</strong> 2. A graded algebra A is called a graded Frobenius algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> Gorenstein<br />

parameter l if A ∗ ∼ = ν A(−l) as graded A-A bimodules for some graded algebra automorphism<br />

ν ∈ Aut k A, called <str<strong>on</strong>g>the</str<strong>on</strong>g> Nakayama automorphism <str<strong>on</strong>g>of</str<strong>on</strong>g> A. We say that A is graded<br />

symmetric if A ∗ ∼ = A(−l) as graded A-A bimodules.<br />

A skew exterior algebra<br />

A = k〈x 1 , . . . , x n 〉/(α ij x i x j + x j x i , x 2 i )<br />

where α ij ∈ k such that α ij α ji = α ii = 1 for 1 ≤ i, j ≤ n is a typical example <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

Frobenius Koszul algebra.<br />

At <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> this secti<strong>on</strong>, we give an interesting result about graded Morita equivalence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> graded skew exterior algebras. It is known that every (ungraded) Frobenius algebra<br />

which is Morita equivalent to symmetric algebra is symmetric. The situati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> graded<br />

case is different as <str<strong>on</strong>g>the</str<strong>on</strong>g> following <str<strong>on</strong>g>the</str<strong>on</strong>g>orem shows.<br />

Propositi<strong>on</strong> 3. [7] Every skew exterior algebra is graded Morita equivalent to a graded<br />

symmetric skew exterior algebra.<br />

For example, a 3-dimensi<strong>on</strong>al skew exterior algebra<br />

A = k〈x, y, z〉/(αyz + zy, βzx + xz, γxy + yx, x 2 , y 2 , z 2 )<br />

is graded Morita equivalent to a symmetric skew exterior algebra<br />

A = k〈x, y, z〉/( 3√ αβγyz + zy, 3√ αβγzx + xz, 3√ αβγxy + yx, x 2 , y 2 , z 2 ).<br />

3. Co-geometric Frobenius Koszul algebras<br />

In order to state our main result, let us define a co-geometric algebra (see [4] for details).<br />

Definiti<strong>on</strong> 4. [4] Let A = T (V )/I be a graded algebra. We say that N ∈ GrMod A is a<br />

co-point module if N has a free resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> form<br />

· · · A(−2) A(−1) A N 0 .<br />

For a graded algebra A = T (V )/I, we can define <str<strong>on</strong>g>the</str<strong>on</strong>g> pair P ! (A) = (E, σ) c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> set E ⊆ P(V ) <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> map σ : E → E as follows:<br />

• E := {p ∈ P(V ) | N p := A/pA ∈ GrMod A is a co-point module}, <strong>and</strong><br />

• <str<strong>on</strong>g>the</str<strong>on</strong>g> map σ : E → E is defined by ΩN p (1) = N σ(p) .<br />

Meanwhile, for a geometric pair (E, σ) c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> a closed subscheme E ⊆ P(V ) <strong>and</strong> an<br />

automorphism σ ∈ Aut k E, we can define <str<strong>on</strong>g>the</str<strong>on</strong>g> algebra A ! (E, σ) as follows:<br />

A ! (E, σ) := (T (V ∗ )/(R)) !<br />

where R := {f ∈ V ∗ ⊗ k V ∗ | f(p, σ(p)) = 0, ∀p ∈ E}.<br />

Definiti<strong>on</strong> 5. [4] A graded algebra A = T (V )/I is called co-geometric if A satisfies <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

following c<strong>on</strong>diti<strong>on</strong>s:<br />

• P ! (A) c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> a closed subscheme E ⊆ P(V ) <strong>and</strong> an automorphism σ ∈<br />

Aut k E,<br />

• A ! is noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian, <strong>and</strong><br />

• A ∼ = A ! (P ! (A)).<br />

–218–

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!