20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

e(n, s) n = 6 7 8<br />

s = 1 36 63 120<br />

2 108 315 945<br />

3 72 336 1575<br />

4 0 63 675<br />

e 0 (n, s) n = 6 7 8<br />

s = 1 7 16 44<br />

2 35 120 462<br />

3 35 170 924<br />

4 0 40 462<br />

Table 0.1. The values <str<strong>on</strong>g>of</str<strong>on</strong>g> e(n, s) <strong>and</strong> e 0 (n, s)<br />

but essentially counting <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> regular PVs associated with. Our main <str<strong>on</strong>g>the</str<strong>on</strong>g>orem<br />

is <str<strong>on</strong>g>the</str<strong>on</strong>g> following:<br />

Theorem 0.1. Let Q be a quiver <str<strong>on</strong>g>of</str<strong>on</strong>g> type A n with n ≥ 1 (resp. D n with n ≥ 4, E n with<br />

n = 6, 7, 8). Then <str<strong>on</strong>g>the</str<strong>on</strong>g> number a(n, s) (resp. d(n, s), e(n, s)) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> isomorphic classes <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

basic hom-orthog<strong>on</strong>al tilting KQ-modules having s pairwise n<strong>on</strong>-isomorphic indecomposable<br />

direct summ<strong>and</strong>s is given explicitely by <str<strong>on</strong>g>the</str<strong>on</strong>g> following:<br />

(0.1)<br />

(0.2)<br />

(n + 1)!<br />

a(n, s) =<br />

s! (s + 1)! (n + 1 − 2s)!<br />

= C s · ( n+1<br />

2s )<br />

if 1 ≤ s ≤ (n + 1)/2, <strong>and</strong> a(n, s) = 0 if o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise. Here C s = ( 2s<br />

s ) /(s + 1) denotes <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

s-th Catalan number.<br />

d(n, s) =<br />

(n − 1)!<br />

(s!) 2 (n + 2 − 2s)! · {s 2 (s − 1) + n(n + 1 − 2s)(n + 2 − 2s) }<br />

if 1 ≤ s ≤ (n + 2)/2, <strong>and</strong> d(n, s) = 0 if o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise. The values <str<strong>on</strong>g>of</str<strong>on</strong>g> e(n, s) for 1 ≤ s ≤<br />

(n + 1)/2 are given in Table 0.1, <strong>and</strong> we have e(n, s) = 0 if o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise.<br />

Our approach to this <str<strong>on</strong>g>the</str<strong>on</strong>g>orem, which was inspired by Seidel’s paper [7], is based <strong>on</strong><br />

an observati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> perpendicular categories introduced by Sch<str<strong>on</strong>g>of</str<strong>on</strong>g>ield [6]. Here we point<br />

out that <str<strong>on</strong>g>the</str<strong>on</strong>g> totality <str<strong>on</strong>g>of</str<strong>on</strong>g> a(n, s) or d(n, s) for fixed n can be expressed as a special value<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a hypergeometric functi<strong>on</strong>. As menti<strong>on</strong>ed in Remark 2.4, <str<strong>on</strong>g>the</str<strong>on</strong>g> formula (0.2) has a<br />

combinatorial interpretati<strong>on</strong>.<br />

According to Happel [4], if a Λ-module corresp<strong>on</strong>ding to a point c<strong>on</strong>tained in <str<strong>on</strong>g>the</str<strong>on</strong>g> dense<br />

orbit <str<strong>on</strong>g>of</str<strong>on</strong>g> a PV (GL(d), Rep(Q, d)) has s pairwise n<strong>on</strong>-isomorphic indecomposable direct<br />

summ<strong>and</strong>s, <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> PV has exactly n − s basic relative invariants. Thus we obtain a<br />

c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 0.1.<br />

Corollary 0.2. Each regular PV associated with a quiver <str<strong>on</strong>g>of</str<strong>on</strong>g> type A n (resp. D n , E 6 , E 7 ,<br />

<strong>and</strong> E 8 ) has at least (n − 1)/2 (resp. (n − 2)/2, 3, 3, <strong>and</strong> 4) basic relative invariants.<br />

We say that X ∈ mod Λ is sincere if its dimensi<strong>on</strong> vector dim X does not have zero entry.<br />

Sincere modules are fairly interesting to <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> PVs, because (GL(d), Rep(Q, d))<br />

with n<strong>on</strong>-sincere dimensi<strong>on</strong> can be regarded as a direct sum <str<strong>on</strong>g>of</str<strong>on</strong>g> at least two PVs associated<br />

with proper subgraphs <str<strong>on</strong>g>of</str<strong>on</strong>g> Q. So we have counted <str<strong>on</strong>g>the</str<strong>on</strong>g>m:<br />

Theorem 0.3. Let Q be a quiver <str<strong>on</strong>g>of</str<strong>on</strong>g> type A n with n ≥ 1 (resp. D n with n ≥ 4, E n with<br />

n = 6, 7, 8). Then <str<strong>on</strong>g>the</str<strong>on</strong>g> number a 0 (n, s) (resp. d 0 (n, s), e 0 (n, s)) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> isomorphic classes<br />

–126–

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!